xref: /openbmc/linux/include/linux/cgroup-defs.h (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 	 */
91 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92 };
93 
94 /* cftype->flags */
95 enum {
96 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
97 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
98 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
99 
100 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
101 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
102 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
103 
104 	/* internal flags, do not use outside cgroup core proper */
105 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
106 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
107 };
108 
109 /*
110  * cgroup_file is the handle for a file instance created in a cgroup which
111  * is used, for example, to generate file changed notifications.  This can
112  * be obtained by setting cftype->file_offset.
113  */
114 struct cgroup_file {
115 	/* do not access any fields from outside cgroup core */
116 	struct kernfs_node *kn;
117 	unsigned long notified_at;
118 	struct timer_list notify_timer;
119 };
120 
121 /*
122  * Per-subsystem/per-cgroup state maintained by the system.  This is the
123  * fundamental structural building block that controllers deal with.
124  *
125  * Fields marked with "PI:" are public and immutable and may be accessed
126  * directly without synchronization.
127  */
128 struct cgroup_subsys_state {
129 	/* PI: the cgroup that this css is attached to */
130 	struct cgroup *cgroup;
131 
132 	/* PI: the cgroup subsystem that this css is attached to */
133 	struct cgroup_subsys *ss;
134 
135 	/* reference count - access via css_[try]get() and css_put() */
136 	struct percpu_ref refcnt;
137 
138 	/* siblings list anchored at the parent's ->children */
139 	struct list_head sibling;
140 	struct list_head children;
141 
142 	/* flush target list anchored at cgrp->rstat_css_list */
143 	struct list_head rstat_css_node;
144 
145 	/*
146 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
147 	 * matching css can be looked up using css_from_id().
148 	 */
149 	int id;
150 
151 	unsigned int flags;
152 
153 	/*
154 	 * Monotonically increasing unique serial number which defines a
155 	 * uniform order among all csses.  It's guaranteed that all
156 	 * ->children lists are in the ascending order of ->serial_nr and
157 	 * used to allow interrupting and resuming iterations.
158 	 */
159 	u64 serial_nr;
160 
161 	/*
162 	 * Incremented by online self and children.  Used to guarantee that
163 	 * parents are not offlined before their children.
164 	 */
165 	atomic_t online_cnt;
166 
167 	/* percpu_ref killing and RCU release */
168 	struct work_struct destroy_work;
169 	struct rcu_work destroy_rwork;
170 
171 	/*
172 	 * PI: the parent css.	Placed here for cache proximity to following
173 	 * fields of the containing structure.
174 	 */
175 	struct cgroup_subsys_state *parent;
176 };
177 
178 /*
179  * A css_set is a structure holding pointers to a set of
180  * cgroup_subsys_state objects. This saves space in the task struct
181  * object and speeds up fork()/exit(), since a single inc/dec and a
182  * list_add()/del() can bump the reference count on the entire cgroup
183  * set for a task.
184  */
185 struct css_set {
186 	/*
187 	 * Set of subsystem states, one for each subsystem. This array is
188 	 * immutable after creation apart from the init_css_set during
189 	 * subsystem registration (at boot time).
190 	 */
191 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
192 
193 	/* reference count */
194 	refcount_t refcount;
195 
196 	/*
197 	 * For a domain cgroup, the following points to self.  If threaded,
198 	 * to the matching cset of the nearest domain ancestor.  The
199 	 * dom_cset provides access to the domain cgroup and its csses to
200 	 * which domain level resource consumptions should be charged.
201 	 */
202 	struct css_set *dom_cset;
203 
204 	/* the default cgroup associated with this css_set */
205 	struct cgroup *dfl_cgrp;
206 
207 	/* internal task count, protected by css_set_lock */
208 	int nr_tasks;
209 
210 	/*
211 	 * Lists running through all tasks using this cgroup group.
212 	 * mg_tasks lists tasks which belong to this cset but are in the
213 	 * process of being migrated out or in.  Protected by
214 	 * css_set_rwsem, but, during migration, once tasks are moved to
215 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
216 	 */
217 	struct list_head tasks;
218 	struct list_head mg_tasks;
219 
220 	/* all css_task_iters currently walking this cset */
221 	struct list_head task_iters;
222 
223 	/*
224 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
225 	 * attached to an ancestor instead of the cgroup this css_set is
226 	 * associated with.  The following node is anchored at
227 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
228 	 * iterate through all css's attached to a given cgroup.
