1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/cgroup-defs.h - basic definitions for cgroup 4 * 5 * This file provides basic type and interface. Include this file directly 6 * only if necessary to avoid cyclic dependencies. 7 */ 8 #ifndef _LINUX_CGROUP_DEFS_H 9 #define _LINUX_CGROUP_DEFS_H 10 11 #include <linux/limits.h> 12 #include <linux/list.h> 13 #include <linux/idr.h> 14 #include <linux/wait.h> 15 #include <linux/mutex.h> 16 #include <linux/rcupdate.h> 17 #include <linux/refcount.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/percpu-rwsem.h> 20 #include <linux/u64_stats_sync.h> 21 #include <linux/workqueue.h> 22 #include <linux/bpf-cgroup.h> 23 #include <linux/psi_types.h> 24 25 #ifdef CONFIG_CGROUPS 26 27 struct cgroup; 28 struct cgroup_root; 29 struct cgroup_subsys; 30 struct cgroup_taskset; 31 struct kernfs_node; 32 struct kernfs_ops; 33 struct kernfs_open_file; 34 struct seq_file; 35 struct poll_table_struct; 36 37 #define MAX_CGROUP_TYPE_NAMELEN 32 38 #define MAX_CGROUP_ROOT_NAMELEN 64 39 #define MAX_CFTYPE_NAME 64 40 41 /* define the enumeration of all cgroup subsystems */ 42 #define SUBSYS(_x) _x ## _cgrp_id, 43 enum cgroup_subsys_id { 44 #include <linux/cgroup_subsys.h> 45 CGROUP_SUBSYS_COUNT, 46 }; 47 #undef SUBSYS 48 49 /* bits in struct cgroup_subsys_state flags field */ 50 enum { 51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 55 CSS_DYING = (1 << 4), /* css is dying */ 56 }; 57 58 /* bits in struct cgroup flags field */ 59 enum { 60 /* Control Group requires release notifications to userspace */ 61 CGRP_NOTIFY_ON_RELEASE, 62 /* 63 * Clone the parent's configuration when creating a new child 64 * cpuset cgroup. For historical reasons, this option can be 65 * specified at mount time and thus is implemented here. 66 */ 67 CGRP_CPUSET_CLONE_CHILDREN, 68 69 /* Control group has to be frozen. */ 70 CGRP_FREEZE, 71 72 /* Cgroup is frozen. */ 73 CGRP_FROZEN, 74 }; 75 76 /* cgroup_root->flags */ 77 enum { 78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 80 81 /* 82 * Consider namespaces as delegation boundaries. If this flag is 83 * set, controller specific interface files in a namespace root 84 * aren't writeable from inside the namespace. 85 */ 86 CGRP_ROOT_NS_DELEGATE = (1 << 3), 87 88 /* 89 * Enable cpuset controller in v1 cgroup to use v2 behavior. 90 */ 91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4), 92 }; 93 94 /* cftype->flags */ 95 enum { 96 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 97 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 98 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */ 99 100 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 101 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 102 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ 103 104 /* internal flags, do not use outside cgroup core proper */ 105 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 106 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 107 }; 108 109 /* 110 * cgroup_file is the handle for a file instance created in a cgroup which 111 * is used, for example, to generate file changed notifications. This can 112 * be obtained by setting cftype->file_offset. 113 */ 114 struct cgroup_file { 115 /* do not access any fields from outside cgroup core */ 116 struct kernfs_node *kn; 117 unsigned long notified_at; 118 struct timer_list notify_timer; 119 }; 120 121 /* 122 * Per-subsystem/per-cgroup state maintained by the system. This is the 123 * fundamental structural building block that controllers deal with. 124 * 125 * Fields marked with "PI:" are public and immutable and may be accessed 126 * directly without synchronization. 127 */ 128 struct cgroup_subsys_state { 129 /* PI: the cgroup that this css is attached to */ 130 struct cgroup *cgroup; 131 132 /* PI: the cgroup subsystem that this css is attached to */ 133 struct cgroup_subsys *ss; 134 135 /* reference count - access via css_[try]get() and css_put() */ 136 struct percpu_ref refcnt; 137 138 /* siblings list anchored at the parent's ->children */ 139 struct list_head sibling; 140 struct list_head children; 141 142 /* flush target list anchored at cgrp->rstat_css_list */ 143 struct list_head rstat_css_node; 144 145 /* 146 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 147 * matching css can be looked up using css_from_id(). 