xref: /openbmc/linux/include/linux/kvm_host.h (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30 
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33 
34 #include <linux/kvm_types.h>
35 
36 #include <asm/kvm_host.h>
37 #include <linux/kvm_dirty_ring.h>
38 
39 #ifndef KVM_MAX_VCPU_ID
40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
41 #endif
42 
43 /*
44  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
45  * in kvm, other bits are visible for userspace which are defined in
46  * include/linux/kvm_h.
47  */
48 #define KVM_MEMSLOT_INVALID	(1UL << 16)
49 
50 /*
51  * Bit 63 of the memslot generation number is an "update in-progress flag",
52  * e.g. is temporarily set for the duration of install_new_memslots().
53  * This flag effectively creates a unique generation number that is used to
54  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
55  * i.e. may (or may not) have come from the previous memslots generation.
56  *
57  * This is necessary because the actual memslots update is not atomic with
58  * respect to the generation number update.  Updating the generation number
59  * first would allow a vCPU to cache a spte from the old memslots using the
60  * new generation number, and updating the generation number after switching
61  * to the new memslots would allow cache hits using the old generation number
62  * to reference the defunct memslots.
63  *
64  * This mechanism is used to prevent getting hits in KVM's caches while a
65  * memslot update is in-progress, and to prevent cache hits *after* updating
66  * the actual generation number against accesses that were inserted into the
67  * cache *before* the memslots were updated.
68  */
69 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
70 
71 /* Two fragments for cross MMIO pages. */
72 #define KVM_MAX_MMIO_FRAGMENTS	2
73 
74 #ifndef KVM_ADDRESS_SPACE_NUM
75 #define KVM_ADDRESS_SPACE_NUM	1
76 #endif
77 
78 /*
79  * For the normal pfn, the highest 12 bits should be zero,
80  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
81  * mask bit 63 to indicate the noslot pfn.
82  */
83 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
84 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
85 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
86 
87 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
88 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
89 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
90 
91 /*
92  * error pfns indicate that the gfn is in slot but faild to
93  * translate it to pfn on host.
94  */
95 static inline bool is_error_pfn(kvm_pfn_t pfn)
96 {
97 	return !!(pfn & KVM_PFN_ERR_MASK);
98 }
99 
100 /*
101  * error_noslot pfns indicate that the gfn can not be
102  * translated to pfn - it is not in slot or failed to
103  * translate it to pfn.
104  */
105 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
108 }
109 
110 /* noslot pfn indicates that the gfn is not in slot. */
111 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
112 {
113 	return pfn == KVM_PFN_NOSLOT;
114 }
115 
116 /*
117  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
118  * provide own defines and kvm_is_error_hva
119  */
120 #ifndef KVM_HVA_ERR_BAD
121 
122 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
123 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
124 
125 static inline bool kvm_is_error_hva(unsigned long addr)
126 {
127 	return addr >= PAGE_OFFSET;
128 }
129 
130 #endif
131 
132 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
133 
134 static inline bool is_error_page(struct page *page)
135 {
136 	return IS_ERR(page);
137 }
138 
139 #define KVM_REQUEST_MASK           GENMASK(7,0)
140 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
141 #define KVM_REQUEST_WAIT           BIT(9)
142 /*
143  * Architecture-independent vcpu->requests bit members
144  * Bits 4-7 are reserved for more arch-independent bits.
145  */
146 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148 #define KVM_REQ_PENDING_TIMER     2
149 #define KVM_REQ_UNHALT            3
150 #define KVM_REQUEST_ARCH_BASE     8
151 
152 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
153 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
154 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
155 })
156 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
157 
158 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
159 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
160 
161 extern struct mutex kvm_lock;
162 extern struct list_head vm_list;
163 
164 struct kvm_io_range {
165 	gpa_t addr;
166 	int len;
167 	struct kvm_io_device *dev;
168 };
169 
170 #define NR_IOBUS_DEVS 1000
171 
172 struct kvm_io_bus {
173 	int dev_count;
174 	int ioeventfd_count;
175 	struct kvm_io_range range[];
176 };
177 
178 enum kvm_bus {
179 	KVM_MMIO_BUS,
180 	KVM_PIO_BUS,
181 	KVM_VIRTIO_CCW_NOTIFY_BUS,
182 	KVM_FAST_MMIO_BUS,
183 	KVM_NR_BUSES
184 };
185 
186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
187 		     int len, const void *val);
188 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
189 			    gpa_t addr, int len, const void *val, long cookie);
190 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 		    int len, void *val);
192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
193 			    int len, struct kvm_io_device *dev);
194 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
195 			       struct kvm_io_device *dev);
196 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 					 gpa_t addr);
198 
199 #ifdef CONFIG_KVM_ASYNC_PF
200 struct kvm_async_pf {
201 	struct work_struct work;
202 	struct list_head link;
203 	struct list_head queue;
204 	struct kvm_vcpu *vcpu;
205 	struct mm_struct *mm;
206 	gpa_t cr2_or_gpa;
207 	unsigned long addr;
208 	struct kvm_arch_async_pf arch;
209 	bool   wakeup_all;
210 	bool notpresent_injected;
211 };
212 
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
216 			unsigned long hva, struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219 
220 enum {
221 	OUTSIDE_GUEST_MODE,
222 	IN_GUEST_MODE,
223 	EXITING_GUEST_MODE,
224 	READING_SHADOW_PAGE_TABLES,
225 };
226 
227 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
228 
229 struct kvm_host_map {
230 	/*
231 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 	 * a 'struct page' for it. When using mem= kernel parameter some memory
233 	 * can be used as guest memory but they are not managed by host
234 	 * kernel).
