1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/cgroup-defs.h - basic definitions for cgroup 4 * 5 * This file provides basic type and interface. Include this file directly 6 * only if necessary to avoid cyclic dependencies. 7 */ 8 #ifndef _LINUX_CGROUP_DEFS_H 9 #define _LINUX_CGROUP_DEFS_H 10 11 #include <linux/limits.h> 12 #include <linux/list.h> 13 #include <linux/idr.h> 14 #include <linux/wait.h> 15 #include <linux/mutex.h> 16 #include <linux/rcupdate.h> 17 #include <linux/refcount.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/percpu-rwsem.h> 20 #include <linux/u64_stats_sync.h> 21 #include <linux/workqueue.h> 22 #include <linux/bpf-cgroup.h> 23 #include <linux/psi_types.h> 24 25 #ifdef CONFIG_CGROUPS 26 27 struct cgroup; 28 struct cgroup_root; 29 struct cgroup_subsys; 30 struct cgroup_taskset; 31 struct kernfs_node; 32 struct kernfs_ops; 33 struct kernfs_open_file; 34 struct seq_file; 35 struct poll_table_struct; 36 37 #define MAX_CGROUP_TYPE_NAMELEN 32 38 #define MAX_CGROUP_ROOT_NAMELEN 64 39 #define MAX_CFTYPE_NAME 64 40 41 /* define the enumeration of all cgroup subsystems */ 42 #define SUBSYS(_x) _x ## _cgrp_id, 43 enum cgroup_subsys_id { 44 #include <linux/cgroup_subsys.h> 45 CGROUP_SUBSYS_COUNT, 46 }; 47 #undef SUBSYS 48 49 /* bits in struct cgroup_subsys_state flags field */ 50 enum { 51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 55 CSS_DYING = (1 << 4), /* css is dying */ 56 }; 57 58 /* bits in struct cgroup flags field */ 59 enum { 60 /* Control Group requires release notifications to userspace */ 61 CGRP_NOTIFY_ON_RELEASE, 62 /* 63 * Clone the parent's configuration when creating a new child 64 * cpuset cgroup. For historical reasons, this option can be 65 * specified at mount time and thus is implemented here. 66 */ 67 CGRP_CPUSET_CLONE_CHILDREN, 68 69 /* Control group has to be frozen. */ 70 CGRP_FREEZE, 71 72 /* Cgroup is frozen. */ 73 CGRP_FROZEN, 74 }; 75 76 /* cgroup_root->flags */ 77 enum { 78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 80 81 /* 82 * Consider namespaces as delegation boundaries. If this flag is 83 * set, controller specific interface files in a namespace root 84 * aren't writeable from inside the namespace. 85 */ 86 CGRP_ROOT_NS_DELEGATE = (1 << 3), 87 88 /* 89 * Enable cpuset controller in v1 cgroup to use v2 behavior. 90 */ 91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4), 92 93 /* 94 * Enable legacy local memory.events. 95 */ 96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5), 97 }; 98 99 /* cftype->flags */ 100 enum { 101 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 102 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 103 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */ 104 105 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 106 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 107 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ 108 109 /* internal flags, do not use outside cgroup core proper */ 110 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 111 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 112 }; 113 114 /* 115 * cgroup_file is the handle for a file instance created in a cgroup which 116 * is used, for example, to generate file changed notifications. This can 117 * be obtained by setting cftype->file_offset. 118 */ 119 struct cgroup_file { 120 /* do not access any fields from outside cgroup core */ 121 struct kernfs_node *kn; 122 unsigned long notified_at; 123 struct timer_list notify_timer; 124 }; 125 126 /* 127 * Per-subsystem/per-cgroup state maintained by the system. This is the 128 * fundamental structural building block that controllers deal with. 129 * 130 * Fields marked with "PI:" are public and immutable and may be accessed 131 * directly without synchronization. 