1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/cgroup-defs.h - basic definitions for cgroup 4 * 5 * This file provides basic type and interface. Include this file directly 6 * only if necessary to avoid cyclic dependencies. 7 */ 8 #ifndef _LINUX_CGROUP_DEFS_H 9 #define _LINUX_CGROUP_DEFS_H 10 11 #include <linux/limits.h> 12 #include <linux/list.h> 13 #include <linux/idr.h> 14 #include <linux/wait.h> 15 #include <linux/mutex.h> 16 #include <linux/rcupdate.h> 17 #include <linux/refcount.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/percpu-rwsem.h> 20 #include <linux/u64_stats_sync.h> 21 #include <linux/workqueue.h> 22 #include <linux/bpf-cgroup.h> 23 #include <linux/psi_types.h> 24 25 #ifdef CONFIG_CGROUPS 26 27 struct cgroup; 28 struct cgroup_root; 29 struct cgroup_subsys; 30 struct cgroup_taskset; 31 struct kernfs_node; 32 struct kernfs_ops; 33 struct kernfs_open_file; 34 struct seq_file; 35 struct poll_table_struct; 36 37 #define MAX_CGROUP_TYPE_NAMELEN 32 38 #define MAX_CGROUP_ROOT_NAMELEN 64 39 #define MAX_CFTYPE_NAME 64 40 41 /* define the enumeration of all cgroup subsystems */ 42 #define SUBSYS(_x) _x ## _cgrp_id, 43 enum cgroup_subsys_id { 44 #include <linux/cgroup_subsys.h> 45 CGROUP_SUBSYS_COUNT, 46 }; 47 #undef SUBSYS 48 49 /* bits in struct cgroup_subsys_state flags field */ 50 enum { 51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 55 CSS_DYING = (1 << 4), /* css is dying */ 56 }; 57 58 /* bits in struct cgroup flags field */ 59 enum { 60 /* Control Group requires release notifications to userspace */ 61 CGRP_NOTIFY_ON_RELEASE, 62 /* 63 * Clone the parent's configuration when creating a new child 64 * cpuset cgroup. For historical reasons, this option can be 65 * specified at mount time and thus is implemented here. 66 */ 67 CGRP_CPUSET_CLONE_CHILDREN, 68 69 /* Control group has to be frozen. */ 70 CGRP_FREEZE, 71 72 /* Cgroup is frozen. */ 73 CGRP_FROZEN, 74 }; 75 76 /* cgroup_root->flags */ 77 enum { 78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 80 81 /* 82 * Consider namespaces as delegation boundaries. If this flag is 83 * set, controller specific interface files in a namespace root 84 * aren't writeable from inside the namespace. 85 */ 86 CGRP_ROOT_NS_DELEGATE = (1 << 3), 87 88 /* 89 * Enable cpuset controller in v1 cgroup to use v2 behavior. 90 */ 91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4), 92 93 /* 94 * Enable legacy local memory.events. 95 */ 96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5), 97 }; 98 99 /* cftype->flags */ 100 enum { 101 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 102 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 103 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */ 104 105 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 106 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 107 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ 108 109 /* internal flags, do not use outside cgroup core proper */ 110 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 111 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 112 }; 113 114 /* 115 * cgroup_file is the handle for a file instance created in a cgroup which 116 * is used, for example, to generate file changed notifications. This can 117 * be obtained by setting cftype->file_offset. 118 */ 119 struct cgroup_file { 120 /* do not access any fields from outside cgroup core */ 121 struct kernfs_node *kn; 122 unsigned long notified_at; 123 struct timer_list notify_timer; 124 }; 125 126 /* 127 * Per-subsystem/per-cgroup state maintained by the system. This is the 128 * fundamental structural building block that controllers deal with. 129 * 130 * Fields marked with "PI:" are public and immutable and may be accessed 131 * directly without synchronization. 