1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/rcuwait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 #include <linux/kvm_dirty_ring.h> 38 39 #ifndef KVM_MAX_VCPU_ID 40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41 #endif 42 43 /* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48 #define KVM_MEMSLOT_INVALID (1UL << 16) 49 50 /* 51 * Bit 63 of the memslot generation number is an "update in-progress flag", 52 * e.g. is temporarily set for the duration of install_new_memslots(). 53 * This flag effectively creates a unique generation number that is used to 54 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 55 * i.e. may (or may not) have come from the previous memslots generation. 56 * 57 * This is necessary because the actual memslots update is not atomic with 58 * respect to the generation number update. Updating the generation number 59 * first would allow a vCPU to cache a spte from the old memslots using the 60 * new generation number, and updating the generation number after switching 61 * to the new memslots would allow cache hits using the old generation number 62 * to reference the defunct memslots. 63 * 64 * This mechanism is used to prevent getting hits in KVM's caches while a 65 * memslot update is in-progress, and to prevent cache hits *after* updating 66 * the actual generation number against accesses that were inserted into the 67 * cache *before* the memslots were updated. 68 */ 69 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 70 71 /* Two fragments for cross MMIO pages. */ 72 #define KVM_MAX_MMIO_FRAGMENTS 2 73 74 #ifndef KVM_ADDRESS_SPACE_NUM 75 #define KVM_ADDRESS_SPACE_NUM 1 76 #endif 77 78 /* 79 * For the normal pfn, the highest 12 bits should be zero, 80 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 81 * mask bit 63 to indicate the noslot pfn. 82 */ 83 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 84 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 85 #define KVM_PFN_NOSLOT (0x1ULL << 63) 86 87 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 88 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 89 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 90 91 /* 92 * error pfns indicate that the gfn is in slot but faild to 93 * translate it to pfn on host. 94 */ 95 static inline bool is_error_pfn(kvm_pfn_t pfn) 96 { 97 return !!(pfn & KVM_PFN_ERR_MASK); 98 } 99 100 /* 101 * error_noslot pfns indicate that the gfn can not be 102 * translated to pfn - it is not in slot or failed to 103 * translate it to pfn. 104 */ 105 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 108 } 109 110 /* noslot pfn indicates that the gfn is not in slot. */ 111 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 112 { 113 return pfn == KVM_PFN_NOSLOT; 114 } 115 116 /* 117 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 118 * provide own defines and kvm_is_error_hva 119 */ 120 #ifndef KVM_HVA_ERR_BAD 121 122 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 123 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 124 125 static inline bool kvm_is_error_hva(unsigned long addr) 126 { 127 return addr >= PAGE_OFFSET; 128 } 129 130 #endif 131 132 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 133 134 static inline bool is_error_page(struct page *page) 135 { 136 return IS_ERR(page); 137 } 138 139 #define KVM_REQUEST_MASK GENMASK(7,0) 140 #define KVM_REQUEST_NO_WAKEUP BIT(8) 141 #define KVM_REQUEST_WAIT BIT(9) 142 /* 143 * Architecture-independent vcpu->requests bit members 144 * Bits 4-7 are reserved for more arch-independent bits. 145 */ 146 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 148 #define KVM_REQ_PENDING_TIMER 2 149 #define KVM_REQ_UNHALT 3 150 #define KVM_REQUEST_ARCH_BASE 8 151 152 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 153 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 154 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 155 }) 156 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 157 158 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 159 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 160 161 extern struct mutex kvm_lock; 162 extern struct list_head vm_list; 163 164 struct kvm_io_range { 165 gpa_t addr; 166 int len; 167 struct kvm_io_device *dev; 168 }; 169 170 #define NR_IOBUS_DEVS 1000 171 172 struct kvm_io_bus { 173 int dev_count; 174 int ioeventfd_count; 175 struct kvm_io_range range[]; 176 }; 177 178 enum kvm_bus { 179 KVM_MMIO_BUS, 180 KVM_PIO_BUS, 181 KVM_VIRTIO_CCW_NOTIFY_BUS, 182 KVM_FAST_MMIO_BUS, 183 KVM_NR_BUSES 184 }; 185 186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 187 int len, const void *val); 188 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 189 gpa_t addr, int len, const void *val, long cookie); 190 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 191 int len, void *val); 192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 193 int len, struct kvm_io_device *dev); 194 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 195 struct kvm_io_device *dev); 196 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 197 gpa_t addr); 198 199 #ifdef CONFIG_KVM_ASYNC_PF 200 struct kvm_async_pf { 201 struct work_struct work; 202 struct list_head link; 203 struct list_head queue; 204 struct kvm_vcpu *vcpu; 205 struct mm_struct *mm; 206 gpa_t cr2_or_gpa; 207 unsigned long addr; 208 struct kvm_arch_async_pf arch; 209 bool wakeup_all; 210 bool notpresent_injected; 211 }; 212 213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 216 unsigned long hva, struct