xref: /openbmc/linux/include/asm-generic/mshyperv.h (revision 404e077a16bb7796908b604b2df02cd650c965aa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are specified in the Hyper-V Top Level Functional
10  * Spec (TLFS) should not go in this file, but should instead go in
11  * hyperv-tlfs.h.
12  *
13  * Copyright (C) 2019, Microsoft, Inc.
14  *
15  * Author : Michael Kelley <mikelley@microsoft.com>
16  */
17 
18 #ifndef _ASM_GENERIC_MSHYPERV_H
19 #define _ASM_GENERIC_MSHYPERV_H
20 
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/bitops.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <asm/hyperv-tlfs.h>
28 
29 #define VTPM_BASE_ADDRESS 0xfed40000
30 
31 struct ms_hyperv_info {
32 	u32 features;
33 	u32 priv_high;
34 	u32 misc_features;
35 	u32 hints;
36 	u32 nested_features;
37 	u32 max_vp_index;
38 	u32 max_lp_index;
39 	u32 isolation_config_a;
40 	union {
41 		u32 isolation_config_b;
42 		struct {
43 			u32 cvm_type : 4;
44 			u32 reserved1 : 1;
45 			u32 shared_gpa_boundary_active : 1;
46 			u32 shared_gpa_boundary_bits : 6;
47 			u32 reserved2 : 20;
48 		};
49 	};
50 	u64 shared_gpa_boundary;
51 };
52 extern struct ms_hyperv_info ms_hyperv;
53 extern bool hv_nested;
54 
55 extern void * __percpu *hyperv_pcpu_input_arg;
56 extern void * __percpu *hyperv_pcpu_output_arg;
57 
58 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
59 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
60 extern bool hv_isolation_type_snp(void);
61 
62 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
63 static inline int hv_result(u64 status)
64 {
65 	return status & HV_HYPERCALL_RESULT_MASK;
66 }
67 
68 static inline bool hv_result_success(u64 status)
69 {
70 	return hv_result(status) == HV_STATUS_SUCCESS;
71 }
72 
73 static inline unsigned int hv_repcomp(u64 status)
74 {
75 	/* Bits [43:32] of status have 'Reps completed' data. */
76 	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
77 			 HV_HYPERCALL_REP_COMP_OFFSET;
78 }
79 
80 /*
81  * Rep hypercalls. Callers of this functions are supposed to ensure that
82  * rep_count and varhead_size comply with Hyper-V hypercall definition.
83  */
84 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
85 				      void *input, void *output)
86 {
87 	u64 control = code;
88 	u64 status;
89 	u16 rep_comp;
90 
91 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
92 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
93 
94 	do {
95 		status = hv_do_hypercall(control, input, output);
96 		if (!hv_result_success(status))
97 			return status;
98 
99 		rep_comp = hv_repcomp(status);
100 
101 		control &= ~HV_HYPERCALL_REP_START_MASK;
102 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
103 
104 		touch_nmi_watchdog();
105 	} while (rep_comp < rep_count);
106 
107 	return status;
108 }
109 
110 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
111 static inline u64 hv_generate_guest_id(u64 kernel_version)
112 {
113 	u64 guest_id;
114 
115 	guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
116 	guest_id |= (kernel_version << 16);
117 
118 	return guest_id;
119 }
120 
121 /* Free the message slot and signal end-of-message if required */
122 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
123 {
124 	/*
125 	 * On crash we're reading some other CPU's message page and we need
126 	 * to be careful: this other CPU may already had cleared the header
127 	 * and the host may already had delivered some other message there.
128 	 * In case we blindly write msg->header.message_type we're going
129 	 * to lose it. We can still lose a message of the same type but
130 	 * we count on the fact that there can only be one
131 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
132 	 * on crash.
133 	 */
134 	if (cmpxchg(&msg->header.message_type, old_msg_type,
135 		    HVMSG_NONE) != old_msg_type)
136 		return;
137 
138 	/*
139 	 * The cmxchg() above does an implicit memory barrier to
140 	 * ensure the write to MessageType (ie set to
141 	 * HVMSG_NONE) happens before we read the
142 	 * MessagePending and EOMing. Otherwise, the EOMing
143 	 * will not deliver any more messages since there is
144 	 * no empty slot
145 	 */
146 	if (msg->header.message_flags.msg_pending) {
147 		/*
148 		 * This will cause message queue rescan to
149 		 * possibly deliver another msg from the
150 		 * hypervisor
151 		 */
152 		hv_set_register(HV_REGISTER_EOM, 0);
153 	}
154 }
155 
156 void hv_setup_vmbus_handler(void (*handler)(void));
157 void hv_remove_vmbus_handler(void);
158 void hv_setup_stimer0_handler(void (*handler)(void));
159 void hv_remove_stimer0_handler(void);
160 
161 void hv_setup_kexec_handler(void (*handler)(void));
162 void hv_remove_kexec_handler(void);
163 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
164 void hv_remove_crash_handler(void);
165 
166 extern int vmbus_interrupt;
167 extern int vmbus_irq;
168 
169 extern bool hv_root_partition;
170 
171 #if IS_ENABLED(CONFIG_HYPERV)
172 /*
173  * Hypervisor's notion of virtual processor ID is different from
174  * Linux' notion of CPU ID. This information can only be retrieved
175  * in the context of the calling CPU. Setup a map for easy access
176  * to this information.
