xref: /openbmc/linux/include/linux/cgroup-defs.h (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 	 */
91 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92 
93 	/*
94 	 * Enable legacy local memory.events.
95 	 */
96 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97 };
98 
99 /* cftype->flags */
100 enum {
101 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
102 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
103 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
104 
105 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
106 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
107 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
108 
109 	/* internal flags, do not use outside cgroup core proper */
110 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
111 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
112 };
113 
114 /*
115  * cgroup_file is the handle for a file instance created in a cgroup which
116  * is used, for example, to generate file changed notifications.  This can
117  * be obtained by setting cftype->file_offset.
118  */
119 struct cgroup_file {
120 	/* do not access any fields from outside cgroup core */
121 	struct kernfs_node *kn;
122 	unsigned long notified_at;
123 	struct timer_list notify_timer;
124 };
125 
126 /*
127  * Per-subsystem/per-cgroup state maintained by the system.  This is the
128  * fundamental structural building block that controllers deal with.
129  *
130  * Fields marked with "PI:" are public and immutable and may be accessed
131  * directly without synchronization.
132  */
133 struct cgroup_subsys_state {
134 	/* PI: the cgroup that this css is attached to */
135 	struct cgroup *cgroup;
136 
137 	/* PI: the cgroup subsystem that this css is attached to */
138 	struct cgroup_subsys *ss;
139 
140 	/* reference count - access via css_[try]get() and css_put() */
141 	struct percpu_ref refcnt;
142 
143 	/* siblings list anchored at the parent's ->children */
144 	struct list_head sibling;
145 	struct list_head children;
146 
147 	/* flush target list anchored at cgrp->rstat_css_list */
148 	struct list_head rstat_css_node;
149 
150 	/*
151 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
152 	 * matching css can be looked up using css_from_id().
153 	 */
154 	int id;
155 
156 	unsigned int flags;
157 
158 	/*
159 	 * Monotonically increasing unique serial number which defines a
160 	 * uniform order among all csses.  It's guaranteed that all
161 	 * ->children lists are in the ascending order of ->serial_nr and
162 	 * used to allow interrupting and resuming iterations.
163 	 */
164 	u64 serial_nr;
165 
166 	/*
167 	 * Incremented by online self and children.  Used to guarantee that
168 	 * parents are not offlined before their children.
169 	 */
170 	atomic_t online_cnt;
171 
172 	/* percpu_ref killing and RCU release */
173 	struct work_struct destroy_work;
174 	struct rcu_work destroy_rwork;
175 
176 	/*
177 	 * PI: the parent css.	Placed here for cache proximity to following
178 	 * fields of the containing structure.
179 	 */
180 	struct cgroup_subsys_state *parent;
181 };
182 
183 /*
184  * A css_set is a structure holding pointers to a set of
185  * cgroup_subsys_state objects. This saves space in the task struct
186  * object and speeds up fork()/exit(), since a single inc/dec and a
187  * list_add()/del() can bump the reference count on the entire cgroup
188  * set for a task.
189  */
190 struct css_set {
191 	/*
192 	 * Set of subsystem states, one for each subsystem. This array is
193 	 * immutable after creation apart from the init_css_set during
194 	 * subsystem registration (at boot time).
195 	 */
196 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
197 
198 	/* reference count */
199 	refcount_t refcount;
200 
201 	/*
202 	 * For a domain cgroup, the following points to self.  If threaded,
203 	 * to the matching cset of the nearest domain ancestor.  The
204 	 * dom_cset provides access to the domain cgroup and its csses to
205 	 * which domain level resource consumptions should be charged.
206 	 */
207 	struct css_set *dom_cset;
208 
209 	/* the default cgroup associated with this css_set */
210 	struct cgroup *dfl_cgrp;
211 
212 	/* internal task count, protected by css_set_lock */
213 	int nr_tasks;
214 
215 	/*
216 	 * Lists running through all tasks using this cgroup group.
217 	 * mg_tasks lists tasks which belong to this cset but are in the
218 	 * process of being migrated out or in.  Protected by
219 	 * css_set_rwsem, but, during migration, once tasks are moved to
220 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
221 	 */
222 	struct list_head tasks;
223 	struct list_head mg_tasks;
224 	struct list_head dying_tasks;
225 
226 	/* all css_task_iters currently walking this cset */
227 	struct list_head task_iters;
228 
229 	/*
230 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
231 	 * attached to an ancestor instead of the cgroup this css_set is
232 	 * associated with.  The following node is anchored at
233 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
234 	 * iterate through all css's attached to a given cgroup.
