1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/swait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct kmem_cache *kvm_vcpu_cache; 161 162 extern struct mutex kvm_lock; 163 extern struct list_head vm_list; 164 165 struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169 }; 170 171 #define NR_IOBUS_DEVS 1000 172 173 struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177 }; 178 179 enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185 }; 186 187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200 #ifdef CONFIG_KVM_ASYNC_PF 201 struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gva_t gva; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 }; 212 213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 216 struct kvm_arch_async_pf *arch); 217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218 #endif 219 220 enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225 }; 226 227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229 struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242 }; 243 244 /* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249 { 250 return !!map->hva; 251 } 252 253 /* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257 struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261 }; 262 263 struct kvm_vcpu { 264 struct kvm *kvm; 265 #ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267 #endif 268 int cpu; 269 int vcpu_id; 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 int guest_xcr0_loaded; 282 struct swait_queue_head wq; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290 #ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297 #endif 298 299 #ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306 #endif 307 308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319 #endif 320 bool preempted; 321 bool ready; 322 struct kvm_vcpu_arch arch; 323 struct dentry *debugfs_dentry; 324 }; 325 326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 327 { 328 /* 329 * The memory barrier ensures a previous write to vcpu->requests cannot 330 * be reordered with the read of vcpu->mode. It pairs with the general 331 * memory barrier following the write of vcpu->mode in VCPU RUN. 332 */ 333 smp_mb__before_atomic(); 334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 335 } 336 337 /* 338 * Some of the bitops functions do not support too long bitmaps. 339 * This number must be determined not to exceed such limits. 340 */ 341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 342 343 struct kvm_memory_slot { 344 gfn_t base_gfn; 345 unsigned long npages; 346 unsigned long *dirty_bitmap; 347 struct kvm_arch_memory_slot arch; 348 unsigned long userspace_addr; 349 u32 flags; 350 short id; 351 }; 352 353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 354 { 355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 356 } 357 358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 359 { 360 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 361 362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 363 } 364 365 struct kvm_s390_adapter_int { 366 u64 ind_addr; 367 u64 summary_addr; 368 u64 ind_offset; 369 u32 summary_offset; 370 u32 adapter_id; 371 }; 372 373 struct kvm_hv_sint { 374 u32 vcpu; 375 u32 sint; 376 }; 377 378 struct kvm_kernel_irq_routing_entry { 379 u32 gsi; 380 u32 type; 381 int (*set)(struct kvm_kernel_irq_routing_entry *e, 382 struct kvm *kvm, int irq_source_id, int level, 383 bool line_status); 384 union { 385 struct { 386 unsigned irqchip; 387 unsigned pin; 388 } irqchip; 389 struct { 390 u32 address_lo; 391 u32 address_hi; 392 u32 data; 393 u32 flags; 394 u32 devid; 395 } msi; 396 struct kvm_s390_adapter_int adapter; 397 struct kvm_hv_sint hv_sint; 398 }; 399 struct hlist_node link; 400 }; 401 402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 403 struct kvm_irq_routing_table { 404 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 405 u32 nr_rt_entries; 406 /* 407 * Array indexed by gsi. Each entry contains list of irq chips 408 * the gsi is connected to. 409 */ 410 struct hlist_head map[0]; 411 }; 412 #endif 413 414 #ifndef KVM_PRIVATE_MEM_SLOTS 415 #define KVM_PRIVATE_MEM_SLOTS 0 416 #endif 417 418 #ifndef KVM_MEM_SLOTS_NUM 419 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 420 #endif 421 422 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 423 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 424 { 425 return 0; 426 } 427 #endif 428 429 /* 430 * Note: 431 * memslots are not sorted by id anymore, please use id_to_memslot() 432 * to get the memslot by its id. 433 */ 434 struct kvm_memslots { 435 u64 generation; 436 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 437 /* The mapping table from slot id to the index in memslots[]. */ 438 short id_to_index[KVM_MEM_SLOTS_NUM]; 439 atomic_t lru_slot; 440 int used_slots; 441 }; 442 443 struct kvm { 444 spinlock_t mmu_lock; 445 struct mutex slots_lock; 446 struct mm_struct *mm; /* userspace tied to this vm */ 447 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 448 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 449 450 /* 451 * created_vcpus is protected by kvm->lock, and is incremented 452 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 453 * incremented after storing the kvm_vcpu pointer in vcpus, 454 * and is accessed atomically. 