132 */ 133 struct cgroup_subsys_state { 134 /* PI: the cgroup that this css is attached to */ 135 struct cgroup *cgroup; 136 137 /* PI: the cgroup subsystem that this css is attached to */ 138 struct cgroup_subsys *ss; 139 140 /* reference count - access via css_[try]get() and css_put() */ 141 struct percpu_ref refcnt; 142 143 /* siblings list anchored at the parent's ->children */ 144 struct list_head sibling; 145 struct list_head children; 146 147 /* flush target list anchored at cgrp->rstat_css_list */ 148 struct list_head rstat_css_node; 149 150 /* 151 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 152 * matching css can be looked up using css_from_id(). 153 */ 154 int id; 155 156 unsigned int flags; 157 158 /* 159 * Monotonically increasing unique serial number which defines a 160 * uniform order among all csses. It's guaranteed that all 161 * ->children lists are in the ascending order of ->serial_nr and 162 * used to allow interrupting and resuming iterations. 163 */ 164 u64 serial_nr; 165 166 /* 167 * Incremented by online self and children. Used to guarantee that 168 * parents are not offlined before their children. 169 */ 170 atomic_t online_cnt; 171 172 /* percpu_ref killing and RCU release */ 173 struct work_struct destroy_work; 174 struct rcu_work destroy_rwork; 175 176 /* 177 * PI: the parent css. Placed here for cache proximity to following 178 * fields of the containing structure. 179 */ 180 struct cgroup_subsys_state *parent; 181 }; 182 183 /* 184 * A css_set is a structure holding pointers to a set of 185 * cgroup_subsys_state objects. This saves space in the task struct 186 * object and speeds up fork()/exit(), since a single inc/dec and a 187 * list_add()/del() can bump the reference count on the entire cgroup 188 * set for a task. 189 */ 190 struct css_set { 191 /* 192 * Set of subsystem states, one for each subsystem. This array is 193 * immutable after creation apart from the init_css_set during 194 * subsystem registration (at boot time). 195 */ 196 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 197 198 /* reference count */ 199 refcount_t refcount; 200 201 /* 202 * For a domain cgroup, the following points to self. If threaded, 203 * to the matching cset of the nearest domain ancestor. The 204 * dom_cset provides access to the domain cgroup and its csses to 205 * which domain level resource consumptions should be charged. 206 */ 207 struct css_set *dom_cset; 208 209 /* the default cgroup associated with this css_set */ 210 struct cgroup *dfl_cgrp; 211 212 /* internal task count, protected by css_set_lock */ 213 int nr_tasks; 214 215 /* 216 * Lists running through all tasks using this cgroup group. 217 * mg_tasks lists tasks which belong to this cset but are in the 218 * process of being migrated out or in. Protected by 219 * css_set_rwsem, but, during migration, once tasks are moved to 220 * mg_tasks, it can be read safely while holding cgroup_mutex. 221 */ 222 struct list_head tasks; 223 struct list_head mg_tasks; 224 225 /* all css_task_iters currently walking this cset */ 226 struct list_head task_iters; 227 228 /* 229 * On the default hierarhcy, ->subsys[ssid] may point to a css 230 * attached to an ancestor instead of the cgroup this css_set is 231 * associated with. The following node is anchored at 232 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 233 * iterate through all css's attached to a given cgroup. 234 */ 235 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 236 237 /* all threaded csets whose ->dom_cset points to this cset */ 238 struct list_head threaded_csets; 239 struct list_head threaded_csets_node; 240 241 /* 242 * List running through all cgroup groups in the same hash 243 * slot. Protected by css_set_lock 244 */ 245 struct hlist_node hlist; 246 247 /* 248 * List of cgrp_cset_links pointing at cgroups referenced from this 249 * css_set. Protected by css_set_lock. 250 */ 251 struct list_head cgrp_links; 252 253 /* 254 * List of csets participating in the on-going migration either as 255 * source or destination. Protected by cgroup_mutex. 256 */ 257 struct list_head mg_preload_node; 258 struct list_head mg_node; 259 260 /* 261 * If this cset is acting as the source of migration the following 262 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 263 * respectively the source and destination cgroups of the on-going 264 * migration. mg_dst_cset is the destination cset the target tasks 265 * on this cset should be migrated to. Protected by cgroup_mutex. 