1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <asm/signal.h> 33 34 #include <linux/kvm.h> 35 #include <linux/kvm_para.h> 36 37 #include <linux/kvm_types.h> 38 39 #include <asm/kvm_host.h> 40 #include <linux/kvm_dirty_ring.h> 41 42 #ifndef KVM_MAX_VCPU_IDS 43 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 44 #endif 45 46 /* 47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 48 * in kvm, other bits are visible for userspace which are defined in 49 * include/linux/kvm_h. 50 */ 51 #define KVM_MEMSLOT_INVALID (1UL << 16) 52 53 /* 54 * Bit 63 of the memslot generation number is an "update in-progress flag", 55 * e.g. is temporarily set for the duration of install_new_memslots(). 56 * This flag effectively creates a unique generation number that is used to 57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 58 * i.e. may (or may not) have come from the previous memslots generation. 59 * 60 * This is necessary because the actual memslots update is not atomic with 61 * respect to the generation number update. Updating the generation number 62 * first would allow a vCPU to cache a spte from the old memslots using the 63 * new generation number, and updating the generation number after switching 64 * to the new memslots would allow cache hits using the old generation number 65 * to reference the defunct memslots. 66 * 67 * This mechanism is used to prevent getting hits in KVM's caches while a 68 * memslot update is in-progress, and to prevent cache hits *after* updating 69 * the actual generation number against accesses that were inserted into the 70 * cache *before* the memslots were updated. 71 */ 72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 73 74 /* Two fragments for cross MMIO pages. */ 75 #define KVM_MAX_MMIO_FRAGMENTS 2 76 77 #ifndef KVM_ADDRESS_SPACE_NUM 78 #define KVM_ADDRESS_SPACE_NUM 1 79 #endif 80 81 /* 82 * For the normal pfn, the highest 12 bits should be zero, 83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 84 * mask bit 63 to indicate the noslot pfn. 85 */ 86 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 87 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 88 #define KVM_PFN_NOSLOT (0x1ULL << 63) 89 90 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 91 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 92 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 93 94 /* 95 * error pfns indicate that the gfn is in slot but faild to 96 * translate it to pfn on host. 97 */ 98 static inline bool is_error_pfn(kvm_pfn_t pfn) 99 { 100 return !!(pfn & KVM_PFN_ERR_MASK); 101 } 102 103 /* 104 * error_noslot pfns indicate that the gfn can not be 105 * translated to pfn - it is not in slot or failed to 106 * translate it to pfn. 107 */ 108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 109 { 110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 111 } 112 113 /* noslot pfn indicates that the gfn is not in slot. */ 114 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_NOSLOT; 117 } 118 119 /* 120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 121 * provide own defines and kvm_is_error_hva 122 */ 123 #ifndef KVM_HVA_ERR_BAD 124 125 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 126 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 127 128 static inline bool kvm_is_error_hva(unsigned long addr) 129 { 130 return addr >= PAGE_OFFSET; 131 } 132 133 #endif 134 135 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 136 137 static inline bool is_error_page(struct page *page) 138 { 139 return IS_ERR(page); 140 } 141 142 #define KVM_REQUEST_MASK GENMASK(7,0) 143 #define KVM_REQUEST_NO_WAKEUP BIT(8) 144 #define KVM_REQUEST_WAIT BIT(9) 145 /* 146 * Architecture-independent vcpu->requests bit members 147 * Bits 4-7 are reserved for more arch-independent bits. 148 */ 149 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 151 #define KVM_REQ_UNBLOCK 2 152 #define KVM_REQ_UNHALT 3 153 #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 154 #define KVM_REQUEST_ARCH_BASE 8 155 156 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 157 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 158 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 159 }) 160 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 161 162 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 163 unsigned long *vcpu_bitmap); 164 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 165 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 166 struct kvm_vcpu *except); 167 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 168 unsigned long *vcpu_bitmap); 169 170 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 171 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 172 173 extern struct mutex kvm_lock; 174 extern struct list_head vm_list; 175 176 struct kvm_io_range { 177 gpa_t addr; 178 int len; 179 struct kvm_io_device *dev; 180 }; 181 182 #define NR_IOBUS_DEVS 1000 183 184 struct kvm_io_bus { 185 int dev_count; 186 int ioeventfd_count; 187 struct kvm_io_range range[]; 188 }; 189 190 enum kvm_bus { 191 KVM_MMIO_BUS, 192 KVM_PIO_BUS, 193 KVM_VIRTIO_CCW_NOTIFY_BUS, 194 KVM_FAST_MMIO_BUS, 195 KVM_NR_BUSES 196 }; 197 198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 199 int len, const void *val); 200 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 201 gpa_t addr, int len, const void *val, long cookie); 202 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 203 int len, void *val); 204 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 205 int len, struct kvm_io_device *dev); 206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 207 struct kvm_io_device *dev); 208 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 209 gpa_t addr); 210 211 #ifdef CONFIG_KVM_ASYNC_PF 212 struct kvm_async_pf { 213 struct work_struct work; 214 struct list_head link; 215 struct list_head queue; 216 struct kvm_vcpu *vcpu; 217 struct mm_struct *mm; 218 gpa_t cr2_or_gpa; 219 unsigned long addr; 220 struct kvm_arch_async_pf arch; 221 bool wakeup_all; 222 bool notpresent_injected; 223 }; 224 225 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 226 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 227 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 228 unsigned long hva, struct kvm_arch_async_pf *arch); 229 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 230 #endif 231 232 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 233 struct kvm_gfn_range { 234 struct kvm_memory_slot *slot; 235 gfn_t start; 236 gfn_t end; 237 pte_t pte; 238 bool may_block; 239 }; 240 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 241 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 242 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 243 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 244 #endif 245 246 enum { 247 OUTSIDE_GUEST_MODE, 248 IN_GUEST_MODE, 249 EXITING_GUEST_MODE, 250 READING_SHADOW_PAGE_TABLES, 251 }; 252 253 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 254 255 struct kvm_host_map { 256 /* 257 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 258 * a 'struct page' for it. When using mem= kernel parameter some memory 259 * can be used as guest memory but they are not managed by host 260 * kernel). 