1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = krealloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 GFP_KERNEL | __GFP_NOFAIL); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 130 ASSERT(atomic_read(&pag->pag_ref) == 0); 131 kmem_free(pag); 132 } 133 134 /* 135 * Free up the per-ag resources associated with the mount structure. 136 */ 137 STATIC void 138 xfs_free_perag( 139 xfs_mount_t *mp) 140 { 141 xfs_agnumber_t agno; 142 struct xfs_perag *pag; 143 144 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 145 spin_lock(&mp->m_perag_lock); 146 pag = radix_tree_delete(&mp->m_perag_tree, agno); 147 spin_unlock(&mp->m_perag_lock); 148 ASSERT(pag); 149 ASSERT(atomic_read(&pag->pag_ref) == 0); 150 cancel_delayed_work_sync(&pag->pag_blockgc_work); 151 xfs_iunlink_destroy(pag); 152 xfs_buf_hash_destroy(pag); 153 call_rcu(&pag->rcu_head, __xfs_free_perag); 154 } 155 } 156 157 /* 158 * Check size of device based on the (data/realtime) block count. 159 * Note: this check is used by the growfs code as well as mount. 160 */ 161 int 162 xfs_sb_validate_fsb_count( 163 xfs_sb_t *sbp, 164 uint64_t nblocks) 165 { 166 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 167 ASSERT(sbp->sb_blocklog >= BBSHIFT); 168 169 /* Limited by ULONG_MAX of page cache index */ 170 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 171 return -EFBIG; 172 return 0; 173 } 174 175 int 176 xfs_initialize_perag( 177 xfs_mount_t *mp, 178 xfs_agnumber_t agcount, 179 xfs_agnumber_t *maxagi) 180 { 181 xfs_agnumber_t index; 182 xfs_agnumber_t first_initialised = NULLAGNUMBER; 183 xfs_perag_t *pag; 184 int error = -ENOMEM; 185 186 /* 187 * Walk the current per-ag tree so we don't try to initialise AGs 188 * that already exist (growfs case). Allocate and insert all the 189 * AGs we don't find ready for initialisation. 190 */ 191 for (index = 0; index < agcount; index++) { 192 pag = xfs_perag_get(mp, index); 193 if (pag) { 194 xfs_perag_put(pag); 195 continue; 196 } 197 198 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 199 if (!pag) { 200 error = -ENOMEM; 201 goto out_unwind_new_pags; 202 } 203 pag->pag_agno = index; 204 pag->pag_mount = mp; 205 spin_lock_init(&pag->pag_ici_lock); 206 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 207 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 208 209 error = xfs_buf_hash_init(pag); 210 if (error) 211 goto out_free_pag; 212 init_waitqueue_head(&pag->pagb_wait); 213 spin_lock_init(&pag->pagb_lock); 214 pag->pagb_count = 0; 215 pag->pagb_tree = RB_ROOT; 216 217 error = radix_tree_preload(GFP_NOFS); 218 if (error) 219 goto out_hash_destroy; 220 221 spin_lock(&mp->m_perag_lock); 222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 223 WARN_ON_ONCE(1); 224 spin_unlock(&mp->m_perag_lock); 225 radix_tree_preload_end(); 226 error = -EEXIST; 227 goto out_hash_destroy; 228 } 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 /* first new pag is fully initialized */ 232 if (first_initialised == NULLAGNUMBER) 233 first_initialised = index; 234 error = xfs_iunlink_init(pag); 235 if (error) 236 goto out_hash_destroy; 237 spin_lock_init(&pag->pag_state_lock); 238 } 239 240 index = xfs_set_inode_alloc(mp, agcount); 241 242 if (maxagi) 243 *maxagi = index; 244 245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 246 return 0; 247 248 out_hash_destroy: 249 xfs_buf_hash_destroy(pag); 250 out_free_pag: 251 kmem_free(pag); 252 out_unwind_new_pags: 253 /* unwind any prior newly initialized pags */ 254 for (index = first_initialised; index < agcount; index++) { 255 pag = radix_tree_delete(&mp->m_perag_tree, index); 256 if (!pag) 257 break; 258 xfs_buf_hash_destroy(pag); 259 xfs_iunlink_destroy(pag); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. This will be kept 297 * around at all times to optimize access to the superblock. Therefore, 298 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 299 * elevated. 