1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/cgroup-defs.h - basic definitions for cgroup 4 * 5 * This file provides basic type and interface. Include this file directly 6 * only if necessary to avoid cyclic dependencies. 7 */ 8 #ifndef _LINUX_CGROUP_DEFS_H 9 #define _LINUX_CGROUP_DEFS_H 10 11 #include <linux/limits.h> 12 #include <linux/list.h> 13 #include <linux/idr.h> 14 #include <linux/wait.h> 15 #include <linux/mutex.h> 16 #include <linux/rcupdate.h> 17 #include <linux/refcount.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/percpu-rwsem.h> 20 #include <linux/u64_stats_sync.h> 21 #include <linux/workqueue.h> 22 #include <linux/bpf-cgroup.h> 23 #include <linux/psi_types.h> 24 25 #ifdef CONFIG_CGROUPS 26 27 struct cgroup; 28 struct cgroup_root; 29 struct cgroup_subsys; 30 struct cgroup_taskset; 31 struct kernfs_node; 32 struct kernfs_ops; 33 struct kernfs_open_file; 34 struct seq_file; 35 36 #define MAX_CGROUP_TYPE_NAMELEN 32 37 #define MAX_CGROUP_ROOT_NAMELEN 64 38 #define MAX_CFTYPE_NAME 64 39 40 /* define the enumeration of all cgroup subsystems */ 41 #define SUBSYS(_x) _x ## _cgrp_id, 42 enum cgroup_subsys_id { 43 #include <linux/cgroup_subsys.h> 44 CGROUP_SUBSYS_COUNT, 45 }; 46 #undef SUBSYS 47 48 /* bits in struct cgroup_subsys_state flags field */ 49 enum { 50 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 51 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 52 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 53 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 54 CSS_DYING = (1 << 4), /* css is dying */ 55 }; 56 57 /* bits in struct cgroup flags field */ 58 enum { 59 /* Control Group requires release notifications to userspace */ 60 CGRP_NOTIFY_ON_RELEASE, 61 /* 62 * Clone the parent's configuration when creating a new child 63 * cpuset cgroup. For historical reasons, this option can be 64 * specified at mount time and thus is implemented here. 65 */ 66 CGRP_CPUSET_CLONE_CHILDREN, 67 }; 68 69 /* cgroup_root->flags */ 70 enum { 71 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 72 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 73 74 /* 75 * Consider namespaces as delegation boundaries. If this flag is 76 * set, controller specific interface files in a namespace root 77 * aren't writeable from inside the namespace. 78 */ 79 CGRP_ROOT_NS_DELEGATE = (1 << 3), 80 81 /* 82 * Enable cpuset controller in v1 cgroup to use v2 behavior. 83 */ 84 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4), 85 }; 86 87 /* cftype->flags */ 88 enum { 89 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 90 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 91 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */ 92 93 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 94 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 95 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ 96 97 /* internal flags, do not use outside cgroup core proper */ 98 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 99 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 100 }; 101 102 /* 103 * cgroup_file is the handle for a file instance created in a cgroup which 104 * is used, for example, to generate file changed notifications. This can 105 * be obtained by setting cftype->file_offset. 106 */ 107 struct cgroup_file { 108 /* do not access any fields from outside cgroup core */ 109 struct kernfs_node *kn; 110 unsigned long notified_at; 111 struct timer_list notify_timer; 112 }; 113 114 /* 115 * Per-subsystem/per-cgroup state maintained by the system. This is the 116 * fundamental structural building block that controllers deal with. 117 * 118 * Fields marked with "PI:" are public and immutable and may be accessed 119 * directly without synchronization. 120 */ 121 struct cgroup_subsys_state { 122 /* PI: the cgroup that this css is attached to */ 123 struct cgroup *cgroup; 124 125 /* PI: the cgroup subsystem that this css is attached to */ 126 struct cgroup_subsys *ss; 127 128 /* reference count - access via css_[try]get() and css_put() */ 129 struct percpu_ref refcnt; 130 131 /* siblings list anchored at the parent's ->children */ 132 struct list_head sibling; 133 struct list_head children; 134 135 /* flush target list anchored at cgrp->rstat_css_list */ 136 struct list_head rstat_css_node; 137 138 /* 139 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 140 * matching css can be looked up using css_from_id(). 141 */ 142 int id; 143 144 unsigned int flags; 145 146 /* 147 * Monotonically increasing unique serial number which defines a 148 * uniform order among all csses. It's guaranteed that all 149 * ->children lists are in the ascending order of ->serial_nr and 150 * used to allow interrupting and resuming iterations. 