261 * If 'pfn' is not managed by the host kernel, this field is 262 * initialized to KVM_UNMAPPED_PAGE. 263 */ 264 struct page *page; 265 void *hva; 266 kvm_pfn_t pfn; 267 kvm_pfn_t gfn; 268 }; 269 270 /* 271 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 272 * directly to check for that. 273 */ 274 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 275 { 276 return !!map->hva; 277 } 278 279 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 280 { 281 return single_task_running() && !need_resched() && ktime_before(cur, stop); 282 } 283 284 /* 285 * Sometimes a large or cross-page mmio needs to be broken up into separate 286 * exits for userspace servicing. 287 */ 288 struct kvm_mmio_fragment { 289 gpa_t gpa; 290 void *data; 291 unsigned len; 292 }; 293 294 struct kvm_vcpu { 295 struct kvm *kvm; 296 #ifdef CONFIG_PREEMPT_NOTIFIERS 297 struct preempt_notifier preempt_notifier; 298 #endif 299 int cpu; 300 int vcpu_id; /* id given by userspace at creation */ 301 int vcpu_idx; /* index in kvm->vcpus array */ 302 int srcu_idx; 303 int mode; 304 u64 requests; 305 unsigned long guest_debug; 306 307 int pre_pcpu; 308 struct list_head blocked_vcpu_list; 309 310 struct mutex mutex; 311 struct kvm_run *run; 312 313 struct rcuwait wait; 314 struct pid __rcu *pid; 315 int sigset_active; 316 sigset_t sigset; 317 unsigned int halt_poll_ns; 318 bool valid_wakeup; 319 320 #ifdef CONFIG_HAS_IOMEM 321 int mmio_needed; 322 int mmio_read_completed; 323 int mmio_is_write; 324 int mmio_cur_fragment; 325 int mmio_nr_fragments; 326 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 327 #endif 328 329 #ifdef CONFIG_KVM_ASYNC_PF 330 struct { 331 u32 queued; 332 struct list_head queue; 333 struct list_head done; 334 spinlock_t lock; 335 } async_pf; 336 #endif 337 338 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 339 /* 340 * Cpu relax intercept or pause loop exit optimization 341 * in_spin_loop: set when a vcpu does a pause loop exit 342 * or cpu relax intercepted. 343 * dy_eligible: indicates whether vcpu is eligible for directed yield. 344 */ 345 struct { 346 bool in_spin_loop; 347 bool dy_eligible; 348 } spin_loop; 349 #endif 350 bool preempted; 351 bool ready; 352 struct kvm_vcpu_arch arch; 353 struct kvm_vcpu_stat stat; 354 char stats_id[KVM_STATS_NAME_SIZE]; 355 struct kvm_dirty_ring dirty_ring; 356 357 /* 358 * The index of the most recently used memslot by this vCPU. It's ok 359 * if this becomes stale due to memslot changes since we always check 360 * it is a valid slot. 361 */ 362 int last_used_slot; 363 }; 364 365 /* must be called with irqs disabled */ 366 static __always_inline void guest_enter_irqoff(void) 367 { 368 /* 369 * This is running in ioctl context so its safe to assume that it's the 370 * stime pending cputime to flush. 371 */ 372 instrumentation_begin(); 373 vtime_account_guest_enter(); 374 instrumentation_end(); 375 376 /* 377 * KVM does not hold any references to rcu protected data when it 378 * switches CPU into a guest mode. In fact switching to a guest mode 379 * is very similar to exiting to userspace from rcu point of view. In 380 * addition CPU may stay in a guest mode for quite a long time (up to 381 * one time slice). Lets treat guest mode as quiescent state, just like 382 * we do with user-mode execution. 383 */ 384 if (!context_tracking_guest_enter()) { 385 instrumentation_begin(); 386 rcu_virt_note_context_switch(smp_processor_id()); 387 instrumentation_end(); 388 } 389 } 390 391 static __always_inline void guest_exit_irqoff(void) 392 { 393 context_tracking_guest_exit(); 394 395 instrumentation_begin(); 396 /* Flush the guest cputime we spent on the guest */ 397 vtime_account_guest_exit(); 398 instrumentation_end(); 399 } 400 401 static inline void guest_exit(void) 402 { 403 unsigned long flags; 404 405 local_irq_save(flags); 406 guest_exit_irqoff(); 407 local_irq_restore(flags); 408 } 409 410 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 411 { 412 /* 413 * The memory barrier ensures a previous write to vcpu->requests cannot 414 * be reordered with the read of vcpu->mode. It pairs with the general 415 * memory barrier following the write of vcpu->mode in VCPU RUN. 416 */ 417 smp_mb__before_atomic(); 418 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 419 } 420 421 /* 422 * Some of the bitops functions do not support too long bitmaps. 423 * This number must be determined not to exceed such limits. 424 */ 425 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 426 427 struct kvm_memory_slot { 428 gfn_t base_gfn; 429 unsigned long npages; 430 unsigned long *dirty_bitmap; 431 struct kvm_arch_memory_slot arch; 432 unsigned long userspace_addr; 433 u32 flags; 434 short id; 435 u16 as_id; 436 }; 437 438 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 439 { 440 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 441 } 442 443 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 444 { 445 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 446 } 447 448 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 449 { 450 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 451 452 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 453 } 454 455 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 456 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 457 #endif 458 459 struct kvm_s390_adapter_int { 460 u64 ind_addr; 461 u64 summary_addr; 462 u64 ind_offset; 463 u32 summary_offset; 464 u32 adapter_id; 465 }; 466 467 struct kvm_hv_sint { 468 u32 vcpu; 469 u32 sint; 470 }; 471 472 struct kvm_kernel_irq_routing_entry { 473 u32 gsi; 474 u32 type; 475 int (*set)(struct kvm_kernel_irq_routing_entry *e, 476 struct kvm *kvm, int irq_source_id, int level, 477 bool line_status); 478 union { 479 struct { 480 unsigned irqchip; 481 unsigned pin; 482 } irqchip; 483 struct { 484 u32 address_lo; 485 u32 address_hi; 486 u32 data; 487 u32 flags; 488 u32 devid; 489 } msi; 490 struct kvm_s390_adapter_int adapter; 491 struct kvm_hv_sint hv_sint; 492 }; 493 struct hlist_node link; 494 }; 495 496 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 497 struct kvm_irq_routing_table { 498 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 499 u32 nr_rt_entries; 500 /* 501 * Array indexed by gsi. Each entry contains list of irq chips 502 * the gsi is connected to. 503 */ 504 struct hlist_head map[]; 505 }; 506 #endif 507 508 #ifndef KVM_PRIVATE_MEM_SLOTS 509 #define KVM_PRIVATE_MEM_SLOTS 0 510 #endif 511 512 #define KVM_MEM_SLOTS_NUM SHRT_MAX 513 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 514 515 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 516 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 517 { 518 return 0; 519 } 520 #endif 521 522 /* 523 * Note: 524 * memslots are not sorted by id anymore, please use id_to_memslot() 525 * to get the memslot by its id. 526 */ 527 struct kvm_memslots { 528 u64 generation; 529 /* The mapping table from slot id to the index in memslots[]. */ 530 short id_to_index[KVM_MEM_SLOTS_NUM]; 531 atomic_t last_used_slot; 532 int used_slots; 533 struct kvm_memory_slot memslots[]; 534 }; 535 536 struct kvm { 537 #ifdef KVM_HAVE_MMU_RWLOCK 538 rwlock_t mmu_lock; 539 #else 540 spinlock_t mmu_lock; 541 #endif /* KVM_HAVE_MMU_RWLOCK */ 542 543 struct mutex slots_lock; 544 545 /* 546 * Protects the arch-specific fields of struct kvm_memory_slots in 547 * use by the VM. To be used under the slots_lock (above) or in a 548 * kvm->srcu critical section where acquiring the slots_lock would 549 * lead to deadlock with the synchronize_srcu in 550 * install_new_memslots. 