1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/swait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct mutex kvm_lock; 161 extern struct list_head vm_list; 162 163 struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167 }; 168 169 #define NR_IOBUS_DEVS 1000 170 171 struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175 }; 176 177 enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183 }; 184 185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198 #ifdef CONFIG_KVM_ASYNC_PF 199 struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209 }; 210 211 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 212 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 213 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 214 unsigned long hva, struct kvm_arch_async_pf *arch); 215 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 216 #endif 217 218 enum { 219 OUTSIDE_GUEST_MODE, 220 IN_GUEST_MODE, 221 EXITING_GUEST_MODE, 222 READING_SHADOW_PAGE_TABLES, 223 }; 224 225 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 226 227 struct kvm_host_map { 228 /* 229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 230 * a 'struct page' for it. When using mem= kernel parameter some memory 231 * can be used as guest memory but they are not managed by host 232 * kernel). 233 * If 'pfn' is not managed by the host kernel, this field is 234 * initialized to KVM_UNMAPPED_PAGE. 235 */ 236 struct page *page; 237 void *hva; 238 kvm_pfn_t pfn; 239 kvm_pfn_t gfn; 240 }; 241 242 /* 243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 244 * directly to check for that. 245 */ 246 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 247 { 248 return !!map->hva; 249 } 250 251 /* 252 * Sometimes a large or cross-page mmio needs to be broken up into separate 253 * exits for userspace servicing. 254 */ 255 struct kvm_mmio_fragment { 256 gpa_t gpa; 257 void *data; 258 unsigned len; 259 }; 260 261 struct kvm_vcpu { 262 struct kvm *kvm; 263 #ifdef CONFIG_PREEMPT_NOTIFIERS 264 struct preempt_notifier preempt_notifier; 265 #endif 266 int cpu; 267 int vcpu_id; /* id given by userspace at creation */ 268 int vcpu_idx; /* index in kvm->vcpus array */ 269 int srcu_idx; 270 int mode; 271 u64 requests; 272 unsigned long guest_debug; 273 274 int pre_pcpu; 275 struct list_head blocked_vcpu_list; 276 277 struct mutex mutex; 278 struct kvm_run *run; 279 280 struct swait_queue_head wq; 281 struct pid __rcu *pid; 282 int sigset_active; 283 sigset_t sigset; 284 struct kvm_vcpu_stat stat; 285 unsigned int halt_poll_ns; 286 bool valid_wakeup; 287 288 #ifdef CONFIG_HAS_IOMEM 289 int mmio_needed; 290 int mmio_read_completed; 291 int mmio_is_write; 292 int mmio_cur_fragment; 293 int mmio_nr_fragments; 294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 295 #endif 296 297 #ifdef CONFIG_KVM_ASYNC_PF 298 struct { 299 u32 queued; 300 struct list_head queue; 301 struct list_head done; 302 spinlock_t lock; 303 } async_pf; 304 #endif 305 306 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 307 /* 308 * Cpu relax intercept or pause loop exit optimization 309 * in_spin_loop: set when a vcpu does a pause loop exit 310 * or cpu relax intercepted. 311 * dy_eligible: indicates whether vcpu is eligible for directed yield. 312 */ 313 struct { 314 bool in_spin_loop; 315 bool dy_eligible; 316 } spin_loop; 317 #endif 318 bool preempted; 319 bool ready; 320 struct kvm_vcpu_arch arch; 321 struct dentry *debugfs_dentry; 322 }; 323 324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325 { 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333 } 334 335 /* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341 struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349 }; 350 351 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 352 { 353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 354 } 355 356 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 357 { 358 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 359 360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 361 } 362 363 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 364 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 365 #endif 366 367 struct kvm_s390_adapter_int { 368 u64 ind_addr; 369 u64 summary_addr; 370 u64 ind_offset; 371 u32 summary_offset; 372 u32 adapter_id; 373 }; 374 375 struct kvm_hv_sint { 376 u32 vcpu; 377 u32 sint; 378 }; 379 380 struct kvm_kernel_irq_routing_entry { 381 u32 gsi; 382 u32 type; 383 int (*set)(struct kvm_kernel_irq_routing_entry *e, 384 struct kvm *kvm, int irq_source_id, int level, 385 bool line_status); 386 union { 387 struct { 388 unsigned irqchip; 389 unsigned pin; 390 } irqchip; 391 struct { 392 u32 address_lo; 393 u32 address_hi; 394 u32 data; 395 u32 flags; 396 u32 devid; 397 } msi; 398 struct kvm_s390_adapter_int adapter; 399 struct kvm_hv_sint hv_sint; 400 }; 401 struct hlist_node link; 402 }; 403 404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 405 struct kvm_irq_routing_table { 406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 407 u32 nr_rt_entries; 408 /* 409 * Array indexed by gsi. Each entry contains list of irq chips 410 * the gsi is connected to. 411 */ 412 struct hlist_head map[0]; 413 }; 414 #endif 415 416 #ifndef KVM_PRIVATE_MEM_SLOTS 417 #define KVM_PRIVATE_MEM_SLOTS 0 418 #endif 419 420 #ifndef KVM_MEM_SLOTS_NUM 421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 422 #endif 423 424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 426 { 427 return 0; 428 } 429 #endif 430 431 /* 432 * Note: 433 * memslots are not sorted by id anymore, please use id_to_memslot() 434 * to get the memslot by its id. 435 */ 436 struct kvm_memslots { 437 u64 generation; 438 /* The mapping table from slot id to the index in memslots[]. */ 439 short id_to_index[KVM_MEM_SLOTS_NUM]; 440 atomic_t lru_slot; 441 int used_slots; 442 struct kvm_memory_slot memslots[]; 443 }; 444 445 struct kvm { 446 spinlock_t mmu_lock; 447 struct mutex slots_lock; 448 struct mm_struct *mm; /* userspace tied to this vm */ 449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 451 452 /* 453 * created_vcpus is protected by kvm->lock, and is incremented 454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 455 * incremented after storing the kvm_vcpu pointer in vcpus, 456 * and is accessed atomically. 457 */ 458 atomic_t online_vcpus; 459 int created_vcpus; 460 int last_boosted_vcpu; 461 struct list_head vm_list; 462 struct mutex lock; 463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 464 #ifdef CONFIG_HAVE_KVM_EVENTFD 465 struct { 466 spinlock_t lock; 467 struct list_head items; 468 struct list_head resampler_list; 469 struct mutex resampler_lock; 470 } irqfds; 471 struct list_head ioeventfds; 472 #endif 473 struct kvm_vm_stat stat; 474 struct kvm_arch arch; 475 refcount_t users_count; 476 #ifdef CONFIG_KVM_MMIO 477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 478 spinlock_t ring_lock; 479 struct list_head coalesced_zones; 480 #endif 481 482 struct mutex irq_lock; 483 #ifdef CONFIG_HAVE_KVM_IRQCHIP 484 /* 485 * Update side is protected by irq_lock. 486 */ 487 struct kvm_irq_routing_table __rcu *irq_routing; 488 #endif 489 #ifdef CONFIG_HAVE_KVM_IRQFD 490 struct hlist_head irq_ack_notifier_list; 491 #endif 492 493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 494 struct mmu_notifier mmu_notifier; 495 unsigned long mmu_notifier_seq; 496 long mmu_notifier_count; 497 #endif 498 long tlbs_dirty; 499 struct list_head devices; 500 u64 manual_dirty_log_protect; 501 struct dentry *debugfs_dentry; 502 struct kvm_stat_data **debugfs_stat_data; 503 struct srcu_struct srcu; 504 struct srcu_struct irq_srcu; 505 pid_t userspace_pid; 506 }; 507 508 #define kvm_err(fmt, ...) \ 509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510 #define kvm_info(fmt, ...) \ 511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512 #define kvm_debug(fmt, ...) \ 513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514 #define kvm_debug_ratelimited(fmt, ...) \ 515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 516 ## __VA_ARGS__) 517 #define kvm_pr_unimpl(fmt, ...) \ 518 pr_err_ratelimited("kvm [%i]: " fmt, \ 519 task_tgid_nr(current), ## __VA_ARGS__) 520 521 /* The guest did something we don't support. */ 522 #define vcpu_unimpl(vcpu, fmt, ...) \ 523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 525 526 #define vcpu_debug(vcpu, fmt, ...) \ 527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 528 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 530 ## __VA_ARGS__) 531 #define vcpu_err(vcpu, fmt, ...) \ 532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 533 534 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 535 { 536 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 537 } 538 539 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 540 { 541 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 542 lockdep_is_held(&kvm->slots_lock) || 543 !refcount_read(&kvm->users_count)); 544 } 545 546 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 547 { 548 int num_vcpus = atomic_read(&kvm->online_vcpus); 549 i = array_index_nospec(i, num_vcpus); 550 551 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 552 smp_rmb(); 553 return kvm->vcpus[i]; 554 } 555 556 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 557 for (idx = 0; \ 558 idx < atomic_read(&kvm->online_vcpus) && \ 559 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 560 idx++) 561 562 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 563 { 564 struct kvm_vcpu *vcpu = NULL; 565 int i; 566 567 if (id < 0) 568 return NULL; 569 if (id < KVM_MAX_VCPUS) 570 vcpu = kvm_get_vcpu(kvm, id); 571 if (vcpu && vcpu->vcpu_id == id) 572 return vcpu; 573 kvm_for_each_vcpu(i, vcpu, kvm) 574 if (vcpu->vcpu_id == id) 575 return vcpu; 576 return NULL; 577 } 578 579 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 580 { 581 return vcpu->vcpu_idx; 582 } 583 584 #define kvm_for_each_memslot(memslot, slots) \ 585 for (memslot = &slots->memslots[0]; \ 586 memslot < slots->memslots + slots->used_slots; memslot++) \ 587 if (WARN_ON_ONCE(!memslot->npages)) { \ 588 } else 589 590 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 591 592 void vcpu_load(struct kvm_vcpu *vcpu); 593 void vcpu_put(struct kvm_vcpu *vcpu); 594 595 #ifdef __KVM_HAVE_IOAPIC 596 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 597 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 598 #else 599 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 600 { 601 } 602 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 603 { 604 } 605 #endif 606 607 #ifdef CONFIG_HAVE_KVM_IRQFD 