235 	 * If 'pfn' is not managed by the host kernel, this field is
236 	 * initialized to KVM_UNMAPPED_PAGE.
237 	 */
238 	struct page *page;
239 	void *hva;
240 	kvm_pfn_t pfn;
241 	kvm_pfn_t gfn;
242 };
243 
244 /*
245  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246  * directly to check for that.
247  */
248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 	return !!map->hva;
251 }
252 
253 /*
254  * Sometimes a large or cross-page mmio needs to be broken up into separate
255  * exits for userspace servicing.
256  */
257 struct kvm_mmio_fragment {
258 	gpa_t gpa;
259 	void *data;
260 	unsigned len;
261 };
262 
263 struct kvm_vcpu {
264 	struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 	struct preempt_notifier preempt_notifier;
267 #endif
268 	int cpu;
269 	int vcpu_id; /* id given by userspace at creation */
270 	int vcpu_idx; /* index in kvm->vcpus array */
271 	int srcu_idx;
272 	int mode;
273 	u64 requests;
274 	unsigned long guest_debug;
275 
276 	int pre_pcpu;
277 	struct list_head blocked_vcpu_list;
278 
279 	struct mutex mutex;
280 	struct kvm_run *run;
281 
282 	struct rcuwait wait;
283 	struct pid __rcu *pid;
284 	int sigset_active;
285 	sigset_t sigset;
286 	struct kvm_vcpu_stat stat;
287 	unsigned int halt_poll_ns;
288 	bool valid_wakeup;
289 
290 #ifdef CONFIG_HAS_IOMEM
291 	int mmio_needed;
292 	int mmio_read_completed;
293 	int mmio_is_write;
294 	int mmio_cur_fragment;
295 	int mmio_nr_fragments;
296 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298 
299 #ifdef CONFIG_KVM_ASYNC_PF
300 	struct {
301 		u32 queued;
302 		struct list_head queue;
303 		struct list_head done;
304 		spinlock_t lock;
305 	} async_pf;
306 #endif
307 
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 	/*
310 	 * Cpu relax intercept or pause loop exit optimization
311 	 * in_spin_loop: set when a vcpu does a pause loop exit
312 	 *  or cpu relax intercepted.
313 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 	 */
315 	struct {
316 		bool in_spin_loop;
317 		bool dy_eligible;
318 	} spin_loop;
319 #endif
320 	bool preempted;
321 	bool ready;
322 	struct kvm_vcpu_arch arch;
323 	struct kvm_dirty_ring dirty_ring;
324 };
325 
326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
327 {
328 	/*
329 	 * The memory barrier ensures a previous write to vcpu->requests cannot
330 	 * be reordered with the read of vcpu->mode.  It pairs with the general
331 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
332 	 */
333 	smp_mb__before_atomic();
334 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
335 }
336 
337 /*
338  * Some of the bitops functions do not support too long bitmaps.
339  * This number must be determined not to exceed such limits.
340  */
341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
342 
343 struct kvm_memory_slot {
344 	gfn_t base_gfn;
345 	unsigned long npages;
346 	unsigned long *dirty_bitmap;
347 	struct kvm_arch_memory_slot arch;
348 	unsigned long userspace_addr;
349 	u32 flags;
350 	short id;
351 	u16 as_id;
352 };
353 
354 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
355 {
356 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
357 }
358 
359 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
360 {
361 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
362 }
363 
364 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
365 {
366 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
367 
368 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
369 }
370 
371 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
372 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
373 #endif
374 
375 struct kvm_s390_adapter_int {
376 	u64 ind_addr;
377 	u64 summary_addr;
378 	u64 ind_offset;
379 	u32 summary_offset;
380 	u32 adapter_id;
381 };
382 
383 struct kvm_hv_sint {
384 	u32 vcpu;
385 	u32 sint;
386 };
387 
388 struct kvm_kernel_irq_routing_entry {
389 	u32 gsi;
390 	u32 type;
391 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
392 		   struct kvm *kvm, int irq_source_id, int level,
393 		   bool line_status);
394 	union {
395 		struct {
396 			unsigned irqchip;
397 			unsigned pin;
398 		} irqchip;
399 		struct {
400 			u32 address_lo;
401 			u32 address_hi;
402 			u32 data;
403 			u32 flags;
404 			u32 devid;
405 		} msi;
406 		struct kvm_s390_adapter_int adapter;
407 		struct kvm_hv_sint hv_sint;
408 	};
409 	struct hlist_node link;
410 };
411 
412 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
413 struct kvm_irq_routing_table {
414 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
415 	u32 nr_rt_entries;
416 	/*
417 	 * Array indexed by gsi. Each entry contains list of irq chips
418 	 * the gsi is connected to.
