xref: /openbmc/linux/include/linux/kvm_host.h (revision 0d346d2a6f54f06f36b224fd27cd6eafe8c83be9)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <asm/signal.h>
32 
33 #include <linux/kvm.h>
34 #include <linux/kvm_para.h>
35 
36 #include <linux/kvm_types.h>
37 
38 #include <asm/kvm_host.h>
39 #include <linux/kvm_dirty_ring.h>
40 
41 #ifndef KVM_MAX_VCPU_ID
42 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
43 #endif
44 
45 /*
46  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
47  * in kvm, other bits are visible for userspace which are defined in
48  * include/linux/kvm_h.
49  */
50 #define KVM_MEMSLOT_INVALID	(1UL << 16)
51 
52 /*
53  * Bit 63 of the memslot generation number is an "update in-progress flag",
54  * e.g. is temporarily set for the duration of install_new_memslots().
55  * This flag effectively creates a unique generation number that is used to
56  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
57  * i.e. may (or may not) have come from the previous memslots generation.
58  *
59  * This is necessary because the actual memslots update is not atomic with
60  * respect to the generation number update.  Updating the generation number
61  * first would allow a vCPU to cache a spte from the old memslots using the
62  * new generation number, and updating the generation number after switching
63  * to the new memslots would allow cache hits using the old generation number
64  * to reference the defunct memslots.
65  *
66  * This mechanism is used to prevent getting hits in KVM's caches while a
67  * memslot update is in-progress, and to prevent cache hits *after* updating
68  * the actual generation number against accesses that were inserted into the
69  * cache *before* the memslots were updated.
70  */
71 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
72 
73 /* Two fragments for cross MMIO pages. */
74 #define KVM_MAX_MMIO_FRAGMENTS	2
75 
76 #ifndef KVM_ADDRESS_SPACE_NUM
77 #define KVM_ADDRESS_SPACE_NUM	1
78 #endif
79 
80 /*
81  * For the normal pfn, the highest 12 bits should be zero,
82  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
83  * mask bit 63 to indicate the noslot pfn.
84  */
85 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
86 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
87 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
88 
89 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
90 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
91 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
92 
93 /*
94  * error pfns indicate that the gfn is in slot but faild to
95  * translate it to pfn on host.
96  */
97 static inline bool is_error_pfn(kvm_pfn_t pfn)
98 {
99 	return !!(pfn & KVM_PFN_ERR_MASK);
100 }
101 
102 /*
103  * error_noslot pfns indicate that the gfn can not be
104  * translated to pfn - it is not in slot or failed to
105  * translate it to pfn.
106  */
107 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
108 {
109 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
110 }
111 
112 /* noslot pfn indicates that the gfn is not in slot. */
113 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
114 {
115 	return pfn == KVM_PFN_NOSLOT;
116 }
117 
118 /*
119  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
120  * provide own defines and kvm_is_error_hva
121  */
122 #ifndef KVM_HVA_ERR_BAD
123 
124 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
125 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
126 
127 static inline bool kvm_is_error_hva(unsigned long addr)
128 {
129 	return addr >= PAGE_OFFSET;
130 }
131 
132 #endif
133 
134 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
135 
136 static inline bool is_error_page(struct page *page)
137 {
138 	return IS_ERR(page);
139 }
140 
141 #define KVM_REQUEST_MASK           GENMASK(7,0)
142 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
143 #define KVM_REQUEST_WAIT           BIT(9)
144 /*
145  * Architecture-independent vcpu->requests bit members
146  * Bits 4-7 are reserved for more arch-independent bits.
147  */
148 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_UNBLOCK           2
151 #define KVM_REQ_UNHALT            3
152 #define KVM_REQUEST_ARCH_BASE     8
153 
154 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
155 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
156 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
157 })
158 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
159 
160 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
161 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
162 
163 extern struct mutex kvm_lock;
164 extern struct list_head vm_list;
165 
166 struct kvm_io_range {
167 	gpa_t addr;
168 	int len;
169 	struct kvm_io_device *dev;
170 };
171 
172 #define NR_IOBUS_DEVS 1000
173 
174 struct kvm_io_bus {
175 	int dev_count;
176 	int ioeventfd_count;
177 	struct kvm_io_range range[];
178 };
179 
180 enum kvm_bus {
181 	KVM_MMIO_BUS,
182 	KVM_PIO_BUS,
183 	KVM_VIRTIO_CCW_NOTIFY_BUS,
184 	KVM_FAST_MMIO_BUS,
185 	KVM_NR_BUSES
186 };
187 
188 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
189 		     int len, const void *val);
190 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
191 			    gpa_t addr, int len, const void *val, long cookie);
192 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
193 		    int len, void *val);
194 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
195 			    int len, struct kvm_io_device *dev);
196 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 			      struct kvm_io_device *dev);
198 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 					 gpa_t addr);
200 
201 #ifdef CONFIG_KVM_ASYNC_PF
202 struct kvm_async_pf {
203 	struct work_struct work;
204 	struct list_head link;
205 	struct list_head queue;
206 	struct kvm_vcpu *vcpu;
207 	struct mm_struct *mm;
208 	gpa_t cr2_or_gpa;
209 	unsigned long addr;
210 	struct kvm_arch_async_pf arch;
211 	bool   wakeup_all;
212 	bool notpresent_injected;
213 };
214 
215 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
216 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
217 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
218 			unsigned long hva, struct kvm_arch_async_pf *arch);
219 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
220 #endif
221 
222 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
223 struct kvm_gfn_range {
224 	struct kvm_memory_slot *slot;
225 	gfn_t start;
226 	gfn_t end;
227 	pte_t pte;
228 	bool may_block;
229 };
230 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
231 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
234 #endif
235 
236 enum {
237 	OUTSIDE_GUEST_MODE,
238 	IN_GUEST_MODE,
239 	EXITING_GUEST_MODE,
240 	READING_SHADOW_PAGE_TABLES,
241 };
242 
243 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
244 
245 struct kvm_host_map {
246 	/*
247 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
248 	 * a 'struct page' for it. When using mem= kernel parameter some memory
249 	 * can be used as guest memory but they are not managed by host
250 	 * kernel).
