xref: /openbmc/linux/include/linux/kvm_host.h (revision 48af5f942aaf877ce0bf64b559ccff5a15eed376)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30 
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33 
34 #include <linux/kvm_types.h>
35 
36 #include <asm/kvm_host.h>
37 
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41 
42 /*
43  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44  * in kvm, other bits are visible for userspace which are defined in
45  * include/linux/kvm_h.
46  */
47 #define KVM_MEMSLOT_INVALID	(1UL << 16)
48 
49 /*
50  * Bit 63 of the memslot generation number is an "update in-progress flag",
51  * e.g. is temporarily set for the duration of install_new_memslots().
52  * This flag effectively creates a unique generation number that is used to
53  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54  * i.e. may (or may not) have come from the previous memslots generation.
55  *
56  * This is necessary because the actual memslots update is not atomic with
57  * respect to the generation number update.  Updating the generation number
58  * first would allow a vCPU to cache a spte from the old memslots using the
59  * new generation number, and updating the generation number after switching
60  * to the new memslots would allow cache hits using the old generation number
61  * to reference the defunct memslots.
62  *
63  * This mechanism is used to prevent getting hits in KVM's caches while a
64  * memslot update is in-progress, and to prevent cache hits *after* updating
65  * the actual generation number against accesses that were inserted into the
66  * cache *before* the memslots were updated.
67  */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
69 
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS	2
72 
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM	1
75 #endif
76 
77 /*
78  * For the normal pfn, the highest 12 bits should be zero,
79  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
80  * mask bit 63 to indicate the noslot pfn.
81  */
82 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
84 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
85 
86 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
89 
90 /*
91  * error pfns indicate that the gfn is in slot but faild to
92  * translate it to pfn on host.
93  */
94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 	return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98 
99 /*
100  * error_noslot pfns indicate that the gfn can not be
101  * translated to pfn - it is not in slot or failed to
102  * translate it to pfn.
103  */
104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108 
109 /* noslot pfn indicates that the gfn is not in slot. */
110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 	return pfn == KVM_PFN_NOSLOT;
113 }
114 
115 /*
116  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117  * provide own defines and kvm_is_error_hva
118  */
119 #ifndef KVM_HVA_ERR_BAD
120 
121 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
123 
124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 	return addr >= PAGE_OFFSET;
127 }
128 
129 #endif
130 
131 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
132 
133 static inline bool is_error_page(struct page *page)
134 {
135 	return IS_ERR(page);
136 }
137 
138 #define KVM_REQUEST_MASK           GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
140 #define KVM_REQUEST_WAIT           BIT(9)
141 /*
142  * Architecture-independent vcpu->requests bit members
143  * Bits 4-7 are reserved for more arch-independent bits.
144  */
145 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER     2
148 #define KVM_REQ_UNHALT            3
149 #define KVM_REQUEST_ARCH_BASE     8
150 
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
156 
157 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
159 
160 extern struct mutex kvm_lock;
161 extern struct list_head vm_list;
162 
163 struct kvm_io_range {
164 	gpa_t addr;
165 	int len;
166 	struct kvm_io_device *dev;
167 };
168 
169 #define NR_IOBUS_DEVS 1000
170 
171 struct kvm_io_bus {
172 	int dev_count;
173 	int ioeventfd_count;
174 	struct kvm_io_range range[];
175 };
176 
177 enum kvm_bus {
178 	KVM_MMIO_BUS,
179 	KVM_PIO_BUS,
180 	KVM_VIRTIO_CCW_NOTIFY_BUS,
181 	KVM_FAST_MMIO_BUS,
182 	KVM_NR_BUSES
183 };
184 
185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 		     int len, const void *val);
187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 			    gpa_t addr, int len, const void *val, long cookie);
189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 		    int len, void *val);
191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 			    int len, struct kvm_io_device *dev);
193 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 			       struct kvm_io_device *dev);
195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 					 gpa_t addr);
197 
198 #ifdef CONFIG_KVM_ASYNC_PF
199 struct kvm_async_pf {
200 	struct work_struct work;
201 	struct list_head link;
202 	struct list_head queue;
203 	struct kvm_vcpu *vcpu;
204 	struct mm_struct *mm;
205 	gpa_t cr2_or_gpa;
206 	unsigned long addr;
207 	struct kvm_arch_async_pf arch;
208 	bool   wakeup_all;
209 	bool notpresent_injected;
210 };
211 
212 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
213 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
214 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
215 		       unsigned long hva, struct kvm_arch_async_pf *arch);
216 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
217 #endif
218 
219 enum {
220 	OUTSIDE_GUEST_MODE,
221 	IN_GUEST_MODE,
222 	EXITING_GUEST_MODE,
223 	READING_SHADOW_PAGE_TABLES,
224 };
225 
226 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
227 
228 struct kvm_host_map {
229 	/*
230 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
231 	 * a 'struct page' for it. When using mem= kernel parameter some memory
232 	 * can be used as guest memory but they are not managed by host
233 	 * kernel).