kvm_arch_async_pf *arch); 217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218 #endif 219 220 enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225 }; 226 227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229 struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242 }; 243 244 /* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249 { 250 return !!map->hva; 251 } 252 253 /* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257 struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261 }; 262 263 struct kvm_vcpu { 264 struct kvm *kvm; 265 #ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267 #endif 268 int cpu; 269 int vcpu_id; /* id given by userspace at creation */ 270 int vcpu_idx; /* index in kvm->vcpus array */ 271 int srcu_idx; 272 int mode; 273 u64 requests; 274 unsigned long guest_debug; 275 276 int pre_pcpu; 277 struct list_head blocked_vcpu_list; 278 279 struct mutex mutex; 280 struct kvm_run *run; 281 282 struct rcuwait wait; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290 #ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297 #endif 298 299 #ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306 #endif 307 308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319 #endif 320 bool preempted; 321 bool ready; 322 struct kvm_vcpu_arch arch; 323 struct kvm_dirty_ring dirty_ring; 324 }; 325 326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 327 { 328 /* 329 * The memory barrier ensures a previous write to vcpu->requests cannot 330 * be reordered with the read of vcpu->mode. It pairs with the general 331 * memory barrier following the write of vcpu->mode in VCPU RUN. 332 */ 333 smp_mb__before_atomic(); 334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 335 } 336 337 /* 338 * Some of the bitops functions do not support too long bitmaps. 339 * This number must be determined not to exceed such limits. 340 */ 341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 342 343 struct kvm_memory_slot { 344 gfn_t base_gfn; 345 unsigned long npages; 346 unsigned long *dirty_bitmap; 347 struct kvm_arch_memory_slot arch; 348 unsigned long userspace_addr; 349 u32 flags; 350 short id; 351 u16 as_id; 352 }; 353 354 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 355 { 356 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 357 } 358 359 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 360 { 361 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 362 } 363 364 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 365 { 366 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 367 368 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 369 } 370 371 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 372 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 373 #endif 374 375 struct kvm_s390_adapter_int { 376 u64 ind_addr; 377 u64 summary_addr; 378 u64 ind_offset; 379 u32 summary_offset; 380 u32 adapter_id; 381 }; 382 383 struct kvm_hv_sint { 384 u32 vcpu; 385 u32 sint; 386 }; 387 388 struct kvm_kernel_irq_routing_entry { 389 u32 gsi; 390 u32 type; 391 int (*set)(struct kvm_kernel_irq_routing_entry *e, 392 struct kvm *kvm, int irq_source_id, int level, 393 bool line_status); 394 union { 395 struct { 396 unsigned irqchip; 397 unsigned pin; 398 } irqchip; 399 struct { 400 u32 address_lo; 401 u32 address_hi; 402 u32 data; 403 u32 flags; 404 u32 devid; 405 } msi; 406 struct kvm_s390_adapter_int adapter; 407 struct kvm_hv_sint hv_sint; 408 }; 409 struct hlist_node link; 410 }; 411 412 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 413 struct kvm_irq_routing_table { 414 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 415 u32 nr_rt_entries; 416 /* 417 * Array indexed by gsi. Each entry contains list of irq chips 418 * the gsi is connected to. 419 */ 420 struct hlist_head map[]; 421 }; 422 #endif 423 424 #ifndef KVM_PRIVATE_MEM_SLOTS 425 #define KVM_PRIVATE_MEM_SLOTS 0 426 #endif 427 428 #define KVM_MEM_SLOTS_NUM SHRT_MAX 429 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 430 431 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 432 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 433 { 434 return 0; 435 } 436 #endif 437 438 /* 439 * Note: 440 * memslots are not sorted by id anymore, please use id_to_memslot() 441 * to get the memslot by its id. 442 */ 443 struct kvm_memslots { 444 u64 generation; 445 /* The mapping table from slot id to the index in memslots[]. */ 446 short id_to_index[KVM_MEM_SLOTS_NUM]; 447 atomic_t lru_slot; 448 int used_slots; 449 struct kvm_memory_slot memslots[]; 450 }; 451 452 struct kvm { 453 #ifdef KVM_HAVE_MMU_RWLOCK 454 rwlock_t mmu_lock; 455 #else 456 spinlock_t mmu_lock; 457 #endif /* KVM_HAVE_MMU_RWLOCK */ 458 459 struct mutex slots_lock; 460 struct mm_struct *mm; /* userspace tied to this vm */ 461 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 462 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 463 464 /* 465 * created_vcpus is protected by kvm->lock, and is incremented 466 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 467 * incremented after storing the kvm_vcpu pointer in vcpus, 468 * and is accessed atomically. 