455 */ 456 atomic_t online_vcpus; 457 int created_vcpus; 458 int last_boosted_vcpu; 459 struct list_head vm_list; 460 struct mutex lock; 461 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 462 #ifdef CONFIG_HAVE_KVM_EVENTFD 463 struct { 464 spinlock_t lock; 465 struct list_head items; 466 struct list_head resampler_list; 467 struct mutex resampler_lock; 468 } irqfds; 469 struct list_head ioeventfds; 470 #endif 471 struct kvm_vm_stat stat; 472 struct kvm_arch arch; 473 refcount_t users_count; 474 #ifdef CONFIG_KVM_MMIO 475 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 476 spinlock_t ring_lock; 477 struct list_head coalesced_zones; 478 #endif 479 480 struct mutex irq_lock; 481 #ifdef CONFIG_HAVE_KVM_IRQCHIP 482 /* 483 * Update side is protected by irq_lock. 484 */ 485 struct kvm_irq_routing_table __rcu *irq_routing; 486 #endif 487 #ifdef CONFIG_HAVE_KVM_IRQFD 488 struct hlist_head irq_ack_notifier_list; 489 #endif 490 491 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 492 struct mmu_notifier mmu_notifier; 493 unsigned long mmu_notifier_seq; 494 long mmu_notifier_count; 495 #endif 496 long tlbs_dirty; 497 struct list_head devices; 498 bool manual_dirty_log_protect; 499 struct dentry *debugfs_dentry; 500 struct kvm_stat_data **debugfs_stat_data; 501 struct srcu_struct srcu; 502 struct srcu_struct irq_srcu; 503 pid_t userspace_pid; 504 }; 505 506 #define kvm_err(fmt, ...) \ 507 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 508 #define kvm_info(fmt, ...) \ 509 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510 #define kvm_debug(fmt, ...) \ 511 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512 #define kvm_debug_ratelimited(fmt, ...) \ 513 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 514 ## __VA_ARGS__) 515 #define kvm_pr_unimpl(fmt, ...) \ 516 pr_err_ratelimited("kvm [%i]: " fmt, \ 517 task_tgid_nr(current), ## __VA_ARGS__) 518 519 /* The guest did something we don't support. */ 520 #define vcpu_unimpl(vcpu, fmt, ...) \ 521 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 522 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 523 524 #define vcpu_debug(vcpu, fmt, ...) \ 525 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 526 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 527 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 528 ## __VA_ARGS__) 529 #define vcpu_err(vcpu, fmt, ...) \ 530 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 531 532 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 533 { 534 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 535 lockdep_is_held(&kvm->slots_lock) || 536 !refcount_read(&kvm->users_count)); 537 } 538 539 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 540 { 541 int num_vcpus = atomic_read(&kvm->online_vcpus); 542 i = array_index_nospec(i, num_vcpus); 543 544 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 545 smp_rmb(); 546 return kvm->vcpus[i]; 547 } 548 549 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 550 for (idx = 0; \ 551 idx < atomic_read(&kvm->online_vcpus) && \ 552 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 553 idx++) 554 555 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 556 { 557 struct kvm_vcpu *vcpu = NULL; 558 int i; 559 560 if (id < 0) 561 return NULL; 562 if (id < KVM_MAX_VCPUS) 563 vcpu = kvm_get_vcpu(kvm, id); 564 if (vcpu && vcpu->vcpu_id == id) 565 return vcpu; 566 kvm_for_each_vcpu(i, vcpu, kvm) 567 if (vcpu->vcpu_id == id) 568 return vcpu; 569 return NULL; 570 } 571 572 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 573 { 574 struct kvm_vcpu *tmp; 575 int idx; 576 577 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 578 if (tmp == vcpu) 579 return idx; 580 BUG(); 581 } 582 583 #define kvm_for_each_memslot(memslot, slots) \ 584 for (memslot = &slots->memslots[0]; \ 585 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 586 memslot++) 587 588 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 589 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 590 591 void vcpu_load(struct kvm_vcpu *vcpu); 592 void vcpu_put(struct kvm_vcpu *vcpu); 593 594 #ifdef __KVM_HAVE_IOAPIC 595 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 596 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 597 #else 598 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 599 { 600 } 601 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 602 { 603 } 604 #endif 605 606 #ifdef CONFIG_HAVE_KVM_IRQFD 607 int kvm_irqfd_init(void); 608 void kvm_irqfd_exit(void); 609 #else 610 static inline int kvm_irqfd_init(void) 611 { 612 return 0; 613 } 614 615 static inline void kvm_irqfd_exit(void) 616 { 617 } 618 #endif 619 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 