300 */ 301 reread: 302 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 303 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 304 buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, bp->b_addr); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 xfs_reinit_percpu_counters(mp); 353 354 /* no need to be quiet anymore, so reset the buf ops */ 355 bp->b_ops = &xfs_sb_buf_ops; 356 357 mp->m_sb_bp = bp; 358 xfs_buf_unlock(bp); 359 return 0; 360 361 release_buf: 362 xfs_buf_relse(bp); 363 return error; 364 } 365 366 /* 367 * If the sunit/swidth change would move the precomputed root inode value, we 368 * must reject the ondisk change because repair will stumble over that. 369 * However, we allow the mount to proceed because we never rejected this 370 * combination before. Returns true to update the sb, false otherwise. 371 */ 372 static inline int 373 xfs_check_new_dalign( 374 struct xfs_mount *mp, 375 int new_dalign, 376 bool *update_sb) 377 { 378 struct xfs_sb *sbp = &mp->m_sb; 379 xfs_ino_t calc_ino; 380 381 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 382 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 383 384 if (sbp->sb_rootino == calc_ino) { 385 *update_sb = true; 386 return 0; 387 } 388 389 xfs_warn(mp, 390 "Cannot change stripe alignment; would require moving root inode."); 391 392 /* 393 * XXX: Next time we add a new incompat feature, this should start 394 * returning -EINVAL to fail the mount. Until then, spit out a warning 395 * that we're ignoring the administrator's instructions. 396 */ 397 xfs_warn(mp, "Skipping superblock stripe alignment update."); 398 *update_sb = false; 399 return 0; 400 } 401 402 /* 403 * If we were provided with new sunit/swidth values as mount options, make sure 404 * that they pass basic alignment and superblock feature checks, and convert 405 * them into the same units (FSB) that everything else expects. This step 406 * /must/ be done before computing the inode geometry. 407 */ 408 STATIC int 409 xfs_validate_new_dalign( 410 struct xfs_mount *mp) 411 { 412 if (mp->m_dalign == 0) 413 return 0; 414 415 /* 416 * If stripe unit and stripe width are not multiples 417 * of the fs blocksize turn off alignment. 418 */ 419 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 420 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 421 xfs_warn(mp, 422 "alignment check failed: sunit/swidth vs. blocksize(%d)", 423 mp->m_sb.sb_blocksize); 424 return -EINVAL; 425 } else { 426 /* 427 * Convert the stripe unit and width to FSBs. 428 */ 429 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 430 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 431 xfs_warn(mp, 432 "alignment check failed: sunit/swidth vs. agsize(%d)", 433 mp->m_sb.sb_agblocks); 434 return -EINVAL; 435 } else if (mp->m_dalign) { 436 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 437 } else { 438 xfs_warn(mp, 439 "alignment check failed: sunit(%d) less than bsize(%d)", 440 mp->m_dalign, mp->m_sb.sb_blocksize); 441 return -EINVAL; 442 } 443 } 444 445 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 446 xfs_warn(mp, 447 "cannot change alignment: superblock does not support data alignment"); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 /* Update alignment values based on mount options and sb values. */ 455 STATIC int 456 xfs_update_alignment( 457 struct xfs_mount *mp) 458 { 459 struct xfs_sb *sbp = &mp->m_sb; 460 461 if (mp->m_dalign) { 462 bool update_sb; 463 int error; 464 465 if (sbp->sb_unit == mp->m_dalign && 466 sbp->sb_width == mp->m_swidth) 467 return 0; 468 469 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 470 if (error || !update_sb) 471 return error; 472 473 sbp->sb_unit = mp->m_dalign; 474 sbp->sb_width = mp->m_swidth; 475 mp->m_update_sb = true; 476 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 477 xfs_sb_version_hasdalign(&mp->m_sb)) { 478 mp->m_dalign = sbp->sb_unit; 479 mp->m_swidth = sbp->sb_width; 480 } 481 482 return 0; 483 } 484 485 /* 486 * precalculate the low space thresholds for dynamic speculative preallocation. 