469 */ 470 atomic_t online_vcpus; 471 int created_vcpus; 472 int last_boosted_vcpu; 473 struct list_head vm_list; 474 struct mutex lock; 475 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 476 #ifdef CONFIG_HAVE_KVM_EVENTFD 477 struct { 478 spinlock_t lock; 479 struct list_head items; 480 struct list_head resampler_list; 481 struct mutex resampler_lock; 482 } irqfds; 483 struct list_head ioeventfds; 484 #endif 485 struct kvm_vm_stat stat; 486 struct kvm_arch arch; 487 refcount_t users_count; 488 #ifdef CONFIG_KVM_MMIO 489 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 490 spinlock_t ring_lock; 491 struct list_head coalesced_zones; 492 #endif 493 494 struct mutex irq_lock; 495 #ifdef CONFIG_HAVE_KVM_IRQCHIP 496 /* 497 * Update side is protected by irq_lock. 498 */ 499 struct kvm_irq_routing_table __rcu *irq_routing; 500 #endif 501 #ifdef CONFIG_HAVE_KVM_IRQFD 502 struct hlist_head irq_ack_notifier_list; 503 #endif 504 505 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 506 struct mmu_notifier mmu_notifier; 507 unsigned long mmu_notifier_seq; 508 long mmu_notifier_count; 509 #endif 510 long tlbs_dirty; 511 struct list_head devices; 512 u64 manual_dirty_log_protect; 513 struct dentry *debugfs_dentry; 514 struct kvm_stat_data **debugfs_stat_data; 515 struct srcu_struct srcu; 516 struct srcu_struct irq_srcu; 517 pid_t userspace_pid; 518 unsigned int max_halt_poll_ns; 519 u32 dirty_ring_size; 520 }; 521 522 #define kvm_err(fmt, ...) \ 523 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 524 #define kvm_info(fmt, ...) \ 525 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 526 #define kvm_debug(fmt, ...) \ 527 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 528 #define kvm_debug_ratelimited(fmt, ...) \ 529 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 530 ## __VA_ARGS__) 531 #define kvm_pr_unimpl(fmt, ...) \ 532 pr_err_ratelimited("kvm [%i]: " fmt, \ 533 task_tgid_nr(current), ## __VA_ARGS__) 534 535 /* The guest did something we don't support. */ 536 #define vcpu_unimpl(vcpu, fmt, ...) \ 537 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 538 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 539 540 #define vcpu_debug(vcpu, fmt, ...) \ 541 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 542 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 543 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 544 ## __VA_ARGS__) 545 #define vcpu_err(vcpu, fmt, ...) \ 546 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 547 548 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 549 { 550 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 551 } 552 553 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 554 { 555 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 556 lockdep_is_held(&kvm->slots_lock) || 557 !refcount_read(&kvm->users_count)); 558 } 559 560 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 561 { 562 int num_vcpus = atomic_read(&kvm->online_vcpus); 563 i = array_index_nospec(i, num_vcpus); 564 565 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 566 smp_rmb(); 567 return kvm->vcpus[i]; 568 } 569 570 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 571 for (idx = 0; \ 572 idx < atomic_read(&kvm->online_vcpus) && \ 573 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 574 idx++) 575 576 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 577 { 578 struct kvm_vcpu *vcpu = NULL; 579 int i; 580 581 if (id < 0) 582 return NULL; 583 if (id < KVM_MAX_VCPUS) 584 vcpu = kvm_get_vcpu(kvm, id); 585 if (vcpu && vcpu->vcpu_id == id) 586 return vcpu; 587 kvm_for_each_vcpu(i, vcpu, kvm) 588 if (vcpu->vcpu_id == id) 589 return vcpu; 590 return NULL; 591 } 592 593 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 594 { 595 return vcpu->vcpu_idx; 596 } 597 598 #define kvm_for_each_memslot(memslot, slots) \ 599 for (memslot = &slots->memslots[0]; \ 600 memslot < slots->memslots + slots->used_slots; memslot++) \ 601 if (WARN_ON_ONCE(!memslot->npages)) { \ 602 } else 603 604 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 605 606 void vcpu_load(struct kvm_vcpu *vcpu); 607 void vcpu_put(struct kvm_vcpu *vcpu); 608 609 #ifdef __KVM_HAVE_IOAPIC 610 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 611 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 612 #else 613 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 614 { 615 } 616 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 617 { 618 } 619 #endif 620 621 #ifdef CONFIG_HAVE_KVM_IRQFD 622 int kvm_irqfd_init(void); 623 void kvm_irqfd_exit(void); 624 #else 625 static inline int kvm_irqfd_init(void) 626 { 627 return 0; 628 } 629 630 static inline void kvm_irqfd_exit(void) 631 { 632 } 633 #endif 634 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 635 struct module *module); 636 void kvm_exit(void); 637 638 void kvm_get_kvm(struct kvm *kvm); 639 void kvm_put_kvm(struct kvm *kvm); 640 void kvm_put_kvm_no_destroy(struct kvm *kvm); 641 642 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 643 { 644 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 645 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 646 lockdep_is_held(&kvm->slots_lock) || 647 !refcount_read(&kvm->users_count)); 648 } 649 650 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 651 { 652 return __kvm_memslots(kvm, 0); 653 } 654 655 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 656 { 657 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 658 659 return __kvm_memslots(vcpu->kvm, as_id); 660 } 661 662 static inline 663 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 664 { 665 int index = slots->id_to_index[id]; 666 struct kvm_memory_slot *slot; 667 668 if (index < 0) 669 return NULL; 670 671 slot = &slots->memslots[index]; 672 673 WARN_ON(slot->id != id); 674 return slot; 675 } 676 677 /* 678 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 679 * - create a new memory