419 	 */
420 	struct hlist_head map[];
421 };
422 #endif
423 
424 #ifndef KVM_PRIVATE_MEM_SLOTS
425 #define KVM_PRIVATE_MEM_SLOTS 0
426 #endif
427 
428 #define KVM_MEM_SLOTS_NUM SHRT_MAX
429 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
430 
431 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
432 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
433 {
434 	return 0;
435 }
436 #endif
437 
438 /*
439  * Note:
440  * memslots are not sorted by id anymore, please use id_to_memslot()
441  * to get the memslot by its id.
442  */
443 struct kvm_memslots {
444 	u64 generation;
445 	/* The mapping table from slot id to the index in memslots[]. */
446 	short id_to_index[KVM_MEM_SLOTS_NUM];
447 	atomic_t lru_slot;
448 	int used_slots;
449 	struct kvm_memory_slot memslots[];
450 };
451 
452 struct kvm {
453 #ifdef KVM_HAVE_MMU_RWLOCK
454 	rwlock_t mmu_lock;
455 #else
456 	spinlock_t mmu_lock;
457 #endif /* KVM_HAVE_MMU_RWLOCK */
458 
459 	struct mutex slots_lock;
460 	struct mm_struct *mm; /* userspace tied to this vm */
461 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
462 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
463 
464 	/*
465 	 * created_vcpus is protected by kvm->lock, and is incremented
466 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
467 	 * incremented after storing the kvm_vcpu pointer in vcpus,
468 	 * and is accessed atomically.
469 	 */
470 	atomic_t online_vcpus;
471 	int created_vcpus;
472 	int last_boosted_vcpu;
473 	struct list_head vm_list;
474 	struct mutex lock;
475 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
476 #ifdef CONFIG_HAVE_KVM_EVENTFD
477 	struct {
478 		spinlock_t        lock;
479 		struct list_head  items;
480 		struct list_head  resampler_list;
481 		struct mutex      resampler_lock;
482 	} irqfds;
483 	struct list_head ioeventfds;
484 #endif
485 	struct kvm_vm_stat stat;
486 	struct kvm_arch arch;
487 	refcount_t users_count;
488 #ifdef CONFIG_KVM_MMIO
489 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
490 	spinlock_t ring_lock;
491 	struct list_head coalesced_zones;
492 #endif
493 
494 	struct mutex irq_lock;
495 #ifdef CONFIG_HAVE_KVM_IRQCHIP
496 	/*
497 	 * Update side is protected by irq_lock.
498 	 */
499 	struct kvm_irq_routing_table __rcu *irq_routing;
500 #endif
501 #ifdef CONFIG_HAVE_KVM_IRQFD
502 	struct hlist_head irq_ack_notifier_list;
503 #endif
504 
505 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
506 	struct mmu_notifier mmu_notifier;
507 	unsigned long mmu_notifier_seq;
508 	long mmu_notifier_count;
509 #endif
510 	long tlbs_dirty;
511 	struct list_head devices;
512 	u64 manual_dirty_log_protect;
513 	struct dentry *debugfs_dentry;
514 	struct kvm_stat_data **debugfs_stat_data;
515 	struct srcu_struct srcu;
516 	struct srcu_struct irq_srcu;
517 	pid_t userspace_pid;
518 	unsigned int max_halt_poll_ns;
519 	u32 dirty_ring_size;
520 };
521 
522 #define kvm_err(fmt, ...) \
523 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
524 #define kvm_info(fmt, ...) \
525 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
526 #define kvm_debug(fmt, ...) \
527 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
528 #define kvm_debug_ratelimited(fmt, ...) \
529 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
530 			     ## __VA_ARGS__)
531 #define kvm_pr_unimpl(fmt, ...) \
532 	pr_err_ratelimited("kvm [%i]: " fmt, \
533 			   task_tgid_nr(current), ## __VA_ARGS__)
534 
535 /* The guest did something we don't support. */
536 #define vcpu_unimpl(vcpu, fmt, ...)					\
537 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
538 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
539 
540 #define vcpu_debug(vcpu, fmt, ...)					\
541 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
542 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
543 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
544 			      ## __VA_ARGS__)
545 #define vcpu_err(vcpu, fmt, ...)					\
546 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
547 
548 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
549 {
550 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
551 }
552 
553 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
554 {
555 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
556 				      lockdep_is_held(&kvm->slots_lock) ||
557 				      !refcount_read(&kvm->users_count));
558 }
559 
560 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
561 {
562 	int num_vcpus = atomic_read(&kvm->online_vcpus);
563 	i = array_index_nospec(i, num_vcpus);
564 
565 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
566 	smp_rmb();
567 	return kvm->vcpus[i];
568 }
569 
570 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
571 	for (idx = 0; \
572 	     idx < atomic_read(&kvm->online_vcpus) && \
573 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
574 	     idx++)
575 
576 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
577 {
578 	struct kvm_vcpu *vcpu = NULL;
579 	int i;
580 
581 	if (id < 0)
582 		return NULL;
583 	if (id < KVM_MAX_VCPUS)
584 		vcpu = kvm_get_vcpu(kvm, id);
585 	if (vcpu && vcpu->vcpu_id == id)
586 		return vcpu;
587 	kvm_for_each_vcpu(i, vcpu, kvm)
588 		if (vcpu->vcpu_id == id)
589 			return vcpu;
590 	return NULL;
591 }
592 
593 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
594 {
595 	return vcpu->vcpu_idx;
596 }
597 
598 #define kvm_for_each_memslot(memslot, slots)				\
599 	for (memslot = &slots->memslots[0];				\
600 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
601 		if (WARN_ON_ONCE(!memslot->npages)) {			\
602 		} else
603 
604 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
605 
606 void vcpu_load(struct kvm_vcpu *vcpu);
607 void vcpu_put(struct kvm_vcpu *vcpu);
608 
609 #ifdef __KVM_HAVE_IOAPIC
610 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
611 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
612 #else
613 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
614 {
615 }
616 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
617 {
618 }
619 #endif
620 
621 #ifdef CONFIG_HAVE_KVM_IRQFD
622 int kvm_irqfd_init(void);
623 void kvm_irqfd_exit(void);
624 #else
625 static inline int kvm_irqfd_init(void)
626 {
627 	return 0;
628 }
629 
630 static inline void kvm_irqfd_exit(void)
631 {
632 }
633 #endif