229 	 */
230 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
231 
232 	/* all threaded csets whose ->dom_cset points to this cset */
233 	struct list_head threaded_csets;
234 	struct list_head threaded_csets_node;
235 
236 	/*
237 	 * List running through all cgroup groups in the same hash
238 	 * slot. Protected by css_set_lock
239 	 */
240 	struct hlist_node hlist;
241 
242 	/*
243 	 * List of cgrp_cset_links pointing at cgroups referenced from this
244 	 * css_set.  Protected by css_set_lock.
245 	 */
246 	struct list_head cgrp_links;
247 
248 	/*
249 	 * List of csets participating in the on-going migration either as
250 	 * source or destination.  Protected by cgroup_mutex.
251 	 */
252 	struct list_head mg_preload_node;
253 	struct list_head mg_node;
254 
255 	/*
256 	 * If this cset is acting as the source of migration the following
257 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
258 	 * respectively the source and destination cgroups of the on-going
259 	 * migration.  mg_dst_cset is the destination cset the target tasks
260 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
261 	 */
262 	struct cgroup *mg_src_cgrp;
263 	struct cgroup *mg_dst_cgrp;
264 	struct css_set *mg_dst_cset;
265 
266 	/* dead and being drained, ignore for migration */
267 	bool dead;
268 
269 	/* For RCU-protected deletion */
270 	struct rcu_head rcu_head;
271 };
272 
273 struct cgroup_base_stat {
274 	struct task_cputime cputime;
275 };
276 
277 /*
278  * rstat - cgroup scalable recursive statistics.  Accounting is done
279  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
280  * hierarchy on reads.
281  *
282  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
283  * linked into the updated tree.  On the following read, propagation only
284  * considers and consumes the updated tree.  This makes reading O(the
285  * number of descendants which have been active since last read) instead of
286  * O(the total number of descendants).
287  *
288  * This is important because there can be a lot of (draining) cgroups which
289  * aren't active and stat may be read frequently.  The combination can
290  * become very expensive.  By propagating selectively, increasing reading
291  * frequency decreases the cost of each read.
292  *
293  * This struct hosts both the fields which implement the above -
294  * updated_children and updated_next - and the fields which track basic
295  * resource statistics on top of it - bsync, bstat and last_bstat.
296  */
297 struct cgroup_rstat_cpu {
298 	/*
299 	 * ->bsync protects ->bstat.  These are the only fields which get
300 	 * updated in the hot path.
301 	 */
302 	struct u64_stats_sync bsync;
303 	struct cgroup_base_stat bstat;
304 
305 	/*
306 	 * Snapshots at the last reading.  These are used to calculate the
307 	 * deltas to propagate to the global counters.
308 	 */
309 	struct cgroup_base_stat last_bstat;
310 
311 	/*
312 	 * Child cgroups with stat updates on this cpu since the last read
313 	 * are linked on the parent's ->updated_children through
314 	 * ->updated_next.
315 	 *
316 	 * In addition to being more compact, singly-linked list pointing
317 	 * to the cgroup makes it unnecessary for each per-cpu struct to
318 	 * point back to the associated cgroup.
319 	 *
320 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
321 	 */
322 	struct cgroup *updated_children;	/* terminated by self cgroup */
323 	struct cgroup *updated_next;		/* NULL iff not on the list */
324 };
325 
326 struct cgroup_freezer_state {
327 	/* Should the cgroup and its descendants be frozen. */
328 	bool freeze;
329 
330 	/* Should the cgroup actually be frozen? */
331 	int e_freeze;
332 
333 	/* Fields below are protected by css_set_lock */
334 
335 	/* Number of frozen descendant cgroups */
336 	int nr_frozen_descendants;
337 
338 	/*
339 	 * Number of tasks, which are counted as frozen:
340 	 * frozen, SIGSTOPped, and PTRACEd.
341 	 */
342 	int nr_frozen_tasks;
343 };
344 
345 struct cgroup {
346 	/* self css with NULL ->ss, points back to this cgroup */
347 	struct cgroup_subsys_state self;
348 
349 	unsigned long flags;		/* "unsigned long" so bitops work */
350 
351 	/*
352 	 * idr allocated in-hierarchy ID.