234 	 * If 'pfn' is not managed by the host kernel, this field is
235 	 * initialized to KVM_UNMAPPED_PAGE.
236 	 */
237 	struct page *page;
238 	void *hva;
239 	kvm_pfn_t pfn;
240 	kvm_pfn_t gfn;
241 };
242 
243 /*
244  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
245  * directly to check for that.
246  */
247 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
248 {
249 	return !!map->hva;
250 }
251 
252 /*
253  * Sometimes a large or cross-page mmio needs to be broken up into separate
254  * exits for userspace servicing.
255  */
256 struct kvm_mmio_fragment {
257 	gpa_t gpa;
258 	void *data;
259 	unsigned len;
260 };
261 
262 struct kvm_vcpu {
263 	struct kvm *kvm;
264 #ifdef CONFIG_PREEMPT_NOTIFIERS
265 	struct preempt_notifier preempt_notifier;
266 #endif
267 	int cpu;
268 	int vcpu_id; /* id given by userspace at creation */
269 	int vcpu_idx; /* index in kvm->vcpus array */
270 	int srcu_idx;
271 	int mode;
272 	u64 requests;
273 	unsigned long guest_debug;
274 
275 	int pre_pcpu;
276 	struct list_head blocked_vcpu_list;
277 
278 	struct mutex mutex;
279 	struct kvm_run *run;
280 
281 	struct rcuwait wait;
282 	struct pid __rcu *pid;
283 	int sigset_active;
284 	sigset_t sigset;
285 	struct kvm_vcpu_stat stat;
286 	unsigned int halt_poll_ns;
287 	bool valid_wakeup;
288 
289 #ifdef CONFIG_HAS_IOMEM
290 	int mmio_needed;
291 	int mmio_read_completed;
292 	int mmio_is_write;
293 	int mmio_cur_fragment;
294 	int mmio_nr_fragments;
295 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
296 #endif
297 
298 #ifdef CONFIG_KVM_ASYNC_PF
299 	struct {
300 		u32 queued;
301 		struct list_head queue;
302 		struct list_head done;
303 		spinlock_t lock;
304 	} async_pf;
305 #endif
306 
307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
308 	/*
309 	 * Cpu relax intercept or pause loop exit optimization
310 	 * in_spin_loop: set when a vcpu does a pause loop exit
311 	 *  or cpu relax intercepted.
312 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
313 	 */
314 	struct {
315 		bool in_spin_loop;
316 		bool dy_eligible;
317 	} spin_loop;
318 #endif
319 	bool preempted;
320 	bool ready;
321 	struct kvm_vcpu_arch arch;
322 };
323 
324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325 {
326 	/*
327 	 * The memory barrier ensures a previous write to vcpu->requests cannot
328 	 * be reordered with the read of vcpu->mode.  It pairs with the general
329 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 	 */
331 	smp_mb__before_atomic();
332 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333 }
334 
335 /*
336  * Some of the bitops functions do not support too long bitmaps.
337  * This number must be determined not to exceed such limits.
338  */
339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340 
341 struct kvm_memory_slot {
342 	gfn_t base_gfn;
343 	unsigned long npages;
344 	unsigned long *dirty_bitmap;
345 	struct kvm_arch_memory_slot arch;
346 	unsigned long userspace_addr;
347 	u32 flags;
348 	short id;
349 };
350 
351 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352 {
353 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354 }
355 
356 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357 {
358 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359 
360 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361 }
362 
363 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
364 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
365 #endif
366 
367 struct kvm_s390_adapter_int {
368 	u64 ind_addr;
369 	u64 summary_addr;
370 	u64 ind_offset;
371 	u32 summary_offset;
372 	u32 adapter_id;
373 };
374 
375 struct kvm_hv_sint {
376 	u32 vcpu;
377 	u32 sint;
378 };
379 
380 struct kvm_kernel_irq_routing_entry {
381 	u32 gsi;
382 	u32 type;
383 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 		   struct kvm *kvm, int irq_source_id, int level,
385 		   bool line_status);
386 	union {
387 		struct {
388 			unsigned irqchip;
389 			unsigned pin;
390 		} irqchip;
391 		struct {
392 			u32 address_lo;
393 			u32 address_hi;
394 			u32 data;
395 			u32 flags;
396 			u32 devid;
397 		} msi;
398 		struct kvm_s390_adapter_int adapter;
399 		struct kvm_hv_sint hv_sint;
400 	};
401 	struct hlist_node link;
402 };
403 
404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405 struct kvm_irq_routing_table {
406 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 	u32 nr_rt_entries;
408 	/*
409 	 * Array indexed by gsi. Each entry contains list of irq chips
410 	 * the gsi is connected to.