487 */ 488 void 489 xfs_set_low_space_thresholds( 490 struct xfs_mount *mp) 491 { 492 int i; 493 494 for (i = 0; i < XFS_LOWSP_MAX; i++) { 495 uint64_t space = mp->m_sb.sb_dblocks; 496 497 do_div(space, 100); 498 mp->m_low_space[i] = space * (i + 1); 499 } 500 } 501 502 /* 503 * Check that the data (and log if separate) is an ok size. 504 */ 505 STATIC int 506 xfs_check_sizes( 507 struct xfs_mount *mp) 508 { 509 struct xfs_buf *bp; 510 xfs_daddr_t d; 511 int error; 512 513 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 514 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 515 xfs_warn(mp, "filesystem size mismatch detected"); 516 return -EFBIG; 517 } 518 error = xfs_buf_read_uncached(mp->m_ddev_targp, 519 d - XFS_FSS_TO_BB(mp, 1), 520 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 521 if (error) { 522 xfs_warn(mp, "last sector read failed"); 523 return error; 524 } 525 xfs_buf_relse(bp); 526 527 if (mp->m_logdev_targp == mp->m_ddev_targp) 528 return 0; 529 530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 532 xfs_warn(mp, "log size mismatch detected"); 533 return -EFBIG; 534 } 535 error = xfs_buf_read_uncached(mp->m_logdev_targp, 536 d - XFS_FSB_TO_BB(mp, 1), 537 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 538 if (error) { 539 xfs_warn(mp, "log device read failed"); 540 return error; 541 } 542 xfs_buf_relse(bp); 543 return 0; 544 } 545 546 /* 547 * Clear the quotaflags in memory and in the superblock. 548 */ 549 int 550 xfs_mount_reset_sbqflags( 551 struct xfs_mount *mp) 552 { 553 mp->m_qflags = 0; 554 555 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 556 if (mp->m_sb.sb_qflags == 0) 557 return 0; 558 spin_lock(&mp->m_sb_lock); 559 mp->m_sb.sb_qflags = 0; 560 spin_unlock(&mp->m_sb_lock); 561 562 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 563 return 0; 564 565 return xfs_sync_sb(mp, false); 566 } 567 568 uint64_t 569 xfs_default_resblks(xfs_mount_t *mp) 570 { 571 uint64_t resblks; 572 573 /* 574 * We default to 5% or 8192 fsbs of space reserved, whichever is 575 * smaller. This is intended to cover concurrent allocation 576 * transactions when we initially hit enospc. These each require a 4 577 * block reservation. Hence by default we cover roughly 2000 concurrent 578 * allocation reservations. 579 */ 580 resblks = mp->m_sb.sb_dblocks; 581 do_div(resblks, 20); 582 resblks = min_t(uint64_t, resblks, 8192); 583 return resblks; 584 } 585 586 /* Ensure the summary counts are correct. */ 587 STATIC int 588 xfs_check_summary_counts( 589 struct xfs_mount *mp) 590 { 591 /* 592 * The AG0 superblock verifier rejects in-progress filesystems, 593 * so we should never see the flag set this far into mounting. 594 */ 595 if (mp->m_sb.sb_inprogress) { 596 xfs_err(mp, "sb_inprogress set after log recovery??"); 597 WARN_ON(1); 598 return -EFSCORRUPTED; 599 } 600 601 /* 602 * Now the log is mounted, we know if it was an unclean shutdown or 603 * not. If it was, with the first phase of recovery has completed, we 604 * have consistent AG blocks on disk. We have not recovered EFIs yet, 605 * but they are recovered transactionally in the second recovery phase 606 * later. 607 * 608 * If the log was clean when we mounted, we can check the summary 609 * counters. If any of them are obviously incorrect, we can recompute 610 * them from the AGF headers in the next step. 611 */ 612 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 613 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 614 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 615 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 616 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 617 618 /* 619 * We can safely re-initialise incore superblock counters from the 620 * per-ag data. These may not be correct if the filesystem was not 621 * cleanly unmounted, so we waited for recovery to finish before doing 622 * this. 623 * 624 * If the filesystem was cleanly unmounted or the previous check did 625 * not flag anything weird, then we can trust the values in the 626 * superblock to be correct and we don't need to do anything here. 627 * Otherwise, recalculate the summary counters. 