266 */ 267 struct cgroup *mg_src_cgrp; 268 struct cgroup *mg_dst_cgrp; 269 struct css_set *mg_dst_cset; 270 271 /* dead and being drained, ignore for migration */ 272 bool dead; 273 274 /* For RCU-protected deletion */ 275 struct rcu_head rcu_head; 276 }; 277 278 struct cgroup_base_stat { 279 struct task_cputime cputime; 280 }; 281 282 /* 283 * rstat - cgroup scalable recursive statistics. Accounting is done 284 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the 285 * hierarchy on reads. 286 * 287 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are 288 * linked into the updated tree. On the following read, propagation only 289 * considers and consumes the updated tree. This makes reading O(the 290 * number of descendants which have been active since last read) instead of 291 * O(the total number of descendants). 292 * 293 * This is important because there can be a lot of (draining) cgroups which 294 * aren't active and stat may be read frequently. The combination can 295 * become very expensive. By propagating selectively, increasing reading 296 * frequency decreases the cost of each read. 297 * 298 * This struct hosts both the fields which implement the above - 299 * updated_children and updated_next - and the fields which track basic 300 * resource statistics on top of it - bsync, bstat and last_bstat. 301 */ 302 struct cgroup_rstat_cpu { 303 /* 304 * ->bsync protects ->bstat. These are the only fields which get 305 * updated in the hot path. 306 */ 307 struct u64_stats_sync bsync; 308 struct cgroup_base_stat bstat; 309 310 /* 311 * Snapshots at the last reading. These are used to calculate the 312 * deltas to propagate to the global counters. 313 */ 314 struct cgroup_base_stat last_bstat; 315 316 /* 317 * Child cgroups with stat updates on this cpu since the last read 318 * are linked on the parent's ->updated_children through 319 * ->updated_next. 320 * 321 * In addition to being more compact, singly-linked list pointing 322 * to the cgroup makes it unnecessary for each per-cpu struct to 323 * point back to the associated cgroup. 324 * 325 * Protected by per-cpu cgroup_rstat_cpu_lock. 326 */ 327 struct cgroup *updated_children; /* terminated by self cgroup */ 328 struct cgroup *updated_next; /* NULL iff not on the list */ 329 }; 330 331 struct cgroup_freezer_state { 332 /* Should the cgroup and its descendants be frozen. */ 333 bool freeze; 334 335 /* Should the cgroup actually be frozen? */ 336 int e_freeze; 337 338 /* Fields below are protected by css_set_lock */ 339 340 /* Number of frozen descendant cgroups */ 341 int nr_frozen_descendants; 342 343 /* 344 * Number of tasks, which are counted as frozen: 345 * frozen, SIGSTOPped, and PTRACEd. 346 */ 347 int nr_frozen_tasks; 348 }; 349 350 struct cgroup { 351 /* self css with NULL ->ss, points back to this cgroup */ 352 struct cgroup_subsys_state self; 353 354 unsigned long flags; /* "unsigned long" so bitops work */ 355 356 /* 357 * idr allocated in-hierarchy ID. 358 * 359 * ID 0 is not used, the ID of the root cgroup is always 1, and a 360 * new cgroup will be assigned with a smallest available ID. 361 * 362 * Allocating/Removing ID must be protected by cgroup_mutex. 363 */ 364 int id; 365 366 /* 367 * The depth this cgroup is at. The root is at depth zero and each 368 * step down the hierarchy increments the level. This along with 369 * ancestor_ids[] can determine whether a given cgroup is a 370 * descendant of another without traversing the hierarchy. 371 */ 372 int level; 373 374 /* Maximum allowed descent tree depth */ 375 int max_depth; 376 377 /* 378 * Keep track of total numbers of visible and dying descent cgroups. 379 * Dying cgroups are cgroups which were deleted by a user, 380 * but are still existing because someone else is holding a reference. 381 * max_descendants is a maximum allowed number of descent cgroups. 