slot 680 * - delete an existing memory slot 681 * - modify an existing memory slot 682 * -- move it in the guest physical memory space 683 * -- just change its flags 684 * 685 * Since flags can be changed by some of these operations, the following 686 * differentiation is the best we can do for __kvm_set_memory_region(): 687 */ 688 enum kvm_mr_change { 689 KVM_MR_CREATE, 690 KVM_MR_DELETE, 691 KVM_MR_MOVE, 692 KVM_MR_FLAGS_ONLY, 693 }; 694 695 int kvm_set_memory_region(struct kvm *kvm, 696 const struct kvm_userspace_memory_region *mem); 697 int __kvm_set_memory_region(struct kvm *kvm, 698 const struct kvm_userspace_memory_region *mem); 699 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 700 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 701 int kvm_arch_prepare_memory_region(struct kvm *kvm, 702 struct kvm_memory_slot *memslot, 703 const struct kvm_userspace_memory_region *mem, 704 enum kvm_mr_change change); 705 void kvm_arch_commit_memory_region(struct kvm *kvm, 706 const struct kvm_userspace_memory_region *mem, 707 struct kvm_memory_slot *old, 708 const struct kvm_memory_slot *new, 709 enum kvm_mr_change change); 710 /* flush all memory translations */ 711 void kvm_arch_flush_shadow_all(struct kvm *kvm); 712 /* flush memory translations pointing to 'slot' */ 713 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 714 struct kvm_memory_slot *slot); 715 716 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 717 struct page **pages, int nr_pages); 718 719 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 720 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 721 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 722 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 723 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 724 bool *writable); 725 void kvm_release_page_clean(struct page *page); 726 void kvm_release_page_dirty(struct page *page); 727 void kvm_set_page_accessed(struct page *page); 728 729 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 730 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 731 bool *writable); 732 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 733 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 734 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 735 bool atomic, bool *async, bool write_fault, 736 bool *writable); 737 738 void kvm_release_pfn_clean(kvm_pfn_t pfn); 739 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 740 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 741 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 742 void kvm_get_pfn(kvm_pfn_t pfn); 743 744 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 745 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 746 int len); 747 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 748 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 749 void *data, unsigned long len); 750 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 751 void *data, unsigned int offset, 752 unsigned long len); 753 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 754 int offset, int len); 755 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 756 unsigned long len); 757 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 758 void *data, unsigned long len); 759 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 760 void *data, unsigned int offset, 761 unsigned long len); 762 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 763 gpa_t gpa, unsigned long len); 764 765 #define __kvm_get_guest(kvm, gfn, offset, v) \ 766 ({ \ 767 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 768 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 769 int __ret = -EFAULT; \ 770 \ 771 if (!kvm_is_error_hva(__addr)) \ 772 __ret = get_user(v, __uaddr); \ 773 __ret; \ 774 }) 775 776 #define kvm_get_guest(kvm, gpa, v) \ 777 ({ \ 778 gpa_t __gpa = gpa; \ 779 struct kvm *__kvm = kvm; \ 780 \ 781 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 782 offset_in_page(__gpa), v); \ 783 }) 784 785 #define __kvm_put_guest(kvm, gfn, offset, v) \ 786 ({ \ 787 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 788 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 789 int __ret = -EFAULT; \ 790 \ 791 if (!kvm_is_error_hva(__addr)) \ 792 __ret = put_user(v, __uaddr); \ 793 if (!__ret) \ 794 mark_page_dirty(kvm, gfn); \ 795 __ret; \ 796 }) 797 798 #define kvm_put_guest(kvm, gpa, v) \ 799 ({ \ 800 gpa_t __gpa = gpa; \ 801 struct kvm *__kvm = kvm; \ 802 \ 803 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 804 offset_in_page(__gpa), v); \ 805 }) 806 807 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 808 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 809 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 810 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 811 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 812 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 813 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 814 815 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 816 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 817 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 818 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 819 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 820 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 821 struct gfn_to_pfn_cache *cache, bool atomic); 822 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 823 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 824 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 