148 */ 149 int id; 150 151 unsigned int flags; 152 153 /* 154 * Monotonically increasing unique serial number which defines a 155 * uniform order among all csses. It's guaranteed that all 156 * ->children lists are in the ascending order of ->serial_nr and 157 * used to allow interrupting and resuming iterations. 158 */ 159 u64 serial_nr; 160 161 /* 162 * Incremented by online self and children. Used to guarantee that 163 * parents are not offlined before their children. 164 */ 165 atomic_t online_cnt; 166 167 /* percpu_ref killing and RCU release */ 168 struct work_struct destroy_work; 169 struct rcu_work destroy_rwork; 170 171 /* 172 * PI: the parent css. Placed here for cache proximity to following 173 * fields of the containing structure. 174 */ 175 struct cgroup_subsys_state *parent; 176 }; 177 178 /* 179 * A css_set is a structure holding pointers to a set of 180 * cgroup_subsys_state objects. This saves space in the task struct 181 * object and speeds up fork()/exit(), since a single inc/dec and a 182 * list_add()/del() can bump the reference count on the entire cgroup 183 * set for a task. 184 */ 185 struct css_set { 186 /* 187 * Set of subsystem states, one for each subsystem. This array is 188 * immutable after creation apart from the init_css_set during 189 * subsystem registration (at boot time). 190 */ 191 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 192 193 /* reference count */ 194 refcount_t refcount; 195 196 /* 197 * For a domain cgroup, the following points to self. If threaded, 198 * to the matching cset of the nearest domain ancestor. The 199 * dom_cset provides access to the domain cgroup and its csses to 200 * which domain level resource consumptions should be charged. 201 */ 202 struct css_set *dom_cset; 203 204 /* the default cgroup associated with this css_set */ 205 struct cgroup *dfl_cgrp; 206 207 /* internal task count, protected by css_set_lock */ 208 int nr_tasks; 209 210 /* 211 * Lists running through all tasks using this cgroup group. 212 * mg_tasks lists tasks which belong to this cset but are in the 213 * process of being migrated out or in. Protected by 214 * css_set_rwsem, but, during migration, once tasks are moved to 215 * mg_tasks, it can be read safely while holding cgroup_mutex. 216 */ 217 struct list_head tasks; 218 struct list_head mg_tasks; 219 220 /* all css_task_iters currently walking this cset */ 221 struct list_head task_iters; 222 223 /* 224 * On the default hierarhcy, ->subsys[ssid] may point to a css 225 * attached to an ancestor instead of the cgroup this css_set is 226 * associated with. The following node is anchored at 227 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 228 * iterate through all css's attached to a given cgroup. 229 */ 230 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 231 232 /* all threaded csets whose ->dom_cset points to this cset */ 233 struct list_head threaded_csets; 234 struct list_head threaded_csets_node; 235 236 /* 237 * List running through all cgroup groups in the same hash 238 * slot. Protected by css_set_lock 239 */ 240 struct hlist_node hlist; 241 242 /* 243 * List of cgrp_cset_links pointing at cgroups referenced from this 244 * css_set. Protected by css_set_lock. 245 */ 246 struct list_head cgrp_links; 247 248 /* 249 * List of csets participating in the on-going migration either as 250 * source or destination. Protected by cgroup_mutex. 251 */ 252 struct list_head mg_preload_node; 253 struct list_head mg_node; 254 255 /* 256 * If this cset is acting as the source of migration the following 257 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 258 * respectively the source and destination cgroups of the on-going 259 * migration. mg_dst_cset is the destination cset the target tasks 260 * on this cset should be migrated to. Protected by cgroup_mutex. 