382 * 383 * nr_descendants and nr_dying_descendants are protected 384 * by cgroup_mutex and css_set_lock. It's fine to read them holding 385 * any of cgroup_mutex and css_set_lock; for writing both locks 386 * should be held. 387 */ 388 int nr_descendants; 389 int nr_dying_descendants; 390 int max_descendants; 391 392 /* 393 * Each non-empty css_set associated with this cgroup contributes 394 * one to nr_populated_csets. The counter is zero iff this cgroup 395 * doesn't have any tasks. 396 * 397 * All children which have non-zero nr_populated_csets and/or 398 * nr_populated_children of their own contribute one to either 399 * nr_populated_domain_children or nr_populated_threaded_children 400 * depending on their type. Each counter is zero iff all cgroups 401 * of the type in the subtree proper don't have any tasks. 402 */ 403 int nr_populated_csets; 404 int nr_populated_domain_children; 405 int nr_populated_threaded_children; 406 407 int nr_threaded_children; /* # of live threaded child cgroups */ 408 409 struct kernfs_node *kn; /* cgroup kernfs entry */ 410 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 411 struct cgroup_file events_file; /* handle for "cgroup.events" */ 412 413 /* 414 * The bitmask of subsystems enabled on the child cgroups. 415 * ->subtree_control is the one configured through 416 * "cgroup.subtree_control" while ->child_ss_mask is the effective 417 * one which may have more subsystems enabled. Controller knobs 418 * are made available iff it's enabled in ->subtree_control. 419 */ 420 u16 subtree_control; 421 u16 subtree_ss_mask; 422 u16 old_subtree_control; 423 u16 old_subtree_ss_mask; 424 425 /* Private pointers for each registered subsystem */ 426 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 427 428 struct cgroup_root *root; 429 430 /* 431 * List of cgrp_cset_links pointing at css_sets with tasks in this 432 * cgroup. Protected by css_set_lock. 433 */ 434 struct list_head cset_links; 435 436 /* 437 * On the default hierarchy, a css_set for a cgroup with some 438 * susbsys disabled will point to css's which are associated with 439 * the closest ancestor which has the subsys enabled. The 440 * following lists all css_sets which point to this cgroup's css 441 * for the given subsystem. 442 */ 443 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 444 445 /* 446 * If !threaded, self. If threaded, it points to the nearest 447 * domain ancestor. Inside a threaded subtree, cgroups are exempt 448 * from process granularity and no-internal-task constraint. 449 * Domain level resource consumptions which aren't tied to a 450 * specific task are charged to the dom_cgrp. 451 */ 452 struct cgroup *dom_cgrp; 453 struct cgroup *old_dom_cgrp; /* used while enabling threaded */ 454 455 /* per-cpu recursive resource statistics */ 456 struct cgroup_rstat_cpu __percpu *rstat_cpu; 457 struct list_head rstat_css_list; 458 459 /* cgroup basic resource statistics */ 460 struct cgroup_base_stat pending_bstat; /* pending from children */ 461 struct cgroup_base_stat bstat; 462 struct prev_cputime prev_cputime; /* for printing out cputime */ 463 464 /* 465 * list of pidlists, up to two for each namespace (one for procs, one 466 * for tasks); created on demand. 467 */ 468 struct list_head pidlists; 469 struct mutex pidlist_mutex; 470 471 /* used to wait for offlining of csses */ 472 wait_queue_head_t offline_waitq; 473 474 /* used to schedule release agent */ 475 struct work_struct release_agent_work; 476 477 /* used to track pressure stalls */ 478 struct psi_group psi; 479 480 /* used to store eBPF programs */ 481 struct cgroup_bpf bpf; 482 483 /* If there is block congestion on this cgroup. */ 484 atomic_t congestion_count; 485 486 /* Used to store internal freezer state */ 487 struct cgroup_freezer_state freezer; 488 489 /* ids of the ancestors at each level including self */ 490 int ancestor_ids[]; 491 }; 492 493 /* 494 * A cgroup_root represents the root of a cgroup hierarchy, and may be 495 * associated with a kernfs_root to form an active hierarchy. This is 496 * internal to cgroup core. Don't access directly from controllers. 