151 */ 152 u64 serial_nr; 153 154 /* 155 * Incremented by online self and children. Used to guarantee that 156 * parents are not offlined before their children. 157 */ 158 atomic_t online_cnt; 159 160 /* percpu_ref killing and RCU release */ 161 struct work_struct destroy_work; 162 struct rcu_work destroy_rwork; 163 164 /* 165 * PI: the parent css. Placed here for cache proximity to following 166 * fields of the containing structure. 167 */ 168 struct cgroup_subsys_state *parent; 169 }; 170 171 /* 172 * A css_set is a structure holding pointers to a set of 173 * cgroup_subsys_state objects. This saves space in the task struct 174 * object and speeds up fork()/exit(), since a single inc/dec and a 175 * list_add()/del() can bump the reference count on the entire cgroup 176 * set for a task. 177 */ 178 struct css_set { 179 /* 180 * Set of subsystem states, one for each subsystem. This array is 181 * immutable after creation apart from the init_css_set during 182 * subsystem registration (at boot time). 183 */ 184 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 185 186 /* reference count */ 187 refcount_t refcount; 188 189 /* 190 * For a domain cgroup, the following points to self. If threaded, 191 * to the matching cset of the nearest domain ancestor. The 192 * dom_cset provides access to the domain cgroup and its csses to 193 * which domain level resource consumptions should be charged. 194 */ 195 struct css_set *dom_cset; 196 197 /* the default cgroup associated with this css_set */ 198 struct cgroup *dfl_cgrp; 199 200 /* internal task count, protected by css_set_lock */ 201 int nr_tasks; 202 203 /* 204 * Lists running through all tasks using this cgroup group. 205 * mg_tasks lists tasks which belong to this cset but are in the 206 * process of being migrated out or in. Protected by 207 * css_set_rwsem, but, during migration, once tasks are moved to 208 * mg_tasks, it can be read safely while holding cgroup_mutex. 209 */ 210 struct list_head tasks; 211 struct list_head mg_tasks; 212 213 /* all css_task_iters currently walking this cset */ 214 struct list_head task_iters; 215 216 /* 217 * On the default hierarhcy, ->subsys[ssid] may point to a css 218 * attached to an ancestor instead of the cgroup this css_set is 219 * associated with. The following node is anchored at 220 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 221 * iterate through all css's attached to a given cgroup. 222 */ 223 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 224 225 /* all threaded csets whose ->dom_cset points to this cset */ 226 struct list_head threaded_csets; 227 struct list_head threaded_csets_node; 228 229 /* 230 * List running through all cgroup groups in the same hash 231 * slot. Protected by css_set_lock 232 */ 233 struct hlist_node hlist; 234 235 /* 236 * List of cgrp_cset_links pointing at cgroups referenced from this 237 * css_set. Protected by css_set_lock. 238 */ 239 struct list_head cgrp_links; 240 241 /* 242 * List of csets participating in the on-going migration either as 243 * source or destination. Protected by cgroup_mutex. 244 */ 245 struct list_head mg_preload_node; 246 struct list_head mg_node; 247 248 /* 249 * If this cset is acting as the source of migration the following 250 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 251 * respectively the source and destination cgroups of the on-going 252 * migration. mg_dst_cset is the destination cset the target tasks 253 * on this cset should be migrated to. Protected by cgroup_mutex. 254 */ 255 struct cgroup *mg_src_cgrp; 256 struct cgroup *mg_dst_cgrp; 257 struct css_set *mg_dst_cset; 258 259 /* dead and being drained, ignore for migration */ 260 bool dead; 261 262 /* For RCU-protected deletion */ 263 struct rcu_head rcu_head; 264 }; 265 266 struct cgroup_base_stat { 267 struct task_cputime cputime; 268 }; 269 270 /* 271 * rstat - cgroup scalable recursive statistics. Accounting is done 272 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the 273 * hierarchy on reads. 274 * 275 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are 276 * linked into the updated tree. On the following read, propagation only 277 * considers and consumes the updated tree. This makes reading O(the 278 * number of descendants which have been active since last read) instead of 279 * O(the total number of descendants). 