628 */ 629 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 630 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 631 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 632 return 0; 633 634 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 635 } 636 637 /* 638 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 639 * internal inode structures can be sitting in the CIL and AIL at this point, 640 * so we need to unpin them, write them back and/or reclaim them before unmount 641 * can proceed. 642 * 643 * An inode cluster that has been freed can have its buffer still pinned in 644 * memory because the transaction is still sitting in a iclog. The stale inodes 645 * on that buffer will be pinned to the buffer until the transaction hits the 646 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 647 * may never see the pinned buffer, so nothing will push out the iclog and 648 * unpin the buffer. 649 * 650 * Hence we need to force the log to unpin everything first. However, log 651 * forces don't wait for the discards they issue to complete, so we have to 652 * explicitly wait for them to complete here as well. 653 * 654 * Then we can tell the world we are unmounting so that error handling knows 655 * that the filesystem is going away and we should error out anything that we 656 * have been retrying in the background. This will prevent never-ending 657 * retries in AIL pushing from hanging the unmount. 658 * 659 * Finally, we can push the AIL to clean all the remaining dirty objects, then 660 * reclaim the remaining inodes that are still in memory at this point in time. 661 */ 662 static void 663 xfs_unmount_flush_inodes( 664 struct xfs_mount *mp) 665 { 666 xfs_log_force(mp, XFS_LOG_SYNC); 667 xfs_extent_busy_wait_all(mp); 668 flush_workqueue(xfs_discard_wq); 669 670 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 671 672 xfs_ail_push_all_sync(mp->m_ail); 673 cancel_delayed_work_sync(&mp->m_reclaim_work); 674 xfs_reclaim_inodes(mp); 675 xfs_health_unmount(mp); 676 } 677 678 /* 679 * This function does the following on an initial mount of a file system: 680 * - reads the superblock from disk and init the mount struct 681 * - if we're a 32-bit kernel, do a size check on the superblock 682 * so we don't mount terabyte filesystems 683 * - init mount struct realtime fields 684 * - allocate inode hash table for fs 685 * - init directory manager 686 * - perform recovery and init the log manager 687 */ 688 int 689 xfs_mountfs( 690 struct xfs_mount *mp) 691 { 692 struct xfs_sb *sbp = &(mp->m_sb); 693 struct xfs_inode *rip; 694 struct xfs_ino_geometry *igeo = M_IGEO(mp); 695 uint64_t resblks; 696 uint quotamount = 0; 697 uint quotaflags = 0; 698 int error = 0; 699 700 xfs_sb_mount_common(mp, sbp); 701 702 /* 703 * Check for a mismatched features2 values. Older kernels read & wrote 704 * into the wrong sb offset for sb_features2 on some platforms due to 705 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 706 * which made older superblock reading/writing routines swap it as a 707 * 64-bit value. 708 * 709 * For backwards compatibility, we make both slots equal. 710 * 711 * If we detect a mismatched field, we OR the set bits into the existing 712 * features2 field in case it has already been modified; we don't want 713 * to lose any features. We then update the bad location with the ORed 714 * value so that older kernels will see any features2 flags. The 715 * superblock writeback code ensures the new sb_features2 is copied to 716 * sb_bad_features2 before it is logged or written to disk. 717 */ 718 if (xfs_sb_has_mismatched_features2(sbp)) { 719 xfs_warn(mp, "correcting sb_features alignment problem"); 720 sbp->sb_features2 |= sbp->sb_bad_features2; 721 mp->m_update_sb = true; 722 723 /* 724 * Re-check for ATTR2 in case it was found in bad_features2 725 * slot. 726 */ 727 if (xfs_sb_version_hasattr2(&mp->m_sb) && 728 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 729 mp->m_flags |= XFS_MOUNT_ATTR2; 730 } 731 732 if (xfs_sb_version_hasattr2(&mp->m_sb) && 733 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 