235 	 */
236 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
237 
238 	/* all threaded csets whose ->dom_cset points to this cset */
239 	struct list_head threaded_csets;
240 	struct list_head threaded_csets_node;
241 
242 	/*
243 	 * List running through all cgroup groups in the same hash
244 	 * slot. Protected by css_set_lock
245 	 */
246 	struct hlist_node hlist;
247 
248 	/*
249 	 * List of cgrp_cset_links pointing at cgroups referenced from this
250 	 * css_set.  Protected by css_set_lock.
251 	 */
252 	struct list_head cgrp_links;
253 
254 	/*
255 	 * List of csets participating in the on-going migration either as
256 	 * source or destination.  Protected by cgroup_mutex.
257 	 */
258 	struct list_head mg_preload_node;
259 	struct list_head mg_node;
260 
261 	/*
262 	 * If this cset is acting as the source of migration the following
263 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
264 	 * respectively the source and destination cgroups of the on-going
265 	 * migration.  mg_dst_cset is the destination cset the target tasks
266 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
267 	 */
268 	struct cgroup *mg_src_cgrp;
269 	struct cgroup *mg_dst_cgrp;
270 	struct css_set *mg_dst_cset;
271 
272 	/* dead and being drained, ignore for migration */
273 	bool dead;
274 
275 	/* For RCU-protected deletion */
276 	struct rcu_head rcu_head;
277 };
278 
279 struct cgroup_base_stat {
280 	struct task_cputime cputime;
281 };
282 
283 /*
284  * rstat - cgroup scalable recursive statistics.  Accounting is done
285  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
286  * hierarchy on reads.
287  *
288  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
289  * linked into the updated tree.  On the following read, propagation only
290  * considers and consumes the updated tree.  This makes reading O(the
291  * number of descendants which have been active since last read) instead of
292  * O(the total number of descendants).
293  *
294  * This is important because there can be a lot of (draining) cgroups which
295  * aren't active and stat may be read frequently.  The combination can
296  * become very expensive.  By propagating selectively, increasing reading
297  * frequency decreases the cost of each read.
298  *
299  * This struct hosts both the fields which implement the above -
300  * updated_children and updated_next - and the fields which track basic
301  * resource statistics on top of it - bsync, bstat and last_bstat.
302  */
303 struct cgroup_rstat_cpu {
304 	/*
305 	 * ->bsync protects ->bstat.  These are the only fields which get
306 	 * updated in the hot path.
307 	 */
308 	struct u64_stats_sync bsync;
309 	struct cgroup_base_stat bstat;
310 
311 	/*
312 	 * Snapshots at the last reading.  These are used to calculate the
313 	 * deltas to propagate to the global counters.
314 	 */
315 	struct cgroup_base_stat last_bstat;
316 
317 	/*
318 	 * Child cgroups with stat updates on this cpu since the last read
319 	 * are linked on the parent's ->updated_children through
320 	 * ->updated_next.
321 	 *
322 	 * In addition to being more compact, singly-linked list pointing
323 	 * to the cgroup makes it unnecessary for each per-cpu struct to
324 	 * point back to the associated cgroup.
325 	 *
326 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
327 	 */
328 	struct cgroup *updated_children;	/* terminated by self cgroup */
329 	struct cgroup *updated_next;		/* NULL iff not on the list */
330 };
331 
332 struct cgroup_freezer_state {
333 	/* Should the cgroup and its descendants be frozen. */
334 	bool freeze;
335 
336 	/* Should the cgroup actually be frozen? */
337 	int e_freeze;
338 
339 	/* Fields below are protected by css_set_lock */
340 
341 	/* Number of frozen descendant cgroups */
342 	int nr_frozen_descendants;
343 
344 	/*
345 	 * Number of tasks, which are counted as frozen:
346 	 * frozen, SIGSTOPped, and PTRACEd.