497 */ 498 struct cgroup_root { 499 struct kernfs_root *kf_root; 500 501 /* The bitmask of subsystems attached to this hierarchy */ 502 unsigned int subsys_mask; 503 504 /* Unique id for this hierarchy. */ 505 int hierarchy_id; 506 507 /* The root cgroup. Root is destroyed on its release. */ 508 struct cgroup cgrp; 509 510 /* for cgrp->ancestor_ids[0] */ 511 int cgrp_ancestor_id_storage; 512 513 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 514 atomic_t nr_cgrps; 515 516 /* A list running through the active hierarchies */ 517 struct list_head root_list; 518 519 /* Hierarchy-specific flags */ 520 unsigned int flags; 521 522 /* IDs for cgroups in this hierarchy */ 523 struct idr cgroup_idr; 524 525 /* The path to use for release notifications. */ 526 char release_agent_path[PATH_MAX]; 527 528 /* The name for this hierarchy - may be empty */ 529 char name[MAX_CGROUP_ROOT_NAMELEN]; 530 }; 531 532 /* 533 * struct cftype: handler definitions for cgroup control files 534 * 535 * When reading/writing to a file: 536 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 537 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 538 */ 539 struct cftype { 540 /* 541 * By convention, the name should begin with the name of the 542 * subsystem, followed by a period. Zero length string indicates 543 * end of cftype array. 544 */ 545 char name[MAX_CFTYPE_NAME]; 546 unsigned long private; 547 548 /* 549 * The maximum length of string, excluding trailing nul, that can 550 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 551 */ 552 size_t max_write_len; 553 554 /* CFTYPE_* flags */ 555 unsigned int flags; 556 557 /* 558 * If non-zero, should contain the offset from the start of css to 559 * a struct cgroup_file field. cgroup will record the handle of 560 * the created file into it. The recorded handle can be used as 561 * long as the containing css remains accessible. 562 */ 563 unsigned int file_offset; 564 565 /* 566 * Fields used for internal bookkeeping. Initialized automatically 567 * during registration. 568 */ 569 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 570 struct list_head node; /* anchored at ss->cfts */ 571 struct kernfs_ops *kf_ops; 572 573 int (*open)(struct kernfs_open_file *of); 574 void (*release)(struct kernfs_open_file *of); 575 576 /* 577 * read_u64() is a shortcut for the common case of returning a 578 * single integer. Use it in place of read() 579 */ 580 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 581 /* 582 * read_s64() is a signed version of read_u64() 583 */ 584 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 585 586 /* generic seq_file read interface */ 587 int (*seq_show)(struct seq_file *sf, void *v); 588 589 /* optional ops, implement all or none */ 590 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 591 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 592 void (*seq_stop)(struct seq_file *sf, void *v); 593 594 /* 595 * write_u64() is a shortcut for the common case of accepting 596 * a single integer (as parsed by simple_strtoull) from 597 * userspace. Use in place of write(); return 0 or error. 598 */ 599 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 600 u64 val); 601 /* 602 * write_s64() is a signed version of write_u64() 603 */ 604 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 605 s64 val); 606 607 /* 608 * write() is the generic write callback which maps directly to 609 * kernfs write operation and overrides all other operations. 610 * Maximum write size is determined by ->max_write_len. Use 611 * of_css/cft() to access the associated css and cft. 612 */ 613 ssize_t (*write)(struct kernfs_open_file *of, 614 char *buf, size_t nbytes, loff_t off); 615 616 __poll_t (*poll)(struct kernfs_open_file *of, 617 struct poll_table_struct *pt); 618 619 #ifdef CONFIG_DEBUG_LOCK_ALLOC 620 struct lock_class_key lockdep_key; 621 #endif 622 }; 623 624 /* 625 * Control Group subsystem type. 626 * See Documentation/cgroup-v1/cgroups.txt for details 627 */ 628 struct cgroup_subsys { 629 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 630 int (*css_online)(struct cgroup_subsys_state *css); 631 void (*css_offline)(struct cgroup_subsys_state *css); 632 void (*css_released)(struct cgroup_subsys_state *css); 633 void (*css_free)(struct cgroup_subsys_state *css); 634 void (*css_reset)(struct cgroup_subsys_state *css); 635 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu); 636 int (*css_extra_stat_show)(struct seq_file *seq, 637 struct cgroup_subsys_state *css); 638 639 int (*can_attach)(struct cgroup_taskset *tset); 640 void (*cancel_attach)(struct cgroup_taskset *tset); 641 void (*attach)(struct cgroup_taskset *tset); 642 void (*post_attach)(void); 643 int (*can_fork)(struct task_struct *task); 644 void (*cancel_fork)(struct task_struct *task); 645 void (*fork)(struct task_struct *task); 646 void (*exit)(struct task_struct *task); 647 void (*release)(struct task_struct *task); 648 void (*bind)(struct cgroup_subsys_state *root_css); 649 650 bool early_init:1; 651 652 /* 653 * If %true, the controller, on the default hierarchy, doesn't show 654 * up in "cgroup.controllers" or "cgroup.subtree_control", is 655 * implicitly enabled on all cgroups on the default hierarchy, and 656 * bypasses the "no internal process" constraint. This is for 657 * utility type controllers which is transparent to userland. 658 * 659 * An implicit controller can be stolen from the default hierarchy 660 * anytime and thus must be okay with offline csses from previous 661 * hierarchies coexisting with csses for the current one. 662 */ 663 bool implicit_on_dfl:1; 664 665 /* 666 * If %true, the controller, supports threaded mode on the default 667 * hierarchy. In a threaded subtree, both process granularity and 668 * no-internal-process constraint are ignored and a threaded 669 * controllers should be able to handle that. 670 * 671 * Note that as an implicit controller is automatically enabled on 672 * all cgroups on the default hierarchy, it should also be 673 * threaded. implicit && !threaded is not supported. 674 */ 675 bool threaded:1; 676 677 /* 678 * If %false, this subsystem is properly hierarchical - 679 * configuration, resource accounting and restriction on a parent 680 * cgroup cover those of its children. If %true, hierarchy support 681 * is broken in some ways - some subsystems ignore hierarchy 682 * completely while others are only implemented half-way. 683 * 684 * It's now disallowed to create nested cgroups if the subsystem is 685 * broken and cgroup core will emit a warning message on such 686 * cases. Eventually, all subsystems will be made properly 687 * hierarchical and this will go away. 688 */ 689 bool broken_hierarchy:1; 690 bool warned_broken_hierarchy:1; 691 692 /* the following two fields are initialized automtically during boot */ 693 int id; 694 const char *name; 695 696 /* optional, initialized automatically during boot if not set */ 697 const char *legacy_name; 698 699 /* link to parent, protected by cgroup_lock() */ 700 struct cgroup_root *root; 701 702 /* idr for css->id */ 703 struct idr css_idr; 704 705 /* 706 * List of cftypes. Each entry is the first entry of an array 707 * terminated by zero length name. 708 */ 709 struct list_head cfts; 710 711 /* 712 * Base cftypes which are automatically registered. The two can 713 * point to the same array. 714 */ 715 struct cftype *dfl_cftypes; /* for the default hierarchy */ 716 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 717 718 /* 719 * A subsystem may depend on other subsystems. When such subsystem 720 * is enabled on a cgroup, the depended-upon subsystems are enabled 721 * together if available. Subsystems enabled due to dependency are 722 * not visible to userland until explicitly enabled. The following 723 * specifies the mask of subsystems that this one depends on. 724 */ 725 unsigned int depends_on; 726 }; 727 728 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 729 730 /** 731 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 732 * @tsk: target task 733 * 734 * Allows cgroup operations to synchronize against threadgroup changes 735 * using a percpu_rw_semaphore. 736 */ 737 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 738 { 739 percpu_down_read(&cgroup_threadgroup_rwsem); 740 } 741 742 /** 743 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 744 * @tsk: target task 745 * 746 * Counterpart of cgroup_threadcgroup_change_begin(). 