411 	 */
412 	struct hlist_head map[0];
413 };
414 #endif
415 
416 #ifndef KVM_PRIVATE_MEM_SLOTS
417 #define KVM_PRIVATE_MEM_SLOTS 0
418 #endif
419 
420 #ifndef KVM_MEM_SLOTS_NUM
421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422 #endif
423 
424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426 {
427 	return 0;
428 }
429 #endif
430 
431 /*
432  * Note:
433  * memslots are not sorted by id anymore, please use id_to_memslot()
434  * to get the memslot by its id.
435  */
436 struct kvm_memslots {
437 	u64 generation;
438 	/* The mapping table from slot id to the index in memslots[]. */
439 	short id_to_index[KVM_MEM_SLOTS_NUM];
440 	atomic_t lru_slot;
441 	int used_slots;
442 	struct kvm_memory_slot memslots[];
443 };
444 
445 struct kvm {
446 	spinlock_t mmu_lock;
447 	struct mutex slots_lock;
448 	struct mm_struct *mm; /* userspace tied to this vm */
449 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451 
452 	/*
453 	 * created_vcpus is protected by kvm->lock, and is incremented
454 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
455 	 * incremented after storing the kvm_vcpu pointer in vcpus,
456 	 * and is accessed atomically.
457 	 */
458 	atomic_t online_vcpus;
459 	int created_vcpus;
460 	int last_boosted_vcpu;
461 	struct list_head vm_list;
462 	struct mutex lock;
463 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464 #ifdef CONFIG_HAVE_KVM_EVENTFD
465 	struct {
466 		spinlock_t        lock;
467 		struct list_head  items;
468 		struct list_head  resampler_list;
469 		struct mutex      resampler_lock;
470 	} irqfds;
471 	struct list_head ioeventfds;
472 #endif
473 	struct kvm_vm_stat stat;
474 	struct kvm_arch arch;
475 	refcount_t users_count;
476 #ifdef CONFIG_KVM_MMIO
477 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 	spinlock_t ring_lock;
479 	struct list_head coalesced_zones;
480 #endif
481 
482 	struct mutex irq_lock;
483 #ifdef CONFIG_HAVE_KVM_IRQCHIP
484 	/*
485 	 * Update side is protected by irq_lock.
486 	 */
487 	struct kvm_irq_routing_table __rcu *irq_routing;
488 #endif
489 #ifdef CONFIG_HAVE_KVM_IRQFD
490 	struct hlist_head irq_ack_notifier_list;
491 #endif
492 
493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 	struct mmu_notifier mmu_notifier;
495 	unsigned long mmu_notifier_seq;
496 	long mmu_notifier_count;
497 #endif
498 	long tlbs_dirty;
499 	struct list_head devices;
500 	u64 manual_dirty_log_protect;
501 	struct dentry *debugfs_dentry;
502 	struct kvm_stat_data **debugfs_stat_data;
503 	struct srcu_struct srcu;
504 	struct srcu_struct irq_srcu;
505 	pid_t userspace_pid;
506 	unsigned int max_halt_poll_ns;
507 };
508 
509 #define kvm_err(fmt, ...) \
510 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511 #define kvm_info(fmt, ...) \
512 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
513 #define kvm_debug(fmt, ...) \
514 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
515 #define kvm_debug_ratelimited(fmt, ...) \
516 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
517 			     ## __VA_ARGS__)
518 #define kvm_pr_unimpl(fmt, ...) \
519 	pr_err_ratelimited("kvm [%i]: " fmt, \
520 			   task_tgid_nr(current), ## __VA_ARGS__)
521 
522 /* The guest did something we don't support. */
523 #define vcpu_unimpl(vcpu, fmt, ...)					\
524 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
525 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
526 
527 #define vcpu_debug(vcpu, fmt, ...)					\
528 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
529 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
530 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
531 			      ## __VA_ARGS__)
532 #define vcpu_err(vcpu, fmt, ...)					\
533 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
534 
535 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
536 {
537 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
538 }
539 
540 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
541 {
542 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
543 				      lockdep_is_held(&kvm->slots_lock) ||
544 				      !refcount_read(&kvm->users_count));
545 }
546 
547 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
548 {
549 	int num_vcpus = atomic_read(&kvm->online_vcpus);
550 	i = array_index_nospec(i, num_vcpus);
551 
552 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
553 	smp_rmb();
554 	return kvm->vcpus[i];
555 }
556 
557 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
558 	for (idx = 0; \
559 	     idx < atomic_read(&kvm->online_vcpus) && \
560 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
561 	     idx++)
562 
563 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
564 {
565 	struct kvm_vcpu *vcpu = NULL;
566 	int i;
567 
568 	if (id < 0)
569 		return NULL;
570 	if (id < KVM_MAX_VCPUS)
571 		vcpu = kvm_get_vcpu(kvm, id);
572 	if (vcpu && vcpu->vcpu_id == id)
573 		return vcpu;
574 	kvm_for_each_vcpu(i, vcpu, kvm)
575 		if (vcpu->vcpu_id == id)
576 			return vcpu;
577 	return NULL;
578 }
579 
580 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
581 {
582 	return vcpu->vcpu_idx;
583 }
584 
585 #define kvm_for_each_memslot(memslot, slots)				\
586 	for (memslot = &slots->memslots[0];				\
587 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
588 		if (WARN_ON_ONCE(!memslot->npages)) {			\
589 		} else
590 
591 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
592 
593 void vcpu_load(struct kvm_vcpu *vcpu);
594 void vcpu_put(struct kvm_vcpu *vcpu);
595 
596 #ifdef __KVM_HAVE_IOAPIC
597 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
598 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
599 #else
600 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
601 {
602 }
603 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
604 {
605 }
606 #endif
607 
608 #ifdef CONFIG_HAVE_KVM_IRQFD
609 int kvm_irqfd_init(void);
610 void kvm_irqfd_exit(void);
611 #else