347 	 */
348 	int nr_frozen_tasks;
349 };
350 
351 struct cgroup {
352 	/* self css with NULL ->ss, points back to this cgroup */
353 	struct cgroup_subsys_state self;
354 
355 	unsigned long flags;		/* "unsigned long" so bitops work */
356 
357 	/*
358 	 * The depth this cgroup is at.  The root is at depth zero and each
359 	 * step down the hierarchy increments the level.  This along with
360 	 * ancestor_ids[] can determine whether a given cgroup is a
361 	 * descendant of another without traversing the hierarchy.
362 	 */
363 	int level;
364 
365 	/* Maximum allowed descent tree depth */
366 	int max_depth;
367 
368 	/*
369 	 * Keep track of total numbers of visible and dying descent cgroups.
370 	 * Dying cgroups are cgroups which were deleted by a user,
371 	 * but are still existing because someone else is holding a reference.
372 	 * max_descendants is a maximum allowed number of descent cgroups.
373 	 *
374 	 * nr_descendants and nr_dying_descendants are protected
375 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
376 	 * any of cgroup_mutex and css_set_lock; for writing both locks
377 	 * should be held.
378 	 */
379 	int nr_descendants;
380 	int nr_dying_descendants;
381 	int max_descendants;
382 
383 	/*
384 	 * Each non-empty css_set associated with this cgroup contributes
385 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
386 	 * doesn't have any tasks.
387 	 *
388 	 * All children which have non-zero nr_populated_csets and/or
389 	 * nr_populated_children of their own contribute one to either
390 	 * nr_populated_domain_children or nr_populated_threaded_children
391 	 * depending on their type.  Each counter is zero iff all cgroups
392 	 * of the type in the subtree proper don't have any tasks.
393 	 */
394 	int nr_populated_csets;
395 	int nr_populated_domain_children;
396 	int nr_populated_threaded_children;
397 
398 	int nr_threaded_children;	/* # of live threaded child cgroups */
399 
400 	struct kernfs_node *kn;		/* cgroup kernfs entry */
401 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
402 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
403 
404 	/*
405 	 * The bitmask of subsystems enabled on the child cgroups.
406 	 * ->subtree_control is the one configured through
407 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
408 	 * one which may have more subsystems enabled.  Controller knobs
409 	 * are made available iff it's enabled in ->subtree_control.
410 	 */
411 	u16 subtree_control;
412 	u16 subtree_ss_mask;
413 	u16 old_subtree_control;
414 	u16 old_subtree_ss_mask;
415 
416 	/* Private pointers for each registered subsystem */
417 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
418 
419 	struct cgroup_root *root;
420 
421 	/*
422 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
423 	 * cgroup.  Protected by css_set_lock.
424 	 */
425 	struct list_head cset_links;
426 
427 	/*
428 	 * On the default hierarchy, a css_set for a cgroup with some
429 	 * susbsys disabled will point to css's which are associated with
430 	 * the closest ancestor which has the subsys enabled.  The
431 	 * following lists all css_sets which point to this cgroup's css
432 	 * for the given subsystem.
433 	 */
434 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
435 
436 	/*
437 	 * If !threaded, self.  If threaded, it points to the nearest
438 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
439 	 * from process granularity and no-internal-task constraint.
440 	 * Domain level resource consumptions which aren't tied to a
441 	 * specific task are charged to the dom_cgrp.
442 	 */
443 	struct cgroup *dom_cgrp;
444 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
445 
446 	/* per-cpu recursive resource statistics */
447 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
448 	struct list_head rstat_css_list;
449 
450 	/* cgroup basic resource statistics */
451 	struct cgroup_base_stat last_bstat;
452 	struct cgroup_base_stat bstat;
453 	struct prev_cputime prev_cputime;	/* for printing out cputime */
454 
455 	/*
456 	 * list of pidlists, up to two for each namespace (one for procs, one
457 	 * for tasks); created on demand.