353 	 *
354 	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
355 	 * new cgroup will be assigned with a smallest available ID.
356 	 *
357 	 * Allocating/Removing ID must be protected by cgroup_mutex.
358 	 */
359 	int id;
360 
361 	/*
362 	 * The depth this cgroup is at.  The root is at depth zero and each
363 	 * step down the hierarchy increments the level.  This along with
364 	 * ancestor_ids[] can determine whether a given cgroup is a
365 	 * descendant of another without traversing the hierarchy.
366 	 */
367 	int level;
368 
369 	/* Maximum allowed descent tree depth */
370 	int max_depth;
371 
372 	/*
373 	 * Keep track of total numbers of visible and dying descent cgroups.
374 	 * Dying cgroups are cgroups which were deleted by a user,
375 	 * but are still existing because someone else is holding a reference.
376 	 * max_descendants is a maximum allowed number of descent cgroups.
377 	 *
378 	 * nr_descendants and nr_dying_descendants are protected
379 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
380 	 * any of cgroup_mutex and css_set_lock; for writing both locks
381 	 * should be held.
382 	 */
383 	int nr_descendants;
384 	int nr_dying_descendants;
385 	int max_descendants;
386 
387 	/*
388 	 * Each non-empty css_set associated with this cgroup contributes
389 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
390 	 * doesn't have any tasks.
391 	 *
392 	 * All children which have non-zero nr_populated_csets and/or
393 	 * nr_populated_children of their own contribute one to either
394 	 * nr_populated_domain_children or nr_populated_threaded_children
395 	 * depending on their type.  Each counter is zero iff all cgroups
396 	 * of the type in the subtree proper don't have any tasks.
397 	 */
398 	int nr_populated_csets;
399 	int nr_populated_domain_children;
400 	int nr_populated_threaded_children;
401 
402 	int nr_threaded_children;	/* # of live threaded child cgroups */
403 
404 	struct kernfs_node *kn;		/* cgroup kernfs entry */
405 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
406 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
407 
408 	/*
409 	 * The bitmask of subsystems enabled on the child cgroups.
410 	 * ->subtree_control is the one configured through
411 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
412 	 * one which may have more subsystems enabled.  Controller knobs
413 	 * are made available iff it's enabled in ->subtree_control.
414 	 */
415 	u16 subtree_control;
416 	u16 subtree_ss_mask;
417 	u16 old_subtree_control;
418 	u16 old_subtree_ss_mask;
419 
420 	/* Private pointers for each registered subsystem */
421 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
422 
423 	struct cgroup_root *root;
424 
425 	/*
426 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
427 	 * cgroup.  Protected by css_set_lock.
428 	 */
429 	struct list_head cset_links;
430 
431 	/*
432 	 * On the default hierarchy, a css_set for a cgroup with some
433 	 * susbsys disabled will point to css's which are associated with
434 	 * the closest ancestor which has the subsys enabled.  The
435 	 * following lists all css_sets which point to this cgroup's css
436 	 * for the given subsystem.
437 	 */
438 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
439 
440 	/*
441 	 * If !threaded, self.  If threaded, it points to the nearest
442 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
443 	 * from process granularity and no-internal-task constraint.
444 	 * Domain level resource consumptions which aren't tied to a
445 	 * specific task are charged to the dom_cgrp.
446 	 */
447 	struct cgroup *dom_cgrp;
448 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
449 
450 	/* per-cpu recursive resource statistics */
451 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
452 	struct list_head rstat_css_list;
453 
454 	/* cgroup basic resource statistics */
455 	struct cgroup_base_stat pending_bstat;	/* pending from children */
456 	struct cgroup_base_stat bstat;
457 	struct prev_cputime prev_cputime;	/* for printing out cputime */
458 
459 	/*
460 	 * list of pidlists, up to two for each namespace (one for procs, one
461 	 * for tasks); created on demand.