634 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
635 		  struct module *module);
636 void kvm_exit(void);
637 
638 void kvm_get_kvm(struct kvm *kvm);
639 void kvm_put_kvm(struct kvm *kvm);
640 void kvm_put_kvm_no_destroy(struct kvm *kvm);
641 
642 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
643 {
644 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
645 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
646 			lockdep_is_held(&kvm->slots_lock) ||
647 			!refcount_read(&kvm->users_count));
648 }
649 
650 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
651 {
652 	return __kvm_memslots(kvm, 0);
653 }
654 
655 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
656 {
657 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
658 
659 	return __kvm_memslots(vcpu->kvm, as_id);
660 }
661 
662 static inline
663 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
664 {
665 	int index = slots->id_to_index[id];
666 	struct kvm_memory_slot *slot;
667 
668 	if (index < 0)
669 		return NULL;
670 
671 	slot = &slots->memslots[index];
672 
673 	WARN_ON(slot->id != id);
674 	return slot;
675 }
676 
677 /*
678  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
679  * - create a new memory slot
680  * - delete an existing memory slot
681  * - modify an existing memory slot
682  *   -- move it in the guest physical memory space
683  *   -- just change its flags
684  *
685  * Since flags can be changed by some of these operations, the following
686  * differentiation is the best we can do for __kvm_set_memory_region():
687  */
688 enum kvm_mr_change {
689 	KVM_MR_CREATE,
690 	KVM_MR_DELETE,
691 	KVM_MR_MOVE,
692 	KVM_MR_FLAGS_ONLY,
693 };
694 
695 int kvm_set_memory_region(struct kvm *kvm,
696 			  const struct kvm_userspace_memory_region *mem);
697 int __kvm_set_memory_region(struct kvm *kvm,
698 			    const struct kvm_userspace_memory_region *mem);
699 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
700 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
702 				struct kvm_memory_slot *memslot,
703 				const struct kvm_userspace_memory_region *mem,
704 				enum kvm_mr_change change);
705 void kvm_arch_commit_memory_region(struct kvm *kvm,
706 				const struct kvm_userspace_memory_region *mem,
707 				struct kvm_memory_slot *old,
708 				const struct kvm_memory_slot *new,
709 				enum kvm_mr_change change);
710 /* flush all memory translations */
711 void kvm_arch_flush_shadow_all(struct kvm *kvm);
712 /* flush memory translations pointing to 'slot' */
713 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
714 				   struct kvm_memory_slot *slot);
715 
716 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
717 			    struct page **pages, int nr_pages);
718 
719 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
720 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
721 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
722 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
723 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
724 				      bool *writable);
725 void kvm_release_page_clean(struct page *page);
726 void kvm_release_page_dirty(struct page *page);
727 void kvm_set_page_accessed(struct page *page);
728 
729 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
730 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
731 		      bool *writable);
732 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
733 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
734 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
735 			       bool atomic, bool *async, bool write_fault,
736 			       bool *writable);
737 
738 void kvm_release_pfn_clean(kvm_pfn_t pfn);
739 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
740 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
741 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
742 void kvm_get_pfn(kvm_pfn_t pfn);
743 
744 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
745 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
746 			int len);
747 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
748 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
749 			   void *data, unsigned long len);
750 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
751 				 void *data, unsigned int offset,
752 				 unsigned long len);
753 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
754 			 int offset, int len);
755 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
756 		    unsigned long len);
757 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
758 			   void *data, unsigned long len);
759 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
760 				  void *data, unsigned int offset,
761 				  unsigned long len);
762 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
763 			      gpa_t gpa, unsigned long len);
764 
765 #define __kvm_get_guest(kvm, gfn, offset, v)				\
766 ({									\
767 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
768 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
769 	int __ret = -EFAULT;						\
770 									\
771 	if (!kvm_is_error_hva(__addr))					\
772 		__ret = get_user(v, __uaddr);				\
773 	__ret;								\
774 })
775 
776 #define kvm_get_guest(kvm, gpa, v)					\
777 ({									\
778 	gpa_t __gpa = gpa;						\
779 	struct kvm *__kvm = kvm;					\
780 									\
781 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
782 			offset_in_page(__gpa), v);			\
783 })
784 
785 #define __kvm_put_guest(kvm, gfn, offset, v)				\
786 ({									\
787 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
788 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
789 	int __ret = -EFAULT;						\
790 									\
791 	if (!kvm_is_error_hva(__addr))					\
792 		__ret = put_user(v, __uaddr);				\
793 	if (!__ret)							\
794 		mark_page_dirty(kvm, gfn);				\
795 	__ret;								\
796 })
797 
798 #define kvm_put_guest(kvm, gpa, v)					\
799 ({									\
800 	gpa_t __gpa = gpa;						\
801 	struct kvm *__kvm = kvm;					\
802 									\
803 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
804 			offset_in_page(__gpa), v);			\
805 })
806 
807 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
808 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
809 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
