xref: /openbmc/linux/include/linux/kvm_host.h (revision 16ccca11088c1bdd9311a2c630b453541305c48a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/swait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30 
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33 
34 #include <linux/kvm_types.h>
35 
36 #include <asm/kvm_host.h>
37 
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41 
42 /*
43  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44  * in kvm, other bits are visible for userspace which are defined in
45  * include/linux/kvm_h.
46  */
47 #define KVM_MEMSLOT_INVALID	(1UL << 16)
48 
49 /*
50  * Bit 63 of the memslot generation number is an "update in-progress flag",
51  * e.g. is temporarily set for the duration of install_new_memslots().
52  * This flag effectively creates a unique generation number that is used to
53  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54  * i.e. may (or may not) have come from the previous memslots generation.
55  *
56  * This is necessary because the actual memslots update is not atomic with
57  * respect to the generation number update.  Updating the generation number
58  * first would allow a vCPU to cache a spte from the old memslots using the
59  * new generation number, and updating the generation number after switching
60  * to the new memslots would allow cache hits using the old generation number
61  * to reference the defunct memslots.
62  *
63  * This mechanism is used to prevent getting hits in KVM's caches while a
64  * memslot update is in-progress, and to prevent cache hits *after* updating
65  * the actual generation number against accesses that were inserted into the
66  * cache *before* the memslots were updated.
67  */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
69 
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS	2
72 
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM	1
75 #endif
76 
77 /*
78  * For the normal pfn, the highest 12 bits should be zero,
79  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
80  * mask bit 63 to indicate the noslot pfn.
81  */
82 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
84 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
85 
86 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
89 
90 /*
91  * error pfns indicate that the gfn is in slot but faild to
92  * translate it to pfn on host.
93  */
94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 	return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98 
99 /*
100  * error_noslot pfns indicate that the gfn can not be
101  * translated to pfn - it is not in slot or failed to
102  * translate it to pfn.
103  */
104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108 
109 /* noslot pfn indicates that the gfn is not in slot. */
110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 	return pfn == KVM_PFN_NOSLOT;
113 }
114 
115 /*
116  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117  * provide own defines and kvm_is_error_hva
118  */
119 #ifndef KVM_HVA_ERR_BAD
120 
121 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
123 
124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 	return addr >= PAGE_OFFSET;
127 }
128 
129 #endif
130 
131 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
132 
133 static inline bool is_error_page(struct page *page)
134 {
135 	return IS_ERR(page);
136 }
137 
138 #define KVM_REQUEST_MASK           GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
140 #define KVM_REQUEST_WAIT           BIT(9)
141 /*
142  * Architecture-independent vcpu->requests bit members
143  * Bits 4-7 are reserved for more arch-independent bits.
144  */
145 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER     2
148 #define KVM_REQ_UNHALT            3
149 #define KVM_REQUEST_ARCH_BASE     8
150 
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 	BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
156 
157 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
159 
160 extern struct kmem_cache *kvm_vcpu_cache;
161 
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164 
165 struct kvm_io_range {
166 	gpa_t addr;
167 	int len;
168 	struct kvm_io_device *dev;
169 };
170 
171 #define NR_IOBUS_DEVS 1000
172 
173 struct kvm_io_bus {
174 	int dev_count;
175 	int ioeventfd_count;
176 	struct kvm_io_range range[];
177 };
178 
179 enum kvm_bus {
180 	KVM_MMIO_BUS,
181 	KVM_PIO_BUS,
182 	KVM_VIRTIO_CCW_NOTIFY_BUS,
183 	KVM_FAST_MMIO_BUS,
184 	KVM_NR_BUSES
185 };
186 
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 		     int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 			    gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 		    int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 			    int len, struct kvm_io_device *dev);
195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 			       struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 					 gpa_t addr);
199 
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 	struct work_struct work;
203 	struct list_head link;
204 	struct list_head queue;
205 	struct kvm_vcpu *vcpu;
206 	struct mm_struct *mm;
207 	gva_t gva;
208 	unsigned long addr;
209 	struct kvm_arch_async_pf arch;
210 	bool   wakeup_all;
211 };
212 
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
216 		       struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219 
220 enum {
221 	OUTSIDE_GUEST_MODE,
222 	IN_GUEST_MODE,
223 	EXITING_GUEST_MODE,
224 	READING_SHADOW_PAGE_TABLES,
225 };
226 
227 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
228 
229 struct kvm_host_map {
230 	/*
231 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 	 * a 'struct page' for it. When using mem= kernel parameter some memory
233 	 * can be used as guest memory but they are not managed by host
234 	 * kernel).