280 * 281 * This is important because there can be a lot of (draining) cgroups which 282 * aren't active and stat may be read frequently. The combination can 283 * become very expensive. By propagating selectively, increasing reading 284 * frequency decreases the cost of each read. 285 * 286 * This struct hosts both the fields which implement the above - 287 * updated_children and updated_next - and the fields which track basic 288 * resource statistics on top of it - bsync, bstat and last_bstat. 289 */ 290 struct cgroup_rstat_cpu { 291 /* 292 * ->bsync protects ->bstat. These are the only fields which get 293 * updated in the hot path. 294 */ 295 struct u64_stats_sync bsync; 296 struct cgroup_base_stat bstat; 297 298 /* 299 * Snapshots at the last reading. These are used to calculate the 300 * deltas to propagate to the global counters. 301 */ 302 struct cgroup_base_stat last_bstat; 303 304 /* 305 * Child cgroups with stat updates on this cpu since the last read 306 * are linked on the parent's ->updated_children through 307 * ->updated_next. 308 * 309 * In addition to being more compact, singly-linked list pointing 310 * to the cgroup makes it unnecessary for each per-cpu struct to 311 * point back to the associated cgroup. 312 * 313 * Protected by per-cpu cgroup_rstat_cpu_lock. 314 */ 315 struct cgroup *updated_children; /* terminated by self cgroup */ 316 struct cgroup *updated_next; /* NULL iff not on the list */ 317 }; 318 319 struct cgroup { 320 /* self css with NULL ->ss, points back to this cgroup */ 321 struct cgroup_subsys_state self; 322 323 unsigned long flags; /* "unsigned long" so bitops work */ 324 325 /* 326 * idr allocated in-hierarchy ID. 327 * 328 * ID 0 is not used, the ID of the root cgroup is always 1, and a 329 * new cgroup will be assigned with a smallest available ID. 330 * 331 * Allocating/Removing ID must be protected by cgroup_mutex. 332 */ 333 int id; 334 335 /* 336 * The depth this cgroup is at. The root is at depth zero and each 337 * step down the hierarchy increments the level. This along with 338 * ancestor_ids[] can determine whether a given cgroup is a 339 * descendant of another without traversing the hierarchy. 340 */ 341 int level; 342 343 /* Maximum allowed descent tree depth */ 344 int max_depth; 345 346 /* 347 * Keep track of total numbers of visible and dying descent cgroups. 348 * Dying cgroups are cgroups which were deleted by a user, 349 * but are still existing because someone else is holding a reference. 350 * max_descendants is a maximum allowed number of descent cgroups. 351 */ 352 int nr_descendants; 353 int nr_dying_descendants; 354 int max_descendants; 355 356 /* 357 * Each non-empty css_set associated with this cgroup contributes 358 * one to nr_populated_csets. The counter is zero iff this cgroup 359 * doesn't have any tasks. 360 * 361 * All children which have non-zero nr_populated_csets and/or 362 * nr_populated_children of their own contribute one to either 363 * nr_populated_domain_children or nr_populated_threaded_children 364 * depending on their type. Each counter is zero iff all cgroups 365 * of the type in the subtree proper don't have any tasks. 366 */ 367 int nr_populated_csets; 368 int nr_populated_domain_children; 369 int nr_populated_threaded_children; 370 371 int nr_threaded_children; /* # of live threaded child cgroups */ 372 373 struct kernfs_node *kn; /* cgroup kernfs entry */ 374 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 375 struct cgroup_file events_file; /* handle for "cgroup.events" */ 376 377 /* 378 * The bitmask of subsystems enabled on the child cgroups. 379 * ->subtree_control is the one configured through 380 * "cgroup.subtree_control" while ->child_ss_mask is the effective 381 * one which may have more subsystems enabled. Controller knobs 382 * are made available iff it's enabled in ->subtree_control. 383 */ 384 u16 subtree_control; 385 u16 subtree_ss_mask; 386 u16 old_subtree_control; 387 u16 old_subtree_ss_mask; 388 389 /* Private pointers for each registered subsystem */ 390 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 391 392 struct cgroup_root *root; 393 394 /* 395 * List of cgrp_cset_links pointing at css_sets with tasks in this 396 * cgroup. Protected by css_set_lock. 397 */ 398 struct list_head cset_links; 399 400 /* 401 * On the default hierarchy, a css_set for a cgroup with some 402 * susbsys disabled will point to css's which are associated with 403 * the closest ancestor which has the subsys enabled. The 404 * following lists all css_sets which point to this cgroup's css 405 * for the given subsystem. 406 */ 407 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 408 409 /* 410 * If !threaded, self. If threaded, it points to the nearest 411 * domain ancestor. Inside a threaded subtree, cgroups are exempt 412 * from process granularity and no-internal-task constraint. 