734 xfs_sb_version_removeattr2(&mp->m_sb); 735 mp->m_update_sb = true; 736 737 /* update sb_versionnum for the clearing of the morebits */ 738 if (!sbp->sb_features2) 739 mp->m_update_sb = true; 740 } 741 742 /* always use v2 inodes by default now */ 743 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 744 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 745 mp->m_update_sb = true; 746 } 747 748 /* 749 * If we were given new sunit/swidth options, do some basic validation 750 * checks and convert the incore dalign and swidth values to the 751 * same units (FSB) that everything else uses. This /must/ happen 752 * before computing the inode geometry. 753 */ 754 error = xfs_validate_new_dalign(mp); 755 if (error) 756 goto out; 757 758 xfs_alloc_compute_maxlevels(mp); 759 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 760 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 761 xfs_ialloc_setup_geometry(mp); 762 xfs_rmapbt_compute_maxlevels(mp); 763 xfs_refcountbt_compute_maxlevels(mp); 764 765 /* 766 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 767 * is NOT aligned turn off m_dalign since allocator alignment is within 768 * an ag, therefore ag has to be aligned at stripe boundary. Note that 769 * we must compute the free space and rmap btree geometry before doing 770 * this. 771 */ 772 error = xfs_update_alignment(mp); 773 if (error) 774 goto out; 775 776 /* enable fail_at_unmount as default */ 777 mp->m_fail_unmount = true; 778 779 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 780 NULL, mp->m_super->s_id); 781 if (error) 782 goto out; 783 784 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 785 &mp->m_kobj, "stats"); 786 if (error) 787 goto out_remove_sysfs; 788 789 error = xfs_error_sysfs_init(mp); 790 if (error) 791 goto out_del_stats; 792 793 error = xfs_errortag_init(mp); 794 if (error) 795 goto out_remove_error_sysfs; 796 797 error = xfs_uuid_mount(mp); 798 if (error) 799 goto out_remove_errortag; 800 801 /* 802 * Update the preferred write size based on the information from the 803 * on-disk superblock. 804 */ 805 mp->m_allocsize_log = 806 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 807 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 808 809 /* set the low space thresholds for dynamic preallocation */ 810 xfs_set_low_space_thresholds(mp); 811 812 /* 813 * If enabled, sparse inode chunk alignment is expected to match the 814 * cluster size. Full inode chunk alignment must match the chunk size, 815 * but that is checked on sb read verification... 816 */ 817 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 818 mp->m_sb.sb_spino_align != 819 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 820 xfs_warn(mp, 821 "Sparse inode block alignment (%u) must match cluster size (%llu).", 822 mp->m_sb.sb_spino_align, 823 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 824 error = -EINVAL; 825 goto out_remove_uuid; 826 } 827 828 /* 829 * Check that the data (and log if separate) is an ok size. 830 */ 831 error = xfs_check_sizes(mp); 832 if (error) 833 goto out_remove_uuid; 834 835 /* 836 * Initialize realtime fields in the mount structure 837 */ 838 error = xfs_rtmount_init(mp); 839 if (error) { 840 xfs_warn(mp, "RT mount failed"); 841 goto out_remove_uuid; 842 } 843 844 /* 845 * Copies the low order bits of the timestamp and the randomly 846 * set "sequence" number out of a UUID. 847 */ 848 mp->m_fixedfsid[0] = 849 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 850 get_unaligned_be16(&sbp->sb_uuid.b[4]); 851 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 852 853 error = xfs_da_mount(mp); 854 if (error) { 855 xfs_warn(mp, "Failed dir/attr init: %d", error); 856 goto out_remove_uuid; 857 } 858 859 /* 860 * Initialize the precomputed transaction reservations values. 