462 	 */
463 	struct list_head pidlists;
464 	struct mutex pidlist_mutex;
465 
466 	/* used to wait for offlining of csses */
467 	wait_queue_head_t offline_waitq;
468 
469 	/* used to schedule release agent */
470 	struct work_struct release_agent_work;
471 
472 	/* used to track pressure stalls */
473 	struct psi_group psi;
474 
475 	/* used to store eBPF programs */
476 	struct cgroup_bpf bpf;
477 
478 	/* If there is block congestion on this cgroup. */
479 	atomic_t congestion_count;
480 
481 	/* Used to store internal freezer state */
482 	struct cgroup_freezer_state freezer;
483 
484 	/* ids of the ancestors at each level including self */
485 	int ancestor_ids[];
486 };
487 
488 /*
489  * A cgroup_root represents the root of a cgroup hierarchy, and may be
490  * associated with a kernfs_root to form an active hierarchy.  This is
491  * internal to cgroup core.  Don't access directly from controllers.
492  */
493 struct cgroup_root {
494 	struct kernfs_root *kf_root;
495 
496 	/* The bitmask of subsystems attached to this hierarchy */
497 	unsigned int subsys_mask;
498 
499 	/* Unique id for this hierarchy. */
500 	int hierarchy_id;
501 
502 	/* The root cgroup.  Root is destroyed on its release. */
503 	struct cgroup cgrp;
504 
505 	/* for cgrp->ancestor_ids[0] */
506 	int cgrp_ancestor_id_storage;
507 
508 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
509 	atomic_t nr_cgrps;
510 
511 	/* A list running through the active hierarchies */
512 	struct list_head root_list;
513 
514 	/* Hierarchy-specific flags */
515 	unsigned int flags;
516 
517 	/* IDs for cgroups in this hierarchy */
518 	struct idr cgroup_idr;
519 
520 	/* The path to use for release notifications. */
521 	char release_agent_path[PATH_MAX];
522 
523 	/* The name for this hierarchy - may be empty */
524 	char name[MAX_CGROUP_ROOT_NAMELEN];
525 };
526 
527 /*
528  * struct cftype: handler definitions for cgroup control files
529  *
530  * When reading/writing to a file:
531  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
532  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
533  */
534 struct cftype {
535 	/*
536 	 * By convention, the name should begin with the name of the
537 	 * subsystem, followed by a period.  Zero length string indicates
538 	 * end of cftype array.
539 	 */
540 	char name[MAX_CFTYPE_NAME];
541 	unsigned long private;
542 
543 	/*
544 	 * The maximum length of string, excluding trailing nul, that can
545 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
546 	 */
547 	size_t max_write_len;
548 
549 	/* CFTYPE_* flags */
550 	unsigned int flags;
551 
552 	/*
553 	 * If non-zero, should contain the offset from the start of css to
554 	 * a struct cgroup_file field.  cgroup will record the handle of
555 	 * the created file into it.  The recorded handle can be used as
556 	 * long as the containing css remains accessible.
557 	 */
558 	unsigned int file_offset;
559 
560 	/*
561 	 * Fields used for internal bookkeeping.  Initialized automatically
562 	 * during registration.
563 	 */
564 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
565 	struct list_head node;		/* anchored at ss->cfts */
566 	struct kernfs_ops *kf_ops;
567 
568 	int (*open)(struct kernfs_open_file *of);
569 	void (*release)(struct kernfs_open_file *of);
570 
571 	/*
572 	 * read_u64() is a shortcut for the common case of returning a
573 	 * single integer. Use it in place of read()
574 	 */
575 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
576 	/*
577 	 * read_s64() is a signed version of read_u64()
578 	 */
579 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
580 
581 	/* generic seq_file read interface */
582 	int (*seq_show)(struct seq_file *sf, void *v);
583 
584 	/* optional ops, implement all or none */
585 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
586 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
587 	void (*seq_stop)(struct seq_file *sf, void *v);
588 
589 	/*
590 	 * write_u64() is a shortcut for the common case of accepting
591 	 * a single integer (as parsed by simple_strtoull) from
592 	 * userspace. Use in place of write(); return 0 or error.
593 	 */
594 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
595 			 u64 val);
596 	/*
597 	 * write_s64() is a signed version of write_u64()
598 	 */
599 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
600 			 s64 val);
601 
602 	/*
603 	 * write() is the generic write callback which maps directly to
604 	 * kernfs write operation and overrides all other operations.
605 	 * Maximum write size is determined by ->max_write_len.  Use
606 	 * of_css/cft() to access the associated css and cft.