810 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
811 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
812 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
813 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
814 
815 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
816 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
817 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
818 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
819 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
820 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
821 		struct gfn_to_pfn_cache *cache, bool atomic);
822 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
823 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
824 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
825 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
826 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
827 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
828 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
829 			     int len);
830 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
831 			       unsigned long len);
832 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
833 			unsigned long len);
834 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
835 			      int offset, int len);
836 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
837 			 unsigned long len);
838 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
839 
840 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
841 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
842 
843 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
844 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
845 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
846 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
847 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
848 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
849 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
850 
851 void kvm_flush_remote_tlbs(struct kvm *kvm);
852 void kvm_reload_remote_mmus(struct kvm *kvm);
853 
854 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
855 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
856 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
857 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
858 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
859 #endif
860 
861 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
862 				 struct kvm_vcpu *except,
863 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
864 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
865 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
866 				      struct kvm_vcpu *except);
867 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
868 				unsigned long *vcpu_bitmap);
869 
870 long kvm_arch_dev_ioctl(struct file *filp,
871 			unsigned int ioctl, unsigned long arg);
872 long kvm_arch_vcpu_ioctl(struct file *filp,
873 			 unsigned int ioctl, unsigned long arg);
874 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
875 
876 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
877 
878 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
879 					struct kvm_memory_slot *slot,
880 					gfn_t gfn_offset,
881 					unsigned long mask);
882 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
883 
884 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
885 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
886 					struct kvm_memory_slot *memslot);
887 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
888 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
889 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
890 		      int *is_dirty, struct kvm_memory_slot **memslot);
891 #endif
892 
893 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
894 			bool line_status);
895 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
896 			    struct kvm_enable_cap *cap);
897 long kvm_arch_vm_ioctl(struct file *filp,
898 		       unsigned int ioctl, unsigned long arg);
899 
900 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
901 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
902 
903 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
904 				    struct kvm_translation *tr);
905 
906 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
907 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
908 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
909 				  struct kvm_sregs *sregs);
910 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
911 				  struct kvm_sregs *sregs);
912 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
913 				    struct kvm_mp_state *mp_state);
914 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
915 				    struct kvm_mp_state *mp_state);
916 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
917 					struct kvm_guest_debug *dbg);
918 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
919 
920 int kvm_arch_init(void *opaque);
921 void kvm_arch_exit(void);
922 
923 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
924 
925 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
926 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
927 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
928 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
929 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
930 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
931 
932 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
933 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
934 #endif
935 
936 int kvm_arch_hardware_enable(void);
937 void kvm_arch_hardware_disable(void);
938 int kvm_arch_hardware_setup(void *opaque);
939 void kvm_arch_hardware_unsetup(void);
940 int kvm_arch_check_processor_compat(void *opaque);
941 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
942 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
943 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
944 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
945 int kvm_arch_post_init_vm(struct kvm *kvm);
946 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
947 
948 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
949 /*
950  * All architectures that want to use vzalloc currently also
951  * need their own kvm_arch_alloc_vm implementation.