551 */ 552 struct mutex slots_arch_lock; 553 struct mm_struct *mm; /* userspace tied to this vm */ 554 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 555 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 556 557 /* Used to wait for completion of MMU notifiers. */ 558 spinlock_t mn_invalidate_lock; 559 unsigned long mn_active_invalidate_count; 560 struct rcuwait mn_memslots_update_rcuwait; 561 562 /* 563 * created_vcpus is protected by kvm->lock, and is incremented 564 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 565 * incremented after storing the kvm_vcpu pointer in vcpus, 566 * and is accessed atomically. 567 */ 568 atomic_t online_vcpus; 569 int created_vcpus; 570 int last_boosted_vcpu; 571 struct list_head vm_list; 572 struct mutex lock; 573 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 574 #ifdef CONFIG_HAVE_KVM_EVENTFD 575 struct { 576 spinlock_t lock; 577 struct list_head items; 578 struct list_head resampler_list; 579 struct mutex resampler_lock; 580 } irqfds; 581 struct list_head ioeventfds; 582 #endif 583 struct kvm_vm_stat stat; 584 struct kvm_arch arch; 585 refcount_t users_count; 586 #ifdef CONFIG_KVM_MMIO 587 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 588 spinlock_t ring_lock; 589 struct list_head coalesced_zones; 590 #endif 591 592 struct mutex irq_lock; 593 #ifdef CONFIG_HAVE_KVM_IRQCHIP 594 /* 595 * Update side is protected by irq_lock. 596 */ 597 struct kvm_irq_routing_table __rcu *irq_routing; 598 #endif 599 #ifdef CONFIG_HAVE_KVM_IRQFD 600 struct hlist_head irq_ack_notifier_list; 601 #endif 602 603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 604 struct mmu_notifier mmu_notifier; 605 unsigned long mmu_notifier_seq; 606 long mmu_notifier_count; 607 unsigned long mmu_notifier_range_start; 608 unsigned long mmu_notifier_range_end; 609 #endif 610 struct list_head devices; 611 u64 manual_dirty_log_protect; 612 struct dentry *debugfs_dentry; 613 struct kvm_stat_data **debugfs_stat_data; 614 struct srcu_struct srcu; 615 struct srcu_struct irq_srcu; 616 pid_t userspace_pid; 617 unsigned int max_halt_poll_ns; 618 u32 dirty_ring_size; 619 bool vm_bugged; 620 bool vm_dead; 621 622 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 623 struct notifier_block pm_notifier; 624 #endif 625 char stats_id[KVM_STATS_NAME_SIZE]; 626 }; 627 628 #define kvm_err(fmt, ...) \ 629 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 630 #define kvm_info(fmt, ...) \ 631 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 632 #define kvm_debug(fmt, ...) \ 633 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 634 #define kvm_debug_ratelimited(fmt, ...) \ 635 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 636 ## __VA_ARGS__) 637 #define kvm_pr_unimpl(fmt, ...) \ 638 pr_err_ratelimited("kvm [%i]: " fmt, \ 639 task_tgid_nr(current), ## __VA_ARGS__) 640 641 /* The guest did something we don't support. */ 642 #define vcpu_unimpl(vcpu, fmt, ...) \ 643 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 644 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 645 646 #define vcpu_debug(vcpu, fmt, ...) \ 647 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 648 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 649 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 650 ## __VA_ARGS__) 651 #define vcpu_err(vcpu, fmt, ...) \ 652 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 653 654 static inline void kvm_vm_dead(struct kvm *kvm) 655 { 656 kvm->vm_dead = true; 657 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 658 } 659 660 static inline void kvm_vm_bugged(struct kvm *kvm) 661 { 662 kvm->vm_bugged = true; 663 kvm_vm_dead(kvm); 664 } 665 666 667 #define KVM_BUG(cond, kvm, fmt...) \ 668 ({ \ 669 int __ret = (cond); \ 670 \ 671 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 672 kvm_vm_bugged(kvm); \ 673 unlikely(__ret); \ 674 }) 675 676 #define KVM_BUG_ON(cond, kvm) \ 677 ({ \ 678 int __ret = (cond); \ 679 \ 680 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 681 kvm_vm_bugged(kvm); \ 682 unlikely(__ret); \ 683 }) 684 685 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 686 { 687 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 688 } 689 690 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 691 { 692 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 693 lockdep_is_held(&kvm->slots_lock) || 694 !refcount_read(&kvm->users_count)); 695 } 696 697 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 698 { 699 int num_vcpus = atomic_read(&kvm->online_vcpus); 700 i = array_index_nospec(i, num_vcpus); 701 702 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 703 smp_rmb(); 704 return kvm->vcpus[i]; 705 } 706 707 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 708 for (idx = 0; \ 709 idx < atomic_read(&kvm->online_vcpus) && \ 710 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 711 idx++) 712 713 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 714 { 715 struct kvm_vcpu *vcpu = NULL; 716 int i; 717 718 if (id < 0) 719 return NULL; 720 if (id < KVM_MAX_VCPUS) 721 vcpu = kvm_get_vcpu(kvm, id); 722 if (vcpu && vcpu->vcpu_id == id) 723 return vcpu; 724 kvm_for_each_vcpu(i, vcpu, kvm) 725 if (vcpu->vcpu_id == id) 726 return vcpu; 727 return NULL; 728 } 729 730 #define kvm_for_each_memslot(memslot, slots) \ 731 for (memslot = &slots->memslots[0]; \ 732 memslot < slots->memslots + slots->used_slots; memslot++) \ 733 if (WARN_ON_ONCE(!memslot->npages)) { \ 734 } else 735 736 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 737 738 void vcpu_load(struct kvm_vcpu *vcpu); 739 void vcpu_put(struct kvm_vcpu *vcpu); 740 741 #ifdef __KVM_HAVE_IOAPIC 742 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 743 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 744 #else 745 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 746 { 747 } 748 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 749 { 750 } 751 #endif 752 753 #ifdef CONFIG_HAVE_KVM_IRQFD 754 int kvm_irqfd_init(void); 755 void kvm_irqfd_exit(void); 756 #else 757 static inline int kvm_irqfd_init(void) 758 { 759 return 0; 760 } 761 762 static inline void kvm_irqfd_exit(void) 763 { 764 } 765 #endif 766 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 767 struct module *module); 768 void kvm_exit(void); 769 770 void kvm_get_kvm(struct kvm *kvm); 771 bool kvm_get_kvm_safe(struct kvm *kvm); 772 void kvm_put_kvm(struct kvm *kvm); 773 bool file_is_kvm(struct file *file); 774 void kvm_put_kvm_no_destroy(struct kvm *kvm); 775 776 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 777 { 778 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 779 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 780 lockdep_is_held(&kvm->slots_lock) || 781 !refcount_read(&kvm->users_count)); 782 } 783 784 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 785 { 786 return __kvm_memslots(kvm, 0); 787 } 788 789 