612 static inline int kvm_irqfd_init(void)
613 {
614 	return 0;
615 }
616 
617 static inline void kvm_irqfd_exit(void)
618 {
619 }
620 #endif
621 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
622 		  struct module *module);
623 void kvm_exit(void);
624 
625 void kvm_get_kvm(struct kvm *kvm);
626 void kvm_put_kvm(struct kvm *kvm);
627 void kvm_put_kvm_no_destroy(struct kvm *kvm);
628 
629 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
630 {
631 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
632 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
633 			lockdep_is_held(&kvm->slots_lock) ||
634 			!refcount_read(&kvm->users_count));
635 }
636 
637 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
638 {
639 	return __kvm_memslots(kvm, 0);
640 }
641 
642 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
643 {
644 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
645 
646 	return __kvm_memslots(vcpu->kvm, as_id);
647 }
648 
649 static inline
650 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
651 {
652 	int index = slots->id_to_index[id];
653 	struct kvm_memory_slot *slot;
654 
655 	if (index < 0)
656 		return NULL;
657 
658 	slot = &slots->memslots[index];
659 
660 	WARN_ON(slot->id != id);
661 	return slot;
662 }
663 
664 /*
665  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
666  * - create a new memory slot
667  * - delete an existing memory slot
668  * - modify an existing memory slot
669  *   -- move it in the guest physical memory space
670  *   -- just change its flags
671  *
672  * Since flags can be changed by some of these operations, the following
673  * differentiation is the best we can do for __kvm_set_memory_region():
674  */
675 enum kvm_mr_change {
676 	KVM_MR_CREATE,
677 	KVM_MR_DELETE,
678 	KVM_MR_MOVE,
679 	KVM_MR_FLAGS_ONLY,
680 };
681 
682 int kvm_set_memory_region(struct kvm *kvm,
683 			  const struct kvm_userspace_memory_region *mem);
684 int __kvm_set_memory_region(struct kvm *kvm,
685 			    const struct kvm_userspace_memory_region *mem);
686 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
687 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
688 int kvm_arch_prepare_memory_region(struct kvm *kvm,
689 				struct kvm_memory_slot *memslot,
690 				const struct kvm_userspace_memory_region *mem,
691 				enum kvm_mr_change change);
692 void kvm_arch_commit_memory_region(struct kvm *kvm,
693 				const struct kvm_userspace_memory_region *mem,
694 				struct kvm_memory_slot *old,
695 				const struct kvm_memory_slot *new,
696 				enum kvm_mr_change change);
697 /* flush all memory translations */
698 void kvm_arch_flush_shadow_all(struct kvm *kvm);
699 /* flush memory translations pointing to 'slot' */
700 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
701 				   struct kvm_memory_slot *slot);
702 
703 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
704 			    struct page **pages, int nr_pages);
705 
706 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
707 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
708 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
709 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
710 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
711 				      bool *writable);
712 void kvm_release_page_clean(struct page *page);
713 void kvm_release_page_dirty(struct page *page);
714 void kvm_set_page_accessed(struct page *page);
715 
716 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
717 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
718 		      bool *writable);
719 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
720 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
721 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
722 			       bool atomic, bool *async, bool write_fault,
723 			       bool *writable);
724 
725 void kvm_release_pfn_clean(kvm_pfn_t pfn);
726 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
727 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
728 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
729 void kvm_get_pfn(kvm_pfn_t pfn);
730 
731 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
732 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
733 			int len);
734 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
735 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 			   void *data, unsigned long len);
737 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
738 				 void *data, unsigned int offset,
739 				 unsigned long len);
740 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
741 			 int offset, int len);
742 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
743 		    unsigned long len);
744 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 			   void *data, unsigned long len);
746 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 				  void *data, unsigned int offset,
748 				  unsigned long len);
749 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
750 			      gpa_t gpa, unsigned long len);
751 
752 #define __kvm_put_guest(kvm, gfn, offset, value, type)			\
753 ({									\
754 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
755 	type __user *__uaddr = (type __user *)(__addr + offset);	\
756 	int __ret = -EFAULT;						\
757 									\
758 	if (!kvm_is_error_hva(__addr))					\
759 		__ret = put_user(value, __uaddr);			\
760 	if (!__ret)							\
761 		mark_page_dirty(kvm, gfn);				\
762 	__ret;								\
763 })
764 
765 #define kvm_put_guest(kvm, gpa, value, type)				\
766 ({									\
767 	gpa_t __gpa = gpa;						\
768 	struct kvm *__kvm = kvm;					\
769 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
770 			offset_in_page(__gpa), (value), type);		\
771 })
772 
773 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
774 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
775 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