251 	 * If 'pfn' is not managed by the host kernel, this field is
252 	 * initialized to KVM_UNMAPPED_PAGE.
253 	 */
254 	struct page *page;
255 	void *hva;
256 	kvm_pfn_t pfn;
257 	kvm_pfn_t gfn;
258 };
259 
260 /*
261  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
262  * directly to check for that.
263  */
264 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
265 {
266 	return !!map->hva;
267 }
268 
269 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
270 {
271 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
272 }
273 
274 /*
275  * Sometimes a large or cross-page mmio needs to be broken up into separate
276  * exits for userspace servicing.
277  */
278 struct kvm_mmio_fragment {
279 	gpa_t gpa;
280 	void *data;
281 	unsigned len;
282 };
283 
284 struct kvm_vcpu {
285 	struct kvm *kvm;
286 #ifdef CONFIG_PREEMPT_NOTIFIERS
287 	struct preempt_notifier preempt_notifier;
288 #endif
289 	int cpu;
290 	int vcpu_id; /* id given by userspace at creation */
291 	int vcpu_idx; /* index in kvm->vcpus array */
292 	int srcu_idx;
293 	int mode;
294 	u64 requests;
295 	unsigned long guest_debug;
296 
297 	int pre_pcpu;
298 	struct list_head blocked_vcpu_list;
299 
300 	struct mutex mutex;
301 	struct kvm_run *run;
302 
303 	struct rcuwait wait;
304 	struct pid __rcu *pid;
305 	int sigset_active;
306 	sigset_t sigset;
307 	struct kvm_vcpu_stat stat;
308 	unsigned int halt_poll_ns;
309 	bool valid_wakeup;
310 
311 #ifdef CONFIG_HAS_IOMEM
312 	int mmio_needed;
313 	int mmio_read_completed;
314 	int mmio_is_write;
315 	int mmio_cur_fragment;
316 	int mmio_nr_fragments;
317 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
318 #endif
319 
320 #ifdef CONFIG_KVM_ASYNC_PF
321 	struct {
322 		u32 queued;
323 		struct list_head queue;
324 		struct list_head done;
325 		spinlock_t lock;
326 	} async_pf;
327 #endif
328 
329 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
330 	/*
331 	 * Cpu relax intercept or pause loop exit optimization
332 	 * in_spin_loop: set when a vcpu does a pause loop exit
333 	 *  or cpu relax intercepted.
334 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
335 	 */
336 	struct {
337 		bool in_spin_loop;
338 		bool dy_eligible;
339 	} spin_loop;
340 #endif
341 	bool preempted;
342 	bool ready;
343 	struct kvm_vcpu_arch arch;
344 	struct kvm_dirty_ring dirty_ring;
345 };
346 
347 /* must be called with irqs disabled */
348 static __always_inline void guest_enter_irqoff(void)
349 {
350 	/*
351 	 * This is running in ioctl context so its safe to assume that it's the
352 	 * stime pending cputime to flush.
353 	 */
354 	instrumentation_begin();
355 	vtime_account_guest_enter();
356 	instrumentation_end();
357 
358 	/*
359 	 * KVM does not hold any references to rcu protected data when it
360 	 * switches CPU into a guest mode. In fact switching to a guest mode
361 	 * is very similar to exiting to userspace from rcu point of view. In
362 	 * addition CPU may stay in a guest mode for quite a long time (up to
363 	 * one time slice). Lets treat guest mode as quiescent state, just like
364 	 * we do with user-mode execution.
365 	 */
366 	if (!context_tracking_guest_enter()) {
367 		instrumentation_begin();
368 		rcu_virt_note_context_switch(smp_processor_id());
369 		instrumentation_end();
370 	}
371 }
372 
373 static __always_inline void guest_exit_irqoff(void)
374 {
375 	context_tracking_guest_exit();
376 
377 	instrumentation_begin();
378 	/* Flush the guest cputime we spent on the guest */
379 	vtime_account_guest_exit();
380 	instrumentation_end();
381 }
382 
383 static inline void guest_exit(void)
384 {
385 	unsigned long flags;
386 
387 	local_irq_save(flags);
388 	guest_exit_irqoff();
389 	local_irq_restore(flags);
390 }
391 
392 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
393 {
394 	/*
395 	 * The memory barrier ensures a previous write to vcpu->requests cannot
396 	 * be reordered with the read of vcpu->mode.  It pairs with the general
397 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
398 	 */
399 	smp_mb__before_atomic();
400 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
401 }
402 
403 /*
404  * Some of the bitops functions do not support too long bitmaps.