235 	 * If 'pfn' is not managed by the host kernel, this field is
236 	 * initialized to KVM_UNMAPPED_PAGE.
237 	 */
238 	struct page *page;
239 	void *hva;
240 	kvm_pfn_t pfn;
241 	kvm_pfn_t gfn;
242 };
243 
244 /*
245  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246  * directly to check for that.
247  */
248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 	return !!map->hva;
251 }
252 
253 /*
254  * Sometimes a large or cross-page mmio needs to be broken up into separate
255  * exits for userspace servicing.
256  */
257 struct kvm_mmio_fragment {
258 	gpa_t gpa;
259 	void *data;
260 	unsigned len;
261 };
262 
263 struct kvm_vcpu {
264 	struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 	struct preempt_notifier preempt_notifier;
267 #endif
268 	int cpu;
269 	int vcpu_id;
270 	int srcu_idx;
271 	int mode;
272 	u64 requests;
273 	unsigned long guest_debug;
274 
275 	int pre_pcpu;
276 	struct list_head blocked_vcpu_list;
277 
278 	struct mutex mutex;
279 	struct kvm_run *run;
280 
281 	int guest_xcr0_loaded;
282 	struct swait_queue_head wq;
283 	struct pid __rcu *pid;
284 	int sigset_active;
285 	sigset_t sigset;
286 	struct kvm_vcpu_stat stat;
287 	unsigned int halt_poll_ns;
288 	bool valid_wakeup;
289 
290 #ifdef CONFIG_HAS_IOMEM
291 	int mmio_needed;
292 	int mmio_read_completed;
293 	int mmio_is_write;
294 	int mmio_cur_fragment;
295 	int mmio_nr_fragments;
296 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298 
299 #ifdef CONFIG_KVM_ASYNC_PF
300 	struct {
301 		u32 queued;
302 		struct list_head queue;
303 		struct list_head done;
304 		spinlock_t lock;
305 	} async_pf;
306 #endif
307 
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 	/*
310 	 * Cpu relax intercept or pause loop exit optimization
311 	 * in_spin_loop: set when a vcpu does a pause loop exit
312 	 *  or cpu relax intercepted.
313 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 	 */
315 	struct {
316 		bool in_spin_loop;
317 		bool dy_eligible;
318 	} spin_loop;
319 #endif
320 	bool preempted;
321 	bool ready;
322 	struct kvm_vcpu_arch arch;
323 	struct dentry *debugfs_dentry;
324 };
325 
326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
327 {
328 	/*
329 	 * The memory barrier ensures a previous write to vcpu->requests cannot
330 	 * be reordered with the read of vcpu->mode.  It pairs with the general
331 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
332 	 */
333 	smp_mb__before_atomic();
334 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
335 }
336 
337 /*
338  * Some of the bitops functions do not support too long bitmaps.
339  * This number must be determined not to exceed such limits.
340  */
341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
342 
343 struct kvm_memory_slot {
344 	gfn_t base_gfn;
345 	unsigned long npages;
346 	unsigned long *dirty_bitmap;
347 	struct kvm_arch_memory_slot arch;
348 	unsigned long userspace_addr;
349 	u32 flags;
350 	short id;
351 };
352 
353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
354 {
355 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
356 }
357 
358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
359 {
360 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
361 
362 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
363 }
364 
365 struct kvm_s390_adapter_int {
366 	u64 ind_addr;
367 	u64 summary_addr;
368 	u64 ind_offset;
369 	u32 summary_offset;
370 	u32 adapter_id;
371 };
372 
373 struct kvm_hv_sint {
374 	u32 vcpu;
375 	u32 sint;
376 };
377 
378 struct kvm_kernel_irq_routing_entry {
379 	u32 gsi;
380 	u32 type;
381 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
382 		   struct kvm *kvm, int irq_source_id, int level,
383 		   bool line_status);
384 	union {
385 		struct {
386 			unsigned irqchip;
387 			unsigned pin;
388 		} irqchip;
389 		struct {
390 			u32 address_lo;
391 			u32 address_hi;
392 			u32 data;
393 			u32 flags;
394 			u32 devid;
395 		} msi;
396 		struct kvm_s390_adapter_int adapter;
397 		struct kvm_hv_sint hv_sint;
398 	};
399 	struct hlist_node link;
400 };
401 
402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
403 struct kvm_irq_routing_table {
404 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
405 	u32 nr_rt_entries;
406 	/*
407 	 * Array indexed by gsi. Each entry contains list of irq chips
408 	 * the gsi is connected to.