132 */ 133 struct cgroup_subsys_state { 134 /* PI: the cgroup that this css is attached to */ 135 struct cgroup *cgroup; 136 137 /* PI: the cgroup subsystem that this css is attached to */ 138 struct cgroup_subsys *ss; 139 140 /* reference count - access via css_[try]get() and css_put() */ 141 struct percpu_ref refcnt; 142 143 /* siblings list anchored at the parent's ->children */ 144 struct list_head sibling; 145 struct list_head children; 146 147 /* flush target list anchored at cgrp->rstat_css_list */ 148 struct list_head rstat_css_node; 149 150 /* 151 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 152 * matching css can be looked up using css_from_id(). 153 */ 154 int id; 155 156 unsigned int flags; 157 158 /* 159 * Monotonically increasing unique serial number which defines a 160 * uniform order among all csses. It's guaranteed that all 161 * ->children lists are in the ascending order of ->serial_nr and 162 * used to allow interrupting and resuming iterations. 163 */ 164 u64 serial_nr; 165 166 /* 167 * Incremented by online self and children. Used to guarantee that 168 * parents are not offlined before their children. 169 */ 170 atomic_t online_cnt; 171 172 /* percpu_ref killing and RCU release */ 173 struct work_struct destroy_work; 174 struct rcu_work destroy_rwork; 175 176 /* 177 * PI: the parent css. Placed here for cache proximity to following 178 * fields of the containing structure. 179 */ 180 struct cgroup_subsys_state *parent; 181 }; 182 183 /* 184 * A css_set is a structure holding pointers to a set of 185 * cgroup_subsys_state objects. This saves space in the task struct 186 * object and speeds up fork()/exit(), since a single inc/dec and a 187 * list_add()/del() can bump the reference count on the entire cgroup 188 * set for a task. 189 */ 190 struct css_set { 191 /* 192 * Set of subsystem states, one for each subsystem. This array is 193 * immutable after creation apart from the init_css_set during 194 * subsystem registration (at boot time). 195 */ 196 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 197 198 /* reference count */ 199 refcount_t refcount; 200 201 /* 202 * For a domain cgroup, the following points to self. If threaded, 203 * to the matching cset of the nearest domain ancestor. The 204 * dom_cset provides access to the domain cgroup and its csses to 205 * which domain level resource consumptions should be charged. 206 */ 207 struct css_set *dom_cset; 208 209 /* the default cgroup associated with this css_set */ 210 struct cgroup *dfl_cgrp; 211 212 /* internal task count, protected by css_set_lock */ 213 int nr_tasks; 214 215 /* 216 * Lists running through all tasks using this cgroup group. 217 * mg_tasks lists tasks which belong to this cset but are in the 218 * process of being migrated out or in. Protected by 219 * css_set_rwsem, but, during migration, once tasks are moved to 220 * mg_tasks, it can be read safely while holding cgroup_mutex. 221 */ 222 struct list_head tasks; 223 struct list_head mg_tasks; 224 struct list_head dying_tasks; 225 226 /* all css_task_iters currently walking this cset */ 227 struct list_head task_iters; 228 229 /* 230 * On the default hierarhcy, ->subsys[ssid] may point to a css 231 * attached to an ancestor instead of the cgroup this css_set is 232 * associated with. The following node is anchored at 233 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 234 * iterate through all css's attached to a given cgroup. 235 */ 236 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 237 238 /* all threaded csets whose ->dom_cset points to this cset */ 239 struct list_head threaded_csets; 240 struct list_head threaded_csets_node; 241 242 /* 243 * List running through all cgroup groups in the same hash 244 * slot. Protected by css_set_lock 245 */ 246 struct hlist_node hlist; 247 248 /* 249 * List of cgrp_cset_links pointing at cgroups referenced from this 250 * css_set. Protected by css_set_lock. 251 */ 252 struct list_head cgrp_links; 253 254 /* 255 * List of csets participating in the on-going migration either as 256 * source or destination. Protected by cgroup_mutex. 257 */ 258 struct list_head mg_preload_node; 259 struct list_head mg_node; 260 261 /* 262 * If this cset is acting as the source of migration the following 263 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 264 * respectively the source and destination cgroups of the on-going 265 * migration. mg_dst_cset is the destination cset the target tasks 266 * on this cset should be migrated to. Protected by cgroup_mutex. 