405  * This number must be determined not to exceed such limits.
406  */
407 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
408 
409 struct kvm_memory_slot {
410 	gfn_t base_gfn;
411 	unsigned long npages;
412 	unsigned long *dirty_bitmap;
413 	struct kvm_arch_memory_slot arch;
414 	unsigned long userspace_addr;
415 	u32 flags;
416 	short id;
417 	u16 as_id;
418 };
419 
420 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
421 {
422 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
423 }
424 
425 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
426 {
427 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
428 }
429 
430 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
431 {
432 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
433 
434 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
435 }
436 
437 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
438 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
439 #endif
440 
441 struct kvm_s390_adapter_int {
442 	u64 ind_addr;
443 	u64 summary_addr;
444 	u64 ind_offset;
445 	u32 summary_offset;
446 	u32 adapter_id;
447 };
448 
449 struct kvm_hv_sint {
450 	u32 vcpu;
451 	u32 sint;
452 };
453 
454 struct kvm_kernel_irq_routing_entry {
455 	u32 gsi;
456 	u32 type;
457 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
458 		   struct kvm *kvm, int irq_source_id, int level,
459 		   bool line_status);
460 	union {
461 		struct {
462 			unsigned irqchip;
463 			unsigned pin;
464 		} irqchip;
465 		struct {
466 			u32 address_lo;
467 			u32 address_hi;
468 			u32 data;
469 			u32 flags;
470 			u32 devid;
471 		} msi;
472 		struct kvm_s390_adapter_int adapter;
473 		struct kvm_hv_sint hv_sint;
474 	};
475 	struct hlist_node link;
476 };
477 
478 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
479 struct kvm_irq_routing_table {
480 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
481 	u32 nr_rt_entries;
482 	/*
483 	 * Array indexed by gsi. Each entry contains list of irq chips
484 	 * the gsi is connected to.
485 	 */
486 	struct hlist_head map[];
487 };
488 #endif
489 
490 #ifndef KVM_PRIVATE_MEM_SLOTS
491 #define KVM_PRIVATE_MEM_SLOTS 0
492 #endif
493 
494 #define KVM_MEM_SLOTS_NUM SHRT_MAX
495 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
496 
497 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
498 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
499 {
500 	return 0;
501 }
502 #endif
503 
504 /*
505  * Note:
506  * memslots are not sorted by id anymore, please use id_to_memslot()
507  * to get the memslot by its id.
508  */
509 struct kvm_memslots {
510 	u64 generation;
511 	/* The mapping table from slot id to the index in memslots[]. */
512 	short id_to_index[KVM_MEM_SLOTS_NUM];
513 	atomic_t lru_slot;
514 	int used_slots;
515 	struct kvm_memory_slot memslots[];
516 };
517 
518 struct kvm {
519 #ifdef KVM_HAVE_MMU_RWLOCK
520 	rwlock_t mmu_lock;
521 #else
522 	spinlock_t mmu_lock;
523 #endif /* KVM_HAVE_MMU_RWLOCK */
524 
525 	struct mutex slots_lock;
526 	struct mm_struct *mm; /* userspace tied to this vm */
527 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
528 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
529 
530 	/*
531 	 * created_vcpus is protected by kvm->lock, and is incremented
532 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
533 	 * incremented after storing the kvm_vcpu pointer in vcpus,
534 	 * and is accessed atomically.
535 	 */
536 	atomic_t online_vcpus;
537 	int created_vcpus;
538 	int last_boosted_vcpu;
539 	struct list_head vm_list;
540 	struct mutex lock;
541 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
542 #ifdef CONFIG_HAVE_KVM_EVENTFD
543 	struct {
544 		spinlock_t        lock;
545 		struct list_head  items;
546 		struct list_head  resampler_list;
547 		struct mutex      resampler_lock;
548 	} irqfds;
549 	struct list_head ioeventfds;
550 #endif
551 	struct kvm_vm_stat stat;
552 	struct kvm_arch arch;
553 	refcount_t users_count;
554 #ifdef CONFIG_KVM_MMIO
555 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
556 	spinlock_t ring_lock;
557 	struct list_head coalesced_zones;
558 #endif
559 
560 	struct mutex irq_lock;
561 #ifdef CONFIG_HAVE_KVM_IRQCHIP
562 	/*
563 	 * Update side is protected by irq_lock.