776 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
777 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
778 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
779 
780 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
781 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
782 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
783 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
784 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
785 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
786 		struct gfn_to_pfn_cache *cache, bool atomic);
787 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
788 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
789 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
790 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
791 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
792 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
793 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
794 			     int len);
795 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
796 			       unsigned long len);
797 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
798 			unsigned long len);
799 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
800 			      int offset, int len);
801 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
802 			 unsigned long len);
803 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
804 
805 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
806 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
807 
808 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
809 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
810 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
811 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
812 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
813 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
814 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
815 
816 void kvm_flush_remote_tlbs(struct kvm *kvm);
817 void kvm_reload_remote_mmus(struct kvm *kvm);
818 
819 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
820 				 struct kvm_vcpu *except,
821 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
822 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
823 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
824 				      struct kvm_vcpu *except);
825 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
826 				unsigned long *vcpu_bitmap);
827 
828 long kvm_arch_dev_ioctl(struct file *filp,
829 			unsigned int ioctl, unsigned long arg);
830 long kvm_arch_vcpu_ioctl(struct file *filp,
831 			 unsigned int ioctl, unsigned long arg);
832 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
833 
834 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
835 
836 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
837 					struct kvm_memory_slot *slot,
838 					gfn_t gfn_offset,
839 					unsigned long mask);
840 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
841 
842 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
843 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
844 					struct kvm_memory_slot *memslot);
845 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
846 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
847 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
848 		      int *is_dirty, struct kvm_memory_slot **memslot);
849 #endif
850 
851 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
852 			bool line_status);
853 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
854 			    struct kvm_enable_cap *cap);
855 long kvm_arch_vm_ioctl(struct file *filp,
856 		       unsigned int ioctl, unsigned long arg);
857 
858 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
859 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
860 
861 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
862 				    struct kvm_translation *tr);
863 
864 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
865 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
866 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
867 				  struct kvm_sregs *sregs);
868 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
869 				  struct kvm_sregs *sregs);
870 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
871 				    struct kvm_mp_state *mp_state);
872 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
873 				    struct kvm_mp_state *mp_state);
874 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
875 					struct kvm_guest_debug *dbg);
876 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
877 
878 int kvm_arch_init(void *opaque);
879 void kvm_arch_exit(void);
880 
881 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
882 
883 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
885 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
886 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
887 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
888 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
889 
890 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
891 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
892 #endif
893 
894 int kvm_arch_hardware_enable(void);
895 void kvm_arch_hardware_disable(void);
896 int kvm_arch_hardware_setup(void *opaque);
897 void kvm_arch_hardware_unsetup(void);
898 int kvm_arch_check_processor_compat(void *opaque);
899 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
900 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
901 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
902 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
903 int kvm_arch_post_init_vm(struct kvm *kvm);
904 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
905 
906 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
907 /*
908  * All architectures that want to use vzalloc currently also
909  * need their own kvm_arch_alloc_vm implementation.