261 */ 262 struct cgroup *mg_src_cgrp; 263 struct cgroup *mg_dst_cgrp; 264 struct css_set *mg_dst_cset; 265 266 /* dead and being drained, ignore for migration */ 267 bool dead; 268 269 /* For RCU-protected deletion */ 270 struct rcu_head rcu_head; 271 }; 272 273 struct cgroup_base_stat { 274 struct task_cputime cputime; 275 }; 276 277 /* 278 * rstat - cgroup scalable recursive statistics. Accounting is done 279 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the 280 * hierarchy on reads. 281 * 282 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are 283 * linked into the updated tree. On the following read, propagation only 284 * considers and consumes the updated tree. This makes reading O(the 285 * number of descendants which have been active since last read) instead of 286 * O(the total number of descendants). 287 * 288 * This is important because there can be a lot of (draining) cgroups which 289 * aren't active and stat may be read frequently. The combination can 290 * become very expensive. By propagating selectively, increasing reading 291 * frequency decreases the cost of each read. 292 * 293 * This struct hosts both the fields which implement the above - 294 * updated_children and updated_next - and the fields which track basic 295 * resource statistics on top of it - bsync, bstat and last_bstat. 296 */ 297 struct cgroup_rstat_cpu { 298 /* 299 * ->bsync protects ->bstat. These are the only fields which get 300 * updated in the hot path. 301 */ 302 struct u64_stats_sync bsync; 303 struct cgroup_base_stat bstat; 304 305 /* 306 * Snapshots at the last reading. These are used to calculate the 307 * deltas to propagate to the global counters. 308 */ 309 struct cgroup_base_stat last_bstat; 310 311 /* 312 * Child cgroups with stat updates on this cpu since the last read 313 * are linked on the parent's ->updated_children through 314 * ->updated_next. 315 * 316 * In addition to being more compact, singly-linked list pointing 317 * to the cgroup makes it unnecessary for each per-cpu struct to 318 * point back to the associated cgroup. 319 * 320 * Protected by per-cpu cgroup_rstat_cpu_lock. 321 */ 322 struct cgroup *updated_children; /* terminated by self cgroup */ 323 struct cgroup *updated_next; /* NULL iff not on the list */ 324 }; 325 326 struct cgroup_freezer_state { 327 /* Should the cgroup and its descendants be frozen. */ 328 bool freeze; 329 330 /* Should the cgroup actually be frozen? */ 331 int e_freeze; 332 333 /* Fields below are protected by css_set_lock */ 334 335 /* Number of frozen descendant cgroups */ 336 int nr_frozen_descendants; 337 338 /* 339 * Number of tasks, which are counted as frozen: 340 * frozen, SIGSTOPped, and PTRACEd. 341 */ 342 int nr_frozen_tasks; 343 }; 344 345 struct cgroup { 346 /* self css with NULL ->ss, points back to this cgroup */ 347 struct cgroup_subsys_state self; 348 349 unsigned long flags; /* "unsigned long" so bitops work */ 350 351 /* 352 * idr allocated in-hierarchy ID. 353 * 354 * ID 0 is not used, the ID of the root cgroup is always 1, and a 355 * new cgroup will be assigned with a smallest available ID. 356 * 357 * Allocating/Removing ID must be protected by cgroup_mutex. 358 */ 359 int id; 360 361 /* 362 * The depth this cgroup is at. The root is at depth zero and each 363 * step down the hierarchy increments the level. This along with 364 * ancestor_ids[] can determine whether a given cgroup is a 365 * descendant of another without traversing the hierarchy. 366 */ 367 int level; 368 369 /* Maximum allowed descent tree depth */ 370 int max_depth; 371 372 /* 373 * Keep track of total numbers of visible and dying descent cgroups. 374 * Dying cgroups are cgroups which were deleted by a user, 375 * but are still existing because someone else is holding a reference. 376 * max_descendants is a maximum allowed number of descent cgroups. 