564 	 */
565 	struct kvm_irq_routing_table __rcu *irq_routing;
566 #endif
567 #ifdef CONFIG_HAVE_KVM_IRQFD
568 	struct hlist_head irq_ack_notifier_list;
569 #endif
570 
571 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
572 	struct mmu_notifier mmu_notifier;
573 	unsigned long mmu_notifier_seq;
574 	long mmu_notifier_count;
575 	unsigned long mmu_notifier_range_start;
576 	unsigned long mmu_notifier_range_end;
577 #endif
578 	long tlbs_dirty;
579 	struct list_head devices;
580 	u64 manual_dirty_log_protect;
581 	struct dentry *debugfs_dentry;
582 	struct kvm_stat_data **debugfs_stat_data;
583 	struct srcu_struct srcu;
584 	struct srcu_struct irq_srcu;
585 	pid_t userspace_pid;
586 	unsigned int max_halt_poll_ns;
587 	u32 dirty_ring_size;
588 };
589 
590 #define kvm_err(fmt, ...) \
591 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
592 #define kvm_info(fmt, ...) \
593 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
594 #define kvm_debug(fmt, ...) \
595 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
596 #define kvm_debug_ratelimited(fmt, ...) \
597 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
598 			     ## __VA_ARGS__)
599 #define kvm_pr_unimpl(fmt, ...) \
600 	pr_err_ratelimited("kvm [%i]: " fmt, \
601 			   task_tgid_nr(current), ## __VA_ARGS__)
602 
603 /* The guest did something we don't support. */
604 #define vcpu_unimpl(vcpu, fmt, ...)					\
605 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
606 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
607 
608 #define vcpu_debug(vcpu, fmt, ...)					\
609 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
610 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
611 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
612 			      ## __VA_ARGS__)
613 #define vcpu_err(vcpu, fmt, ...)					\
614 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
615 
616 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
617 {
618 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
619 }
620 
621 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
622 {
623 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
624 				      lockdep_is_held(&kvm->slots_lock) ||
625 				      !refcount_read(&kvm->users_count));
626 }
627 
628 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
629 {
630 	int num_vcpus = atomic_read(&kvm->online_vcpus);
631 	i = array_index_nospec(i, num_vcpus);
632 
633 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
634 	smp_rmb();
635 	return kvm->vcpus[i];
636 }
637 
638 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
639 	for (idx = 0; \
640 	     idx < atomic_read(&kvm->online_vcpus) && \
641 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
642 	     idx++)
643 
644 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
645 {
646 	struct kvm_vcpu *vcpu = NULL;
647 	int i;
648 
649 	if (id < 0)
650 		return NULL;
651 	if (id < KVM_MAX_VCPUS)
652 		vcpu = kvm_get_vcpu(kvm, id);
653 	if (vcpu && vcpu->vcpu_id == id)
654 		return vcpu;
655 	kvm_for_each_vcpu(i, vcpu, kvm)
656 		if (vcpu->vcpu_id == id)
657 			return vcpu;
658 	return NULL;
659 }
660 
661 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
662 {
663 	return vcpu->vcpu_idx;
664 }
665 
666 #define kvm_for_each_memslot(memslot, slots)				\
667 	for (memslot = &slots->memslots[0];				\
668 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
669 		if (WARN_ON_ONCE(!memslot->npages)) {			\
670 		} else
671 
672 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
673 
674 void vcpu_load(struct kvm_vcpu *vcpu);
675 void vcpu_put(struct kvm_vcpu *vcpu);
676 
677 #ifdef __KVM_HAVE_IOAPIC
678 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
679 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
680 #else
681 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
682 {
683 }
684 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
685 {
686 }
687 #endif
688 
689 #ifdef CONFIG_HAVE_KVM_IRQFD
690 int kvm_irqfd_init(void);
691 void kvm_irqfd_exit(void);
692 #else
693 static inline int kvm_irqfd_init(void)
694 {
695 	return 0;
696 }
697 
698 static inline void kvm_irqfd_exit(void)
699 {
700 }
701 #endif
702 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
703 		  struct module *module);
704 void kvm_exit(void);
705 
706 void kvm_get_kvm(struct kvm *kvm);
707 void kvm_put_kvm(struct kvm *kvm);
708 bool file_is_kvm(struct file *file);
709 void kvm_put_kvm_no_destroy(struct kvm *kvm);
710 
711 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
712 {
713 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
714 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
715 			lockdep_is_held(&kvm->slots_lock) ||
716 			!refcount_read(&kvm->users_count));
717 }
718 
719 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
720 {
721 	return __kvm_memslots(kvm, 0);
722 }
723 
724 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
725 {
726 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
727 
728 	return __kvm_memslots(vcpu->kvm, as_id);
729 }
730 
731 static inline
732 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
733 {
734 	int index = slots->id_to_index[id];
735 	struct kvm_memory_slot *slot;
736 
737 	if (index < 0)
738 		return NULL;
739 
740 	slot = &slots->memslots[index];
741 
742 	WARN_ON(slot->id != id);
743 	return slot;
744 }
745 
746 /*
747  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
748  * - create a new memory slot
749  * - delete an existing memory slot
750  * - modify an existing memory slot
751  *   -- move it in the guest physical memory space
752  *   -- just change its flags
753  *
754  * Since flags can be changed by some of these operations, the following
755  * differentiation is the best we can do for __kvm_set_memory_region():
756  */
757 enum kvm_mr_change {
758 	KVM_MR_CREATE,
759 	KVM_MR_DELETE,
760 	KVM_MR_MOVE,
761 	KVM_MR_FLAGS_ONLY,
762 };
763 
764 int kvm_set_memory_region(struct kvm *kvm,
765 			  const struct kvm_userspace_memory_region *mem);
766 int __kvm_set_memory_region(struct kvm *kvm,
767 			    const struct kvm_userspace_memory_region *mem);
768 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
769 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
770 int kvm_arch_prepare_memory_region(struct kvm *kvm,
771 				struct kvm_memory_slot *memslot,
772 				const struct kvm_userspace_memory_region *mem,
773 				enum kvm_mr_change change);
774 void kvm_arch_commit_memory_region(struct kvm *kvm,
775 				const struct kvm_userspace_memory_region *mem,
776 				struct kvm_memory_slot *old,
777 				const struct kvm_memory_slot *new,
778 				enum kvm_mr_change change);
779 /* flush all memory translations */
780 void kvm_arch_flush_shadow_all(struct kvm *kvm);
781 /* flush memory translations pointing to 'slot' */
782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
783 				   struct kvm_memory_slot *slot);
784 
785 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
786 			    struct page **pages, int nr_pages);
787 
788 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
789 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
790 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
791 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
792 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
793 				      bool *writable);
794 void kvm_release_page_clean(struct page *page);
795 void kvm_release_page_dirty(struct page *page);
796 void kvm_set_page_accessed(struct page *page);
797 
798 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
799 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
800 		      bool *writable);
801 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
802 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
803 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
804 			       bool atomic, bool *async, bool write_fault,
805 			       bool *writable, hva_t *hva);
806 
807 void kvm_release_pfn_clean(kvm_pfn_t pfn);
808 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
809 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
810 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
811 void kvm_get_pfn(kvm_pfn_t pfn);
812 
813 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
814 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
815 			int len);
816 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
817 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
818 			   void *data, unsigned long len);