413 * Domain level resource consumptions which aren't tied to a 414 * specific task are charged to the dom_cgrp. 415 */ 416 struct cgroup *dom_cgrp; 417 struct cgroup *old_dom_cgrp; /* used while enabling threaded */ 418 419 /* per-cpu recursive resource statistics */ 420 struct cgroup_rstat_cpu __percpu *rstat_cpu; 421 struct list_head rstat_css_list; 422 423 /* cgroup basic resource statistics */ 424 struct cgroup_base_stat pending_bstat; /* pending from children */ 425 struct cgroup_base_stat bstat; 426 struct prev_cputime prev_cputime; /* for printing out cputime */ 427 428 /* 429 * list of pidlists, up to two for each namespace (one for procs, one 430 * for tasks); created on demand. 431 */ 432 struct list_head pidlists; 433 struct mutex pidlist_mutex; 434 435 /* used to wait for offlining of csses */ 436 wait_queue_head_t offline_waitq; 437 438 /* used to schedule release agent */ 439 struct work_struct release_agent_work; 440 441 /* used to track pressure stalls */ 442 struct psi_group psi; 443 444 /* used to store eBPF programs */ 445 struct cgroup_bpf bpf; 446 447 /* If there is block congestion on this cgroup. */ 448 atomic_t congestion_count; 449 450 /* ids of the ancestors at each level including self */ 451 int ancestor_ids[]; 452 }; 453 454 /* 455 * A cgroup_root represents the root of a cgroup hierarchy, and may be 456 * associated with a kernfs_root to form an active hierarchy. This is 457 * internal to cgroup core. Don't access directly from controllers. 458 */ 459 struct cgroup_root { 460 struct kernfs_root *kf_root; 461 462 /* The bitmask of subsystems attached to this hierarchy */ 463 unsigned int subsys_mask; 464 465 /* Unique id for this hierarchy. */ 466 int hierarchy_id; 467 468 /* The root cgroup. Root is destroyed on its release. */ 469 struct cgroup cgrp; 470 471 /* for cgrp->ancestor_ids[0] */ 472 int cgrp_ancestor_id_storage; 473 474 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 475 atomic_t nr_cgrps; 476 477 /* A list running through the active hierarchies */ 478 struct list_head root_list; 479 480 /* Hierarchy-specific flags */ 481 unsigned int flags; 482 483 /* IDs for cgroups in this hierarchy */ 484 struct idr cgroup_idr; 485 486 /* The path to use for release notifications. */ 487 char release_agent_path[PATH_MAX]; 488 489 /* The name for this hierarchy - may be empty */ 490 char name[MAX_CGROUP_ROOT_NAMELEN]; 491 }; 492 493 /* 494 * struct cftype: handler definitions for cgroup control files 495 * 496 * When reading/writing to a file: 497 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 498 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 499 */ 500 struct cftype { 501 /* 502 * By convention, the name should begin with the name of the 503 * subsystem, followed by a period. Zero length string indicates 504 * end of cftype array. 505 */ 506 char name[MAX_CFTYPE_NAME]; 507 unsigned long private; 508 509 /* 510 * The maximum length of string, excluding trailing nul, that can 511 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 512 */ 513 size_t max_write_len; 514 515 /* CFTYPE_* flags */ 516 unsigned int flags; 517 518 /* 519 * If non-zero, should contain the offset from the start of css to 520 * a struct cgroup_file field. cgroup will record the handle of 521 * the created file into it. The recorded handle can be used as 522 * long as the containing css remains accessible. 523 */ 524 unsigned int file_offset; 525 526 /* 527 * Fields used for internal bookkeeping. Initialized automatically 528 * during registration. 529 */ 530 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 531 struct list_head node; /* anchored at ss->cfts */ 532 struct kernfs_ops *kf_ops; 533 534 int (*open)(struct kernfs_open_file *of); 535 void (*release)(struct kernfs_open_file *of); 536 537 /* 538 * read_u64() is a shortcut for the common case of returning a 539 * single integer. Use it in place of read() 540 */ 541 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 542 /* 543 * read_s64() is a signed version of read_u64() 544 */ 545 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 546 547 /* generic seq_file read interface */ 548 int (*seq_show)(struct seq_file *sf, void *v); 549 550 /* optional ops, implement all or none */ 551 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 552 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 553 void (*seq_stop)(struct seq_file *sf, void *v); 554 555 /* 556 * write_u64() is a shortcut for the common case of accepting 557 * a single integer (as parsed by simple_strtoull) from 558 * userspace. Use in place of write(); return 0 or error. 