861 */ 862 xfs_trans_init(mp); 863 864 /* 865 * Allocate and initialize the per-ag data. 866 */ 867 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 868 if (error) { 869 xfs_warn(mp, "Failed per-ag init: %d", error); 870 goto out_free_dir; 871 } 872 873 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 874 xfs_warn(mp, "no log defined"); 875 error = -EFSCORRUPTED; 876 goto out_free_perag; 877 } 878 879 /* 880 * Log's mount-time initialization. The first part of recovery can place 881 * some items on the AIL, to be handled when recovery is finished or 882 * cancelled. 883 */ 884 error = xfs_log_mount(mp, mp->m_logdev_targp, 885 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 886 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 887 if (error) { 888 xfs_warn(mp, "log mount failed"); 889 goto out_fail_wait; 890 } 891 892 /* Make sure the summary counts are ok. */ 893 error = xfs_check_summary_counts(mp); 894 if (error) 895 goto out_log_dealloc; 896 897 /* 898 * Get and sanity-check the root inode. 899 * Save the pointer to it in the mount structure. 900 */ 901 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 902 XFS_ILOCK_EXCL, &rip); 903 if (error) { 904 xfs_warn(mp, 905 "Failed to read root inode 0x%llx, error %d", 906 sbp->sb_rootino, -error); 907 goto out_log_dealloc; 908 } 909 910 ASSERT(rip != NULL); 911 912 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 913 xfs_warn(mp, "corrupted root inode %llu: not a directory", 914 (unsigned long long)rip->i_ino); 915 xfs_iunlock(rip, XFS_ILOCK_EXCL); 916 error = -EFSCORRUPTED; 917 goto out_rele_rip; 918 } 919 mp->m_rootip = rip; /* save it */ 920 921 xfs_iunlock(rip, XFS_ILOCK_EXCL); 922 923 /* 924 * Initialize realtime inode pointers in the mount structure 925 */ 926 error = xfs_rtmount_inodes(mp); 927 if (error) { 928 /* 929 * Free up the root inode. 930 */ 931 xfs_warn(mp, "failed to read RT inodes"); 932 goto out_rele_rip; 933 } 934 935 /* 936 * If this is a read-only mount defer the superblock updates until 937 * the next remount into writeable mode. Otherwise we would never 938 * perform the update e.g. for the root filesystem. 939 */ 940 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 941 error = xfs_sync_sb(mp, false); 942 if (error) { 943 xfs_warn(mp, "failed to write sb changes"); 944 goto out_rtunmount; 945 } 946 } 947 948 /* 949 * Initialise the XFS quota management subsystem for this mount 950 */ 951 if (XFS_IS_QUOTA_RUNNING(mp)) { 952 error = xfs_qm_newmount(mp, "amount, "aflags); 953 if (error) 954 goto out_rtunmount; 955 } else { 956 ASSERT(!XFS_IS_QUOTA_ON(mp)); 957 958 /* 959 * If a file system had quotas running earlier, but decided to 960 * mount without -o uquota/pquota/gquota options, revoke the 961 * quotachecked license. 962 */ 963 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 964 xfs_notice(mp, "resetting quota flags"); 965 error = xfs_mount_reset_sbqflags(mp); 966 if (error) 967 goto out_rtunmount; 968 } 969 } 970 971 /* 972 * Finish recovering the file system. This part needed to be delayed 973 * until after the root and real-time bitmap inodes were consistently 974 * read in. 975 */ 976 error = xfs_log_mount_finish(mp); 977 if (error) { 978 xfs_warn(mp, "log mount finish failed"); 979 goto out_rtunmount; 980 } 981 982 /* 983 * Now the log is fully replayed, we can transition to full read-only 984 * mode for read-only mounts. This will sync all the metadata and clean 985 * the log so that the recovery we just performed does not have to be 986 * replayed again on the next mount. 987 * 988 * We use the same quiesce mechanism as the rw->ro remount, as they are 989 * semantically identical operations. 990 */ 991 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 992 XFS_MOUNT_RDONLY) { 993 xfs_log_clean(mp); 994 } 995 996 /* 997 * Complete the quota initialisation, post-log-replay component. 998 */ 999 if (quotamount) { 1000 ASSERT(mp->m_qflags == 0); 1001 mp->m_qflags = quotaflags; 1002 1003 xfs_qm_mount_quotas(mp); 1004 } 1005 1006 /* 1007 * Now we are mounted, reserve a small amount of unused space for 1008 * privileged transactions. This is needed so that transaction 1009 * space required for critical operations can dip into this pool 1010 * when at ENOSPC. This is needed for operations like create with 1011 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1012 * are not allowed to use this reserved space. 