409 	 */
410 	struct hlist_head map[0];
411 };
412 #endif
413 
414 #ifndef KVM_PRIVATE_MEM_SLOTS
415 #define KVM_PRIVATE_MEM_SLOTS 0
416 #endif
417 
418 #ifndef KVM_MEM_SLOTS_NUM
419 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
420 #endif
421 
422 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
423 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
424 {
425 	return 0;
426 }
427 #endif
428 
429 /*
430  * Note:
431  * memslots are not sorted by id anymore, please use id_to_memslot()
432  * to get the memslot by its id.
433  */
434 struct kvm_memslots {
435 	u64 generation;
436 	struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
437 	/* The mapping table from slot id to the index in memslots[]. */
438 	short id_to_index[KVM_MEM_SLOTS_NUM];
439 	atomic_t lru_slot;
440 	int used_slots;
441 };
442 
443 struct kvm {
444 	spinlock_t mmu_lock;
445 	struct mutex slots_lock;
446 	struct mm_struct *mm; /* userspace tied to this vm */
447 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
448 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
449 
450 	/*
451 	 * created_vcpus is protected by kvm->lock, and is incremented
452 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
453 	 * incremented after storing the kvm_vcpu pointer in vcpus,
454 	 * and is accessed atomically.
455 	 */
456 	atomic_t online_vcpus;
457 	int created_vcpus;
458 	int last_boosted_vcpu;
459 	struct list_head vm_list;
460 	struct mutex lock;
461 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
462 #ifdef CONFIG_HAVE_KVM_EVENTFD
463 	struct {
464 		spinlock_t        lock;
465 		struct list_head  items;
466 		struct list_head  resampler_list;
467 		struct mutex      resampler_lock;
468 	} irqfds;
469 	struct list_head ioeventfds;
470 #endif
471 	struct kvm_vm_stat stat;
472 	struct kvm_arch arch;
473 	refcount_t users_count;
474 #ifdef CONFIG_KVM_MMIO
475 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
476 	spinlock_t ring_lock;
477 	struct list_head coalesced_zones;
478 #endif
479 
480 	struct mutex irq_lock;
481 #ifdef CONFIG_HAVE_KVM_IRQCHIP
482 	/*
483 	 * Update side is protected by irq_lock.
484 	 */
485 	struct kvm_irq_routing_table __rcu *irq_routing;
486 #endif
487 #ifdef CONFIG_HAVE_KVM_IRQFD
488 	struct hlist_head irq_ack_notifier_list;
489 #endif
490 
491 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
492 	struct mmu_notifier mmu_notifier;
493 	unsigned long mmu_notifier_seq;
494 	long mmu_notifier_count;
495 #endif
496 	long tlbs_dirty;
497 	struct list_head devices;
498 	bool manual_dirty_log_protect;
499 	struct dentry *debugfs_dentry;
500 	struct kvm_stat_data **debugfs_stat_data;
501 	struct srcu_struct srcu;
502 	struct srcu_struct irq_srcu;
503 	pid_t userspace_pid;
504 };
505 
506 #define kvm_err(fmt, ...) \
507 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
508 #define kvm_info(fmt, ...) \
509 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510 #define kvm_debug(fmt, ...) \
511 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_debug_ratelimited(fmt, ...) \
513 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
514 			     ## __VA_ARGS__)
515 #define kvm_pr_unimpl(fmt, ...) \
516 	pr_err_ratelimited("kvm [%i]: " fmt, \
517 			   task_tgid_nr(current), ## __VA_ARGS__)
518 
519 /* The guest did something we don't support. */
520 #define vcpu_unimpl(vcpu, fmt, ...)					\
521 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
522 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
523 
524 #define vcpu_debug(vcpu, fmt, ...)					\
525 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
526 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
527 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
528 			      ## __VA_ARGS__)
529 #define vcpu_err(vcpu, fmt, ...)					\
530 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
531 
532 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
533 {
534 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
535 				      lockdep_is_held(&kvm->slots_lock) ||
536 				      !refcount_read(&kvm->users_count));
537 }
538 
539 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
540 {
541 	int num_vcpus = atomic_read(&kvm->online_vcpus);
542 	i = array_index_nospec(i, num_vcpus);
543 
544 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
545 	smp_rmb();
546 	return kvm->vcpus[i];
547 }
548 
549 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
550 	for (idx = 0; \
551 	     idx < atomic_read(&kvm->online_vcpus) && \
552 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
553 	     idx++)
554 
555 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
556 {
557 	struct kvm_vcpu *vcpu = NULL;
558 	int i;
559 
560 	if (id < 0)
561 		return NULL;
562 	if (id < KVM_MAX_VCPUS)
563 		vcpu = kvm_get_vcpu(kvm, id);
564 	if (vcpu && vcpu->vcpu_id == id)
565 		return vcpu;
566 	kvm_for_each_vcpu(i, vcpu, kvm)
567 		if (vcpu->vcpu_id == id)
568 			return vcpu;
569 	return NULL;
570 }
571 
572 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
573 {
574 	struct kvm_vcpu *tmp;
575 	int idx;
576 
577 	kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
578 		if (tmp == vcpu)
579 			return idx;
580 	BUG();
581 }
582 
583 #define kvm_for_each_memslot(memslot, slots)	\
584 	for (memslot = &slots->memslots[0];	\
585 	      memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
586 		memslot++)
587 
588 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
589 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
590 
591 void vcpu_load(struct kvm_vcpu *vcpu);