910  */
911 static inline struct kvm *kvm_arch_alloc_vm(void)
912 {
913 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
914 }
915 
916 static inline void kvm_arch_free_vm(struct kvm *kvm)
917 {
918 	kfree(kvm);
919 }
920 #endif
921 
922 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
923 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
924 {
925 	return -ENOTSUPP;
926 }
927 #endif
928 
929 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
930 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
931 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
932 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
933 #else
934 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
935 {
936 }
937 
938 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
939 {
940 }
941 
942 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
943 {
944 	return false;
945 }
946 #endif
947 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
948 void kvm_arch_start_assignment(struct kvm *kvm);
949 void kvm_arch_end_assignment(struct kvm *kvm);
950 bool kvm_arch_has_assigned_device(struct kvm *kvm);
951 #else
952 static inline void kvm_arch_start_assignment(struct kvm *kvm)
953 {
954 }
955 
956 static inline void kvm_arch_end_assignment(struct kvm *kvm)
957 {
958 }
959 
960 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
961 {
962 	return false;
963 }
964 #endif
965 
966 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
967 {
968 #ifdef __KVM_HAVE_ARCH_WQP
969 	return vcpu->arch.waitp;
970 #else
971 	return &vcpu->wait;
972 #endif
973 }
974 
975 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
976 /*
977  * returns true if the virtual interrupt controller is initialized and
978  * ready to accept virtual IRQ. On some architectures the virtual interrupt
979  * controller is dynamically instantiated and this is not always true.
980  */
981 bool kvm_arch_intc_initialized(struct kvm *kvm);
982 #else
983 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
984 {
985 	return true;
986 }
987 #endif
988 
989 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
990 void kvm_arch_destroy_vm(struct kvm *kvm);
991 void kvm_arch_sync_events(struct kvm *kvm);
992 
993 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
994 
995 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
996 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
997 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
998 
999 struct kvm_irq_ack_notifier {
1000 	struct hlist_node link;
1001 	unsigned gsi;
1002 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1003 };
1004 
1005 int kvm_irq_map_gsi(struct kvm *kvm,
1006 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1007 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1008 
1009 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1010 		bool line_status);
1011 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1012 		int irq_source_id, int level, bool line_status);
1013 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1014 			       struct kvm *kvm, int irq_source_id,
1015 			       int level, bool line_status);
1016 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1017 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1018 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1019 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1020 				   struct kvm_irq_ack_notifier *kian);
1021 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1022 				   struct kvm_irq_ack_notifier *kian);
1023 int kvm_request_irq_source_id(struct kvm *kvm);
1024 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1025 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1026 
1027 /*
1028  * search_memslots() and __gfn_to_memslot() are here because they are
1029  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1030  * gfn_to_memslot() itself isn't here as an inline because that would
1031  * bloat other code too much.