620 struct module *module); 621 void kvm_exit(void); 622 623 void kvm_get_kvm(struct kvm *kvm); 624 void kvm_put_kvm(struct kvm *kvm); 625 626 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 627 { 628 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 629 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 630 lockdep_is_held(&kvm->slots_lock) || 631 !refcount_read(&kvm->users_count)); 632 } 633 634 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 635 { 636 return __kvm_memslots(kvm, 0); 637 } 638 639 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 640 { 641 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 642 643 return __kvm_memslots(vcpu->kvm, as_id); 644 } 645 646 static inline struct kvm_memory_slot * 647 id_to_memslot(struct kvm_memslots *slots, int id) 648 { 649 int index = slots->id_to_index[id]; 650 struct kvm_memory_slot *slot; 651 652 slot = &slots->memslots[index]; 653 654 WARN_ON(slot->id != id); 655 return slot; 656 } 657 658 /* 659 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 660 * - create a new memory slot 661 * - delete an existing memory slot 662 * - modify an existing memory slot 663 * -- move it in the guest physical memory space 664 * -- just change its flags 665 * 666 * Since flags can be changed by some of these operations, the following 667 * differentiation is the best we can do for __kvm_set_memory_region(): 668 */ 669 enum kvm_mr_change { 670 KVM_MR_CREATE, 671 KVM_MR_DELETE, 672 KVM_MR_MOVE, 673 KVM_MR_FLAGS_ONLY, 674 }; 675 676 int kvm_set_memory_region(struct kvm *kvm, 677 const struct kvm_userspace_memory_region *mem); 678 int __kvm_set_memory_region(struct kvm *kvm, 679 const struct kvm_userspace_memory_region *mem); 680 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 681 struct kvm_memory_slot *dont); 682 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 683 unsigned long npages); 684 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 685 int kvm_arch_prepare_memory_region(struct kvm *kvm, 686 struct kvm_memory_slot *memslot, 687 const struct kvm_userspace_memory_region *mem, 688 enum kvm_mr_change change); 689 void kvm_arch_commit_memory_region(struct kvm *kvm, 690 const struct kvm_userspace_memory_region *mem, 691 const struct kvm_memory_slot *old, 692 const struct kvm_memory_slot *new, 693 enum kvm_mr_change change); 694 bool kvm_largepages_enabled(void); 695 void kvm_disable_largepages(void); 696 /* flush all memory translations */ 697 void kvm_arch_flush_shadow_all(struct kvm *kvm); 698 /* flush memory translations pointing to 'slot' */ 699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 700 struct kvm_memory_slot *slot); 701 702 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 703 struct page **pages, int nr_pages); 704 705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 708 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 710 bool *writable); 711 void kvm_release_page_clean(struct page *page); 712 void kvm_release_page_dirty(struct page *page); 713 void kvm_set_page_accessed(struct page *page); 714 715 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 716 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 717 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 718 bool *writable); 719 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 720 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 721 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 722 bool atomic, bool *async, bool write_fault, 723 bool *writable); 724 725 void kvm_release_pfn_clean(kvm_pfn_t pfn); 726 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 727 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 728 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 729 void kvm_get_pfn(kvm_pfn_t pfn); 730 731 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 732 int len); 733 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 734 unsigned long len); 735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 737 void *data, unsigned long len); 738 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 739 int offset, int len); 740 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 741 unsigned long len); 742 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 743 void *data, unsigned long len); 744 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 745 void *data, unsigned int offset, 746 unsigned long len); 747 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 748 gpa_t gpa, unsigned long len); 749 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 750 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 751 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 752 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 753 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 754 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 755 756 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 757 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 758 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 759 