267 */ 268 struct cgroup *mg_src_cgrp; 269 struct cgroup *mg_dst_cgrp; 270 struct css_set *mg_dst_cset; 271 272 /* dead and being drained, ignore for migration */ 273 bool dead; 274 275 /* For RCU-protected deletion */ 276 struct rcu_head rcu_head; 277 }; 278 279 struct cgroup_base_stat { 280 struct task_cputime cputime; 281 }; 282 283 /* 284 * rstat - cgroup scalable recursive statistics. Accounting is done 285 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the 286 * hierarchy on reads. 287 * 288 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are 289 * linked into the updated tree. On the following read, propagation only 290 * considers and consumes the updated tree. This makes reading O(the 291 * number of descendants which have been active since last read) instead of 292 * O(the total number of descendants). 293 * 294 * This is important because there can be a lot of (draining) cgroups which 295 * aren't active and stat may be read frequently. The combination can 296 * become very expensive. By propagating selectively, increasing reading 297 * frequency decreases the cost of each read. 298 * 299 * This struct hosts both the fields which implement the above - 300 * updated_children and updated_next - and the fields which track basic 301 * resource statistics on top of it - bsync, bstat and last_bstat. 302 */ 303 struct cgroup_rstat_cpu { 304 /* 305 * ->bsync protects ->bstat. These are the only fields which get 306 * updated in the hot path. 307 */ 308 struct u64_stats_sync bsync; 309 struct cgroup_base_stat bstat; 310 311 /* 312 * Snapshots at the last reading. These are used to calculate the 313 * deltas to propagate to the global counters. 314 */ 315 struct cgroup_base_stat last_bstat; 316 317 /* 318 * Child cgroups with stat updates on this cpu since the last read 319 * are linked on the parent's ->updated_children through 320 * ->updated_next. 321 * 322 * In addition to being more compact, singly-linked list pointing 323 * to the cgroup makes it unnecessary for each per-cpu struct to 324 * point back to the associated cgroup. 325 * 326 * Protected by per-cpu cgroup_rstat_cpu_lock. 327 */ 328 struct cgroup *updated_children; /* terminated by self cgroup */ 329 struct cgroup *updated_next; /* NULL iff not on the list */ 330 }; 331 332 struct cgroup_freezer_state { 333 /* Should the cgroup and its descendants be frozen. */ 334 bool freeze; 335 336 /* Should the cgroup actually be frozen? */ 337 int e_freeze; 338 339 /* Fields below are protected by css_set_lock */ 340 341 /* Number of frozen descendant cgroups */ 342 int nr_frozen_descendants; 343 344 /* 345 * Number of tasks, which are counted as frozen: 346 * frozen, SIGSTOPped, and PTRACEd. 347 */ 348 int nr_frozen_tasks; 349 }; 350 351 struct cgroup { 352 /* self css with NULL ->ss, points back to this cgroup */ 353 struct cgroup_subsys_state self; 354 355 unsigned long flags; /* "unsigned long" so bitops work */ 356 357 /* 358 * The depth this cgroup is at. The root is at depth zero and each 359 * step down the hierarchy increments the level. This along with 360 * ancestor_ids[] can determine whether a given cgroup is a 361 * descendant of another without traversing the hierarchy. 362 */ 363 int level; 364 365 /* Maximum allowed descent tree depth */ 366 int max_depth; 367 368 /* 369 * Keep track of total numbers of visible and dying descent cgroups. 370 * Dying cgroups are cgroups which were deleted by a user, 371 * but are still existing because someone else is holding a reference. 372 * max_descendants is a maximum allowed number of descent cgroups. 373 * 374 * nr_descendants and nr_dying_descendants are protected 375 * by cgroup_mutex and css_set_lock. It's fine to read them holding 376 * any of cgroup_mutex and css_set_lock; for writing both locks 377 * should be held. 378 */ 379 int nr_descendants; 380 int nr_dying_descendants; 381 int max_descendants; 382 383 /* 384 * Each non-empty css_set associated with this cgroup contributes 385 * one to nr_populated_csets. The counter is zero iff this cgroup 386 * doesn't have any tasks. 