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 790 { 791 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 792 793 return __kvm_memslots(vcpu->kvm, as_id); 794 } 795 796 static inline 797 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 798 { 799 int index = slots->id_to_index[id]; 800 struct kvm_memory_slot *slot; 801 802 if (index < 0) 803 return NULL; 804 805 slot = &slots->memslots[index]; 806 807 WARN_ON(slot->id != id); 808 return slot; 809 } 810 811 /* 812 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 813 * - create a new memory slot 814 * - delete an existing memory slot 815 * - modify an existing memory slot 816 * -- move it in the guest physical memory space 817 * -- just change its flags 818 * 819 * Since flags can be changed by some of these operations, the following 820 * differentiation is the best we can do for __kvm_set_memory_region(): 821 */ 822 enum kvm_mr_change { 823 KVM_MR_CREATE, 824 KVM_MR_DELETE, 825 KVM_MR_MOVE, 826 KVM_MR_FLAGS_ONLY, 827 }; 828 829 int kvm_set_memory_region(struct kvm *kvm, 830 const struct kvm_userspace_memory_region *mem); 831 int __kvm_set_memory_region(struct kvm *kvm, 832 const struct kvm_userspace_memory_region *mem); 833 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 834 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 835 int kvm_arch_prepare_memory_region(struct kvm *kvm, 836 struct kvm_memory_slot *memslot, 837 const struct kvm_userspace_memory_region *mem, 838 enum kvm_mr_change change); 839 void kvm_arch_commit_memory_region(struct kvm *kvm, 840 const struct kvm_userspace_memory_region *mem, 841 struct kvm_memory_slot *old, 842 const struct kvm_memory_slot *new, 843 enum kvm_mr_change change); 844 /* flush all memory translations */ 845 void kvm_arch_flush_shadow_all(struct kvm *kvm); 846 /* flush memory translations pointing to 'slot' */ 847 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 848 struct kvm_memory_slot *slot); 849 850 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 851 struct page **pages, int nr_pages); 852 853 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 854 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 855 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 856 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 857 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 858 bool *writable); 859 void kvm_release_page_clean(struct page *page); 860 void kvm_release_page_dirty(struct page *page); 861 void kvm_set_page_accessed(struct page *page); 862 863 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 864 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 865 bool *writable); 866 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 867 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 868 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 869 bool atomic, bool *async, bool write_fault, 870 bool *writable, hva_t *hva); 871 872 void kvm_release_pfn_clean(kvm_pfn_t pfn); 873 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 874 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 875 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 876 877 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 878 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 879 int len); 880 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 881 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 882 void *data, unsigned long len); 883 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 884 void *data, unsigned int offset, 885 unsigned long len); 886 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 887 int offset, int len); 888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 889 unsigned long len); 890 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 891 void *data, unsigned long len); 892 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 893 void *data, unsigned int offset, 894 unsigned long len); 895 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 896 gpa_t gpa, unsigned long len); 897 898 #define __kvm_get_guest(kvm, gfn, offset, v) \ 899 ({ \ 900 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 901 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 902 int __ret = -EFAULT; \ 903 \ 904 if (!kvm_is_error_hva(__addr)) \ 905 __ret = get_user(v, __uaddr); \ 906 __ret; \ 907 }) 908 909 #define kvm_get_guest(kvm, gpa, v) \ 910 ({ \ 911 gpa_t __gpa = gpa; \ 912 struct kvm *__kvm = kvm; \ 913 \ 914 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 915 offset_in_page(__gpa), v); \ 916 }) 917 918 #define __kvm_put_guest(kvm, gfn, offset, v) \ 919 ({ \ 920 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 921 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 922 int __ret = -EFAULT; \ 923 \ 924 if (!kvm_is_error_hva(__addr)) \ 925 __ret = put_user(v, __uaddr); \ 926 if (!__ret) \ 927 mark_page_dirty(kvm, gfn); \ 928 __ret; \ 929 }) 930 931 #define kvm_put_guest(kvm, gpa, v) \ 932 ({ \ 933 gpa_t __gpa = gpa; \ 934 struct kvm *__kvm = kvm; \ 935 \ 936 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 937 offset_in_page(__gpa), v); \ 938 }) 939 940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 941 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 942 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 943 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 944 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 945 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 946 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 947 948 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 949 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 950 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 951 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 952 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 953 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 954 struct gfn_to_pfn_cache *cache, bool atomic); 955 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 956 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 957 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 958 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 959 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 960 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 961 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 962 int len); 963 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 964 unsigned long len); 965 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 966 unsigned long len); 967 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 968 int offset, int len); 969 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 970 unsigned long len); 971 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 972 973 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 974 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 975 976 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 977 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 978 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 979 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 980 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 981 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 982 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 983 