1032  *
1033  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1034  */
1035 static inline struct kvm_memory_slot *
1036 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1037 {
1038 	int start = 0, end = slots->used_slots;
1039 	int slot = atomic_read(&slots->lru_slot);
1040 	struct kvm_memory_slot *memslots = slots->memslots;
1041 
1042 	if (unlikely(!slots->used_slots))
1043 		return NULL;
1044 
1045 	if (gfn >= memslots[slot].base_gfn &&
1046 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1047 		return &memslots[slot];
1048 
1049 	while (start < end) {
1050 		slot = start + (end - start) / 2;
1051 
1052 		if (gfn >= memslots[slot].base_gfn)
1053 			end = slot;
1054 		else
1055 			start = slot + 1;
1056 	}
1057 
1058 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1059 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1060 		atomic_set(&slots->lru_slot, start);
1061 		return &memslots[start];
1062 	}
1063 
1064 	return NULL;
1065 }
1066 
1067 static inline struct kvm_memory_slot *
1068 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1069 {
1070 	return search_memslots(slots, gfn);
1071 }
1072 
1073 static inline unsigned long
1074 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1075 {
1076 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1077 }
1078 
1079 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1080 {
1081 	return gfn_to_memslot(kvm, gfn)->id;
1082 }
1083 
1084 static inline gfn_t
1085 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1086 {
1087 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1088 
1089 	return slot->base_gfn + gfn_offset;
1090 }
1091 
1092 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1093 {
1094 	return (gpa_t)gfn << PAGE_SHIFT;
1095 }
1096 
1097 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1098 {
1099 	return (gfn_t)(gpa >> PAGE_SHIFT);
1100 }
1101 
1102 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1103 {
1104 	return (hpa_t)pfn << PAGE_SHIFT;
1105 }
1106 
1107 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1108 						gpa_t gpa)
1109 {
1110 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1111 }
1112 
1113 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1114 {
1115 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1116 
1117 	return kvm_is_error_hva(hva);
1118 }
1119 
1120 enum kvm_stat_kind {
1121 	KVM_STAT_VM,
1122 	KVM_STAT_VCPU,
1123 };
1124 
1125 struct kvm_stat_data {
1126 	struct kvm *kvm;
1127 	struct kvm_stats_debugfs_item *dbgfs_item;
1128 };
1129 
1130 struct kvm_stats_debugfs_item {
1131 	const char *name;
1132 	int offset;
1133 	enum kvm_stat_kind kind;
1134 	int mode;
1135 };
1136 
1137 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1138 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1139 
1140 #define VM_STAT(n, x, ...) 							\
1141 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1142 #define VCPU_STAT(n, x, ...)							\
1143 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1144 
1145 extern struct kvm_stats_debugfs_item debugfs_entries[];
1146 extern struct dentry *kvm_debugfs_dir;
1147 
1148 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1149 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1150 {
1151 	if (unlikely(kvm->mmu_notifier_count))
1152 		return 1;
1153 	/*
1154 	 * Ensure the read of mmu_notifier_count happens before the read
1155 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1156 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1157 	 * either sees the old (non-zero) value of mmu_notifier_count or
1158 	 * the new (incremented) value of mmu_notifier_seq.
1159 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1160 	 * rather than under kvm->mmu_lock, for scalability, so
1161 	 * can't rely on kvm->mmu_lock to keep things ordered.
1162 	 */
1163 	smp_rmb();
1164 	if (kvm->mmu_notifier_seq != mmu_seq)
1165 		return 1;
1166 	return 0;
1167 }
1168 #endif
1169 
1170 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1171 
1172 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1173 
1174 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1175 int kvm_set_irq_routing(struct kvm *kvm,
1176 			const struct kvm_irq_routing_entry *entries,
1177 			unsigned nr,
1178 			unsigned flags);
1179 int kvm_set_routing_entry(struct kvm *kvm,
1180 			  struct kvm_kernel_irq_routing_entry *e,
1181 			  const struct kvm_irq_routing_entry *ue);
1182 void kvm_free_irq_routing(struct kvm *kvm);
1183 
1184 #else
1185 
1186 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1187 
1188 #endif
1189 
1190 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1191 
1192 #ifdef CONFIG_HAVE_KVM_EVENTFD
1193 
1194 void kvm_eventfd_init(struct kvm *kvm);
1195 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1196 
1197 #ifdef CONFIG_HAVE_KVM_IRQFD
1198 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1199 void kvm_irqfd_release(struct kvm *kvm);
1200 void kvm_irq_routing_update(struct kvm *);
1201 #else
1202 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1203 {
1204 	return -EINVAL;
1205 }
1206 
1207 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1208 #endif
1209 
1210 #else
1211 
1212 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1213 
1214 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1215 {
1216 	return -EINVAL;
1217 }
1218 
1219 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1220 
1221 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1222 static inline void kvm_irq_routing_update(struct kvm *kvm)
1223 {
1224 }
1225 #endif
1226 
1227 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1228 {
1229 	return -ENOSYS;
1230 }
1231 
1232 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1233 
1234 void kvm_arch_irq_routing_update(struct kvm *kvm);
1235 
1236 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1237 {
1238 	/*
1239 	 * Ensure the rest of the request is published to kvm_check_request's
1240 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1241 	 */
1242 	smp_wmb();
1243 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1244 }
1245 
1246 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1247 {
1248 	return READ_ONCE(vcpu->requests);
1249 }
1250 
1251 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1252 {
1253 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1254 }
1255 
1256 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1257 {
1258 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1259 }
1260 
1261 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1262 {
1263 	if (kvm_test_request(req, vcpu)) {
1264 		kvm_clear_request(req, vcpu);
1265 
1266 		/*
1267 		 * Ensure the rest of the request is visible to kvm_check_request's
1268 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1269 		 */
1270 		smp_mb__after_atomic();
1271 		return true;
1272 	} else {
1273 		return false;
1274 	}
1275 }
1276 
1277 extern bool kvm_rebooting;
1278 
1279 extern unsigned int halt_poll_ns;
1280 extern unsigned int halt_poll_ns_grow;
1281 extern unsigned int halt_poll_ns_grow_start;
1282 extern unsigned int halt_poll_ns_shrink;
1283 
1284 struct kvm_device {
1285 	const struct kvm_device_ops *ops;
1286 	struct kvm *kvm;
1287 	void *private;
1288 	struct list_head vm_node;
1289 };
1290 
1291 /* create, destroy, and name are mandatory */
1292 struct kvm_device_ops {
1293 	const char *name;
1294 
1295 	/*
1296 	 * create is called holding kvm->lock and any operations not suitable
1297 	 * to do while holding the lock should be deferred to init (see
1298 	 * below).