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 760 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 761 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 762 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 763 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 764 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 765 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 766 int len); 767 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 768 unsigned long len); 769 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 770 unsigned long len); 771 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 772 int offset, int len); 773 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 774 unsigned long len); 775 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 776 777 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 778 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 779 780 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 781 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 782 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 783 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 784 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 785 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 786 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 787 788 void kvm_flush_remote_tlbs(struct kvm *kvm); 789 void kvm_reload_remote_mmus(struct kvm *kvm); 790 791 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 792 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 793 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 794 795 long kvm_arch_dev_ioctl(struct file *filp, 796 unsigned int ioctl, unsigned long arg); 797 long kvm_arch_vcpu_ioctl(struct file *filp, 798 unsigned int ioctl, unsigned long arg); 799 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 800 801 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 802 803 int kvm_get_dirty_log(struct kvm *kvm, 804 struct kvm_dirty_log *log, int *is_dirty); 805 806 int kvm_get_dirty_log_protect(struct kvm *kvm, 807 struct kvm_dirty_log *log, bool *flush); 808 int kvm_clear_dirty_log_protect(struct kvm *kvm, 809 struct kvm_clear_dirty_log *log, bool *flush); 810 811 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 812 struct kvm_memory_slot *slot, 813 gfn_t gfn_offset, 814 unsigned long mask); 815 816 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 817 struct kvm_dirty_log *log); 818 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 819 struct kvm_clear_dirty_log *log); 820 821 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 822 bool line_status); 823 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 824 struct kvm_enable_cap *cap); 825 long kvm_arch_vm_ioctl(struct file *filp, 826 unsigned int ioctl, unsigned long arg); 827 828 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 829 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 830 831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 832 struct kvm_translation *tr); 833 834 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 835 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 836 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 837 struct kvm_sregs *sregs); 838 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 839 struct kvm_sregs *sregs); 840 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 841 struct kvm_mp_state *mp_state); 842 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 843 struct kvm_mp_state *mp_state); 844 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 845 struct kvm_guest_debug *dbg); 846 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 847 848 int kvm_arch_init(void *opaque); 849 void kvm_arch_exit(void); 850 851 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 852 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 853 854 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 855 856 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 857 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 858 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 859 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 860 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 861 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 862 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 863 864 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 865 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 866 #endif 867 868 int kvm_arch_hardware_enable(void); 869 void kvm_arch_hardware_disable(void); 870 int kvm_arch_hardware_setup(void); 871 void kvm_arch_hardware_unsetup(void); 872 int kvm_arch_check_processor_compat(void); 873 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 874 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 875 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 876 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 877 878 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 879 /* 880 * All architectures that want to use vzalloc currently also 881 * need their own kvm_arch_alloc_vm implementation. 