952  */
953 static inline struct kvm *kvm_arch_alloc_vm(void)
954 {
955 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
956 }
957 
958 static inline void kvm_arch_free_vm(struct kvm *kvm)
959 {
960 	kfree(kvm);
961 }
962 #endif
963 
964 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
965 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
966 {
967 	return -ENOTSUPP;
968 }
969 #endif
970 
971 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
972 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
973 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
974 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
975 #else
976 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
977 {
978 }
979 
980 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
981 {
982 }
983 
984 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
985 {
986 	return false;
987 }
988 #endif
989 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
990 void kvm_arch_start_assignment(struct kvm *kvm);
991 void kvm_arch_end_assignment(struct kvm *kvm);
992 bool kvm_arch_has_assigned_device(struct kvm *kvm);
993 #else
994 static inline void kvm_arch_start_assignment(struct kvm *kvm)
995 {
996 }
997 
998 static inline void kvm_arch_end_assignment(struct kvm *kvm)
999 {
1000 }
1001 
1002 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1003 {
1004 	return false;
1005 }
1006 #endif
1007 
1008 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1009 {
1010 #ifdef __KVM_HAVE_ARCH_WQP
1011 	return vcpu->arch.waitp;
1012 #else
1013 	return &vcpu->wait;
1014 #endif
1015 }
1016 
1017 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1018 /*
1019  * returns true if the virtual interrupt controller is initialized and
1020  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1021  * controller is dynamically instantiated and this is not always true.
1022  */
1023 bool kvm_arch_intc_initialized(struct kvm *kvm);
1024 #else
1025 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1026 {
1027 	return true;
1028 }
1029 #endif
1030 
1031 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1032 void kvm_arch_destroy_vm(struct kvm *kvm);
1033 void kvm_arch_sync_events(struct kvm *kvm);
1034 
1035 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1036 
1037 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1038 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1039 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1040 
1041 struct kvm_irq_ack_notifier {
1042 	struct hlist_node link;
1043 	unsigned gsi;
1044 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1045 };
1046 
1047 int kvm_irq_map_gsi(struct kvm *kvm,
1048 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1049 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1050 
1051 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1052 		bool line_status);
1053 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1054 		int irq_source_id, int level, bool line_status);
1055 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1056 			       struct kvm *kvm, int irq_source_id,
1057 			       int level, bool line_status);
1058 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1059 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1060 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1061 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1062 				   struct kvm_irq_ack_notifier *kian);
1063 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1064 				   struct kvm_irq_ack_notifier *kian);
1065 int kvm_request_irq_source_id(struct kvm *kvm);
1066 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1067 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1068 
1069 /*
1070  * search_memslots() and __gfn_to_memslot() are here because they are
1071  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1072  * gfn_to_memslot() itself isn't here as an inline because that would
1073  * bloat other code too much.