608 int kvm_irqfd_init(void); 609 void kvm_irqfd_exit(void); 610 #else 611 static inline int kvm_irqfd_init(void) 612 { 613 return 0; 614 } 615 616 static inline void kvm_irqfd_exit(void) 617 { 618 } 619 #endif 620 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 621 struct module *module); 622 void kvm_exit(void); 623 624 void kvm_get_kvm(struct kvm *kvm); 625 void kvm_put_kvm(struct kvm *kvm); 626 void kvm_put_kvm_no_destroy(struct kvm *kvm); 627 628 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 629 { 630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 632 lockdep_is_held(&kvm->slots_lock) || 633 !refcount_read(&kvm->users_count)); 634 } 635 636 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 637 { 638 return __kvm_memslots(kvm, 0); 639 } 640 641 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 642 { 643 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 644 645 return __kvm_memslots(vcpu->kvm, as_id); 646 } 647 648 static inline 649 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 650 { 651 int index = slots->id_to_index[id]; 652 struct kvm_memory_slot *slot; 653 654 if (index < 0) 655 return NULL; 656 657 slot = &slots->memslots[index]; 658 659 WARN_ON(slot->id != id); 660 return slot; 661 } 662 663 /* 664 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 665 * - create a new memory slot 666 * - delete an existing memory slot 667 * - modify an existing memory slot 668 * -- move it in the guest physical memory space 669 * -- just change its flags 670 * 671 * Since flags can be changed by some of these operations, the following 672 * differentiation is the best we can do for __kvm_set_memory_region(): 673 */ 674 enum kvm_mr_change { 675 KVM_MR_CREATE, 676 KVM_MR_DELETE, 677 KVM_MR_MOVE, 678 KVM_MR_FLAGS_ONLY, 679 }; 680 681 int kvm_set_memory_region(struct kvm *kvm, 682 const struct kvm_userspace_memory_region *mem); 683 int __kvm_set_memory_region(struct kvm *kvm, 684 const struct kvm_userspace_memory_region *mem); 685 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 686 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 687 int kvm_arch_prepare_memory_region(struct kvm *kvm, 688 struct kvm_memory_slot *memslot, 689 const struct kvm_userspace_memory_region *mem, 690 enum kvm_mr_change change); 691 void kvm_arch_commit_memory_region(struct kvm *kvm, 692 const struct kvm_userspace_memory_region *mem, 693 struct kvm_memory_slot *old, 694 const struct kvm_memory_slot *new, 695 enum kvm_mr_change change); 696 /* flush all memory translations */ 697 void kvm_arch_flush_shadow_all(struct kvm *kvm); 698 /* flush memory translations pointing to 'slot' */ 699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 700 struct kvm_memory_slot *slot); 701 702 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 703 struct page **pages, int nr_pages); 704 705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 708 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 710 bool *writable); 711 void kvm_release_page_clean(struct page *page); 712 void kvm_release_page_dirty(struct page *page); 713 void kvm_set_page_accessed(struct page *page); 714 715 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 716 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 717 bool *writable); 718 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 719 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 720 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 721 bool atomic, bool *async, bool write_fault, 722 bool *writable); 723 724 void kvm_release_pfn_clean(kvm_pfn_t pfn); 725 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 726 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 727 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 728 void kvm_get_pfn(kvm_pfn_t pfn); 729 730 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 731 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 732 int len); 733 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 734 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 735 void *data, unsigned long len); 736 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 737 int offset, int len); 738 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 739 unsigned long len); 740 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 741 void *data, unsigned long len); 742 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 743 void *data, unsigned int offset, 744 unsigned long len); 745 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 746 gpa_t gpa, unsigned long len); 747 748 #define __kvm_put_guest(kvm, gfn, offset, value, type) \ 749 ({ \ 750 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 751 type __user *__uaddr = (type __user *)(__addr + offset); \ 752 int __ret = -EFAULT; \ 753 \ 754 if (!kvm_is_error_hva(__addr)) \ 755 __ret = put_user(value, __uaddr); \ 756 if (!