592 void vcpu_put(struct kvm_vcpu *vcpu);
593 
594 #ifdef __KVM_HAVE_IOAPIC
595 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
596 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
597 #else
598 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
599 {
600 }
601 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
602 {
603 }
604 #endif
605 
606 #ifdef CONFIG_HAVE_KVM_IRQFD
607 int kvm_irqfd_init(void);
608 void kvm_irqfd_exit(void);
609 #else
610 static inline int kvm_irqfd_init(void)
611 {
612 	return 0;
613 }
614 
615 static inline void kvm_irqfd_exit(void)
616 {
617 }
618 #endif
619 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
620 		  struct module *module);
621 void kvm_exit(void);
622 
623 void kvm_get_kvm(struct kvm *kvm);
624 void kvm_put_kvm(struct kvm *kvm);
625 
626 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
627 {
628 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
629 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
630 			lockdep_is_held(&kvm->slots_lock) ||
631 			!refcount_read(&kvm->users_count));
632 }
633 
634 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
635 {
636 	return __kvm_memslots(kvm, 0);
637 }
638 
639 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
640 {
641 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
642 
643 	return __kvm_memslots(vcpu->kvm, as_id);
644 }
645 
646 static inline struct kvm_memory_slot *
647 id_to_memslot(struct kvm_memslots *slots, int id)
648 {
649 	int index = slots->id_to_index[id];
650 	struct kvm_memory_slot *slot;
651 
652 	slot = &slots->memslots[index];
653 
654 	WARN_ON(slot->id != id);
655 	return slot;
656 }
657 
658 /*
659  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
660  * - create a new memory slot
661  * - delete an existing memory slot
662  * - modify an existing memory slot
663  *   -- move it in the guest physical memory space
664  *   -- just change its flags
665  *
666  * Since flags can be changed by some of these operations, the following
667  * differentiation is the best we can do for __kvm_set_memory_region():
668  */
669 enum kvm_mr_change {
670 	KVM_MR_CREATE,
671 	KVM_MR_DELETE,
672 	KVM_MR_MOVE,
673 	KVM_MR_FLAGS_ONLY,
674 };
675 
676 int kvm_set_memory_region(struct kvm *kvm,
677 			  const struct kvm_userspace_memory_region *mem);
678 int __kvm_set_memory_region(struct kvm *kvm,
679 			    const struct kvm_userspace_memory_region *mem);
680 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
681 			   struct kvm_memory_slot *dont);
682 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
683 			    unsigned long npages);
684 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
685 int kvm_arch_prepare_memory_region(struct kvm *kvm,
686 				struct kvm_memory_slot *memslot,
687 				const struct kvm_userspace_memory_region *mem,
688 				enum kvm_mr_change change);
689 void kvm_arch_commit_memory_region(struct kvm *kvm,
690 				const struct kvm_userspace_memory_region *mem,
691 				const struct kvm_memory_slot *old,
692 				const struct kvm_memory_slot *new,
693 				enum kvm_mr_change change);
694 bool kvm_largepages_enabled(void);
695 void kvm_disable_largepages(void);
696 /* flush all memory translations */
697 void kvm_arch_flush_shadow_all(struct kvm *kvm);
698 /* flush memory translations pointing to 'slot' */
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 				   struct kvm_memory_slot *slot);
701 
702 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
703 			    struct page **pages, int nr_pages);
704 
705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
708 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
710 				      bool *writable);
711 void kvm_release_page_clean(struct page *page);
712 void kvm_release_page_dirty(struct page *page);
713 void kvm_set_page_accessed(struct page *page);
714 
715 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
716 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
717 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
718 		      bool *writable);
719 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
720 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
721 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
722 			       bool atomic, bool *async, bool write_fault,
723 			       bool *writable);
724 
725 void kvm_release_pfn_clean(kvm_pfn_t pfn);
726 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
727 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
728 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
729 void kvm_get_pfn(kvm_pfn_t pfn);
730 
731 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
732 			int len);
733 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
734 			  unsigned long len);
735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
737 			   void *data, unsigned long len);
738 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
739 			 int offset, int len);
740 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
741 		    unsigned long len);
742 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
743 			   void *data, unsigned long len);
744 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 				  void *data, unsigned int offset,
746 				  unsigned long len);
747 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
748 			      gpa_t gpa, unsigned long len);
749 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
750 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
751 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
752 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