819 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
820 				 void *data, unsigned int offset,
821 				 unsigned long len);
822 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
823 			 int offset, int len);
824 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
825 		    unsigned long len);
826 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
827 			   void *data, unsigned long len);
828 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
829 				  void *data, unsigned int offset,
830 				  unsigned long len);
831 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
832 			      gpa_t gpa, unsigned long len);
833 
834 #define __kvm_get_guest(kvm, gfn, offset, v)				\
835 ({									\
836 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
837 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
838 	int __ret = -EFAULT;						\
839 									\
840 	if (!kvm_is_error_hva(__addr))					\
841 		__ret = get_user(v, __uaddr);				\
842 	__ret;								\
843 })
844 
845 #define kvm_get_guest(kvm, gpa, v)					\
846 ({									\
847 	gpa_t __gpa = gpa;						\
848 	struct kvm *__kvm = kvm;					\
849 									\
850 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
851 			offset_in_page(__gpa), v);			\
852 })
853 
854 #define __kvm_put_guest(kvm, gfn, offset, v)				\
855 ({									\
856 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
857 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
858 	int __ret = -EFAULT;						\
859 									\
860 	if (!kvm_is_error_hva(__addr))					\
861 		__ret = put_user(v, __uaddr);				\
862 	if (!__ret)							\
863 		mark_page_dirty(kvm, gfn);				\
864 	__ret;								\
865 })
866 
867 #define kvm_put_guest(kvm, gpa, v)					\
868 ({									\
869 	gpa_t __gpa = gpa;						\
870 	struct kvm *__kvm = kvm;					\
871 									\
872 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
873 			offset_in_page(__gpa), v);			\
874 })
875 
876 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
877 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
878 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
879 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
880 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
881 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
882 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
883 
884 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
885 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
886 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
887 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
888 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
889 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
890 		struct gfn_to_pfn_cache *cache, bool atomic);
891 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
892 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
893 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
894 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
895 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
896 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
897 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
898 			     int len);
899 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
900 			       unsigned long len);
901 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
902 			unsigned long len);
903 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
904 			      int offset, int len);
905 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
906 			 unsigned long len);
907 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
908 
909 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
910 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
911 
912 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
913 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
914 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
916 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
917 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
918 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
919 
920 void kvm_flush_remote_tlbs(struct kvm *kvm);
921 void kvm_reload_remote_mmus(struct kvm *kvm);
922 
923 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
924 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
925 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
926 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
927 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
928 #endif
929 
930 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
931 				 struct kvm_vcpu *except,
932 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
933 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
934 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
935 				      struct kvm_vcpu *except);
936 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
937 				unsigned long *vcpu_bitmap);
938 
939 long kvm_arch_dev_ioctl(struct file *filp,
940 			unsigned int ioctl, unsigned long arg);
941 long kvm_arch_vcpu_ioctl(struct file *filp,
942 			 unsigned int ioctl, unsigned long arg);
943 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
944 
945 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
946 
947 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
948 					struct kvm_memory_slot *slot,
949 					gfn_t gfn_offset,
950 					unsigned long mask);
951 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
952 
953 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
954 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
955 					const struct kvm_memory_slot *memslot);
956 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
957 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
958 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
959 		      int *is_dirty, struct kvm_memory_slot **memslot);
960 #endif
961 
962 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
963 			bool line_status);
964 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
965 			    struct kvm_enable_cap *cap);
966 long kvm_arch_vm_ioctl(struct file *filp,
967 		       unsigned int ioctl, unsigned long arg);
968 
969 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
970 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
971 
972 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
973 				    struct kvm_translation *tr);
974 
975 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
976 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
977 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
978 				  struct kvm_sregs *sregs);
979 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
980 				  struct kvm_sregs *sregs);
981 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
982 				    struct kvm_mp_state *mp_state);
983 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
984 				    struct kvm_mp_state *mp_state);
985 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
986 					struct kvm_guest_debug *dbg);
987 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
988 
989 int kvm_arch_init(void *opaque);
990 void kvm_arch_exit(void);
991 
992 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
993 
994 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
995 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
996 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
997 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
998 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
999 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1000 
1001 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1002 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1003 #endif
1004 
1005 int kvm_arch_hardware_enable(void);
1006 void kvm_arch_hardware_disable(void);
1007 int kvm_arch_hardware_setup(void *opaque);
1008 void kvm_arch_hardware_unsetup(void);
1009 int kvm_arch_check_processor_compat(void *opaque);
1010 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1011 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1012 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1013 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1014 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1015 int kvm_arch_post_init_vm(struct kvm *kvm);
1016 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1017 
1018 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1019 /*
1020  * All architectures that want to use vzalloc currently also
1021  * need their own kvm_arch_alloc_vm implementation.