882 */ 883 static inline struct kvm *kvm_arch_alloc_vm(void) 884 { 885 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 886 } 887 888 static inline void kvm_arch_free_vm(struct kvm *kvm) 889 { 890 kfree(kvm); 891 } 892 #endif 893 894 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 895 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 896 { 897 return -ENOTSUPP; 898 } 899 #endif 900 901 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 902 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 903 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 904 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 905 #else 906 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 907 { 908 } 909 910 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 911 { 912 } 913 914 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 915 { 916 return false; 917 } 918 #endif 919 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 920 void kvm_arch_start_assignment(struct kvm *kvm); 921 void kvm_arch_end_assignment(struct kvm *kvm); 922 bool kvm_arch_has_assigned_device(struct kvm *kvm); 923 #else 924 static inline void kvm_arch_start_assignment(struct kvm *kvm) 925 { 926 } 927 928 static inline void kvm_arch_end_assignment(struct kvm *kvm) 929 { 930 } 931 932 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 933 { 934 return false; 935 } 936 #endif 937 938 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 939 { 940 #ifdef __KVM_HAVE_ARCH_WQP 941 return vcpu->arch.wqp; 942 #else 943 return &vcpu->wq; 944 #endif 945 } 946 947 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 948 /* 949 * returns true if the virtual interrupt controller is initialized and 950 * ready to accept virtual IRQ. On some architectures the virtual interrupt 951 * controller is dynamically instantiated and this is not always true. 952 */ 953 bool kvm_arch_intc_initialized(struct kvm *kvm); 954 #else 955 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 956 { 957 return true; 958 } 959 #endif 960 961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 962 void kvm_arch_destroy_vm(struct kvm *kvm); 963 void kvm_arch_sync_events(struct kvm *kvm); 964 965 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 966 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 967 968 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 969 970 struct kvm_irq_ack_notifier { 971 struct hlist_node link; 972 unsigned gsi; 973 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 974 }; 975 976 int kvm_irq_map_gsi(struct kvm *kvm, 977 struct kvm_kernel_irq_routing_entry *entries, int gsi); 978 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 979 980 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 981 bool line_status); 982 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 983 int irq_source_id, int level, bool line_status); 984 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 985 struct kvm *kvm, int irq_source_id, 986 int level, bool line_status); 987 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 988 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 989 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 990 void kvm_register_irq_ack_notifier(struct kvm *kvm, 991 struct kvm_irq_ack_notifier *kian); 992 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 993 struct kvm_irq_ack_notifier *kian); 994 int kvm_request_irq_source_id(struct kvm *kvm); 995 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 996 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 997 998 /* 999 * search_memslots() and __gfn_to_memslot() are here because they are 1000 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1001 * gfn_to_memslot() itself isn't here as an inline because that would 1002 * bloat other code too much. 1003 */ 1004 static inline struct kvm_memory_slot * 1005 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1006 { 1007 int start = 0, end = slots->used_slots; 1008 int slot = atomic_read(&slots->lru_slot); 1009 struct kvm_memory_slot *memslots = slots->memslots; 1010 1011 if (gfn >= memslots[slot].base_gfn && 1012 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1013 return &memslots[slot]; 1014 1015 while (start < end) { 1016 slot = start + (end - start) / 2; 1017 1018 if (gfn >= memslots[slot].base_gfn) 1019 end = slot; 1020 else 1021 start = slot + 1; 1022 } 1023 1024 if (gfn >= memslots[start].base_gfn && 1025 gfn < memslots[start].base_gfn + memslots[start].npages) { 1026 atomic_set(&slots->lru_slot, start); 1027 return &memslots[start]; 1028 } 1029 1030 return NULL; 1031 } 1032 1033 static inline struct kvm_memory_slot * 1034 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1035 { 1036 return search_memslots(slots, gfn); 1037 } 1038 1039 static inline unsigned long 1040 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1041 { 1042 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1043 } 1044 1045 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1046 { 1047 return gfn_to_memslot(kvm, gfn)->id; 1048 } 1049 1050 static inline gfn_t 1051 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1052 { 1053 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1054 1055 return slot->base_gfn + gfn_offset; 1056 } 1057 1058 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1059 { 1060 return (gpa_t)gfn << PAGE_SHIFT; 1061 } 1062 1063 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1064 { 1065 return (gfn_t)(gpa >> PAGE_SHIFT); 1066 } 1067 1068 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1069 { 1070 return (hpa_t)pfn << PAGE_SHIFT; 1071 } 1072 1073 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1074 gpa_t gpa) 1075 { 1076 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1077 } 1078 1079 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1080 { 1081 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1082 1083 return kvm_is_error_hva(hva); 1084 } 1085 1086 enum kvm_stat_kind { 1087 KVM_STAT_VM, 1088 KVM_STAT_VCPU, 1089 }; 1090 1091 struct kvm_stat_data { 1092 int offset; 1093 int mode; 1094 struct kvm *kvm; 1095 }; 1096 1097 struct kvm_stats_debugfs_item { 1098 const char *name; 1099 int offset; 1100 enum kvm_stat_kind kind; 1101 int mode; 1102 }; 1103 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1104 extern struct dentry *kvm_debugfs_dir; 1105 1106 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1107 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1108 { 1109 if (unlikely(kvm->mmu_notifier_count)) 1110 return 1; 1111 /* 1112 * Ensure the read of mmu_notifier_count happens before the read 1113 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1114 * mmu_notifier_invalidate_range_end to make sure that the caller 1115 * either sees the old (non-zero) value of mmu_notifier_count or 1116 * the new (incremented) value of mmu_notifier_seq. 1117 * PowerPC Book3s HV KVM calls this under a per-page lock 1118 * rather than under kvm->mmu_lock, for scalability, so 1119 * can't rely on kvm->mmu_lock to keep things ordered. 1120 */ 1121 smp_rmb(); 1122 if (kvm->mmu_notifier_seq != mmu_seq) 1123 return 1; 1124 return 0; 1125 } 1126 #endif 1127 1128 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1129 1130 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1131 1132 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1133 int kvm_set_irq_routing(struct kvm *kvm, 1134 const struct kvm_irq_routing_entry *entries, 1135 unsigned nr, 1136 unsigned flags); 1137 int kvm_set_routing_entry(struct kvm *kvm, 1138 struct kvm_kernel_irq_routing_entry *e, 1139 const struct kvm_irq_routing_entry *ue); 1140 void kvm_free_irq_routing(struct kvm *kvm); 1141 1142 #else 1143 1144 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1145 1146 #endif 1147 1148 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1149 1150 #ifdef CONFIG_HAVE_KVM_EVENTFD 1151 1152 void kvm_eventfd_init(struct kvm *kvm); 1153 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1154 1155 #ifdef CONFIG_HAVE_KVM_IRQFD 1156 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1157 void kvm_irqfd_release(struct kvm *kvm); 1158 void kvm_irq_routing_update(struct kvm *); 1159 #else 1160 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1161 { 1162 return -EINVAL; 1163 } 1164 1165 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1166 #endif 1167 1168 #else 1169 1170 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1171 1172 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1173 { 1174 return -EINVAL; 1175 } 1176 1177 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1178 1179 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1180 static inline void kvm_irq_routing_update(struct kvm *kvm) 1181 { 1182 } 1183 #endif 1184 1185 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1186 { 1187 return -ENOSYS; 1188 } 1189 1190 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1191 1192 void kvm_arch_irq_routing_update(struct kvm *kvm); 1193 1194 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1195 { 1196 /* 1197 * Ensure the rest of the request is published to kvm_check_request's 1198 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1199 */ 1200 smp_wmb(); 1201 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1202 } 1203 1204 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1205 { 1206 return READ_ONCE(vcpu->requests); 1207 } 1208 1209 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1210 { 1211 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1212 } 1213 1214 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1215 { 1216 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1217 } 1218 1219 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1220 { 1221 if (kvm_test_request(req, vcpu)) { 1222 kvm_clear_request(req, vcpu); 1223 1224 /* 1225 * Ensure the rest of the request is visible to kvm_check_request's 1226 * caller. Paired with the smp_wmb in kvm_make_request. 