753 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
754 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
755 
756 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
757 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
758 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
759 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
760 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
761 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
762 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
763 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
764 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
765 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
766 			     int len);
767 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
768 			       unsigned long len);
769 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
770 			unsigned long len);
771 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
772 			      int offset, int len);
773 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
774 			 unsigned long len);
775 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
776 
777 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
778 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
779 
780 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
781 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
782 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
783 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
784 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
785 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
786 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
787 
788 void kvm_flush_remote_tlbs(struct kvm *kvm);
789 void kvm_reload_remote_mmus(struct kvm *kvm);
790 
791 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
792 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
793 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
794 
795 long kvm_arch_dev_ioctl(struct file *filp,
796 			unsigned int ioctl, unsigned long arg);
797 long kvm_arch_vcpu_ioctl(struct file *filp,
798 			 unsigned int ioctl, unsigned long arg);
799 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
800 
801 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
802 
803 int kvm_get_dirty_log(struct kvm *kvm,
804 			struct kvm_dirty_log *log, int *is_dirty);
805 
806 int kvm_get_dirty_log_protect(struct kvm *kvm,
807 			      struct kvm_dirty_log *log, bool *flush);
808 int kvm_clear_dirty_log_protect(struct kvm *kvm,
809 				struct kvm_clear_dirty_log *log, bool *flush);
810 
811 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
812 					struct kvm_memory_slot *slot,
813 					gfn_t gfn_offset,
814 					unsigned long mask);
815 
816 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
817 				struct kvm_dirty_log *log);
818 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
819 				  struct kvm_clear_dirty_log *log);
820 
821 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
822 			bool line_status);
823 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
824 			    struct kvm_enable_cap *cap);
825 long kvm_arch_vm_ioctl(struct file *filp,
826 		       unsigned int ioctl, unsigned long arg);
827 
828 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
829 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
830 
831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
832 				    struct kvm_translation *tr);
833 
834 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
835 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
836 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
837 				  struct kvm_sregs *sregs);
838 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
839 				  struct kvm_sregs *sregs);
840 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
841 				    struct kvm_mp_state *mp_state);
842 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
843 				    struct kvm_mp_state *mp_state);
844 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
845 					struct kvm_guest_debug *dbg);
846 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
847 
848 int kvm_arch_init(void *opaque);
849 void kvm_arch_exit(void);
850 
851 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
852 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
853 
854 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
855 
856 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
857 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
858 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
859 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
860 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
861 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
862 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
863 
864 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
865 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
866 #endif
867 
868 int kvm_arch_hardware_enable(void);
869 void kvm_arch_hardware_disable(void);
870 int kvm_arch_hardware_setup(void);
871 void kvm_arch_hardware_unsetup(void);
872 int kvm_arch_check_processor_compat(void);
873 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
874 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
875 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
876 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
877 
878 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
879 /*
880  * All architectures that want to use vzalloc currently also
881  * need their own kvm_arch_alloc_vm implementation.