825 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 826 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 827 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 828 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 829 int len); 830 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 831 unsigned long len); 832 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 833 unsigned long len); 834 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 835 int offset, int len); 836 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 837 unsigned long len); 838 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 839 840 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 841 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 842 843 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 844 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 845 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 846 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 847 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 848 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 849 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 850 851 void kvm_flush_remote_tlbs(struct kvm *kvm); 852 void kvm_reload_remote_mmus(struct kvm *kvm); 853 854 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 855 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 856 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 857 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 858 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 859 #endif 860 861 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 862 struct kvm_vcpu *except, 863 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 864 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 865 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 866 struct kvm_vcpu *except); 867 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 868 unsigned long *vcpu_bitmap); 869 870 long kvm_arch_dev_ioctl(struct file *filp, 871 unsigned int ioctl, unsigned long arg); 872 long kvm_arch_vcpu_ioctl(struct file *filp, 873 unsigned int ioctl, unsigned long arg); 874 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 875 876 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 877 878 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 879 struct kvm_memory_slot *slot, 880 gfn_t gfn_offset, 881 unsigned long mask); 882 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 883 884 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 885 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 886 struct kvm_memory_slot *memslot); 887 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 888 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 889 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 890 int *is_dirty, struct kvm_memory_slot **memslot); 891 #endif 892 893 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 894 bool line_status); 895 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 896 struct kvm_enable_cap *cap); 897 long kvm_arch_vm_ioctl(struct file *filp, 898 unsigned int ioctl, unsigned long arg); 899 900 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 901 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 902 903 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 904 struct kvm_translation *tr); 905 906 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 907 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 908 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 909 struct kvm_sregs *sregs); 910 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 911 struct kvm_sregs *sregs); 912 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 913 struct kvm_mp_state *mp_state); 914 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 915 struct kvm_mp_state *mp_state); 916 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 917 struct kvm_guest_debug *dbg); 918 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 919 920 int kvm_arch_init(void *opaque); 921 void kvm_arch_exit(void); 922 923 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 924 925 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 926 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 927 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 928 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 929 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 930 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 931 932 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 933 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 934 #endif 935 936 int kvm_arch_hardware_enable(void); 937 void kvm_arch_hardware_disable(void); 938 int kvm_arch_hardware_setup(void *opaque); 939 void kvm_arch_hardware_unsetup(void); 940 int kvm_arch_check_processor_compat(void *opaque); 941 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 942 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 943 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 944 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 945 int kvm_arch_post_init_vm(struct kvm *kvm); 946 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 947 948 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 949 /* 950 * All architectures that want to use vzalloc currently also 951 * need their own kvm_arch_alloc_vm implementation. 