387 * 388 * All children which have non-zero nr_populated_csets and/or 389 * nr_populated_children of their own contribute one to either 390 * nr_populated_domain_children or nr_populated_threaded_children 391 * depending on their type. Each counter is zero iff all cgroups 392 * of the type in the subtree proper don't have any tasks. 393 */ 394 int nr_populated_csets; 395 int nr_populated_domain_children; 396 int nr_populated_threaded_children; 397 398 int nr_threaded_children; /* # of live threaded child cgroups */ 399 400 struct kernfs_node *kn; /* cgroup kernfs entry */ 401 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 402 struct cgroup_file events_file; /* handle for "cgroup.events" */ 403 404 /* 405 * The bitmask of subsystems enabled on the child cgroups. 406 * ->subtree_control is the one configured through 407 * "cgroup.subtree_control" while ->child_ss_mask is the effective 408 * one which may have more subsystems enabled. Controller knobs 409 * are made available iff it's enabled in ->subtree_control. 410 */ 411 u16 subtree_control; 412 u16 subtree_ss_mask; 413 u16 old_subtree_control; 414 u16 old_subtree_ss_mask; 415 416 /* Private pointers for each registered subsystem */ 417 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 418 419 struct cgroup_root *root; 420 421 /* 422 * List of cgrp_cset_links pointing at css_sets with tasks in this 423 * cgroup. Protected by css_set_lock. 424 */ 425 struct list_head cset_links; 426 427 /* 428 * On the default hierarchy, a css_set for a cgroup with some 429 * susbsys disabled will point to css's which are associated with 430 * the closest ancestor which has the subsys enabled. The 431 * following lists all css_sets which point to this cgroup's css 432 * for the given subsystem. 433 */ 434 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 435 436 /* 437 * If !threaded, self. If threaded, it points to the nearest 438 * domain ancestor. Inside a threaded subtree, cgroups are exempt 439 * from process granularity and no-internal-task constraint. 440 * Domain level resource consumptions which aren't tied to a 441 * specific task are charged to the dom_cgrp. 442 */ 443 struct cgroup *dom_cgrp; 444 struct cgroup *old_dom_cgrp; /* used while enabling threaded */ 445 446 /* per-cpu recursive resource statistics */ 447 struct cgroup_rstat_cpu __percpu *rstat_cpu; 448 struct list_head rstat_css_list; 449 450 /* cgroup basic resource statistics */ 451 struct cgroup_base_stat last_bstat; 452 struct cgroup_base_stat bstat; 453 struct prev_cputime prev_cputime; /* for printing out cputime */ 454 455 /* 456 * list of pidlists, up to two for each namespace (one for procs, one 457 * for tasks); created on demand. 458 */ 459 struct list_head pidlists; 460 struct mutex pidlist_mutex; 461 462 /* used to wait for offlining of csses */ 463 wait_queue_head_t offline_waitq; 464 465 /* used to schedule release agent */ 466 struct work_struct release_agent_work; 467 468 /* used to track pressure stalls */ 469 struct psi_group psi; 470 471 /* used to store eBPF programs */ 472 struct cgroup_bpf bpf; 473 474 /* If there is block congestion on this cgroup. */ 475 atomic_t congestion_count; 476 477 /* Used to store internal freezer state */ 478 struct cgroup_freezer_state freezer; 479 480 /* ids of the ancestors at each level including self */ 481 u64 ancestor_ids[]; 482 }; 483 484 /* 485 * A cgroup_root represents the root of a cgroup hierarchy, and may be 486 * associated with a kernfs_root to form an active hierarchy. This is 487 * internal to cgroup core. Don't access directly from controllers. 