1227 */ 1228 smp_mb__after_atomic(); 1229 return true; 1230 } else { 1231 return false; 1232 } 1233 } 1234 1235 extern bool kvm_rebooting; 1236 1237 extern unsigned int halt_poll_ns; 1238 extern unsigned int halt_poll_ns_grow; 1239 extern unsigned int halt_poll_ns_grow_start; 1240 extern unsigned int halt_poll_ns_shrink; 1241 1242 struct kvm_device { 1243 struct kvm_device_ops *ops; 1244 struct kvm *kvm; 1245 void *private; 1246 struct list_head vm_node; 1247 }; 1248 1249 /* create, destroy, and name are mandatory */ 1250 struct kvm_device_ops { 1251 const char *name; 1252 1253 /* 1254 * create is called holding kvm->lock and any operations not suitable 1255 * to do while holding the lock should be deferred to init (see 1256 * below). 1257 */ 1258 int (*create)(struct kvm_device *dev, u32 type); 1259 1260 /* 1261 * init is called after create if create is successful and is called 1262 * outside of holding kvm->lock. 1263 */ 1264 void (*init)(struct kvm_device *dev); 1265 1266 /* 1267 * Destroy is responsible for freeing dev. 1268 * 1269 * Destroy may be called before or after destructors are called 1270 * on emulated I/O regions, depending on whether a reference is 1271 * held by a vcpu or other kvm component that gets destroyed 1272 * after the emulated I/O. 1273 */ 1274 void (*destroy)(struct kvm_device *dev); 1275 1276 /* 1277 * Release is an alternative method to free the device. It is 1278 * called when the device file descriptor is closed. Once 1279 * release is called, the destroy method will not be called 1280 * anymore as the device is removed from the device list of 1281 * the VM. kvm->lock is held. 1282 */ 1283 void (*release)(struct kvm_device *dev); 1284 1285 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1286 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1287 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1288 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1289 unsigned long arg); 1290 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1291 }; 1292 1293 void kvm_device_get(struct kvm_device *dev); 1294 void kvm_device_put(struct kvm_device *dev); 1295 struct kvm_device *kvm_device_from_filp(struct file *filp); 1296 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1297 void kvm_unregister_device_ops(u32 type); 1298 1299 extern struct kvm_device_ops kvm_mpic_ops; 1300 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1301 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1302 1303 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1304 1305 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1306 { 1307 vcpu->spin_loop.in_spin_loop = val; 1308 } 1309 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1310 { 1311 vcpu->spin_loop.dy_eligible = val; 1312 } 1313 1314 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1315 1316 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1317 { 1318 } 1319 1320 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1321 { 1322 } 1323 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1324 1325 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1326 bool kvm_arch_has_irq_bypass(void); 1327 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1328 struct irq_bypass_producer *); 1329 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1330 struct irq_bypass_producer *); 1331 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1332 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1333 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1334 uint32_t guest_irq, bool set); 1335 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1336 1337 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1338 /* If we wakeup during the poll time, was it a sucessful poll? */ 1339 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1340 { 1341 return vcpu->valid_wakeup; 1342 } 1343 1344 #else 1345 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1346 { 1347 return true; 1348 } 1349 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1350 1351 #ifdef CONFIG_HAVE_KVM_NO_POLL 1352 /* Callback that tells if we must not poll */ 1353 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1354 #else 1355 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1356 { 1357 return false; 1358 } 1359 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1360 1361 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1362 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1363 unsigned int ioctl, unsigned long arg); 1364 #else 1365 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1366 unsigned int ioctl, 1367 unsigned long arg) 1368 { 1369 return -ENOIOCTLCMD; 1370 } 1371 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1372 1373 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1374 unsigned long start, unsigned long end, bool blockable); 1375 1376 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1377 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1378 #else 1379 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1380 { 1381 return 0; 1382 } 1383 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1384 1385 #endif 1386