559 */ 560 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 561 u64 val); 562 /* 563 * write_s64() is a signed version of write_u64() 564 */ 565 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 566 s64 val); 567 568 /* 569 * write() is the generic write callback which maps directly to 570 * kernfs write operation and overrides all other operations. 571 * Maximum write size is determined by ->max_write_len. Use 572 * of_css/cft() to access the associated css and cft. 573 */ 574 ssize_t (*write)(struct kernfs_open_file *of, 575 char *buf, size_t nbytes, loff_t off); 576 577 #ifdef CONFIG_DEBUG_LOCK_ALLOC 578 struct lock_class_key lockdep_key; 579 #endif 580 }; 581 582 /* 583 * Control Group subsystem type. 584 * See Documentation/cgroup-v1/cgroups.txt for details 585 */ 586 struct cgroup_subsys { 587 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 588 int (*css_online)(struct cgroup_subsys_state *css); 589 void (*css_offline)(struct cgroup_subsys_state *css); 590 void (*css_released)(struct cgroup_subsys_state *css); 591 void (*css_free)(struct cgroup_subsys_state *css); 592 void (*css_reset)(struct cgroup_subsys_state *css); 593 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu); 594 int (*css_extra_stat_show)(struct seq_file *seq, 595 struct cgroup_subsys_state *css); 596 597 int (*can_attach)(struct cgroup_taskset *tset); 598 void (*cancel_attach)(struct cgroup_taskset *tset); 599 void (*attach)(struct cgroup_taskset *tset); 600 void (*post_attach)(void); 601 int (*can_fork)(struct task_struct *task); 602 void (*cancel_fork)(struct task_struct *task); 603 void (*fork)(struct task_struct *task); 604 void (*exit)(struct task_struct *task); 605 void (*free)(struct task_struct *task); 606 void (*bind)(struct cgroup_subsys_state *root_css); 607 608 bool early_init:1; 609 610 /* 611 * If %true, the controller, on the default hierarchy, doesn't show 612 * up in "cgroup.controllers" or "cgroup.subtree_control", is 613 * implicitly enabled on all cgroups on the default hierarchy, and 614 * bypasses the "no internal process" constraint. This is for 615 * utility type controllers which is transparent to userland. 616 * 617 * An implicit controller can be stolen from the default hierarchy 618 * anytime and thus must be okay with offline csses from previous 619 * hierarchies coexisting with csses for the current one. 620 */ 621 bool implicit_on_dfl:1; 622 623 /* 624 * If %true, the controller, supports threaded mode on the default 625 * hierarchy. In a threaded subtree, both process granularity and 626 * no-internal-process constraint are ignored and a threaded 627 * controllers should be able to handle that. 628 * 629 * Note that as an implicit controller is automatically enabled on 630 * all cgroups on the default hierarchy, it should also be 631 * threaded. implicit && !threaded is not supported. 632 */ 633 bool threaded:1; 634 635 /* 636 * If %false, this subsystem is properly hierarchical - 637 * configuration, resource accounting and restriction on a parent 638 * cgroup cover those of its children. If %true, hierarchy support 639 * is broken in some ways - some subsystems ignore hierarchy 640 * completely while others are only implemented half-way. 641 * 642 * It's now disallowed to create nested cgroups if the subsystem is 643 * broken and cgroup core will emit a warning message on such 644 * cases. Eventually, all subsystems will be made properly 645 * hierarchical and this will go away. 646 */ 647 bool broken_hierarchy:1; 648 bool warned_broken_hierarchy:1; 649 650 /* the following two fields are initialized automtically during boot */ 651 int id; 652 const char *name; 653 654 /* optional, initialized automatically during boot if not set */ 655 const char *legacy_name; 656 657 /* link to parent, protected by cgroup_lock() */ 658 struct cgroup_root *root; 659 660 /* idr for css->id */ 661 struct idr css_idr; 662 663 /* 664 * List of cftypes. Each entry is the first entry of an array 665 * terminated by zero length name. 666 */ 667 struct list_head cfts; 668 669 /* 670 * Base cftypes which are automatically registered. The two can 671 * point to the same array. 672 */ 673 struct cftype *dfl_cftypes; /* for the default hierarchy */ 674 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 675 676 /* 677 * A subsystem may depend on other subsystems. When such subsystem 678 * is enabled on a cgroup, the depended-upon subsystems are enabled 679 * together if available. Subsystems enabled due to dependency are 680 * not visible to userland until explicitly enabled. The following 681 * specifies the mask of subsystems that this one depends on. 682 */ 683 unsigned int depends_on; 684 }; 685 686 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 687 688 /** 689 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 690 * @tsk: target task 691 * 692 * Allows cgroup operations to synchronize against threadgroup changes 693 * using a percpu_rw_semaphore. 