488 */ 489 struct cgroup_root { 490 struct kernfs_root *kf_root; 491 492 /* The bitmask of subsystems attached to this hierarchy */ 493 unsigned int subsys_mask; 494 495 /* Unique id for this hierarchy. */ 496 int hierarchy_id; 497 498 /* The root cgroup. Root is destroyed on its release. */ 499 struct cgroup cgrp; 500 501 /* for cgrp->ancestor_ids[0] */ 502 u64 cgrp_ancestor_id_storage; 503 504 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 505 atomic_t nr_cgrps; 506 507 /* A list running through the active hierarchies */ 508 struct list_head root_list; 509 510 /* Hierarchy-specific flags */ 511 unsigned int flags; 512 513 /* The path to use for release notifications. */ 514 char release_agent_path[PATH_MAX]; 515 516 /* The name for this hierarchy - may be empty */ 517 char name[MAX_CGROUP_ROOT_NAMELEN]; 518 }; 519 520 /* 521 * struct cftype: handler definitions for cgroup control files 522 * 523 * When reading/writing to a file: 524 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 525 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 526 */ 527 struct cftype { 528 /* 529 * By convention, the name should begin with the name of the 530 * subsystem, followed by a period. Zero length string indicates 531 * end of cftype array. 532 */ 533 char name[MAX_CFTYPE_NAME]; 534 unsigned long private; 535 536 /* 537 * The maximum length of string, excluding trailing nul, that can 538 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 539 */ 540 size_t max_write_len; 541 542 /* CFTYPE_* flags */ 543 unsigned int flags; 544 545 /* 546 * If non-zero, should contain the offset from the start of css to 547 * a struct cgroup_file field. cgroup will record the handle of 548 * the created file into it. The recorded handle can be used as 549 * long as the containing css remains accessible. 550 */ 551 unsigned int file_offset; 552 553 /* 554 * Fields used for internal bookkeeping. Initialized automatically 555 * during registration. 556 */ 557 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 558 struct list_head node; /* anchored at ss->cfts */ 559 struct kernfs_ops *kf_ops; 560 561 int (*open)(struct kernfs_open_file *of); 562 void (*release)(struct kernfs_open_file *of); 563 564 /* 565 * read_u64() is a shortcut for the common case of returning a 566 * single integer. Use it in place of read() 567 */ 568 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 569 /* 570 * read_s64() is a signed version of read_u64() 571 */ 572 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 573 574 /* generic seq_file read interface */ 575 int (*seq_show)(struct seq_file *sf, void *v); 576 577 /* optional ops, implement all or none */ 578 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 579 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 580 void (*seq_stop)(struct seq_file *sf, void *v); 581 582 /* 583 * write_u64() is a shortcut for the common case of accepting 584 * a single integer (as parsed by simple_strtoull) from 585 * userspace. Use in place of write(); return 0 or error. 586 */ 587 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 588 u64 val); 589 /* 590 * write_s64() is a signed version of write_u64() 591 */ 592 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 593 s64 val); 594 595 /* 596 * write() is the generic write callback which maps directly to 597 * kernfs write operation and overrides all other operations. 598 * Maximum write size is determined by ->max_write_len. Use 599 * of_css/cft() to access the associated css and cft. 600 */ 601 ssize_t (*write)(struct kernfs_open_file *of, 602 char *buf, size_t nbytes, loff_t off); 603 604 __poll_t (*poll)(struct kernfs_open_file *of, 605 struct poll_table_struct *pt); 606 607 #ifdef CONFIG_DEBUG_LOCK_ALLOC 608 struct lock_class_key lockdep_key; 609 #endif 610 }; 611 612 /* 613 * Control Group subsystem type. 614 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details 615 */ 616 struct cgroup_subsys { 617 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 618 int (*css_online)(struct cgroup_subsys_state *css); 619 void (*css_offline)(struct cgroup_subsys_state *css); 620 void (*css_released)(struct cgroup_subsys_state *css); 621 void (*css_free)(struct cgroup_subsys_state *css); 622 void (*css_reset)(struct cgroup_subsys_state *css); 