984 void kvm_flush_remote_tlbs(struct kvm *kvm); 985 void kvm_reload_remote_mmus(struct kvm *kvm); 986 987 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 988 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 989 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 990 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 991 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 992 #endif 993 994 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 995 unsigned long end); 996 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 997 unsigned long end); 998 999 long kvm_arch_dev_ioctl(struct file *filp, 1000 unsigned int ioctl, unsigned long arg); 1001 long kvm_arch_vcpu_ioctl(struct file *filp, 1002 unsigned int ioctl, unsigned long arg); 1003 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1004 1005 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1006 1007 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1008 struct kvm_memory_slot *slot, 1009 gfn_t gfn_offset, 1010 unsigned long mask); 1011 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1012 1013 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1014 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1015 const struct kvm_memory_slot *memslot); 1016 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1017 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1018 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1019 int *is_dirty, struct kvm_memory_slot **memslot); 1020 #endif 1021 1022 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1023 bool line_status); 1024 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1025 struct kvm_enable_cap *cap); 1026 long kvm_arch_vm_ioctl(struct file *filp, 1027 unsigned int ioctl, unsigned long arg); 1028 1029 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1030 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1031 1032 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1033 struct kvm_translation *tr); 1034 1035 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1036 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1037 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1038 struct kvm_sregs *sregs); 1039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1040 struct kvm_sregs *sregs); 1041 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1042 struct kvm_mp_state *mp_state); 1043 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1044 struct kvm_mp_state *mp_state); 1045 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1046 struct kvm_guest_debug *dbg); 1047 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1048 1049 int kvm_arch_init(void *opaque); 1050 void kvm_arch_exit(void); 1051 1052 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1053 1054 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1055 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1056 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1057 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1058 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1059 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1060 1061 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1062 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1063 #endif 1064 1065 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1066 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1067 #endif 1068 1069 int kvm_arch_hardware_enable(void); 1070 void kvm_arch_hardware_disable(void); 1071 int kvm_arch_hardware_setup(void *opaque); 1072 void kvm_arch_hardware_unsetup(void); 1073 int kvm_arch_check_processor_compat(void *opaque); 1074 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1075 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1076 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1077 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1078 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1079 int kvm_arch_post_init_vm(struct kvm *kvm); 1080 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1081 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1082 1083 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1084 /* 1085 * All architectures that want to use vzalloc currently also 1086 * need their own kvm_arch_alloc_vm implementation. 1087 */ 1088 static inline struct kvm *kvm_arch_alloc_vm(void) 1089 { 1090 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1091 } 1092 #endif 1093 1094 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1095 { 1096 kvfree(kvm); 1097 } 1098 1099 #ifndef __KVM_HAVE_ARCH_VM_FREE 1100 static inline void kvm_arch_free_vm(struct kvm *kvm) 1101 { 1102 __kvm_arch_free_vm(kvm); 1103 } 1104 #endif 1105 1106 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1107 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1108 { 1109 return -ENOTSUPP; 1110 } 1111 #endif 1112 1113 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1114 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1115 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1116 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1117 #else 1118 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1119 { 1120 } 1121 1122 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1123 { 1124 } 1125 1126 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1127 { 1128 return false; 1129 } 1130 #endif 1131 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1132 void kvm_arch_start_assignment(struct kvm *kvm); 1133 void kvm_arch_end_assignment(struct kvm *kvm); 1134 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1135 #else 1136 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1137 { 1138 } 1139 1140 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1141 { 1142 } 1143 1144 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1145 { 1146 return false; 1147 } 1148 #endif 1149 1150 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1151 { 1152 #ifdef __KVM_HAVE_ARCH_WQP 1153 return vcpu->arch.waitp; 1154 #else 1155 return &vcpu->wait; 1156 #endif 1157 } 1158 1159 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1160 /* 1161 * returns true if the virtual interrupt controller is initialized and 1162 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1163 * controller is dynamically instantiated and this is not always true. 1164 */ 1165 bool kvm_arch_intc_initialized(struct kvm *kvm); 1166 #else 1167 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1168 { 1169 return true; 1170 } 1171 #endif 1172 1173 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1174 void kvm_arch_destroy_vm(struct kvm *kvm); 1175 void kvm_arch_sync_events(struct kvm *kvm); 1176 1177 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1178 1179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1180 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1181 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1182 1183 struct kvm_irq_ack_notifier { 1184 struct hlist_node link; 1185 unsigned gsi; 1186 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1187 }; 1188 1189 int kvm_irq_map_gsi(struct kvm *kvm, 1190 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1191 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1192 1193 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1194 