177  */
178 extern u32 *hv_vp_index;
179 extern u32 hv_max_vp_index;
180 
181 extern u64 (*hv_read_reference_counter)(void);
182 
183 /* Sentinel value for an uninitialized entry in hv_vp_index array */
184 #define VP_INVAL	U32_MAX
185 
186 int __init hv_common_init(void);
187 void __init hv_common_free(void);
188 int hv_common_cpu_init(unsigned int cpu);
189 int hv_common_cpu_die(unsigned int cpu);
190 
191 void *hv_alloc_hyperv_page(void);
192 void *hv_alloc_hyperv_zeroed_page(void);
193 void hv_free_hyperv_page(unsigned long addr);
194 
195 /**
196  * hv_cpu_number_to_vp_number() - Map CPU to VP.
197  * @cpu_number: CPU number in Linux terms
198  *
199  * This function returns the mapping between the Linux processor
200  * number and the hypervisor's virtual processor number, useful
201  * in making hypercalls and such that talk about specific
202  * processors.
203  *
204  * Return: Virtual processor number in Hyper-V terms
205  */
206 static inline int hv_cpu_number_to_vp_number(int cpu_number)
207 {
208 	return hv_vp_index[cpu_number];
209 }
210 
211 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
212 				    const struct cpumask *cpus,
213 				    bool (*func)(int cpu))
214 {
215 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
216 	int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
217 
218 	/* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
219 	if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
220 		return 0;
221 
222 	/*
223 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
224 	 * structs are not cleared between calls, we risk flushing unneeded
225 	 * vCPUs otherwise.
226 	 */
227 	for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
228 		vpset->bank_contents[vcpu_bank] = 0;
229 
230 	/*
231 	 * Some banks may end up being empty but this is acceptable.
232 	 */
233 	for_each_cpu(cpu, cpus) {
234 		if (func && func(cpu))
235 			continue;
236 		vcpu = hv_cpu_number_to_vp_number(cpu);
237 		if (vcpu == VP_INVAL)
238 			return -1;
239 		vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
240 		vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
241 		__set_bit(vcpu_offset, (unsigned long *)
242 			  &vpset->bank_contents[vcpu_bank]);
243 		if (vcpu_bank >= nr_bank)
244 			nr_bank = vcpu_bank + 1;
245 	}
246 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
247 	return nr_bank;
248 }
249 
250 /*
251  * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
252  * 'func' is called for each CPU present in cpumask.  If 'func' returns
253  * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
254  * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
255  * skipped.
256  */
257 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
258 				    const struct cpumask *cpus)
259 {
260 	return __cpumask_to_vpset(vpset, cpus, NULL);
261 }
262 
263 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
264 				    const struct cpumask *cpus,
265 				    bool (*func)(int cpu))
266 {
267 	return __cpumask_to_vpset(vpset, cpus, func);
268 }
269 
270 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
271 bool hv_is_hyperv_initialized(void);
272 bool hv_is_hibernation_supported(void);
273 enum hv_isolation_type hv_get_isolation_type(void);
274 bool hv_is_isolation_supported(void);
275 bool hv_isolation_type_snp(void);
276 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
277 void hyperv_cleanup(void);
278 bool hv_query_ext_cap(u64 cap_query);
279 void hv_setup_dma_ops(struct device *dev, bool coherent);
280 #else /* CONFIG_HYPERV */
281 static inline bool hv_is_hyperv_initialized(void) { return false; }
282 static inline bool hv_is_hibernation_supported(void) { return false; }
283 static inline void hyperv_cleanup(void) {}
284 static inline bool hv_is_isolation_supported(void) { return false; }
285 static inline enum hv_isolation_type hv_get_isolation_type(void)
286 {
287 	return HV_ISOLATION_TYPE_NONE;
288 }
289 #endif /* CONFIG_HYPERV */
290 
291 #endif
292