458 	 */
459 	struct list_head pidlists;
460 	struct mutex pidlist_mutex;
461 
462 	/* used to wait for offlining of csses */
463 	wait_queue_head_t offline_waitq;
464 
465 	/* used to schedule release agent */
466 	struct work_struct release_agent_work;
467 
468 	/* used to track pressure stalls */
469 	struct psi_group psi;
470 
471 	/* used to store eBPF programs */
472 	struct cgroup_bpf bpf;
473 
474 	/* If there is block congestion on this cgroup. */
475 	atomic_t congestion_count;
476 
477 	/* Used to store internal freezer state */
478 	struct cgroup_freezer_state freezer;
479 
480 	/* ids of the ancestors at each level including self */
481 	u64 ancestor_ids[];
482 };
483 
484 /*
485  * A cgroup_root represents the root of a cgroup hierarchy, and may be
486  * associated with a kernfs_root to form an active hierarchy.  This is
487  * internal to cgroup core.  Don't access directly from controllers.
488  */
489 struct cgroup_root {
490 	struct kernfs_root *kf_root;
491 
492 	/* The bitmask of subsystems attached to this hierarchy */
493 	unsigned int subsys_mask;
494 
495 	/* Unique id for this hierarchy. */
496 	int hierarchy_id;
497 
498 	/* The root cgroup.  Root is destroyed on its release. */
499 	struct cgroup cgrp;
500 
501 	/* for cgrp->ancestor_ids[0] */
502 	u64 cgrp_ancestor_id_storage;
503 
504 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
505 	atomic_t nr_cgrps;
506 
507 	/* A list running through the active hierarchies */
508 	struct list_head root_list;
509 
510 	/* Hierarchy-specific flags */
511 	unsigned int flags;
512 
513 	/* The path to use for release notifications. */
514 	char release_agent_path[PATH_MAX];
515 
516 	/* The name for this hierarchy - may be empty */
517 	char name[MAX_CGROUP_ROOT_NAMELEN];
518 };
519 
520 /*
521  * struct cftype: handler definitions for cgroup control files
522  *
523  * When reading/writing to a file:
524  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
525  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
526  */
527 struct cftype {
528 	/*
529 	 * By convention, the name should begin with the name of the
530 	 * subsystem, followed by a period.  Zero length string indicates
531 	 * end of cftype array.
532 	 */
533 	char name[MAX_CFTYPE_NAME];
534 	unsigned long private;
535 
536 	/*
537 	 * The maximum length of string, excluding trailing nul, that can
538 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
539 	 */
540 	size_t max_write_len;
541 
542 	/* CFTYPE_* flags */
543 	unsigned int flags;
544 
545 	/*
546 	 * If non-zero, should contain the offset from the start of css to
547 	 * a struct cgroup_file field.  cgroup will record the handle of
548 	 * the created file into it.  The recorded handle can be used as
549 	 * long as the containing css remains accessible.
550 	 */
551 	unsigned int file_offset;
552 
553 	/*
554 	 * Fields used for internal bookkeeping.  Initialized automatically
555 	 * during registration.
556 	 */
557 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
558 	struct list_head node;		/* anchored at ss->cfts */
559 	struct kernfs_ops *kf_ops;
560 
561 	int (*open)(struct kernfs_open_file *of);
562 	void (*release)(struct kernfs_open_file *of);
563 
564 	/*
565 	 * read_u64() is a shortcut for the common case of returning a
566 	 * single integer. Use it in place of read()
567 	 */
568 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
569 	/*
570 	 * read_s64() is a signed version of read_u64()
571 	 */
572 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
573 
574 	/* generic seq_file read interface */
575 	int (*seq_show)(struct seq_file *sf, void *v);
576 
577 	/* optional ops, implement all or none */
578 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
579 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
580 	void (*seq_stop)(struct seq_file *sf, void *v);
581 
582 	/*
583 	 * write_u64() is a shortcut for the common case of accepting
584 	 * a single integer (as parsed by simple_strtoull) from
585 	 * userspace. Use in place of write(); return 0 or error.
586 	 */
587 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
588 			 u64 val);
589 	/*
590 	 * write_s64() is a signed version of write_u64()
591 	 */
592 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
593 			 s64 val);
594 
595 	/*
596 	 * write() is the generic write callback which maps directly to
597 	 * kernfs write operation and overrides all other operations.
598 	 * Maximum write size is determined by ->max_write_len.  Use
599 	 * of_css/cft() to access the associated css and cft.