bool line_status); 1195 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1196 int irq_source_id, int level, bool line_status); 1197 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1198 struct kvm *kvm, int irq_source_id, 1199 int level, bool line_status); 1200 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1201 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1202 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1203 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1204 struct kvm_irq_ack_notifier *kian); 1205 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1206 struct kvm_irq_ack_notifier *kian); 1207 int kvm_request_irq_source_id(struct kvm *kvm); 1208 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1209 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1210 1211 /* 1212 * Returns a pointer to the memslot at slot_index if it contains gfn. 1213 * Otherwise returns NULL. 1214 */ 1215 static inline struct kvm_memory_slot * 1216 try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn) 1217 { 1218 struct kvm_memory_slot *slot; 1219 1220 if (slot_index < 0 || slot_index >= slots->used_slots) 1221 return NULL; 1222 1223 /* 1224 * slot_index can come from vcpu->last_used_slot which is not kept 1225 * in sync with userspace-controllable memslot deletion. So use nospec 1226 * to prevent the CPU from speculating past the end of memslots[]. 1227 */ 1228 slot_index = array_index_nospec(slot_index, slots->used_slots); 1229 slot = &slots->memslots[slot_index]; 1230 1231 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1232 return slot; 1233 else 1234 return NULL; 1235 } 1236 1237 /* 1238 * Returns a pointer to the memslot that contains gfn and records the index of 1239 * the slot in index. Otherwise returns NULL. 1240 * 1241 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1242 */ 1243 static inline struct kvm_memory_slot * 1244 search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index) 1245 { 1246 int start = 0, end = slots->used_slots; 1247 struct kvm_memory_slot *memslots = slots->memslots; 1248 struct kvm_memory_slot *slot; 1249 1250 if (unlikely(!slots->used_slots)) 1251 return NULL; 1252 1253 while (start < end) { 1254 int slot = start + (end - start) / 2; 1255 1256 if (gfn >= memslots[slot].base_gfn) 1257 end = slot; 1258 else 1259 start = slot + 1; 1260 } 1261 1262 slot = try_get_memslot(slots, start, gfn); 1263 if (slot) { 1264 *index = start; 1265 return slot; 1266 } 1267 1268 return NULL; 1269 } 1270 1271 /* 1272 * __gfn_to_memslot() and its descendants are here because it is called from 1273 * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot() 1274 * itself isn't here as an inline because that would bloat other code too much. 1275 */ 1276 static inline struct kvm_memory_slot * 1277 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1278 { 1279 struct kvm_memory_slot *slot; 1280 int slot_index = atomic_read(&slots->last_used_slot); 1281 1282 slot = try_get_memslot(slots, slot_index, gfn); 1283 if (slot) 1284 return slot; 1285 1286 slot = search_memslots(slots, gfn, &slot_index); 1287 if (slot) { 1288 atomic_set(&slots->last_used_slot, slot_index); 1289 return slot; 1290 } 1291 1292 return NULL; 1293 } 1294 1295 static inline unsigned long 1296 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1297 { 1298 /* 1299 * The index was checked originally in search_memslots. To avoid 1300 * that a malicious guest builds a Spectre gadget out of e.g. page 1301 * table walks, do not let the processor speculate loads outside 1302 * the guest's registered memslots. 1303 */ 1304 unsigned long offset = gfn - slot->base_gfn; 1305 offset = array_index_nospec(offset, slot->npages); 1306 return slot->userspace_addr + offset * PAGE_SIZE; 1307 } 1308 1309 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1310 { 1311 return gfn_to_memslot(kvm, gfn)->id; 1312 } 1313 1314 static inline gfn_t 1315 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1316 { 1317 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1318 1319 return slot->base_gfn + gfn_offset; 1320 } 1321 1322 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1323 { 1324 return (gpa_t)gfn << PAGE_SHIFT; 1325 } 1326 1327 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1328 { 1329 return (gfn_t)(gpa >> PAGE_SHIFT); 1330 } 1331 1332 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1333 { 1334 return (hpa_t)pfn << PAGE_SHIFT; 1335 } 1336 1337 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1338 gpa_t gpa) 1339 { 1340 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1341 } 1342 1343 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1344 { 1345 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1346 1347 return kvm_is_error_hva(hva); 1348 } 1349 1350 enum kvm_stat_kind { 1351 KVM_STAT_VM, 1352 KVM_STAT_VCPU, 1353 }; 1354 1355 struct kvm_stat_data { 1356 struct kvm *kvm; 1357 const struct _kvm_stats_desc *desc; 1358 enum kvm_stat_kind kind; 1359 }; 1360 1361 struct _kvm_stats_desc { 1362 struct kvm_stats_desc desc; 1363 char name[KVM_STATS_NAME_SIZE]; 1364 }; 1365 1366 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1367 .flags = type | unit | base | \ 1368 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1369 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1370 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1371 .exponent = exp, \ 1372 .size = sz, \ 1373 .bucket_size = bsz 1374 1375 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1376 { \ 1377 { \ 1378 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1379 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1380 }, \ 1381 .name = #stat, \ 1382 } 1383 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1384 { \ 1385 { \ 1386 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1387 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1388 }, \ 1389 .name = #stat, \ 1390 } 1391 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1392 { \ 1393 { \ 1394 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1395 .offset = offsetof(struct kvm_vm_stat, stat) \ 1396 }, \ 1397 .name = #stat, \ 1398 } 1399 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1400 { \ 1401 { \ 1402 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1403 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1404 }, \ 1405 .name = #stat, \ 1406 } 1407 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1408 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1409 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1410 1411 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1412 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1413 unit, base, exponent, 1, 0) 1414 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1415 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1416 unit, base, exponent, 1, 0) 1417 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1418 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1419 unit, base, exponent, 1, 0) 1420 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1421 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1422 unit, base, exponent, sz, bsz) 1423 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1424 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1425 