377 * 378 * nr_descendants and nr_dying_descendants are protected 379 * by cgroup_mutex and css_set_lock. It's fine to read them holding 380 * any of cgroup_mutex and css_set_lock; for writing both locks 381 * should be held. 382 */ 383 int nr_descendants; 384 int nr_dying_descendants; 385 int max_descendants; 386 387 /* 388 * Each non-empty css_set associated with this cgroup contributes 389 * one to nr_populated_csets. The counter is zero iff this cgroup 390 * doesn't have any tasks. 391 * 392 * All children which have non-zero nr_populated_csets and/or 393 * nr_populated_children of their own contribute one to either 394 * nr_populated_domain_children or nr_populated_threaded_children 395 * depending on their type. Each counter is zero iff all cgroups 396 * of the type in the subtree proper don't have any tasks. 397 */ 398 int nr_populated_csets; 399 int nr_populated_domain_children; 400 int nr_populated_threaded_children; 401 402 int nr_threaded_children; /* # of live threaded child cgroups */ 403 404 struct kernfs_node *kn; /* cgroup kernfs entry */ 405 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 406 struct cgroup_file events_file; /* handle for "cgroup.events" */ 407 408 /* 409 * The bitmask of subsystems enabled on the child cgroups. 410 * ->subtree_control is the one configured through 411 * "cgroup.subtree_control" while ->child_ss_mask is the effective 412 * one which may have more subsystems enabled. Controller knobs 413 * are made available iff it's enabled in ->subtree_control. 414 */ 415 u16 subtree_control; 416 u16 subtree_ss_mask; 417 u16 old_subtree_control; 418 u16 old_subtree_ss_mask; 419 420 /* Private pointers for each registered subsystem */ 421 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 422 423 struct cgroup_root *root; 424 425 /* 426 * List of cgrp_cset_links pointing at css_sets with tasks in this 427 * cgroup. Protected by css_set_lock. 428 */ 429 struct list_head cset_links; 430 431 /* 432 * On the default hierarchy, a css_set for a cgroup with some 433 * susbsys disabled will point to css's which are associated with 434 * the closest ancestor which has the subsys enabled. The 435 * following lists all css_sets which point to this cgroup's css 436 * for the given subsystem. 437 */ 438 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 439 440 /* 441 * If !threaded, self. If threaded, it points to the nearest 442 * domain ancestor. Inside a threaded subtree, cgroups are exempt 443 * from process granularity and no-internal-task constraint. 444 * Domain level resource consumptions which aren't tied to a 445 * specific task are charged to the dom_cgrp. 446 */ 447 struct cgroup *dom_cgrp; 448 struct cgroup *old_dom_cgrp; /* used while enabling threaded */ 449 450 /* per-cpu recursive resource statistics */ 451 struct cgroup_rstat_cpu __percpu *rstat_cpu; 452 struct list_head rstat_css_list; 453 454 /* cgroup basic resource statistics */ 455 struct cgroup_base_stat pending_bstat; /* pending from children */ 456 struct cgroup_base_stat bstat; 457 struct prev_cputime prev_cputime; /* for printing out cputime */ 458 459 /* 460 * list of pidlists, up to two for each namespace (one for procs, one 461 * for tasks); created on demand. 462 */ 463 struct list_head pidlists; 464 struct mutex pidlist_mutex; 465 466 /* used to wait for offlining of csses */ 467 wait_queue_head_t offline_waitq; 468 469 /* used to schedule release agent */ 470 struct work_struct release_agent_work; 471 472 /* used to track pressure stalls */ 473 struct psi_group psi; 474 475 /* used to store eBPF programs */ 476 struct cgroup_bpf bpf; 477 478 /* If there is block congestion on this cgroup. */ 479 atomic_t congestion_count; 480 481 /* Used to store internal freezer state */ 482 struct cgroup_freezer_state freezer; 483 484 /* ids of the ancestors at each level including self */ 485 int ancestor_ids[]; 486 }; 487 488 /* 489 * A cgroup_root represents the root of a cgroup hierarchy, and may be 490 * associated with a kernfs_root to form an active hierarchy. This is 491 * internal to cgroup core. Don't access directly from controllers. 