600 	 */
601 	ssize_t (*write)(struct kernfs_open_file *of,
602 			 char *buf, size_t nbytes, loff_t off);
603 
604 	__poll_t (*poll)(struct kernfs_open_file *of,
605 			 struct poll_table_struct *pt);
606 
607 #ifdef CONFIG_DEBUG_LOCK_ALLOC
608 	struct lock_class_key	lockdep_key;
609 #endif
610 };
611 
612 /*
613  * Control Group subsystem type.
614  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
615  */
616 struct cgroup_subsys {
617 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
618 	int (*css_online)(struct cgroup_subsys_state *css);
619 	void (*css_offline)(struct cgroup_subsys_state *css);
620 	void (*css_released)(struct cgroup_subsys_state *css);
621 	void (*css_free)(struct cgroup_subsys_state *css);
622 	void (*css_reset)(struct cgroup_subsys_state *css);
623 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
624 	int (*css_extra_stat_show)(struct seq_file *seq,
625 				   struct cgroup_subsys_state *css);
626 
627 	int (*can_attach)(struct cgroup_taskset *tset);
628 	void (*cancel_attach)(struct cgroup_taskset *tset);
629 	void (*attach)(struct cgroup_taskset *tset);
630 	void (*post_attach)(void);
631 	int (*can_fork)(struct task_struct *task);
632 	void (*cancel_fork)(struct task_struct *task);
633 	void (*fork)(struct task_struct *task);
634 	void (*exit)(struct task_struct *task);
635 	void (*release)(struct task_struct *task);
636 	void (*bind)(struct cgroup_subsys_state *root_css);
637 
638 	bool early_init:1;
639 
640 	/*
641 	 * If %true, the controller, on the default hierarchy, doesn't show
642 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
643 	 * implicitly enabled on all cgroups on the default hierarchy, and
644 	 * bypasses the "no internal process" constraint.  This is for
645 	 * utility type controllers which is transparent to userland.
646 	 *
647 	 * An implicit controller can be stolen from the default hierarchy
648 	 * anytime and thus must be okay with offline csses from previous
649 	 * hierarchies coexisting with csses for the current one.
650 	 */
651 	bool implicit_on_dfl:1;
652 
653 	/*
654 	 * If %true, the controller, supports threaded mode on the default
655 	 * hierarchy.  In a threaded subtree, both process granularity and
656 	 * no-internal-process constraint are ignored and a threaded
657 	 * controllers should be able to handle that.
658 	 *
659 	 * Note that as an implicit controller is automatically enabled on
660 	 * all cgroups on the default hierarchy, it should also be
661 	 * threaded.  implicit && !threaded is not supported.
662 	 */
663 	bool threaded:1;
664 
665 	/*
666 	 * If %false, this subsystem is properly hierarchical -
667 	 * configuration, resource accounting and restriction on a parent
668 	 * cgroup cover those of its children.  If %true, hierarchy support
669 	 * is broken in some ways - some subsystems ignore hierarchy
670 	 * completely while others are only implemented half-way.
671 	 *
672 	 * It's now disallowed to create nested cgroups if the subsystem is
673 	 * broken and cgroup core will emit a warning message on such
674 	 * cases.  Eventually, all subsystems will be made properly
675 	 * hierarchical and this will go away.
676 	 */
677 	bool broken_hierarchy:1;
678 	bool warned_broken_hierarchy:1;
679 
680 	/* the following two fields are initialized automtically during boot */
681 	int id;
682 	const char *name;
683 
684 	/* optional, initialized automatically during boot if not set */
685 	const char *legacy_name;
686 
687 	/* link to parent, protected by cgroup_lock() */
688 	struct cgroup_root *root;
689 
690 	/* idr for css->id */
691 	struct idr css_idr;
692 
693 	/*
694 	 * List of cftypes.  Each entry is the first entry of an array
695 	 * terminated by zero length name.
696 	 */
697 	struct list_head cfts;
698 
699 	/*
700 	 * Base cftypes which are automatically registered.  The two can
701 	 * point to the same array.
702 	 */
703 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
704 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
705 
706 	/*
707 	 * A subsystem may depend on other subsystems.  When such subsystem
708 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
709 	 * together if available.  Subsystems enabled due to dependency are
710 	 * not visible to userland until explicitly enabled.  The following
711 	 * specifies the mask of subsystems that this one depends on.