__ret) \ 757 mark_page_dirty(kvm, gfn); \ 758 __ret; \ 759 }) 760 761 #define kvm_put_guest(kvm, gpa, value, type) \ 762 ({ \ 763 gpa_t __gpa = gpa; \ 764 struct kvm *__kvm = kvm; \ 765 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 766 offset_in_page(__gpa), (value), type); \ 767 }) 768 769 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 770 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 771 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 772 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 773 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 774 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 775 776 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 777 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 778 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 779 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 780 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 781 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 782 struct gfn_to_pfn_cache *cache, bool atomic); 783 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 785 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 786 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 787 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 788 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 789 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 790 int len); 791 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 792 unsigned long len); 793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 794 unsigned long len); 795 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 796 int offset, int len); 797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 798 unsigned long len); 799 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 800 801 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 802 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 803 804 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 805 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 806 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 807 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 808 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 809 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 810 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 811 812 void kvm_flush_remote_tlbs(struct kvm *kvm); 813 void kvm_reload_remote_mmus(struct kvm *kvm); 814 815 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 816 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 817 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 818 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 819 unsigned long *vcpu_bitmap); 820 821 long kvm_arch_dev_ioctl(struct file *filp, 822 unsigned int ioctl, unsigned long arg); 823 long kvm_arch_vcpu_ioctl(struct file *filp, 824 unsigned int ioctl, unsigned long arg); 825 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 826 827 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 828 829 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 830 struct kvm_memory_slot *slot, 831 gfn_t gfn_offset, 832 unsigned long mask); 833 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 834 835 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 836 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 837 struct kvm_memory_slot *memslot); 838 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 839 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 840 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 841 int *is_dirty, struct kvm_memory_slot **memslot); 842 #endif 843 844 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 845 bool line_status); 846 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 847 struct kvm_enable_cap *cap); 848 long kvm_arch_vm_ioctl(struct file *filp, 849 unsigned int ioctl, unsigned long arg); 850 851 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 852 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 853 854 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 855 struct kvm_translation *tr); 856 857 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 858 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 859 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 860 struct kvm_sregs *sregs); 861 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 862 struct kvm_sregs *sregs); 863 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 864 struct kvm_mp_state *mp_state); 865 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 866 struct kvm_mp_state *mp_state); 867 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 868 struct kvm_guest_debug *dbg); 869 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 870 871 int kvm_arch_init(void *opaque); 872 void kvm_arch_exit(void); 873 874 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 875 876 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 877 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 878 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 879 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 880 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 881 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 882 883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 884 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 885 #endif 886 887 int kvm_arch_hardware_enable(void); 888 void kvm_arch_hardware_disable(void); 889 int kvm_arch_hardware_setup(void *opaque); 890 void kvm_arch_hardware_unsetup(void); 891 int kvm_arch_check_processor_compat(void *opaque); 892 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 893 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 894 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 895 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 896 int kvm_arch_post_init_vm(struct kvm *kvm); 897 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 898 899 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 900 /* 901 * All architectures that want to use vzalloc currently also 902 * need their own kvm_arch_alloc_vm implementation. 