882  */
883 static inline struct kvm *kvm_arch_alloc_vm(void)
884 {
885 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
886 }
887 
888 static inline void kvm_arch_free_vm(struct kvm *kvm)
889 {
890 	kfree(kvm);
891 }
892 #endif
893 
894 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
895 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
896 {
897 	return -ENOTSUPP;
898 }
899 #endif
900 
901 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
902 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
903 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
904 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
905 #else
906 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
907 {
908 }
909 
910 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
911 {
912 }
913 
914 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
915 {
916 	return false;
917 }
918 #endif
919 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
920 void kvm_arch_start_assignment(struct kvm *kvm);
921 void kvm_arch_end_assignment(struct kvm *kvm);
922 bool kvm_arch_has_assigned_device(struct kvm *kvm);
923 #else
924 static inline void kvm_arch_start_assignment(struct kvm *kvm)
925 {
926 }
927 
928 static inline void kvm_arch_end_assignment(struct kvm *kvm)
929 {
930 }
931 
932 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
933 {
934 	return false;
935 }
936 #endif
937 
938 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
939 {
940 #ifdef __KVM_HAVE_ARCH_WQP
941 	return vcpu->arch.wqp;
942 #else
943 	return &vcpu->wq;
944 #endif
945 }
946 
947 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
948 /*
949  * returns true if the virtual interrupt controller is initialized and
950  * ready to accept virtual IRQ. On some architectures the virtual interrupt
951  * controller is dynamically instantiated and this is not always true.
952  */
953 bool kvm_arch_intc_initialized(struct kvm *kvm);
954 #else
955 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
956 {
957 	return true;
958 }
959 #endif
960 
961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
962 void kvm_arch_destroy_vm(struct kvm *kvm);
963 void kvm_arch_sync_events(struct kvm *kvm);
964 
965 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
966 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
967 
968 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
969 
970 struct kvm_irq_ack_notifier {
971 	struct hlist_node link;
972 	unsigned gsi;
973 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
974 };
975 
976 int kvm_irq_map_gsi(struct kvm *kvm,
977 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
978 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
979 
980 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
981 		bool line_status);
982 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
983 		int irq_source_id, int level, bool line_status);
984 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
985 			       struct kvm *kvm, int irq_source_id,
986 			       int level, bool line_status);
987 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
988 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
989 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
990 void kvm_register_irq_ack_notifier(struct kvm *kvm,
991 				   struct kvm_irq_ack_notifier *kian);
992 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
993 				   struct kvm_irq_ack_notifier *kian);
994 int kvm_request_irq_source_id(struct kvm *kvm);
995 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
996 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
997 
998 /*
999  * search_memslots() and __gfn_to_memslot() are here because they are
1000  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1001  * gfn_to_memslot() itself isn't here as an inline because that would
1002  * bloat other code too much.