1074  *
1075  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1076  */
1077 static inline struct kvm_memory_slot *
1078 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1079 {
1080 	int start = 0, end = slots->used_slots;
1081 	int slot = atomic_read(&slots->lru_slot);
1082 	struct kvm_memory_slot *memslots = slots->memslots;
1083 
1084 	if (unlikely(!slots->used_slots))
1085 		return NULL;
1086 
1087 	if (gfn >= memslots[slot].base_gfn &&
1088 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1089 		return &memslots[slot];
1090 
1091 	while (start < end) {
1092 		slot = start + (end - start) / 2;
1093 
1094 		if (gfn >= memslots[slot].base_gfn)
1095 			end = slot;
1096 		else
1097 			start = slot + 1;
1098 	}
1099 
1100 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1101 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1102 		atomic_set(&slots->lru_slot, start);
1103 		return &memslots[start];
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
1109 static inline struct kvm_memory_slot *
1110 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1111 {
1112 	return search_memslots(slots, gfn);
1113 }
1114 
1115 static inline unsigned long
1116 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1117 {
1118 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1119 }
1120 
1121 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1122 {
1123 	return gfn_to_memslot(kvm, gfn)->id;
1124 }
1125 
1126 static inline gfn_t
1127 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1128 {
1129 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1130 
1131 	return slot->base_gfn + gfn_offset;
1132 }
1133 
1134 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1135 {
1136 	return (gpa_t)gfn << PAGE_SHIFT;
1137 }
1138 
1139 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1140 {
1141 	return (gfn_t)(gpa >> PAGE_SHIFT);
1142 }
1143 
1144 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1145 {
1146 	return (hpa_t)pfn << PAGE_SHIFT;
1147 }
1148 
1149 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1150 						gpa_t gpa)
1151 {
1152 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1153 }
1154 
1155 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1156 {
1157 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1158 
1159 	return kvm_is_error_hva(hva);
1160 }
1161 
1162 enum kvm_stat_kind {
1163 	KVM_STAT_VM,
1164 	KVM_STAT_VCPU,
1165 };
1166 
1167 struct kvm_stat_data {
1168 	struct kvm *kvm;
1169 	struct kvm_stats_debugfs_item *dbgfs_item;
1170 };
1171 
1172 struct kvm_stats_debugfs_item {
1173 	const char *name;
1174 	int offset;
1175 	enum kvm_stat_kind kind;
1176 	int mode;
1177 };
1178 
1179 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1180 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1181 
1182 #define VM_STAT(n, x, ...) 							\
1183 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1184 #define VCPU_STAT(n, x, ...)							\
1185 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1186 
1187 extern struct kvm_stats_debugfs_item debugfs_entries[];
1188 extern struct dentry *kvm_debugfs_dir;
1189 
1190 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1191 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1192 {
1193 	if (unlikely(kvm->mmu_notifier_count))
1194 		return 1;
1195 	/*
1196 	 * Ensure the read of mmu_notifier_count happens before the read
1197 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1198 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1199 	 * either sees the old (non-zero) value of mmu_notifier_count or
1200 	 * the new (incremented) value of mmu_notifier_seq.
1201 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1202 	 * rather than under kvm->mmu_lock, for scalability, so
1203 	 * can't rely on kvm->mmu_lock to keep things ordered.
1204 	 */
1205 	smp_rmb();
1206 	if (kvm->mmu_notifier_seq != mmu_seq)
1207 		return 1;
1208 	return 0;
1209 }
1210 #endif
1211 
1212 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1213 
1214 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1215 
1216 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1217 int kvm_set_irq_routing(struct kvm *kvm,
1218 			const struct kvm_irq_routing_entry *entries,
1219 			unsigned nr,
1220 			unsigned flags);
1221 int kvm_set_routing_entry(struct kvm *kvm,
1222 			  struct kvm_kernel_irq_routing_entry *e,
1223 			  const struct kvm_irq_routing_entry *ue);
1224 void kvm_free_irq_routing(struct kvm *kvm);
1225 
1226 #else
1227 
1228 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1229 
1230 #endif
1231 
1232 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1233 
1234 #ifdef CONFIG_HAVE_KVM_EVENTFD
1235 
1236 void kvm_eventfd_init(struct kvm *kvm);
1237 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1238 
1239 #ifdef CONFIG_HAVE_KVM_IRQFD
1240 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1241 void kvm_irqfd_release(struct kvm *kvm);
1242 void kvm_irq_routing_update(struct kvm *);
1243 #else
1244 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1245 {
1246 	return -EINVAL;
1247 }
1248 
1249 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1250 #endif
1251 
1252 #else
1253 
1254 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1255 
1256 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1257 {
1258 	return -EINVAL;
1259 }
1260 
1261 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1262 
1263 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1264 static inline void kvm_irq_routing_update(struct kvm *kvm)
1265 {
1266 }
1267 #endif
1268 
1269 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1270 {
1271 	return -ENOSYS;
1272 }
1273 
1274 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1275 
1276 void kvm_arch_irq_routing_update(struct kvm *kvm);
1277 
1278 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1279 {
1280 	/*
1281 	 * Ensure the rest of the request is published to kvm_check_request's
1282 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1283 	 */
1284 	smp_wmb();
1285 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1286 }
1287 
1288 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1289 {
1290 	return READ_ONCE(vcpu->requests);
1291 }
1292 
1293 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1294 {
1295 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1296 }
1297 
1298 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1299 {
1300 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1301 }
1302 
1303 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1304 {
1305 	if (kvm_test_request(req, vcpu)) {
1306 		kvm_clear_request(req, vcpu);
1307 
1308 		/*
1309 		 * Ensure the rest of the request is visible to kvm_check_request's
1310 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1311 		 */
1312 		smp_mb__after_atomic();
1313 		return true;
1314 	} else {
1315 		return false;
1316 	}
1317 }
1318 
1319 extern bool kvm_rebooting;
1320 
1321 extern unsigned int halt_poll_ns;
1322 extern unsigned int halt_poll_ns_grow;
1323 extern unsigned int halt_poll_ns_grow_start;
1324 extern unsigned int halt_poll_ns_shrink;
1325 
1326 struct kvm_device {
1327 	const struct kvm_device_ops *ops;
1328 	struct kvm *kvm;
1329 	void *private;
1330 	struct list_head vm_node;
1331 };
1332 
1333 /* create, destroy, and name are mandatory */
1334 struct kvm_device_ops {
1335 	const char *name;
1336 
1337 	/*
1338 	 * create is called holding kvm->lock and any operations not suitable
1339 	 * to do while holding the lock should be deferred to init (see
1340 	 * below).