903 */ 904 static inline struct kvm *kvm_arch_alloc_vm(void) 905 { 906 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 907 } 908 909 static inline void kvm_arch_free_vm(struct kvm *kvm) 910 { 911 kfree(kvm); 912 } 913 #endif 914 915 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 916 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 917 { 918 return -ENOTSUPP; 919 } 920 #endif 921 922 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 923 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 924 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 925 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 926 #else 927 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 928 { 929 } 930 931 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 932 { 933 } 934 935 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 936 { 937 return false; 938 } 939 #endif 940 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 941 void kvm_arch_start_assignment(struct kvm *kvm); 942 void kvm_arch_end_assignment(struct kvm *kvm); 943 bool kvm_arch_has_assigned_device(struct kvm *kvm); 944 #else 945 static inline void kvm_arch_start_assignment(struct kvm *kvm) 946 { 947 } 948 949 static inline void kvm_arch_end_assignment(struct kvm *kvm) 950 { 951 } 952 953 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 954 { 955 return false; 956 } 957 #endif 958 959 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 960 { 961 #ifdef __KVM_HAVE_ARCH_WQP 962 return vcpu->arch.wqp; 963 #else 964 return &vcpu->wq; 965 #endif 966 } 967 968 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 969 /* 970 * returns true if the virtual interrupt controller is initialized and 971 * ready to accept virtual IRQ. On some architectures the virtual interrupt 972 * controller is dynamically instantiated and this is not always true. 973 */ 974 bool kvm_arch_intc_initialized(struct kvm *kvm); 975 #else 976 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 977 { 978 return true; 979 } 980 #endif 981 982 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 983 void kvm_arch_destroy_vm(struct kvm *kvm); 984 void kvm_arch_sync_events(struct kvm *kvm); 985 986 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 987 988 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 989 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 990 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 991 992 struct kvm_irq_ack_notifier { 993 struct hlist_node link; 994 unsigned gsi; 995 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 996 }; 997 998 int kvm_irq_map_gsi(struct kvm *kvm, 999 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1000 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1001 1002 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1003 bool line_status); 1004 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1005 int irq_source_id, int level, bool line_status); 1006 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1007 struct kvm *kvm, int irq_source_id, 1008 int level, bool line_status); 1009 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1010 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1011 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1012 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1013 struct kvm_irq_ack_notifier *kian); 1014 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1015 struct kvm_irq_ack_notifier *kian); 1016 int kvm_request_irq_source_id(struct kvm *kvm); 1017 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1018 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1019 1020 /* 1021 * search_memslots() and __gfn_to_memslot() are here because they are 1022 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1023 * gfn_to_memslot() itself isn't here as an inline because that would 1024 * bloat other code too much. 1025 * 1026 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1027 */ 1028 static inline struct kvm_memory_slot * 1029 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1030 { 1031 int start = 0, end = slots->used_slots; 1032 int slot = atomic_read(&slots->lru_slot); 1033 struct kvm_memory_slot *memslots = slots->memslots; 1034 1035 if (unlikely(!slots->used_slots)) 1036 return NULL; 1037 1038 if (gfn >= memslots[slot].base_gfn && 1039 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1040 return &memslots[slot]; 1041 1042 while (start < end) { 1043 slot = start + (end - start) / 2; 1044 1045 if (gfn >= memslots[slot].base_gfn) 1046 end = slot; 1047 else 1048 start = slot + 1; 1049 } 1050 1051 if (gfn >= memslots[start].base_gfn && 1052 gfn < memslots[start].base_gfn + memslots[start].npages) { 1053 atomic_set(&slots->lru_slot, start); 1054 return &memslots[start]; 1055 } 1056 1057 return NULL; 1058 } 1059 1060 static inline struct kvm_memory_slot * 1061 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1062 { 1063 return search_memslots(slots, gfn); 1064 } 1065 1066 static inline unsigned long 1067 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1068 { 1069 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1070 } 1071 1072 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1073 { 1074 return gfn_to_memslot(kvm, gfn)->id; 1075 } 1076 1077 static inline gfn_t 1078 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1079 { 1080 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1081 1082 return slot->base_gfn + gfn_offset; 1083 } 1084 1085 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1086 { 1087 return (gpa_t)gfn << PAGE_SHIFT; 1088 } 1089 1090 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1091 { 1092 return (gfn_t)(gpa >> PAGE_SHIFT); 1093 } 1094 1095 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1096 { 1097 return (hpa_t)pfn << PAGE_SHIFT; 1098 } 1099 1100 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1101 gpa_t gpa) 1102 { 1103 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1104 } 1105 1106 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1107 { 1108 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1109 1110 return kvm_is_error_hva(hva); 1111 } 1112 1113 enum kvm_stat_kind { 1114 KVM_STAT_VM, 1115 KVM_STAT_VCPU, 1116 }; 1117 1118 struct kvm_stat_data { 1119 struct kvm *kvm; 1120 struct kvm_stats_debugfs_item *dbgfs_item; 1121 }; 1122 1123 struct kvm_stats_debugfs_item { 1124 const char *name; 1125 int offset; 1126 enum kvm_stat_kind kind; 1127 int mode; 1128 }; 1129 1130 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1131 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1132 1133 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1134 extern struct dentry *kvm_debugfs_dir; 1135 1136 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1137 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1138 { 1139 if (unlikely(kvm->mmu_notifier_count)) 1140 return 1; 1141 /* 1142 * Ensure the read of mmu_notifier_count happens before the read 1143 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1144 * mmu_notifier_invalidate_range_end to make sure that the caller 1145 * either sees the old (non-zero) value of mmu_notifier_count or 1146 * the new (incremented) value of mmu_notifier_seq. 1147 * PowerPC Book3s HV KVM calls this under a per-page lock 1148 * rather than under kvm->mmu_lock, for scalability, so 1149 * can't rely on kvm->mmu_lock to keep things ordered. 1150 */ 1151 smp_rmb(); 1152 if (kvm->mmu_notifier_seq != mmu_seq) 1153 return 1; 1154 return 0; 1155 } 1156 #endif 1157 1158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1159 1160 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1161 1162 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1163 int kvm_set_irq_routing(struct kvm *kvm, 1164 const struct kvm_irq_routing_entry *entries, 1165 unsigned nr, 1166 unsigned flags); 1167 int kvm_set_routing_entry(struct kvm *kvm, 1168 struct kvm_kernel_irq_routing_entry *e, 1169 const struct kvm_irq_routing_entry *ue); 1170 void kvm_free_irq_routing(struct kvm *kvm); 1171 1172 #else 1173 1174 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1175 1176 #endif 1177 1178 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1179 1180 #ifdef CONFIG_HAVE_KVM_EVENTFD 1181 1182 void kvm_eventfd_init(struct kvm *kvm); 1183 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1184 1185 #ifdef CONFIG_HAVE_KVM_IRQFD 1186 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1187 void kvm_irqfd_release(struct kvm *kvm); 1188 void kvm_irq_routing_update(struct kvm *); 1189 #else 1190 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1191 { 1192 return -EINVAL; 1193 } 1194 1195 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1196 #endif 1197 1198 #else 1199 1200 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1201 1202 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1203 { 1204 return -EINVAL; 1205 } 1206 1207 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1208 1209 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1210 static inline void kvm_irq_routing_update(struct kvm *kvm) 1211 { 1212 } 1213 #endif 1214 1215 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1216 { 1217 return -ENOSYS; 1218 } 1219 1220 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1221 1222 void kvm_arch_irq_routing_update(struct kvm *kvm); 1223 1224 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1225 { 1226 /* 1227 * Ensure the rest of the request is published to kvm_check_request's 1228 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1229 */ 1230 smp_wmb(); 1231 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1232 } 1233 1234 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1235 { 1236 return READ_ONCE(vcpu->requests); 1237 } 1238 1239 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1240 { 1241 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1242 } 1243 1244 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1245 { 1246 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1247 } 1248 1249 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1250 { 1251 if (kvm_test_request(req, vcpu)) { 1252 kvm_clear_request(req, vcpu); 1253 1254 /* 1255 * Ensure the rest of the request is visible to kvm_check_request's 1256 * caller. Paired with the smp_wmb in kvm_make_request. 