1022  */
1023 static inline struct kvm *kvm_arch_alloc_vm(void)
1024 {
1025 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1026 }
1027 
1028 static inline void kvm_arch_free_vm(struct kvm *kvm)
1029 {
1030 	kfree(kvm);
1031 }
1032 #endif
1033 
1034 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1035 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1036 {
1037 	return -ENOTSUPP;
1038 }
1039 #endif
1040 
1041 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1042 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1043 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1044 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1045 #else
1046 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1047 {
1048 }
1049 
1050 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1051 {
1052 }
1053 
1054 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1055 {
1056 	return false;
1057 }
1058 #endif
1059 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1060 void kvm_arch_start_assignment(struct kvm *kvm);
1061 void kvm_arch_end_assignment(struct kvm *kvm);
1062 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1063 #else
1064 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1065 {
1066 }
1067 
1068 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1069 {
1070 }
1071 
1072 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1073 {
1074 	return false;
1075 }
1076 #endif
1077 
1078 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1079 {
1080 #ifdef __KVM_HAVE_ARCH_WQP
1081 	return vcpu->arch.waitp;
1082 #else
1083 	return &vcpu->wait;
1084 #endif
1085 }
1086 
1087 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1088 /*
1089  * returns true if the virtual interrupt controller is initialized and
1090  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1091  * controller is dynamically instantiated and this is not always true.
1092  */
1093 bool kvm_arch_intc_initialized(struct kvm *kvm);
1094 #else
1095 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1096 {
1097 	return true;
1098 }
1099 #endif
1100 
1101 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1102 void kvm_arch_destroy_vm(struct kvm *kvm);
1103 void kvm_arch_sync_events(struct kvm *kvm);
1104 
1105 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1106 
1107 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1108 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1109 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1110 
1111 struct kvm_irq_ack_notifier {
1112 	struct hlist_node link;
1113 	unsigned gsi;
1114 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1115 };
1116 
1117 int kvm_irq_map_gsi(struct kvm *kvm,
1118 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1119 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1120 
1121 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1122 		bool line_status);
1123 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1124 		int irq_source_id, int level, bool line_status);
1125 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1126 			       struct kvm *kvm, int irq_source_id,
1127 			       int level, bool line_status);
1128 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1129 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1130 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1131 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1132 				   struct kvm_irq_ack_notifier *kian);
1133 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1134 				   struct kvm_irq_ack_notifier *kian);
1135 int kvm_request_irq_source_id(struct kvm *kvm);
1136 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1137 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1138 
1139 /*
1140  * search_memslots() and __gfn_to_memslot() are here because they are
1141  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1142  * gfn_to_memslot() itself isn't here as an inline because that would
1143  * bloat other code too much.