694 */ 695 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 696 { 697 percpu_down_read(&cgroup_threadgroup_rwsem); 698 } 699 700 /** 701 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 702 * @tsk: target task 703 * 704 * Counterpart of cgroup_threadcgroup_change_begin(). 705 */ 706 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 707 { 708 percpu_up_read(&cgroup_threadgroup_rwsem); 709 } 710 711 #else /* CONFIG_CGROUPS */ 712 713 #define CGROUP_SUBSYS_COUNT 0 714 715 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 716 { 717 might_sleep(); 718 } 719 720 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 721 722 #endif /* CONFIG_CGROUPS */ 723 724 #ifdef CONFIG_SOCK_CGROUP_DATA 725 726 /* 727 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 728 * per-socket cgroup information except for memcg association. 729 * 730 * On legacy hierarchies, net_prio and net_cls controllers directly set 731 * attributes on each sock which can then be tested by the network layer. 732 * On the default hierarchy, each sock is associated with the cgroup it was 733 * created in and the networking layer can match the cgroup directly. 734 * 735 * To avoid carrying all three cgroup related fields separately in sock, 736 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 737 * On boot, sock_cgroup_data records the cgroup that the sock was created 738 * in so that cgroup2 matches can be made; however, once either net_prio or 739 * net_cls starts being used, the area is overriden to carry prioidx and/or 740 * classid. The two modes are distinguished by whether the lowest bit is 741 * set. Clear bit indicates cgroup pointer while set bit prioidx and 742 * classid. 743 * 744 * While userland may start using net_prio or net_cls at any time, once 745 * either is used, cgroup2 matching no longer works. There is no reason to 746 * mix the two and this is in line with how legacy and v2 compatibility is 747 * handled. On mode switch, cgroup references which are already being 748 * pointed to by socks may be leaked. While this can be remedied by adding 749 * synchronization around sock_cgroup_data, given that the number of leaked 750 * cgroups is bound and highly unlikely to be high, this seems to be the 751 * better trade-off. 752 */ 753 struct sock_cgroup_data { 754 union { 755 #ifdef __LITTLE_ENDIAN 756 struct { 757 u8 is_data; 758 u8 padding; 759 u16 prioidx; 760 u32 classid; 761 } __packed; 762 #else 763 struct { 764 u32 classid; 765 u16 prioidx; 766 u8 padding; 767 u8 is_data; 768 } __packed; 769 #endif 770 u64 val; 771 }; 772 }; 773 774 /* 775 * There's a theoretical window where the following accessors race with 776 * updaters and return part of the previous pointer as the prioidx or 777 * classid. Such races are short-lived and the result isn't critical. 778 */ 779 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd) 780 { 781 /* fallback to 1 which is always the ID of the root cgroup */ 782 return (skcd->is_data & 1) ? skcd->prioidx : 1; 783 } 784 785 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd) 786 { 787 /* fallback to 0 which is the unconfigured default classid */ 788 return (skcd->is_data & 1) ? skcd->classid : 0; 789 } 790 791 /* 792 * If invoked concurrently, the updaters may clobber each other. The 793 * caller is responsible for synchronization. 794 */ 795 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 796 u16 prioidx) 797 { 798 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 799 800 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 801 return; 802 803 if (!(skcd_buf.is_data & 1)) { 804 skcd_buf.val = 0; 805 skcd_buf.is_data = 1; 806 } 807 808 skcd_buf.prioidx = prioidx; 809 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 810 } 811 812 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 813 u32 classid) 814 { 815 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 816 817 if (sock_cgroup_classid(&skcd_buf) == classid) 818 return; 819 820 if (!(skcd_buf.is_data & 1)) { 821 skcd_buf.val = 0; 822 skcd_buf.is_data = 1; 823 } 824 825 skcd_buf.classid = classid; 826 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 827 } 828 829 #else /* CONFIG_SOCK_CGROUP_DATA */ 830 831 struct sock_cgroup_data { 832 }; 833 834 #endif /* CONFIG_SOCK_CGROUP_DATA */ 835 836 #endif /* _LINUX_CGROUP_DEFS_H */ 837