623 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu); 624 int (*css_extra_stat_show)(struct seq_file *seq, 625 struct cgroup_subsys_state *css); 626 627 int (*can_attach)(struct cgroup_taskset *tset); 628 void (*cancel_attach)(struct cgroup_taskset *tset); 629 void (*attach)(struct cgroup_taskset *tset); 630 void (*post_attach)(void); 631 int (*can_fork)(struct task_struct *task); 632 void (*cancel_fork)(struct task_struct *task); 633 void (*fork)(struct task_struct *task); 634 void (*exit)(struct task_struct *task); 635 void (*release)(struct task_struct *task); 636 void (*bind)(struct cgroup_subsys_state *root_css); 637 638 bool early_init:1; 639 640 /* 641 * If %true, the controller, on the default hierarchy, doesn't show 642 * up in "cgroup.controllers" or "cgroup.subtree_control", is 643 * implicitly enabled on all cgroups on the default hierarchy, and 644 * bypasses the "no internal process" constraint. This is for 645 * utility type controllers which is transparent to userland. 646 * 647 * An implicit controller can be stolen from the default hierarchy 648 * anytime and thus must be okay with offline csses from previous 649 * hierarchies coexisting with csses for the current one. 650 */ 651 bool implicit_on_dfl:1; 652 653 /* 654 * If %true, the controller, supports threaded mode on the default 655 * hierarchy. In a threaded subtree, both process granularity and 656 * no-internal-process constraint are ignored and a threaded 657 * controllers should be able to handle that. 658 * 659 * Note that as an implicit controller is automatically enabled on 660 * all cgroups on the default hierarchy, it should also be 661 * threaded. implicit && !threaded is not supported. 662 */ 663 bool threaded:1; 664 665 /* 666 * If %false, this subsystem is properly hierarchical - 667 * configuration, resource accounting and restriction on a parent 668 * cgroup cover those of its children. If %true, hierarchy support 669 * is broken in some ways - some subsystems ignore hierarchy 670 * completely while others are only implemented half-way. 671 * 672 * It's now disallowed to create nested cgroups if the subsystem is 673 * broken and cgroup core will emit a warning message on such 674 * cases. Eventually, all subsystems will be made properly 675 * hierarchical and this will go away. 676 */ 677 bool broken_hierarchy:1; 678 bool warned_broken_hierarchy:1; 679 680 /* the following two fields are initialized automtically during boot */ 681 int id; 682 const char *name; 683 684 /* optional, initialized automatically during boot if not set */ 685 const char *legacy_name; 686 687 /* link to parent, protected by cgroup_lock() */ 688 struct cgroup_root *root; 689 690 /* idr for css->id */ 691 struct idr css_idr; 692 693 /* 694 * List of cftypes. Each entry is the first entry of an array 695 * terminated by zero length name. 696 */ 697 struct list_head cfts; 698 699 /* 700 * Base cftypes which are automatically registered. The two can 701 * point to the same array. 702 */ 703 struct cftype *dfl_cftypes; /* for the default hierarchy */ 704 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 705 706 /* 707 * A subsystem may depend on other subsystems. When such subsystem 708 * is enabled on a cgroup, the depended-upon subsystems are enabled 709 * together if available. Subsystems enabled due to dependency are 710 * not visible to userland until explicitly enabled. The following 711 * specifies the mask of subsystems that this one depends on. 712 */ 713 unsigned int depends_on; 714 }; 715 716 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 717 718 /** 719 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 720 * @tsk: target task 721 * 722 * Allows cgroup operations to synchronize against threadgroup changes 723 * using a percpu_rw_semaphore. 724 */ 725 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 726 { 727 percpu_down_read(&cgroup_threadgroup_rwsem); 728 } 729 730 /** 731 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 732 * @tsk: target task 733 * 734 * Counterpart of cgroup_threadcgroup_change_begin(). 