952 */ 953 static inline struct kvm *kvm_arch_alloc_vm(void) 954 { 955 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 956 } 957 958 static inline void kvm_arch_free_vm(struct kvm *kvm) 959 { 960 kfree(kvm); 961 } 962 #endif 963 964 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 965 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 966 { 967 return -ENOTSUPP; 968 } 969 #endif 970 971 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 972 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 973 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 974 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 975 #else 976 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 977 { 978 } 979 980 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 981 { 982 } 983 984 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 985 { 986 return false; 987 } 988 #endif 989 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 990 void kvm_arch_start_assignment(struct kvm *kvm); 991 void kvm_arch_end_assignment(struct kvm *kvm); 992 bool kvm_arch_has_assigned_device(struct kvm *kvm); 993 #else 994 static inline void kvm_arch_start_assignment(struct kvm *kvm) 995 { 996 } 997 998 static inline void kvm_arch_end_assignment(struct kvm *kvm) 999 { 1000 } 1001 1002 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1003 { 1004 return false; 1005 } 1006 #endif 1007 1008 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1009 { 1010 #ifdef __KVM_HAVE_ARCH_WQP 1011 return vcpu->arch.waitp; 1012 #else 1013 return &vcpu->wait; 1014 #endif 1015 } 1016 1017 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1018 /* 1019 * returns true if the virtual interrupt controller is initialized and 1020 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1021 * controller is dynamically instantiated and this is not always true. 1022 */ 1023 bool kvm_arch_intc_initialized(struct kvm *kvm); 1024 #else 1025 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1026 { 1027 return true; 1028 } 1029 #endif 1030 1031 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1032 void kvm_arch_destroy_vm(struct kvm *kvm); 1033 void kvm_arch_sync_events(struct kvm *kvm); 1034 1035 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1036 1037 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1038 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1039 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1040 1041 struct kvm_irq_ack_notifier { 1042 struct hlist_node link; 1043 unsigned gsi; 1044 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1045 }; 1046 1047 int kvm_irq_map_gsi(struct kvm *kvm, 1048 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1049 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1050 1051 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1052 bool line_status); 1053 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1054 int irq_source_id, int level, bool line_status); 1055 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1056 struct kvm *kvm, int irq_source_id, 1057 int level, bool line_status); 1058 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1059 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1060 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1061 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1062 struct kvm_irq_ack_notifier *kian); 1063 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1064 struct kvm_irq_ack_notifier *kian); 1065 int kvm_request_irq_source_id(struct kvm *kvm); 1066 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1067 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1068 1069 /* 1070 * search_memslots() and __gfn_to_memslot() are here because they are 1071 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1072 * gfn_to_memslot() itself isn't here as an inline because that would 1073 * bloat other code too much. 1074 * 1075 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1076 */ 1077 static inline struct kvm_memory_slot * 1078 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1079 { 1080 int start = 0, end = slots->used_slots; 1081 int slot = atomic_read(&slots->lru_slot); 1082 struct kvm_memory_slot *memslots = slots->memslots; 1083 1084 if (unlikely(!slots->used_slots)) 1085 return NULL; 1086 1087 if (gfn >= memslots[slot].base_gfn && 1088 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1089 return &memslots[slot]; 1090 1091 while (start < end) { 1092 slot = start + (end - start) / 2; 1093 1094 if (gfn >= memslots[slot].base_gfn) 1095 end = slot; 1096 else 1097 start = slot + 1; 1098 } 1099 1100 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1101 gfn < memslots[start].base_gfn + memslots[start].npages) { 1102 atomic_set(&slots->lru_slot, start); 1103 return &memslots[start]; 1104 } 1105 1106 return NULL; 1107 } 1108 1109 static inline struct kvm_memory_slot * 1110 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1111 { 1112 return search_memslots(slots, gfn); 1113 } 1114 1115 static inline unsigned long 1116 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1117 { 1118 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1119 } 1120 1121 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1122 { 1123 return gfn_to_memslot(kvm, gfn)->id; 1124 } 1125 1126 static inline gfn_t 1127 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1128 { 1129 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1130 1131 return slot->base_gfn + gfn_offset; 1132 } 1133 1134 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1135 { 1136 return (gpa_t)gfn << PAGE_SHIFT; 1137 } 1138 1139 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1140 { 1141 return (gfn_t)(gpa >> PAGE_SHIFT); 1142 } 1143 