1299 	 */
1300 	int (*create)(struct kvm_device *dev, u32 type);
1301 
1302 	/*
1303 	 * init is called after create if create is successful and is called
1304 	 * outside of holding kvm->lock.
1305 	 */
1306 	void (*init)(struct kvm_device *dev);
1307 
1308 	/*
1309 	 * Destroy is responsible for freeing dev.
1310 	 *
1311 	 * Destroy may be called before or after destructors are called
1312 	 * on emulated I/O regions, depending on whether a reference is
1313 	 * held by a vcpu or other kvm component that gets destroyed
1314 	 * after the emulated I/O.
1315 	 */
1316 	void (*destroy)(struct kvm_device *dev);
1317 
1318 	/*
1319 	 * Release is an alternative method to free the device. It is
1320 	 * called when the device file descriptor is closed. Once
1321 	 * release is called, the destroy method will not be called
1322 	 * anymore as the device is removed from the device list of
1323 	 * the VM. kvm->lock is held.
1324 	 */
1325 	void (*release)(struct kvm_device *dev);
1326 
1327 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1328 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1329 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1330 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1331 		      unsigned long arg);
1332 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1333 };
1334 
1335 void kvm_device_get(struct kvm_device *dev);
1336 void kvm_device_put(struct kvm_device *dev);
1337 struct kvm_device *kvm_device_from_filp(struct file *filp);
1338 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1339 void kvm_unregister_device_ops(u32 type);
1340 
1341 extern struct kvm_device_ops kvm_mpic_ops;
1342 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1343 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1344 
1345 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1346 
1347 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1348 {
1349 	vcpu->spin_loop.in_spin_loop = val;
1350 }
1351 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1352 {
1353 	vcpu->spin_loop.dy_eligible = val;
1354 }
1355 
1356 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1357 
1358 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1359 {
1360 }
1361 
1362 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1363 {
1364 }
1365 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1366 
1367 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1368 {
1369 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1370 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1371 }
1372 
1373 struct kvm_vcpu *kvm_get_running_vcpu(void);
1374 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1375 
1376 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1377 bool kvm_arch_has_irq_bypass(void);
1378 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1379 			   struct irq_bypass_producer *);
1380 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1381 			   struct irq_bypass_producer *);
1382 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1383 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1384 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1385 				  uint32_t guest_irq, bool set);
1386 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1387 
1388 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1389 /* If we wakeup during the poll time, was it a sucessful poll? */
1390 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1391 {
1392 	return vcpu->valid_wakeup;
1393 }
1394 
1395 #else
1396 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1397 {
1398 	return true;
1399 }
1400 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1401 
1402 #ifdef CONFIG_HAVE_KVM_NO_POLL
1403 /* Callback that tells if we must not poll */
1404 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1405 #else
1406 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1407 {
1408 	return false;
1409 }
1410 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1411 
1412 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1413 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1414 			       unsigned int ioctl, unsigned long arg);
1415 #else
1416 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1417 					     unsigned int ioctl,
1418 					     unsigned long arg)
1419 {
1420 	return -ENOIOCTLCMD;
1421 }
1422 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1423 
1424 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1425 					    unsigned long start, unsigned long end);
1426 
1427 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1428 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1429 #else
1430 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1431 {
1432 	return 0;
1433 }
1434 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1435 
1436 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1437 
1438 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1439 				uintptr_t data, const char *name,
1440 				struct task_struct **thread_ptr);
1441 
1442 #endif
1443