607 	 */
608 	ssize_t (*write)(struct kernfs_open_file *of,
609 			 char *buf, size_t nbytes, loff_t off);
610 
611 	__poll_t (*poll)(struct kernfs_open_file *of,
612 			 struct poll_table_struct *pt);
613 
614 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 	struct lock_class_key	lockdep_key;
616 #endif
617 };
618 
619 /*
620  * Control Group subsystem type.
621  * See Documentation/cgroup-v1/cgroups.txt for details
622  */
623 struct cgroup_subsys {
624 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
625 	int (*css_online)(struct cgroup_subsys_state *css);
626 	void (*css_offline)(struct cgroup_subsys_state *css);
627 	void (*css_released)(struct cgroup_subsys_state *css);
628 	void (*css_free)(struct cgroup_subsys_state *css);
629 	void (*css_reset)(struct cgroup_subsys_state *css);
630 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
631 	int (*css_extra_stat_show)(struct seq_file *seq,
632 				   struct cgroup_subsys_state *css);
633 
634 	int (*can_attach)(struct cgroup_taskset *tset);
635 	void (*cancel_attach)(struct cgroup_taskset *tset);
636 	void (*attach)(struct cgroup_taskset *tset);
637 	void (*post_attach)(void);
638 	int (*can_fork)(struct task_struct *task);
639 	void (*cancel_fork)(struct task_struct *task);
640 	void (*fork)(struct task_struct *task);
641 	void (*exit)(struct task_struct *task);
642 	void (*release)(struct task_struct *task);
643 	void (*bind)(struct cgroup_subsys_state *root_css);
644 
645 	bool early_init:1;
646 
647 	/*
648 	 * If %true, the controller, on the default hierarchy, doesn't show
649 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
650 	 * implicitly enabled on all cgroups on the default hierarchy, and
651 	 * bypasses the "no internal process" constraint.  This is for
652 	 * utility type controllers which is transparent to userland.
653 	 *
654 	 * An implicit controller can be stolen from the default hierarchy
655 	 * anytime and thus must be okay with offline csses from previous
656 	 * hierarchies coexisting with csses for the current one.
657 	 */
658 	bool implicit_on_dfl:1;
659 
660 	/*
661 	 * If %true, the controller, supports threaded mode on the default
662 	 * hierarchy.  In a threaded subtree, both process granularity and
663 	 * no-internal-process constraint are ignored and a threaded
664 	 * controllers should be able to handle that.
665 	 *
666 	 * Note that as an implicit controller is automatically enabled on
667 	 * all cgroups on the default hierarchy, it should also be
668 	 * threaded.  implicit && !threaded is not supported.
669 	 */
670 	bool threaded:1;
671 
672 	/*
673 	 * If %false, this subsystem is properly hierarchical -
674 	 * configuration, resource accounting and restriction on a parent
675 	 * cgroup cover those of its children.  If %true, hierarchy support
676 	 * is broken in some ways - some subsystems ignore hierarchy
677 	 * completely while others are only implemented half-way.
678 	 *
679 	 * It's now disallowed to create nested cgroups if the subsystem is
680 	 * broken and cgroup core will emit a warning message on such
681 	 * cases.  Eventually, all subsystems will be made properly
682 	 * hierarchical and this will go away.
683 	 */
684 	bool broken_hierarchy:1;
685 	bool warned_broken_hierarchy:1;
686 
687 	/* the following two fields are initialized automtically during boot */
688 	int id;
689 	const char *name;
690 
691 	/* optional, initialized automatically during boot if not set */
692 	const char *legacy_name;
693 
694 	/* link to parent, protected by cgroup_lock() */
695 	struct cgroup_root *root;
696 
697 	/* idr for css->id */
698 	struct idr css_idr;
699 
700 	/*
701 	 * List of cftypes.  Each entry is the first entry of an array
702 	 * terminated by zero length name.
703 	 */
704 	struct list_head cfts;
705 
706 	/*
707 	 * Base cftypes which are automatically registered.  The two can
708 	 * point to the same array.
709 	 */
710 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
711 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
712 
713 	/*
714 	 * A subsystem may depend on other subsystems.  When such subsystem
715 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
716 	 * together if available.  Subsystems enabled due to dependency are
717 	 * not visible to userland until explicitly enabled.  The following
718 	 * specifies the mask of subsystems that this one depends on.