unit, base, exponent, sz, 0) 1426 1427 /* Cumulative counter, read/write */ 1428 #define STATS_DESC_COUNTER(SCOPE, name) \ 1429 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1430 KVM_STATS_BASE_POW10, 0) 1431 /* Instantaneous counter, read only */ 1432 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1433 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1434 KVM_STATS_BASE_POW10, 0) 1435 /* Peak counter, read/write */ 1436 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1437 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1438 KVM_STATS_BASE_POW10, 0) 1439 1440 /* Cumulative time in nanosecond */ 1441 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1442 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1443 KVM_STATS_BASE_POW10, -9) 1444 /* Linear histogram for time in nanosecond */ 1445 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1446 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1447 KVM_STATS_BASE_POW10, -9, sz, bsz) 1448 /* Logarithmic histogram for time in nanosecond */ 1449 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1450 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1451 KVM_STATS_BASE_POW10, -9, sz) 1452 1453 #define KVM_GENERIC_VM_STATS() \ 1454 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1455 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1456 1457 #define KVM_GENERIC_VCPU_STATS() \ 1458 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1459 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1460 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1461 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1462 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1463 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1464 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1465 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1466 HALT_POLL_HIST_COUNT), \ 1467 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1468 HALT_POLL_HIST_COUNT), \ 1469 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1470 HALT_POLL_HIST_COUNT) 1471 1472 extern struct dentry *kvm_debugfs_dir; 1473 1474 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1475 const struct _kvm_stats_desc *desc, 1476 void *stats, size_t size_stats, 1477 char __user *user_buffer, size_t size, loff_t *offset); 1478 1479 /** 1480 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1481 * statistics data. 1482 * 1483 * @data: start address of the stats data 1484 * @size: the number of bucket of the stats data 1485 * @value: the new value used to update the linear histogram's bucket 1486 * @bucket_size: the size (width) of a bucket 1487 */ 1488 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1489 u64 value, size_t bucket_size) 1490 { 1491 size_t index = div64_u64(value, bucket_size); 1492 1493 index = min(index, size - 1); 1494 ++data[index]; 1495 } 1496 1497 /** 1498 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1499 * statistics data. 1500 * 1501 * @data: start address of the stats data 1502 * @size: the number of bucket of the stats data 1503 * @value: the new value used to update the logarithmic histogram's bucket 1504 */ 1505 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1506 { 1507 size_t index = fls64(value); 1508 1509 index = min(index, size - 1); 1510 ++data[index]; 1511 } 1512 1513 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1514 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1515 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1516 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1517 1518 1519 extern const struct kvm_stats_header kvm_vm_stats_header; 1520 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1521 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1522 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1523 1524 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1525 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1526 { 1527 if (unlikely(kvm->mmu_notifier_count)) 1528 return 1; 1529 /* 1530 * Ensure the read of mmu_notifier_count happens before the read 1531 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1532 * mmu_notifier_invalidate_range_end to make sure that the caller 1533 * either sees the old (non-zero) value of mmu_notifier_count or 1534 * the new (incremented) value of mmu_notifier_seq. 1535 * PowerPC Book3s HV KVM calls this under a per-page lock 1536 * rather than under kvm->mmu_lock, for scalability, so 1537 * can't rely on kvm->mmu_lock to keep things ordered. 1538 */ 1539 smp_rmb(); 1540 if (kvm->mmu_notifier_seq != mmu_seq) 1541 return 1; 1542 return 0; 1543 } 1544 1545 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1546 unsigned long mmu_seq, 1547 unsigned long hva) 1548 { 1549 lockdep_assert_held(&kvm->mmu_lock); 1550 /* 1551 * If mmu_notifier_count is non-zero, then the range maintained by 1552 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1553 * might be being invalidated. Note that it may include some false 1554 * positives, due to shortcuts when handing concurrent invalidations. 1555 */ 1556 if (unlikely(kvm->mmu_notifier_count) && 1557 hva >= kvm->mmu_notifier_range_start && 1558 hva < kvm->mmu_notifier_range_end) 1559 return 1; 1560 if (kvm->mmu_notifier_seq != mmu_seq) 1561 return 1; 1562 return 0; 1563 } 1564 #endif 1565 1566 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1567 1568 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1569 1570 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1571 int kvm_set_irq_routing(struct kvm *kvm, 1572 const struct kvm_irq_routing_entry *entries, 1573 unsigned nr, 1574 unsigned flags); 1575 int kvm_set_routing_entry(struct kvm *kvm, 1576 struct kvm_kernel_irq_routing_entry *e, 1577 const struct kvm_irq_routing_entry *ue); 1578 void kvm_free_irq_routing(struct kvm *kvm); 1579 1580 #else 1581 1582 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1583 1584 #endif 1585 1586 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1587 1588 #ifdef CONFIG_HAVE_KVM_EVENTFD 1589 1590 void kvm_eventfd_init(struct kvm *kvm); 1591 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1592 1593 #ifdef CONFIG_HAVE_KVM_IRQFD 1594 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1595 void kvm_irqfd_release(struct kvm *kvm); 1596 void kvm_irq_routing_update(struct kvm *); 1597 #else 1598 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1599 { 1600 return -EINVAL; 1601 } 1602 1603 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1604 #endif 1605 1606 #else 1607 1608 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1609 1610 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1611 { 1612 return -EINVAL; 1613 } 1614 1615 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1616 1617 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1618 static inline void kvm_irq_routing_update(struct kvm *kvm) 1619 { 1620 } 1621 #endif 1622 1623 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1624 { 1625 return -ENOSYS; 1626 } 1627 1628 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1629 1630 void kvm_arch_irq_routing_update(struct kvm *kvm); 1631 1632 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1633 { 1634 /* 1635 * Ensure the rest of the request is published to kvm_check_request's 1636 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1637 */ 1638 smp_wmb(); 1639 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1640 } 1641 1642 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1643 { 1644 return READ_ONCE(vcpu->requests); 1645 } 1646 1647 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1648 { 1649 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1650 } 1651 1652 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1653 { 1654 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1655 } 1656 1657 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1658 { 1659 if (kvm_test_request(req, vcpu)) { 1660 kvm_clear_request(req, vcpu); 1661 1662 /* 1663 * Ensure the rest of the request is visible to kvm_check_request's 1664 * caller. Paired with the smp_wmb in kvm_make_request. 