1003  */
1004 static inline struct kvm_memory_slot *
1005 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1006 {
1007 	int start = 0, end = slots->used_slots;
1008 	int slot = atomic_read(&slots->lru_slot);
1009 	struct kvm_memory_slot *memslots = slots->memslots;
1010 
1011 	if (gfn >= memslots[slot].base_gfn &&
1012 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1013 		return &memslots[slot];
1014 
1015 	while (start < end) {
1016 		slot = start + (end - start) / 2;
1017 
1018 		if (gfn >= memslots[slot].base_gfn)
1019 			end = slot;
1020 		else
1021 			start = slot + 1;
1022 	}
1023 
1024 	if (gfn >= memslots[start].base_gfn &&
1025 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1026 		atomic_set(&slots->lru_slot, start);
1027 		return &memslots[start];
1028 	}
1029 
1030 	return NULL;
1031 }
1032 
1033 static inline struct kvm_memory_slot *
1034 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1035 {
1036 	return search_memslots(slots, gfn);
1037 }
1038 
1039 static inline unsigned long
1040 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1041 {
1042 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1043 }
1044 
1045 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1046 {
1047 	return gfn_to_memslot(kvm, gfn)->id;
1048 }
1049 
1050 static inline gfn_t
1051 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1052 {
1053 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1054 
1055 	return slot->base_gfn + gfn_offset;
1056 }
1057 
1058 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1059 {
1060 	return (gpa_t)gfn << PAGE_SHIFT;
1061 }
1062 
1063 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1064 {
1065 	return (gfn_t)(gpa >> PAGE_SHIFT);
1066 }
1067 
1068 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1069 {
1070 	return (hpa_t)pfn << PAGE_SHIFT;
1071 }
1072 
1073 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1074 						gpa_t gpa)
1075 {
1076 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1077 }
1078 
1079 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1080 {
1081 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1082 
1083 	return kvm_is_error_hva(hva);
1084 }
1085 
1086 enum kvm_stat_kind {
1087 	KVM_STAT_VM,
1088 	KVM_STAT_VCPU,
1089 };
1090 
1091 struct kvm_stat_data {
1092 	int offset;
1093 	int mode;
1094 	struct kvm *kvm;
1095 };
1096 
1097 struct kvm_stats_debugfs_item {
1098 	const char *name;
1099 	int offset;
1100 	enum kvm_stat_kind kind;
1101 	int mode;
1102 };
1103 extern struct kvm_stats_debugfs_item debugfs_entries[];
1104 extern struct dentry *kvm_debugfs_dir;
1105 
1106 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1107 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1108 {
1109 	if (unlikely(kvm->mmu_notifier_count))
1110 		return 1;
1111 	/*
1112 	 * Ensure the read of mmu_notifier_count happens before the read
1113 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1114 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1115 	 * either sees the old (non-zero) value of mmu_notifier_count or
1116 	 * the new (incremented) value of mmu_notifier_seq.
1117 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1118 	 * rather than under kvm->mmu_lock, for scalability, so
1119 	 * can't rely on kvm->mmu_lock to keep things ordered.
1120 	 */
1121 	smp_rmb();
1122 	if (kvm->mmu_notifier_seq != mmu_seq)
1123 		return 1;
1124 	return 0;
1125 }
1126 #endif
1127 
1128 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1129 
1130 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1131 
1132 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1133 int kvm_set_irq_routing(struct kvm *kvm,
1134 			const struct kvm_irq_routing_entry *entries,
1135 			unsigned nr,
1136 			unsigned flags);
1137 int kvm_set_routing_entry(struct kvm *kvm,
1138 			  struct kvm_kernel_irq_routing_entry *e,
1139 			  const struct kvm_irq_routing_entry *ue);
1140 void kvm_free_irq_routing(struct kvm *kvm);
1141 
1142 #else
1143 
1144 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1145 
1146 #endif
1147 
1148 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1149 
1150 #ifdef CONFIG_HAVE_KVM_EVENTFD
1151 
1152 void kvm_eventfd_init(struct kvm *kvm);
1153 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1154 
1155 #ifdef CONFIG_HAVE_KVM_IRQFD
1156 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1157 void kvm_irqfd_release(struct kvm *kvm);
1158 void kvm_irq_routing_update(struct kvm *);
1159 #else
1160 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1161 {
1162 	return -EINVAL;
1163 }
1164 
1165 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1166 #endif
1167 
1168 #else
1169 
1170 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1171 
1172 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1173 {
1174 	return -EINVAL;
1175 }
1176 
1177 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1178 
1179 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1180 static inline void kvm_irq_routing_update(struct kvm *kvm)
1181 {
1182 }
1183 #endif
1184 
1185 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1186 {
1187 	return -ENOSYS;
1188 }
1189 
1190 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1191 
1192 void kvm_arch_irq_routing_update(struct kvm *kvm);
1193 
1194 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1195 {
1196 	/*
1197 	 * Ensure the rest of the request is published to kvm_check_request's
1198 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1199 	 */
1200 	smp_wmb();
1201 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1202 }
1203 
1204 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1205 {
1206 	return READ_ONCE(vcpu->requests);
1207 }
1208 
1209 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1210 {
1211 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1212 }
1213 
1214 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1215 {
1216 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1217 }
1218 
1219 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1220 {
1221 	if (kvm_test_request(req, vcpu)) {
1222 		kvm_clear_request(req, vcpu);
1223 
1224 		/*
1225 		 * Ensure the rest of the request is visible to kvm_check_request's
1226 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1227 		 */
1228 		smp_mb__after_atomic();
1229 		return true;
1230 	} else {
1231 		return false;
1232 	}
1233 }
1234 
1235 extern bool kvm_rebooting;
1236 
1237 extern unsigned int halt_poll_ns;
1238 extern unsigned int halt_poll_ns_grow;
1239 extern unsigned int halt_poll_ns_grow_start;
1240 extern unsigned int halt_poll_ns_shrink;
1241 
1242 struct kvm_device {
1243 	struct kvm_device_ops *ops;
1244 	struct kvm *kvm;
1245 	void *private;
1246 	struct list_head vm_node;
1247 };
1248 
1249 /* create, destroy, and name are mandatory */
1250 struct kvm_device_ops {
1251 	const char *name;
1252 
1253 	/*
1254 	 * create is called holding kvm->lock and any operations not suitable
1255 	 * to do while holding the lock should be deferred to init (see
1256 	 * below).