1144 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1145 { 1146 return (hpa_t)pfn << PAGE_SHIFT; 1147 } 1148 1149 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1150 gpa_t gpa) 1151 { 1152 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1153 } 1154 1155 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1156 { 1157 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1158 1159 return kvm_is_error_hva(hva); 1160 } 1161 1162 enum kvm_stat_kind { 1163 KVM_STAT_VM, 1164 KVM_STAT_VCPU, 1165 }; 1166 1167 struct kvm_stat_data { 1168 struct kvm *kvm; 1169 struct kvm_stats_debugfs_item *dbgfs_item; 1170 }; 1171 1172 struct kvm_stats_debugfs_item { 1173 const char *name; 1174 int offset; 1175 enum kvm_stat_kind kind; 1176 int mode; 1177 }; 1178 1179 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1180 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1181 1182 #define VM_STAT(n, x, ...) \ 1183 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1184 #define VCPU_STAT(n, x, ...) \ 1185 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1186 1187 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1188 extern struct dentry *kvm_debugfs_dir; 1189 1190 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1191 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1192 { 1193 if (unlikely(kvm->mmu_notifier_count)) 1194 return 1; 1195 /* 1196 * Ensure the read of mmu_notifier_count happens before the read 1197 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1198 * mmu_notifier_invalidate_range_end to make sure that the caller 1199 * either sees the old (non-zero) value of mmu_notifier_count or 1200 * the new (incremented) value of mmu_notifier_seq. 1201 * PowerPC Book3s HV KVM calls this under a per-page lock 1202 * rather than under kvm->mmu_lock, for scalability, so 1203 * can't rely on kvm->mmu_lock to keep things ordered. 1204 */ 1205 smp_rmb(); 1206 if (kvm->mmu_notifier_seq != mmu_seq) 1207 return 1; 1208 return 0; 1209 } 1210 #endif 1211 1212 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1213 1214 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1215 1216 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1217 int kvm_set_irq_routing(struct kvm *kvm, 1218 const struct kvm_irq_routing_entry *entries, 1219 unsigned nr, 1220 unsigned flags); 1221 int kvm_set_routing_entry(struct kvm *kvm, 1222 struct kvm_kernel_irq_routing_entry *e, 1223 const struct kvm_irq_routing_entry *ue); 1224 void kvm_free_irq_routing(struct kvm *kvm); 1225 1226 #else 1227 1228 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1229 1230 #endif 1231 1232 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1233 1234 #ifdef CONFIG_HAVE_KVM_EVENTFD 1235 1236 void kvm_eventfd_init(struct kvm *kvm); 1237 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1238 1239 #ifdef CONFIG_HAVE_KVM_IRQFD 1240 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1241 void kvm_irqfd_release(struct kvm *kvm); 1242 void kvm_irq_routing_update(struct kvm *); 1243 #else 1244 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1245 { 1246 return -EINVAL; 1247 } 1248 1249 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1250 #endif 1251 1252 #else 1253 1254 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1255 1256 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1257 { 1258 return -EINVAL; 1259 } 1260 1261 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1262 1263 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1264 static inline void kvm_irq_routing_update(struct kvm *kvm) 1265 { 1266 } 1267 #endif 1268 1269 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1270 { 1271 return -ENOSYS; 1272 } 1273 1274 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1275 1276 void kvm_arch_irq_routing_update(struct kvm *kvm); 1277 1278 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1279 { 1280 /* 1281 * Ensure the rest of the request is published to kvm_check_request's 1282 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1283 */ 1284 smp_wmb(); 1285 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1286 } 1287 1288 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1289 { 1290 return READ_ONCE(vcpu->requests); 1291 } 1292 1293 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1294 { 1295 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1296 } 1297 1298 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1299 { 1300 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1301 } 1302 1303 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1304 { 1305 if (kvm_test_request(req, vcpu)) { 1306 kvm_clear_request(req, vcpu); 1307 1308 /* 1309 * Ensure the rest of the request is visible to kvm_check_request's 1310 * caller. Paired with the smp_wmb in kvm_make_request. 1311 */ 1312 smp_mb__after_atomic(); 1313 return true; 1314 } else { 1315 return false; 1316 } 1317 } 1318 1319 extern bool kvm_rebooting; 1320 1321 extern unsigned int halt_poll_ns; 1322 extern unsigned int halt_poll_ns_grow; 1323 extern unsigned int halt_poll_ns_grow_start; 1324 extern unsigned int halt_poll_ns_shrink; 1325 1326 struct kvm_device { 1327 const struct kvm_device_ops *ops; 1328 struct kvm *kvm; 1329 void *private; 1330 struct list_head vm_node; 1331 }; 1332 1333 /* create, destroy, and name are mandatory */ 1334 struct kvm_device_ops { 1335 const char *name; 1336 1337 /* 1338 * create is called holding kvm->lock and any operations not suitable 1339 * to do while holding the lock should be deferred to init (see 1340 * below). 