492 */ 493 struct cgroup_root { 494 struct kernfs_root *kf_root; 495 496 /* The bitmask of subsystems attached to this hierarchy */ 497 unsigned int subsys_mask; 498 499 /* Unique id for this hierarchy. */ 500 int hierarchy_id; 501 502 /* The root cgroup. Root is destroyed on its release. */ 503 struct cgroup cgrp; 504 505 /* for cgrp->ancestor_ids[0] */ 506 int cgrp_ancestor_id_storage; 507 508 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 509 atomic_t nr_cgrps; 510 511 /* A list running through the active hierarchies */ 512 struct list_head root_list; 513 514 /* Hierarchy-specific flags */ 515 unsigned int flags; 516 517 /* IDs for cgroups in this hierarchy */ 518 struct idr cgroup_idr; 519 520 /* The path to use for release notifications. */ 521 char release_agent_path[PATH_MAX]; 522 523 /* The name for this hierarchy - may be empty */ 524 char name[MAX_CGROUP_ROOT_NAMELEN]; 525 }; 526 527 /* 528 * struct cftype: handler definitions for cgroup control files 529 * 530 * When reading/writing to a file: 531 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 532 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 533 */ 534 struct cftype { 535 /* 536 * By convention, the name should begin with the name of the 537 * subsystem, followed by a period. Zero length string indicates 538 * end of cftype array. 539 */ 540 char name[MAX_CFTYPE_NAME]; 541 unsigned long private; 542 543 /* 544 * The maximum length of string, excluding trailing nul, that can 545 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 546 */ 547 size_t max_write_len; 548 549 /* CFTYPE_* flags */ 550 unsigned int flags; 551 552 /* 553 * If non-zero, should contain the offset from the start of css to 554 * a struct cgroup_file field. cgroup will record the handle of 555 * the created file into it. The recorded handle can be used as 556 * long as the containing css remains accessible. 557 */ 558 unsigned int file_offset; 559 560 /* 561 * Fields used for internal bookkeeping. Initialized automatically 562 * during registration. 563 */ 564 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 565 struct list_head node; /* anchored at ss->cfts */ 566 struct kernfs_ops *kf_ops; 567 568 int (*open)(struct kernfs_open_file *of); 569 void (*release)(struct kernfs_open_file *of); 570 571 /* 572 * read_u64() is a shortcut for the common case of returning a 573 * single integer. Use it in place of read() 574 */ 575 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 576 /* 577 * read_s64() is a signed version of read_u64() 578 */ 579 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 580 581 /* generic seq_file read interface */ 582 int (*seq_show)(struct seq_file *sf, void *v); 583 584 /* optional ops, implement all or none */ 585 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 586 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 587 void (*seq_stop)(struct seq_file *sf, void *v); 588 589 /* 590 * write_u64() is a shortcut for the common case of accepting 591 * a single integer (as parsed by simple_strtoull) from 592 * userspace. Use in place of write(); return 0 or error. 593 */ 594 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 595 u64 val); 596 /* 597 * write_s64() is a signed version of write_u64() 598 */ 599 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 600 s64 val); 601 602 /* 603 * write() is the generic write callback which maps directly to 604 * kernfs write operation and overrides all other operations. 605 * Maximum write size is determined by ->max_write_len. Use 606 * of_css/cft() to access the associated css and cft. 607 */ 608 ssize_t (*write)(struct kernfs_open_file *of, 609 char *buf, size_t nbytes, loff_t off); 610 611 __poll_t (*poll)(struct kernfs_open_file *of, 612 struct poll_table_struct *pt); 613 614 #ifdef CONFIG_DEBUG_LOCK_ALLOC 615 struct lock_class_key lockdep_key; 616 #endif 617 }; 618 619 /* 620 * Control Group subsystem type. 621 * See Documentation/cgroup-v1/cgroups.txt for details 622 */ 623 struct cgroup_subsys { 624 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 625 int (*css_online)(struct cgroup_subsys_state *css); 626 void (*css_offline)(struct cgroup_subsys_state *css); 627 void (*css_released)(struct cgroup_subsys_state *css); 628 void (*css_free)(struct cgroup_subsys_state *css); 629 void (*css_reset)(struct cgroup_subsys_state *css); 630 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu); 631 int (*css_extra_stat_show)(struct seq_file *seq, 632 struct cgroup_subsys_state *css); 633 634 int (*can_attach)(struct cgroup_taskset *tset); 635 void (*cancel_attach)(struct cgroup_taskset *tset); 636 void (*attach)(struct cgroup_taskset *tset); 637 void (*post_attach)(void); 638 int (*can_fork)(struct task_struct *task); 639 void (*cancel_fork)(struct task_struct *task); 640 void (*fork)(struct task_struct *task); 641 void (*exit)(struct task_struct *task); 642 void (*release)(struct task_struct *task); 643 void (*bind)(struct cgroup_subsys_state *root_css); 644 645 bool early_init:1; 646 647 /* 648 * If %true, the controller, on the default hierarchy, doesn't show 649 * up in "cgroup.controllers" or "cgroup.subtree_control", is 650 * implicitly enabled on all cgroups on the default hierarchy, and 651 * bypasses the "no internal process" constraint. This is for 652 * utility type controllers which is transparent to userland. 653 * 654 * An implicit controller can be stolen from the default hierarchy 655 * anytime and thus must be okay with offline csses from previous 656 * hierarchies coexisting with csses for the current one. 657 */ 658 bool implicit_on_dfl:1; 659 660 /* 661 * If %true, the controller, supports threaded mode on the default 662 * hierarchy. In a threaded subtree, both process granularity and 663 * no-internal-process constraint are ignored and a threaded 664 * controllers should be able to handle that. 665 * 666 * Note that as an implicit controller is automatically enabled on 667 * all cgroups on the default hierarchy, it should also be 668 * threaded. implicit && !threaded is not supported. 669 */ 670 bool threaded:1; 671 672 /* 673 * If %false, this subsystem is properly hierarchical - 674 * configuration, resource accounting and restriction on a parent 675 * cgroup cover those of its children. If %true, hierarchy support 676 * is broken in some ways - some subsystems ignore hierarchy 677 * completely while others are only implemented half-way. 678 * 679 * It's now disallowed to create nested cgroups if the subsystem is 680 * broken and cgroup core will emit a warning message on such 681 * cases. Eventually, all subsystems will be made properly 682 * hierarchical and this will go away. 683 */ 684 bool broken_hierarchy:1; 685 bool warned_broken_hierarchy:1; 686 687 /* the following two fields are initialized automtically during boot */ 688 int id; 689 const char *name; 690 691 /* optional, initialized automatically during boot if not set */ 692 const char *legacy_name; 693 694 /* link to parent, protected by cgroup_lock() */ 695 struct cgroup_root *root; 696 697 /* idr for css->id */ 698 struct idr css_idr; 699 700 /* 701 * List of cftypes. Each entry is the first entry of an array 702 * terminated by zero length name. 703 */ 704 struct list_head cfts; 705 706 /* 707 * Base cftypes which are automatically registered. The two can 708 * point to the same array. 709 */ 710 struct cftype *dfl_cftypes; /* for the default hierarchy */ 711 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 712 713 /* 714 * A subsystem may depend on other subsystems. When such subsystem 715 * is enabled on a cgroup, the depended-upon subsystems are enabled 716 * together if available. Subsystems enabled due to dependency are 717 * not visible to userland until explicitly enabled. The following 718 * specifies the mask of subsystems that this one depends on. 719 */ 720 unsigned int depends_on; 721 }; 722 723 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 724 725 /** 726 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 727 * @tsk: target task 728 * 729 * Allows cgroup operations to synchronize against threadgroup changes 730 * using a percpu_rw_semaphore. 731 */ 732 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 733 { 734 percpu_down_read(&cgroup_threadgroup_rwsem); 735 } 736 737 /** 738 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 739 * @tsk: target task 740 * 741 * Counterpart of cgroup_threadcgroup_change_begin(). 