1341 	 */
1342 	int (*create)(struct kvm_device *dev, u32 type);
1343 
1344 	/*
1345 	 * init is called after create if create is successful and is called
1346 	 * outside of holding kvm->lock.
1347 	 */
1348 	void (*init)(struct kvm_device *dev);
1349 
1350 	/*
1351 	 * Destroy is responsible for freeing dev.
1352 	 *
1353 	 * Destroy may be called before or after destructors are called
1354 	 * on emulated I/O regions, depending on whether a reference is
1355 	 * held by a vcpu or other kvm component that gets destroyed
1356 	 * after the emulated I/O.
1357 	 */
1358 	void (*destroy)(struct kvm_device *dev);
1359 
1360 	/*
1361 	 * Release is an alternative method to free the device. It is
1362 	 * called when the device file descriptor is closed. Once
1363 	 * release is called, the destroy method will not be called
1364 	 * anymore as the device is removed from the device list of
1365 	 * the VM. kvm->lock is held.
1366 	 */
1367 	void (*release)(struct kvm_device *dev);
1368 
1369 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1370 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1371 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1372 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1373 		      unsigned long arg);
1374 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1375 };
1376 
1377 void kvm_device_get(struct kvm_device *dev);
1378 void kvm_device_put(struct kvm_device *dev);
1379 struct kvm_device *kvm_device_from_filp(struct file *filp);
1380 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1381 void kvm_unregister_device_ops(u32 type);
1382 
1383 extern struct kvm_device_ops kvm_mpic_ops;
1384 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1385 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1386 
1387 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1388 
1389 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1390 {
1391 	vcpu->spin_loop.in_spin_loop = val;
1392 }
1393 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1394 {
1395 	vcpu->spin_loop.dy_eligible = val;
1396 }
1397 
1398 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1399 
1400 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1401 {
1402 }
1403 
1404 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1405 {
1406 }
1407 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1408 
1409 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1410 {
1411 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1412 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1413 }
1414 
1415 struct kvm_vcpu *kvm_get_running_vcpu(void);
1416 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1417 
1418 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1419 bool kvm_arch_has_irq_bypass(void);
1420 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1421 			   struct irq_bypass_producer *);
1422 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1423 			   struct irq_bypass_producer *);
1424 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1425 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1426 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1427 				  uint32_t guest_irq, bool set);
1428 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1429 
1430 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1431 /* If we wakeup during the poll time, was it a sucessful poll? */
1432 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1433 {
1434 	return vcpu->valid_wakeup;
1435 }
1436 
1437 #else
1438 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1439 {
1440 	return true;
1441 }
1442 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1443 
1444 #ifdef CONFIG_HAVE_KVM_NO_POLL
1445 /* Callback that tells if we must not poll */
1446 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1447 #else
1448 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1449 {
1450 	return false;
1451 }
1452 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1453 
1454 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1455 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1456 			       unsigned int ioctl, unsigned long arg);
1457 #else
1458 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1459 					     unsigned int ioctl,
1460 					     unsigned long arg)
1461 {
1462 	return -ENOIOCTLCMD;
1463 }
1464 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1465 
1466 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1467 					    unsigned long start, unsigned long end);
1468 
1469 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1470 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1471 #else
1472 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1473 {
1474 	return 0;
1475 }
1476 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1477 
1478 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1479 
1480 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1481 				uintptr_t data, const char *name,
1482 				struct task_struct **thread_ptr);
1483 
1484 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1485 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1486 {
1487 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1488 	vcpu->stat.signal_exits++;
1489 }
1490 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1491 
1492 /*
1493  * This defines how many reserved entries we want to keep before we
1494  * kick the vcpu to the userspace to avoid dirty ring full.  This
1495  * value can be tuned to higher if e.g. PML is enabled on the host.
1496  */
1497 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1498 
1499 /* Max number of entries allowed for each kvm dirty ring */
1500 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1501 
1502 #endif
1503