1341 */ 1342 int (*create)(struct kvm_device *dev, u32 type); 1343 1344 /* 1345 * init is called after create if create is successful and is called 1346 * outside of holding kvm->lock. 1347 */ 1348 void (*init)(struct kvm_device *dev); 1349 1350 /* 1351 * Destroy is responsible for freeing dev. 1352 * 1353 * Destroy may be called before or after destructors are called 1354 * on emulated I/O regions, depending on whether a reference is 1355 * held by a vcpu or other kvm component that gets destroyed 1356 * after the emulated I/O. 1357 */ 1358 void (*destroy)(struct kvm_device *dev); 1359 1360 /* 1361 * Release is an alternative method to free the device. It is 1362 * called when the device file descriptor is closed. Once 1363 * release is called, the destroy method will not be called 1364 * anymore as the device is removed from the device list of 1365 * the VM. kvm->lock is held. 1366 */ 1367 void (*release)(struct kvm_device *dev); 1368 1369 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1370 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1371 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1372 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1373 unsigned long arg); 1374 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1375 }; 1376 1377 void kvm_device_get(struct kvm_device *dev); 1378 void kvm_device_put(struct kvm_device *dev); 1379 struct kvm_device *kvm_device_from_filp(struct file *filp); 1380 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1381 void kvm_unregister_device_ops(u32 type); 1382 1383 extern struct kvm_device_ops kvm_mpic_ops; 1384 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1385 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1386 1387 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1388 1389 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1390 { 1391 vcpu->spin_loop.in_spin_loop = val; 1392 } 1393 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1394 { 1395 vcpu->spin_loop.dy_eligible = val; 1396 } 1397 1398 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1399 1400 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1401 { 1402 } 1403 1404 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1405 { 1406 } 1407 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1408 1409 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1410 { 1411 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1412 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1413 } 1414 1415 struct kvm_vcpu *kvm_get_running_vcpu(void); 1416 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1417 1418 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1419 bool kvm_arch_has_irq_bypass(void); 1420 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1421 struct irq_bypass_producer *); 1422 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1423 struct irq_bypass_producer *); 1424 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1425 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1426 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1427 uint32_t guest_irq, bool set); 1428 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1429 1430 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1431 /* If we wakeup during the poll time, was it a sucessful poll? */ 1432 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1433 { 1434 return vcpu->valid_wakeup; 1435 } 1436 1437 #else 1438 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1439 { 1440 return true; 1441 } 1442 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1443 1444 #ifdef CONFIG_HAVE_KVM_NO_POLL 1445 /* Callback that tells if we must not poll */ 1446 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1447 #else 1448 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1449 { 1450 return false; 1451 } 1452 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1453 1454 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1455 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1456 unsigned int ioctl, unsigned long arg); 1457 #else 1458 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1459 unsigned int ioctl, 1460 unsigned long arg) 1461 { 1462 return -ENOIOCTLCMD; 1463 } 1464 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1465 1466 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1467 unsigned long start, unsigned long end); 1468 1469 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1470 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1471 #else 1472 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1473 { 1474 return 0; 1475 } 1476 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1477 1478 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1479 1480 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1481 uintptr_t data, const char *name, 1482 struct task_struct **thread_ptr); 1483 1484 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1485 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1486 { 1487 vcpu->run->exit_reason = KVM_EXIT_INTR; 1488 vcpu->stat.signal_exits++; 1489 } 1490 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1491 1492 /* 1493 * This defines how many reserved entries we want to keep before we 1494 * kick the vcpu to the userspace to avoid dirty ring full. This 1495 * value can be tuned to higher if e.g. PML is enabled on the host. 1496 */ 1497 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 1498 1499 /* Max number of entries allowed for each kvm dirty ring */ 1500 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 1501 1502 #endif 1503