747 */ 748 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 749 { 750 percpu_up_read(&cgroup_threadgroup_rwsem); 751 } 752 753 #else /* CONFIG_CGROUPS */ 754 755 #define CGROUP_SUBSYS_COUNT 0 756 757 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 758 { 759 might_sleep(); 760 } 761 762 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 763 764 #endif /* CONFIG_CGROUPS */ 765 766 #ifdef CONFIG_SOCK_CGROUP_DATA 767 768 /* 769 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 770 * per-socket cgroup information except for memcg association. 771 * 772 * On legacy hierarchies, net_prio and net_cls controllers directly set 773 * attributes on each sock which can then be tested by the network layer. 774 * On the default hierarchy, each sock is associated with the cgroup it was 775 * created in and the networking layer can match the cgroup directly. 776 * 777 * To avoid carrying all three cgroup related fields separately in sock, 778 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 779 * On boot, sock_cgroup_data records the cgroup that the sock was created 780 * in so that cgroup2 matches can be made; however, once either net_prio or 781 * net_cls starts being used, the area is overriden to carry prioidx and/or 782 * classid. The two modes are distinguished by whether the lowest bit is 783 * set. Clear bit indicates cgroup pointer while set bit prioidx and 784 * classid. 785 * 786 * While userland may start using net_prio or net_cls at any time, once 787 * either is used, cgroup2 matching no longer works. There is no reason to 788 * mix the two and this is in line with how legacy and v2 compatibility is 789 * handled. On mode switch, cgroup references which are already being 790 * pointed to by socks may be leaked. While this can be remedied by adding 791 * synchronization around sock_cgroup_data, given that the number of leaked 792 * cgroups is bound and highly unlikely to be high, this seems to be the 793 * better trade-off. 794 */ 795 struct sock_cgroup_data { 796 union { 797 #ifdef __LITTLE_ENDIAN 798 struct { 799 u8 is_data; 800 u8 padding; 801 u16 prioidx; 802 u32 classid; 803 } __packed; 804 #else 805 struct { 806 u32 classid; 807 u16 prioidx; 808 u8 padding; 809 u8 is_data; 810 } __packed; 811 #endif 812 u64 val; 813 }; 814 }; 815 816 /* 817 * There's a theoretical window where the following accessors race with 818 * updaters and return part of the previous pointer as the prioidx or 819 * classid. Such races are short-lived and the result isn't critical. 820 */ 821 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd) 822 { 823 /* fallback to 1 which is always the ID of the root cgroup */ 824 return (skcd->is_data & 1) ? skcd->prioidx : 1; 825 } 826 827 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd) 828 { 829 /* fallback to 0 which is the unconfigured default classid */ 830 return (skcd->is_data & 1) ? skcd->classid : 0; 831 } 832 833 /* 834 * If invoked concurrently, the updaters may clobber each other. The 835 * caller is responsible for synchronization. 836 */ 837 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 838 u16 prioidx) 839 { 840 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 841 842 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 843 return; 844 845 if (!(skcd_buf.is_data & 1)) { 846 skcd_buf.val = 0; 847 skcd_buf.is_data = 1; 848 } 849 850 skcd_buf.prioidx = prioidx; 851 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 852 } 853 854 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 855 u32 classid) 856 { 857 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 858 859 if (sock_cgroup_classid(&skcd_buf) == classid) 860 return; 861 862 if (!(skcd_buf.is_data & 1)) { 863 skcd_buf.val = 0; 864 skcd_buf.is_data = 1; 865 } 866 867 skcd_buf.classid = classid; 868 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 869 } 870 871 #else /* CONFIG_SOCK_CGROUP_DATA */ 872 873 struct sock_cgroup_data { 874 }; 875 876 #endif /* CONFIG_SOCK_CGROUP_DATA */ 877 878 #endif /* _LINUX_CGROUP_DEFS_H */ 879