712 	 */
713 	unsigned int depends_on;
714 };
715 
716 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
717 
718 /**
719  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
720  * @tsk: target task
721  *
722  * Allows cgroup operations to synchronize against threadgroup changes
723  * using a percpu_rw_semaphore.
724  */
725 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
726 {
727 	percpu_down_read(&cgroup_threadgroup_rwsem);
728 }
729 
730 /**
731  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
732  * @tsk: target task
733  *
734  * Counterpart of cgroup_threadcgroup_change_begin().
735  */
736 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
737 {
738 	percpu_up_read(&cgroup_threadgroup_rwsem);
739 }
740 
741 #else	/* CONFIG_CGROUPS */
742 
743 #define CGROUP_SUBSYS_COUNT 0
744 
745 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
746 {
747 	might_sleep();
748 }
749 
750 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
751 
752 #endif	/* CONFIG_CGROUPS */
753 
754 #ifdef CONFIG_SOCK_CGROUP_DATA
755 
756 /*
757  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
758  * per-socket cgroup information except for memcg association.
759  *
760  * On legacy hierarchies, net_prio and net_cls controllers directly set
761  * attributes on each sock which can then be tested by the network layer.
762  * On the default hierarchy, each sock is associated with the cgroup it was
763  * created in and the networking layer can match the cgroup directly.
764  *
765  * To avoid carrying all three cgroup related fields separately in sock,
766  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
767  * On boot, sock_cgroup_data records the cgroup that the sock was created
768  * in so that cgroup2 matches can be made; however, once either net_prio or
769  * net_cls starts being used, the area is overriden to carry prioidx and/or
770  * classid.  The two modes are distinguished by whether the lowest bit is
771  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
772  * classid.
773  *
774  * While userland may start using net_prio or net_cls at any time, once
775  * either is used, cgroup2 matching no longer works.  There is no reason to
776  * mix the two and this is in line with how legacy and v2 compatibility is
777  * handled.  On mode switch, cgroup references which are already being
778  * pointed to by socks may be leaked.  While this can be remedied by adding
779  * synchronization around sock_cgroup_data, given that the number of leaked
780  * cgroups is bound and highly unlikely to be high, this seems to be the
781  * better trade-off.
782  */
783 struct sock_cgroup_data {
784 	union {
785 #ifdef __LITTLE_ENDIAN
786 		struct {
787 			u8	is_data;
788 			u8	padding;
789 			u16	prioidx;
790 			u32	classid;
791 		} __packed;
792 #else
793 		struct {
794 			u32	classid;
795 			u16	prioidx;
796 			u8	padding;
797 			u8	is_data;
798 		} __packed;
799 #endif
800 		u64		val;
801 	};
802 };
803 
804 /*
805  * There's a theoretical window where the following accessors race with
806  * updaters and return part of the previous pointer as the prioidx or
807  * classid.  Such races are short-lived and the result isn't critical.
808  */
809 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
810 {
811 	/* fallback to 1 which is always the ID of the root cgroup */
812 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
813 }
814 
815 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
816 {
817 	/* fallback to 0 which is the unconfigured default classid */
818 	return (skcd->is_data & 1) ? skcd->classid : 0;
819 }
820 
821 /*
822  * If invoked concurrently, the updaters may clobber each other.  The
823  * caller is responsible for synchronization.
824  */
825 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
826 					   u16 prioidx)
827 {
828 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
829 
830 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
831 		return;
832 
833 	if (!(skcd_buf.is_data & 1)) {
834 		skcd_buf.val = 0;
835 		skcd_buf.is_data = 1;
836 	}
837 
838 	skcd_buf.prioidx = prioidx;
839 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
840 }
841 
842 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
843 					   u32 classid)
844 {
845 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
846 
847 	if (sock_cgroup_classid(&skcd_buf) == classid)
848 		return;
849 
850 	if (!(skcd_buf.is_data & 1)) {
851 		skcd_buf.val = 0;
852 		skcd_buf.is_data = 1;
853 	}
854 
855 	skcd_buf.classid = classid;
856 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
857 }
858 
859 #else	/* CONFIG_SOCK_CGROUP_DATA */
860 
861 struct sock_cgroup_data {
862 };
863 
864 #endif	/* CONFIG_SOCK_CGROUP_DATA */
865 
866 #endif	/* _LINUX_CGROUP_DEFS_H */
867