735 */ 736 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 737 { 738 percpu_up_read(&cgroup_threadgroup_rwsem); 739 } 740 741 #else /* CONFIG_CGROUPS */ 742 743 #define CGROUP_SUBSYS_COUNT 0 744 745 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 746 { 747 might_sleep(); 748 } 749 750 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 751 752 #endif /* CONFIG_CGROUPS */ 753 754 #ifdef CONFIG_SOCK_CGROUP_DATA 755 756 /* 757 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 758 * per-socket cgroup information except for memcg association. 759 * 760 * On legacy hierarchies, net_prio and net_cls controllers directly set 761 * attributes on each sock which can then be tested by the network layer. 762 * On the default hierarchy, each sock is associated with the cgroup it was 763 * created in and the networking layer can match the cgroup directly. 764 * 765 * To avoid carrying all three cgroup related fields separately in sock, 766 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 767 * On boot, sock_cgroup_data records the cgroup that the sock was created 768 * in so that cgroup2 matches can be made; however, once either net_prio or 769 * net_cls starts being used, the area is overriden to carry prioidx and/or 770 * classid. The two modes are distinguished by whether the lowest bit is 771 * set. Clear bit indicates cgroup pointer while set bit prioidx and 772 * classid. 773 * 774 * While userland may start using net_prio or net_cls at any time, once 775 * either is used, cgroup2 matching no longer works. There is no reason to 776 * mix the two and this is in line with how legacy and v2 compatibility is 777 * handled. On mode switch, cgroup references which are already being 778 * pointed to by socks may be leaked. While this can be remedied by adding 779 * synchronization around sock_cgroup_data, given that the number of leaked 780 * cgroups is bound and highly unlikely to be high, this seems to be the 781 * better trade-off. 782 */ 783 struct sock_cgroup_data { 784 union { 785 #ifdef __LITTLE_ENDIAN 786 struct { 787 u8 is_data; 788 u8 padding; 789 u16 prioidx; 790 u32 classid; 791 } __packed; 792 #else 793 struct { 794 u32 classid; 795 u16 prioidx; 796 u8 padding; 797 u8 is_data; 798 } __packed; 799 #endif 800 u64 val; 801 }; 802 }; 803 804 /* 805 * There's a theoretical window where the following accessors race with 806 * updaters and return part of the previous pointer as the prioidx or 807 * classid. Such races are short-lived and the result isn't critical. 808 */ 809 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd) 810 { 811 /* fallback to 1 which is always the ID of the root cgroup */ 812 return (skcd->is_data & 1) ? skcd->prioidx : 1; 813 } 814 815 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd) 816 { 817 /* fallback to 0 which is the unconfigured default classid */ 818 return (skcd->is_data & 1) ? skcd->classid : 0; 819 } 820 821 /* 822 * If invoked concurrently, the updaters may clobber each other. The 823 * caller is responsible for synchronization. 824 */ 825 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 826 u16 prioidx) 827 { 828 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 829 830 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 831 return; 832 833 if (!(skcd_buf.is_data & 1)) { 834 skcd_buf.val = 0; 835 skcd_buf.is_data = 1; 836 } 837 838 skcd_buf.prioidx = prioidx; 839 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 840 } 841 842 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 843 u32 classid) 844 { 845 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 846 847 if (sock_cgroup_classid(&skcd_buf) == classid) 848 return; 849 850 if (!(skcd_buf.is_data & 1)) { 851 skcd_buf.val = 0; 852 skcd_buf.is_data = 1; 853 } 854 855 skcd_buf.classid = classid; 856 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 857 } 858 859 #else /* CONFIG_SOCK_CGROUP_DATA */ 860 861 struct sock_cgroup_data { 862 }; 863 864 #endif /* CONFIG_SOCK_CGROUP_DATA */ 865 866 #endif /* _LINUX_CGROUP_DEFS_H */ 867