1257 */ 1258 smp_mb__after_atomic(); 1259 return true; 1260 } else { 1261 return false; 1262 } 1263 } 1264 1265 extern bool kvm_rebooting; 1266 1267 extern unsigned int halt_poll_ns; 1268 extern unsigned int halt_poll_ns_grow; 1269 extern unsigned int halt_poll_ns_grow_start; 1270 extern unsigned int halt_poll_ns_shrink; 1271 1272 struct kvm_device { 1273 const struct kvm_device_ops *ops; 1274 struct kvm *kvm; 1275 void *private; 1276 struct list_head vm_node; 1277 }; 1278 1279 /* create, destroy, and name are mandatory */ 1280 struct kvm_device_ops { 1281 const char *name; 1282 1283 /* 1284 * create is called holding kvm->lock and any operations not suitable 1285 * to do while holding the lock should be deferred to init (see 1286 * below). 1287 */ 1288 int (*create)(struct kvm_device *dev, u32 type); 1289 1290 /* 1291 * init is called after create if create is successful and is called 1292 * outside of holding kvm->lock. 1293 */ 1294 void (*init)(struct kvm_device *dev); 1295 1296 /* 1297 * Destroy is responsible for freeing dev. 1298 * 1299 * Destroy may be called before or after destructors are called 1300 * on emulated I/O regions, depending on whether a reference is 1301 * held by a vcpu or other kvm component that gets destroyed 1302 * after the emulated I/O. 1303 */ 1304 void (*destroy)(struct kvm_device *dev); 1305 1306 /* 1307 * Release is an alternative method to free the device. It is 1308 * called when the device file descriptor is closed. Once 1309 * release is called, the destroy method will not be called 1310 * anymore as the device is removed from the device list of 1311 * the VM. kvm->lock is held. 1312 */ 1313 void (*release)(struct kvm_device *dev); 1314 1315 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1316 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1317 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1318 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1319 unsigned long arg); 1320 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1321 }; 1322 1323 void kvm_device_get(struct kvm_device *dev); 1324 void kvm_device_put(struct kvm_device *dev); 1325 struct kvm_device *kvm_device_from_filp(struct file *filp); 1326 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1327 void kvm_unregister_device_ops(u32 type); 1328 1329 extern struct kvm_device_ops kvm_mpic_ops; 1330 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1331 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1332 1333 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1334 1335 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1336 { 1337 vcpu->spin_loop.in_spin_loop = val; 1338 } 1339 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1340 { 1341 vcpu->spin_loop.dy_eligible = val; 1342 } 1343 1344 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1345 1346 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1347 { 1348 } 1349 1350 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1351 { 1352 } 1353 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1354 1355 struct kvm_vcpu *kvm_get_running_vcpu(void); 1356 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1357 1358 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1359 bool kvm_arch_has_irq_bypass(void); 1360 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1361 struct irq_bypass_producer *); 1362 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1363 struct irq_bypass_producer *); 1364 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1365 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1366 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1367 uint32_t guest_irq, bool set); 1368 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1369 1370 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1371 /* If we wakeup during the poll time, was it a sucessful poll? */ 1372 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1373 { 1374 return vcpu->valid_wakeup; 1375 } 1376 1377 #else 1378 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1379 { 1380 return true; 1381 } 1382 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1383 1384 #ifdef CONFIG_HAVE_KVM_NO_POLL 1385 /* Callback that tells if we must not poll */ 1386 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1387 #else 1388 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1389 { 1390 return false; 1391 } 1392 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1393 1394 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1395 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1396 unsigned int ioctl, unsigned long arg); 1397 #else 1398 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1399 unsigned int ioctl, 1400 unsigned long arg) 1401 { 1402 return -ENOIOCTLCMD; 1403 } 1404 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1405 1406 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1407 unsigned long start, unsigned long end, bool blockable); 1408 1409 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1410 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1411 #else 1412 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1413 { 1414 return 0; 1415 } 1416 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1417 1418 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1419 1420 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1421 uintptr_t data, const char *name, 1422 struct task_struct **thread_ptr); 1423 1424 #endif 1425