742 */ 743 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 744 { 745 percpu_up_read(&cgroup_threadgroup_rwsem); 746 } 747 748 #else /* CONFIG_CGROUPS */ 749 750 #define CGROUP_SUBSYS_COUNT 0 751 752 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 753 { 754 might_sleep(); 755 } 756 757 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 758 759 #endif /* CONFIG_CGROUPS */ 760 761 #ifdef CONFIG_SOCK_CGROUP_DATA 762 763 /* 764 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 765 * per-socket cgroup information except for memcg association. 766 * 767 * On legacy hierarchies, net_prio and net_cls controllers directly set 768 * attributes on each sock which can then be tested by the network layer. 769 * On the default hierarchy, each sock is associated with the cgroup it was 770 * created in and the networking layer can match the cgroup directly. 771 * 772 * To avoid carrying all three cgroup related fields separately in sock, 773 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 774 * On boot, sock_cgroup_data records the cgroup that the sock was created 775 * in so that cgroup2 matches can be made; however, once either net_prio or 776 * net_cls starts being used, the area is overriden to carry prioidx and/or 777 * classid. The two modes are distinguished by whether the lowest bit is 778 * set. Clear bit indicates cgroup pointer while set bit prioidx and 779 * classid. 780 * 781 * While userland may start using net_prio or net_cls at any time, once 782 * either is used, cgroup2 matching no longer works. There is no reason to 783 * mix the two and this is in line with how legacy and v2 compatibility is 784 * handled. On mode switch, cgroup references which are already being 785 * pointed to by socks may be leaked. While this can be remedied by adding 786 * synchronization around sock_cgroup_data, given that the number of leaked 787 * cgroups is bound and highly unlikely to be high, this seems to be the 788 * better trade-off. 789 */ 790 struct sock_cgroup_data { 791 union { 792 #ifdef __LITTLE_ENDIAN 793 struct { 794 u8 is_data; 795 u8 padding; 796 u16 prioidx; 797 u32 classid; 798 } __packed; 799 #else 800 struct { 801 u32 classid; 802 u16 prioidx; 803 u8 padding; 804 u8 is_data; 805 } __packed; 806 #endif 807 u64 val; 808 }; 809 }; 810 811 /* 812 * There's a theoretical window where the following accessors race with 813 * updaters and return part of the previous pointer as the prioidx or 814 * classid. Such races are short-lived and the result isn't critical. 815 */ 816 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd) 817 { 818 /* fallback to 1 which is always the ID of the root cgroup */ 819 return (skcd->is_data & 1) ? skcd->prioidx : 1; 820 } 821 822 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd) 823 { 824 /* fallback to 0 which is the unconfigured default classid */ 825 return (skcd->is_data & 1) ? skcd->classid : 0; 826 } 827 828 /* 829 * If invoked concurrently, the updaters may clobber each other. The 830 * caller is responsible for synchronization. 831 */ 832 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 833 u16 prioidx) 834 { 835 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 836 837 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 838 return; 839 840 if (!(skcd_buf.is_data & 1)) { 841 skcd_buf.val = 0; 842 skcd_buf.is_data = 1; 843 } 844 845 skcd_buf.prioidx = prioidx; 846 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 847 } 848 849 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 850 u32 classid) 851 { 852 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 853 854 if (sock_cgroup_classid(&skcd_buf) == classid) 855 return; 856 857 if (!(skcd_buf.is_data & 1)) { 858 skcd_buf.val = 0; 859 skcd_buf.is_data = 1; 860 } 861 862 skcd_buf.classid = classid; 863 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 864 } 865 866 #else /* CONFIG_SOCK_CGROUP_DATA */ 867 868 struct sock_cgroup_data { 869 }; 870 871 #endif /* CONFIG_SOCK_CGROUP_DATA */ 872 873 #endif /* _LINUX_CGROUP_DEFS_H */ 874