1144  *
1145  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1146  */
1147 static inline struct kvm_memory_slot *
1148 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1149 {
1150 	int start = 0, end = slots->used_slots;
1151 	int slot = atomic_read(&slots->lru_slot);
1152 	struct kvm_memory_slot *memslots = slots->memslots;
1153 
1154 	if (unlikely(!slots->used_slots))
1155 		return NULL;
1156 
1157 	if (gfn >= memslots[slot].base_gfn &&
1158 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1159 		return &memslots[slot];
1160 
1161 	while (start < end) {
1162 		slot = start + (end - start) / 2;
1163 
1164 		if (gfn >= memslots[slot].base_gfn)
1165 			end = slot;
1166 		else
1167 			start = slot + 1;
1168 	}
1169 
1170 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1171 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1172 		atomic_set(&slots->lru_slot, start);
1173 		return &memslots[start];
1174 	}
1175 
1176 	return NULL;
1177 }
1178 
1179 static inline struct kvm_memory_slot *
1180 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1181 {
1182 	return search_memslots(slots, gfn);
1183 }
1184 
1185 static inline unsigned long
1186 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1187 {
1188 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1189 }
1190 
1191 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1192 {
1193 	return gfn_to_memslot(kvm, gfn)->id;
1194 }
1195 
1196 static inline gfn_t
1197 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1198 {
1199 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1200 
1201 	return slot->base_gfn + gfn_offset;
1202 }
1203 
1204 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1205 {
1206 	return (gpa_t)gfn << PAGE_SHIFT;
1207 }
1208 
1209 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1210 {
1211 	return (gfn_t)(gpa >> PAGE_SHIFT);
1212 }
1213 
1214 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1215 {
1216 	return (hpa_t)pfn << PAGE_SHIFT;
1217 }
1218 
1219 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1220 						gpa_t gpa)
1221 {
1222 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1223 }
1224 
1225 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1226 {
1227 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1228 
1229 	return kvm_is_error_hva(hva);
1230 }
1231 
1232 enum kvm_stat_kind {
1233 	KVM_STAT_VM,
1234 	KVM_STAT_VCPU,
1235 };
1236 
1237 struct kvm_stat_data {
1238 	struct kvm *kvm;
1239 	struct kvm_stats_debugfs_item *dbgfs_item;
1240 };
1241 
1242 struct kvm_stats_debugfs_item {
1243 	const char *name;
1244 	int offset;
1245 	enum kvm_stat_kind kind;
1246 	int mode;
1247 };
1248 
1249 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1250 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1251 
1252 #define VM_STAT(n, x, ...) 							\
1253 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1254 #define VCPU_STAT(n, x, ...)							\
1255 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1256 
1257 extern struct kvm_stats_debugfs_item debugfs_entries[];
1258 extern struct dentry *kvm_debugfs_dir;
1259 
1260 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1261 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1262 {
1263 	if (unlikely(kvm->mmu_notifier_count))
1264 		return 1;
1265 	/*
1266 	 * Ensure the read of mmu_notifier_count happens before the read
1267 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1268 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1269 	 * either sees the old (non-zero) value of mmu_notifier_count or
1270 	 * the new (incremented) value of mmu_notifier_seq.
1271 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1272 	 * rather than under kvm->mmu_lock, for scalability, so
1273 	 * can't rely on kvm->mmu_lock to keep things ordered.
1274 	 */
1275 	smp_rmb();
1276 	if (kvm->mmu_notifier_seq != mmu_seq)
1277 		return 1;
1278 	return 0;
1279 }
1280 
1281 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1282 					 unsigned long mmu_seq,
1283 					 unsigned long hva)
1284 {
1285 	lockdep_assert_held(&kvm->mmu_lock);
1286 	/*
1287 	 * If mmu_notifier_count is non-zero, then the range maintained by
1288 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1289 	 * might be being invalidated. Note that it may include some false
1290 	 * positives, due to shortcuts when handing concurrent invalidations.
1291 	 */
1292 	if (unlikely(kvm->mmu_notifier_count) &&
1293 	    hva >= kvm->mmu_notifier_range_start &&
1294 	    hva < kvm->mmu_notifier_range_end)
1295 		return 1;
1296 	if (kvm->mmu_notifier_seq != mmu_seq)
1297 		return 1;
1298 	return 0;
1299 }
1300 #endif
1301 
1302 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1303 
1304 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1305 
1306 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1307 int kvm_set_irq_routing(struct kvm *kvm,
1308 			const struct kvm_irq_routing_entry *entries,
1309 			unsigned nr,
1310 			unsigned flags);
1311 int kvm_set_routing_entry(struct kvm *kvm,
1312 			  struct kvm_kernel_irq_routing_entry *e,
1313 			  const struct kvm_irq_routing_entry *ue);
1314 void kvm_free_irq_routing(struct kvm *kvm);
1315 
1316 #else
1317 
1318 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1319 
1320 #endif
1321 
1322 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1323 
1324 #ifdef CONFIG_HAVE_KVM_EVENTFD
1325 
1326 void kvm_eventfd_init(struct kvm *kvm);
1327 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1328 
1329 #ifdef CONFIG_HAVE_KVM_IRQFD
1330 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1331 void kvm_irqfd_release(struct kvm *kvm);
1332 void kvm_irq_routing_update(struct kvm *);
1333 #else
1334 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1335 {
1336 	return -EINVAL;
1337 }
1338 
1339 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1340 #endif
1341 
1342 #else
1343 
1344 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1345 
1346 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1347 {
1348 	return -EINVAL;
1349 }
1350 
1351 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1352 
1353 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1354 static inline void kvm_irq_routing_update(struct kvm *kvm)
1355 {
1356 }
1357 #endif
1358 
1359 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1360 {
1361 	return -ENOSYS;
1362 }
1363 
1364 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1365 
1366 void kvm_arch_irq_routing_update(struct kvm *kvm);
1367 
1368 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1369 {
1370 	/*
1371 	 * Ensure the rest of the request is published to kvm_check_request's
1372 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1373 	 */
1374 	smp_wmb();
1375 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1376 }
1377 
1378 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1379 {
1380 	return READ_ONCE(vcpu->requests);
1381 }
1382 
1383 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1384 {
1385 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1386 }
1387 
1388 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1389 {
1390 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1391 }
1392 
1393 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1394 {
1395 	if (kvm_test_request(req, vcpu)) {
1396 		kvm_clear_request(req, vcpu);
1397 
1398 		/*
1399 		 * Ensure the rest of the request is visible to kvm_check_request's
1400 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1401 		 */
1402 		smp_mb__after_atomic();
1403 		return true;
1404 	} else {
1405 		return false;
1406 	}
1407 }
1408 
1409 extern bool kvm_rebooting;
1410 
1411 extern unsigned int halt_poll_ns;
1412 extern unsigned int halt_poll_ns_grow;
1413 extern unsigned int halt_poll_ns_grow_start;
1414 extern unsigned int halt_poll_ns_shrink;
1415 
1416 struct kvm_device {
1417 	const struct kvm_device_ops *ops;
1418 	struct kvm *kvm;
1419 	void *private;
1420 	struct list_head vm_node;
1421 };
1422 
1423 /* create, destroy, and name are mandatory */
1424 struct kvm_device_ops {
1425 	const char *name;
1426 
1427 	/*
1428 	 * create is called holding kvm->lock and any operations not suitable
1429 	 * to do while holding the lock should be deferred to init (see
1430 	 * below).