1665 */ 1666 smp_mb__after_atomic(); 1667 return true; 1668 } else { 1669 return false; 1670 } 1671 } 1672 1673 extern bool kvm_rebooting; 1674 1675 extern unsigned int halt_poll_ns; 1676 extern unsigned int halt_poll_ns_grow; 1677 extern unsigned int halt_poll_ns_grow_start; 1678 extern unsigned int halt_poll_ns_shrink; 1679 1680 struct kvm_device { 1681 const struct kvm_device_ops *ops; 1682 struct kvm *kvm; 1683 void *private; 1684 struct list_head vm_node; 1685 }; 1686 1687 /* create, destroy, and name are mandatory */ 1688 struct kvm_device_ops { 1689 const char *name; 1690 1691 /* 1692 * create is called holding kvm->lock and any operations not suitable 1693 * to do while holding the lock should be deferred to init (see 1694 * below). 1695 */ 1696 int (*create)(struct kvm_device *dev, u32 type); 1697 1698 /* 1699 * init is called after create if create is successful and is called 1700 * outside of holding kvm->lock. 1701 */ 1702 void (*init)(struct kvm_device *dev); 1703 1704 /* 1705 * Destroy is responsible for freeing dev. 1706 * 1707 * Destroy may be called before or after destructors are called 1708 * on emulated I/O regions, depending on whether a reference is 1709 * held by a vcpu or other kvm component that gets destroyed 1710 * after the emulated I/O. 1711 */ 1712 void (*destroy)(struct kvm_device *dev); 1713 1714 /* 1715 * Release is an alternative method to free the device. It is 1716 * called when the device file descriptor is closed. Once 1717 * release is called, the destroy method will not be called 1718 * anymore as the device is removed from the device list of 1719 * the VM. kvm->lock is held. 1720 */ 1721 void (*release)(struct kvm_device *dev); 1722 1723 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1724 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1725 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1726 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1727 unsigned long arg); 1728 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1729 }; 1730 1731 void kvm_device_get(struct kvm_device *dev); 1732 void kvm_device_put(struct kvm_device *dev); 1733 struct kvm_device *kvm_device_from_filp(struct file *filp); 1734 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1735 void kvm_unregister_device_ops(u32 type); 1736 1737 extern struct kvm_device_ops kvm_mpic_ops; 1738 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1739 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1740 1741 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1742 1743 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1744 { 1745 vcpu->spin_loop.in_spin_loop = val; 1746 } 1747 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1748 { 1749 vcpu->spin_loop.dy_eligible = val; 1750 } 1751 1752 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1753 1754 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1755 { 1756 } 1757 1758 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1759 { 1760 } 1761 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1762 1763 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1764 { 1765 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1766 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1767 } 1768 1769 struct kvm_vcpu *kvm_get_running_vcpu(void); 1770 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1771 1772 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1773 bool kvm_arch_has_irq_bypass(void); 1774 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1775 struct irq_bypass_producer *); 1776 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1777 struct irq_bypass_producer *); 1778 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1779 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1780 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1781 uint32_t guest_irq, bool set); 1782 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 1783 struct kvm_kernel_irq_routing_entry *); 1784 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1785 1786 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1787 /* If we wakeup during the poll time, was it a sucessful poll? */ 1788 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1789 { 1790 return vcpu->valid_wakeup; 1791 } 1792 1793 #else 1794 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1795 { 1796 return true; 1797 } 1798 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1799 1800 #ifdef CONFIG_HAVE_KVM_NO_POLL 1801 /* Callback that tells if we must not poll */ 1802 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1803 #else 1804 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1805 { 1806 return false; 1807 } 1808 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1809 1810 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1811 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1812 unsigned int ioctl, unsigned long arg); 1813 #else 1814 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1815 unsigned int ioctl, 1816 unsigned long arg) 1817 { 1818 return -ENOIOCTLCMD; 1819 } 1820 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1821 1822 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1823 unsigned long start, unsigned long end); 1824 1825 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1826 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1827 #else 1828 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1829 { 1830 return 0; 1831 } 1832 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1833 1834 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1835 1836 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1837 uintptr_t data, const char *name, 1838 struct task_struct **thread_ptr); 1839 1840 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1841 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1842 { 1843 vcpu->run->exit_reason = KVM_EXIT_INTR; 1844 vcpu->stat.signal_exits++; 1845 } 1846 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1847 1848 /* 1849 * This defines how many reserved entries we want to keep before we 1850 * kick the vcpu to the userspace to avoid dirty ring full. This 1851 * value can be tuned to higher if e.g. PML is enabled on the host. 1852 */ 1853 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 1854 1855 /* Max number of entries allowed for each kvm dirty ring */ 1856 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 1857 1858 #endif 1859