719 	 */
720 	unsigned int depends_on;
721 };
722 
723 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
724 
725 /**
726  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
727  * @tsk: target task
728  *
729  * Allows cgroup operations to synchronize against threadgroup changes
730  * using a percpu_rw_semaphore.
731  */
732 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
733 {
734 	percpu_down_read(&cgroup_threadgroup_rwsem);
735 }
736 
737 /**
738  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
739  * @tsk: target task
740  *
741  * Counterpart of cgroup_threadcgroup_change_begin().
742  */
743 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
744 {
745 	percpu_up_read(&cgroup_threadgroup_rwsem);
746 }
747 
748 #else	/* CONFIG_CGROUPS */
749 
750 #define CGROUP_SUBSYS_COUNT 0
751 
752 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
753 {
754 	might_sleep();
755 }
756 
757 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
758 
759 #endif	/* CONFIG_CGROUPS */
760 
761 #ifdef CONFIG_SOCK_CGROUP_DATA
762 
763 /*
764  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
765  * per-socket cgroup information except for memcg association.
766  *
767  * On legacy hierarchies, net_prio and net_cls controllers directly set
768  * attributes on each sock which can then be tested by the network layer.
769  * On the default hierarchy, each sock is associated with the cgroup it was
770  * created in and the networking layer can match the cgroup directly.
771  *
772  * To avoid carrying all three cgroup related fields separately in sock,
773  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
774  * On boot, sock_cgroup_data records the cgroup that the sock was created
775  * in so that cgroup2 matches can be made; however, once either net_prio or
776  * net_cls starts being used, the area is overriden to carry prioidx and/or
777  * classid.  The two modes are distinguished by whether the lowest bit is
778  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
779  * classid.
780  *
781  * While userland may start using net_prio or net_cls at any time, once
782  * either is used, cgroup2 matching no longer works.  There is no reason to
783  * mix the two and this is in line with how legacy and v2 compatibility is
784  * handled.  On mode switch, cgroup references which are already being
785  * pointed to by socks may be leaked.  While this can be remedied by adding
786  * synchronization around sock_cgroup_data, given that the number of leaked
787  * cgroups is bound and highly unlikely to be high, this seems to be the
788  * better trade-off.
789  */
790 struct sock_cgroup_data {
791 	union {
792 #ifdef __LITTLE_ENDIAN
793 		struct {
794 			u8	is_data;
795 			u8	padding;
796 			u16	prioidx;
797 			u32	classid;
798 		} __packed;
799 #else
800 		struct {
801 			u32	classid;
802 			u16	prioidx;
803 			u8	padding;
804 			u8	is_data;
805 		} __packed;
806 #endif
807 		u64		val;
808 	};
809 };
810 
811 /*
812  * There's a theoretical window where the following accessors race with
813  * updaters and return part of the previous pointer as the prioidx or
814  * classid.  Such races are short-lived and the result isn't critical.
815  */
816 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
817 {
818 	/* fallback to 1 which is always the ID of the root cgroup */
819 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
820 }
821 
822 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
823 {
824 	/* fallback to 0 which is the unconfigured default classid */
825 	return (skcd->is_data & 1) ? skcd->classid : 0;
826 }
827 
828 /*
829  * If invoked concurrently, the updaters may clobber each other.  The
830  * caller is responsible for synchronization.
831  */
832 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
833 					   u16 prioidx)
834 {
835 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
836 
837 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
838 		return;
839 
840 	if (!(skcd_buf.is_data & 1)) {
841 		skcd_buf.val = 0;
842 		skcd_buf.is_data = 1;
843 	}
844 
845 	skcd_buf.prioidx = prioidx;
846 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
847 }
848 
849 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
850 					   u32 classid)
851 {
852 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
853 
854 	if (sock_cgroup_classid(&skcd_buf) == classid)
855 		return;
856 
857 	if (!(skcd_buf.is_data & 1)) {
858 		skcd_buf.val = 0;
859 		skcd_buf.is_data = 1;
860 	}
861 
862 	skcd_buf.classid = classid;
863 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
864 }
865 
866 #else	/* CONFIG_SOCK_CGROUP_DATA */
867 
868 struct sock_cgroup_data {
869 };
870 
871 #endif	/* CONFIG_SOCK_CGROUP_DATA */
872 
873 #endif	/* _LINUX_CGROUP_DEFS_H */
874