1257 	 */
1258 	int (*create)(struct kvm_device *dev, u32 type);
1259 
1260 	/*
1261 	 * init is called after create if create is successful and is called
1262 	 * outside of holding kvm->lock.
1263 	 */
1264 	void (*init)(struct kvm_device *dev);
1265 
1266 	/*
1267 	 * Destroy is responsible for freeing dev.
1268 	 *
1269 	 * Destroy may be called before or after destructors are called
1270 	 * on emulated I/O regions, depending on whether a reference is
1271 	 * held by a vcpu or other kvm component that gets destroyed
1272 	 * after the emulated I/O.
1273 	 */
1274 	void (*destroy)(struct kvm_device *dev);
1275 
1276 	/*
1277 	 * Release is an alternative method to free the device. It is
1278 	 * called when the device file descriptor is closed. Once
1279 	 * release is called, the destroy method will not be called
1280 	 * anymore as the device is removed from the device list of
1281 	 * the VM. kvm->lock is held.
1282 	 */
1283 	void (*release)(struct kvm_device *dev);
1284 
1285 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1286 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1287 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1288 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1289 		      unsigned long arg);
1290 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1291 };
1292 
1293 void kvm_device_get(struct kvm_device *dev);
1294 void kvm_device_put(struct kvm_device *dev);
1295 struct kvm_device *kvm_device_from_filp(struct file *filp);
1296 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1297 void kvm_unregister_device_ops(u32 type);
1298 
1299 extern struct kvm_device_ops kvm_mpic_ops;
1300 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1301 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1302 
1303 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1304 
1305 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1306 {
1307 	vcpu->spin_loop.in_spin_loop = val;
1308 }
1309 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1310 {
1311 	vcpu->spin_loop.dy_eligible = val;
1312 }
1313 
1314 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1315 
1316 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1317 {
1318 }
1319 
1320 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1321 {
1322 }
1323 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1324 
1325 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1326 bool kvm_arch_has_irq_bypass(void);
1327 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1328 			   struct irq_bypass_producer *);
1329 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1330 			   struct irq_bypass_producer *);
1331 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1332 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1333 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1334 				  uint32_t guest_irq, bool set);
1335 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1336 
1337 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1338 /* If we wakeup during the poll time, was it a sucessful poll? */
1339 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1340 {
1341 	return vcpu->valid_wakeup;
1342 }
1343 
1344 #else
1345 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1346 {
1347 	return true;
1348 }
1349 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1350 
1351 #ifdef CONFIG_HAVE_KVM_NO_POLL
1352 /* Callback that tells if we must not poll */
1353 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1354 #else
1355 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1356 {
1357 	return false;
1358 }
1359 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1360 
1361 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1362 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1363 			       unsigned int ioctl, unsigned long arg);
1364 #else
1365 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1366 					     unsigned int ioctl,
1367 					     unsigned long arg)
1368 {
1369 	return -ENOIOCTLCMD;
1370 }
1371 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1372 
1373 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1374 		unsigned long start, unsigned long end, bool blockable);
1375 
1376 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1377 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1378 #else
1379 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1380 {
1381 	return 0;
1382 }
1383 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1384 
1385 #endif
1386