1431 	 */
1432 	int (*create)(struct kvm_device *dev, u32 type);
1433 
1434 	/*
1435 	 * init is called after create if create is successful and is called
1436 	 * outside of holding kvm->lock.
1437 	 */
1438 	void (*init)(struct kvm_device *dev);
1439 
1440 	/*
1441 	 * Destroy is responsible for freeing dev.
1442 	 *
1443 	 * Destroy may be called before or after destructors are called
1444 	 * on emulated I/O regions, depending on whether a reference is
1445 	 * held by a vcpu or other kvm component that gets destroyed
1446 	 * after the emulated I/O.
1447 	 */
1448 	void (*destroy)(struct kvm_device *dev);
1449 
1450 	/*
1451 	 * Release is an alternative method to free the device. It is
1452 	 * called when the device file descriptor is closed. Once
1453 	 * release is called, the destroy method will not be called
1454 	 * anymore as the device is removed from the device list of
1455 	 * the VM. kvm->lock is held.
1456 	 */
1457 	void (*release)(struct kvm_device *dev);
1458 
1459 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1460 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1461 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1462 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1463 		      unsigned long arg);
1464 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1465 };
1466 
1467 void kvm_device_get(struct kvm_device *dev);
1468 void kvm_device_put(struct kvm_device *dev);
1469 struct kvm_device *kvm_device_from_filp(struct file *filp);
1470 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1471 void kvm_unregister_device_ops(u32 type);
1472 
1473 extern struct kvm_device_ops kvm_mpic_ops;
1474 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1475 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1476 
1477 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1478 
1479 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1480 {
1481 	vcpu->spin_loop.in_spin_loop = val;
1482 }
1483 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1484 {
1485 	vcpu->spin_loop.dy_eligible = val;
1486 }
1487 
1488 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1489 
1490 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1491 {
1492 }
1493 
1494 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1495 {
1496 }
1497 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1498 
1499 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1500 {
1501 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1502 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1503 }
1504 
1505 struct kvm_vcpu *kvm_get_running_vcpu(void);
1506 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1507 
1508 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1509 bool kvm_arch_has_irq_bypass(void);
1510 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1511 			   struct irq_bypass_producer *);
1512 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1513 			   struct irq_bypass_producer *);
1514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1515 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1516 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1517 				  uint32_t guest_irq, bool set);
1518 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1519 
1520 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1521 /* If we wakeup during the poll time, was it a sucessful poll? */
1522 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1523 {
1524 	return vcpu->valid_wakeup;
1525 }
1526 
1527 #else
1528 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1529 {
1530 	return true;
1531 }
1532 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1533 
1534 #ifdef CONFIG_HAVE_KVM_NO_POLL
1535 /* Callback that tells if we must not poll */
1536 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1537 #else
1538 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1539 {
1540 	return false;
1541 }
1542 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1543 
1544 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1545 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1546 			       unsigned int ioctl, unsigned long arg);
1547 #else
1548 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1549 					     unsigned int ioctl,
1550 					     unsigned long arg)
1551 {
1552 	return -ENOIOCTLCMD;
1553 }
1554 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1555 
1556 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1557 					    unsigned long start, unsigned long end);
1558 
1559 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1560 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1561 #else
1562 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1563 {
1564 	return 0;
1565 }
1566 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1567 
1568 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1569 
1570 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1571 				uintptr_t data, const char *name,
1572 				struct task_struct **thread_ptr);
1573 
1574 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1575 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1576 {
1577 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1578 	vcpu->stat.signal_exits++;
1579 }
1580 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1581 
1582 /*
1583  * This defines how many reserved entries we want to keep before we
1584  * kick the vcpu to the userspace to avoid dirty ring full.  This
1585  * value can be tuned to higher if e.g. PML is enabled on the host.
1586  */
1587 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1588 
1589 /* Max number of entries allowed for each kvm dirty ring */
1590 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1591 
1592 #endif
1593