1013 * 1014 * This may drive us straight to ENOSPC on mount, but that implies 1015 * we were already there on the last unmount. Warn if this occurs. 1016 */ 1017 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1018 resblks = xfs_default_resblks(mp); 1019 error = xfs_reserve_blocks(mp, &resblks, NULL); 1020 if (error) 1021 xfs_warn(mp, 1022 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1023 1024 /* Recover any CoW blocks that never got remapped. */ 1025 error = xfs_reflink_recover_cow(mp); 1026 if (error) { 1027 xfs_err(mp, 1028 "Error %d recovering leftover CoW allocations.", error); 1029 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1030 goto out_quota; 1031 } 1032 1033 /* Reserve AG blocks for future btree expansion. */ 1034 error = xfs_fs_reserve_ag_blocks(mp); 1035 if (error && error != -ENOSPC) 1036 goto out_agresv; 1037 } 1038 1039 return 0; 1040 1041 out_agresv: 1042 xfs_fs_unreserve_ag_blocks(mp); 1043 out_quota: 1044 xfs_qm_unmount_quotas(mp); 1045 out_rtunmount: 1046 xfs_rtunmount_inodes(mp); 1047 out_rele_rip: 1048 xfs_irele(rip); 1049 /* Clean out dquots that might be in memory after quotacheck. */ 1050 xfs_qm_unmount(mp); 1051 /* 1052 * Flush all inode reclamation work and flush the log. 1053 * We have to do this /after/ rtunmount and qm_unmount because those 1054 * two will have scheduled delayed reclaim for the rt/quota inodes. 1055 * 1056 * This is slightly different from the unmountfs call sequence 1057 * because we could be tearing down a partially set up mount. In 1058 * particular, if log_mount_finish fails we bail out without calling 1059 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1060 * quota inodes. 1061 */ 1062 xfs_unmount_flush_inodes(mp); 1063 out_log_dealloc: 1064 xfs_log_mount_cancel(mp); 1065 out_fail_wait: 1066 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1067 xfs_buftarg_drain(mp->m_logdev_targp); 1068 xfs_buftarg_drain(mp->m_ddev_targp); 1069 out_free_perag: 1070 xfs_free_perag(mp); 1071 out_free_dir: 1072 xfs_da_unmount(mp); 1073 out_remove_uuid: 1074 xfs_uuid_unmount(mp); 1075 out_remove_errortag: 1076 xfs_errortag_del(mp); 1077 out_remove_error_sysfs: 1078 xfs_error_sysfs_del(mp); 1079 out_del_stats: 1080 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1081 out_remove_sysfs: 1082 xfs_sysfs_del(&mp->m_kobj); 1083 out: 1084 return error; 1085 } 1086 1087 /* 1088 * This flushes out the inodes,dquots and the superblock, unmounts the 1089 * log and makes sure that incore structures are freed. 1090 */ 1091 void 1092 xfs_unmountfs( 1093 struct xfs_mount *mp) 1094 { 1095 uint64_t resblks; 1096 int error; 1097 1098 xfs_blockgc_stop(mp); 1099 xfs_fs_unreserve_ag_blocks(mp); 1100 xfs_qm_unmount_quotas(mp); 1101 xfs_rtunmount_inodes(mp); 1102 xfs_irele(mp->m_rootip); 1103 1104 xfs_unmount_flush_inodes(mp); 1105 1106 xfs_qm_unmount(mp); 1107 1108 /* 1109 * Unreserve any blocks we have so that when we unmount we don't account 1110 * the reserved free space as used. This is really only necessary for 1111 * lazy superblock counting because it trusts the incore superblock 1112 * counters to be absolutely correct on clean unmount. 1113 * 1114 * We don't bother correcting this elsewhere for lazy superblock 1115 * counting because on mount of an unclean filesystem we reconstruct the 1116 * correct counter value and this is irrelevant. 1117 * 1118 * For non-lazy counter filesystems, this doesn't matter at all because 1119 * we only every apply deltas to the superblock and hence the incore 1120 * value does not matter.... 1121 */ 1122 resblks = 0; 1123 error = xfs_reserve_blocks(mp, &resblks, NULL); 1124 if (error) 1125 xfs_warn(mp, "Unable to free reserved block pool. " 1126 "Freespace may not be correct on next mount."); 1127 1128 xfs_log_unmount(mp); 1129 xfs_da_unmount(mp); 1130 xfs_uuid_unmount(mp); 1131 1132 #if defined(DEBUG) 1133 xfs_errortag_clearall(mp); 1134 #endif 1135 xfs_free_perag(mp); 1136 1137 xfs_errortag_del(mp); 1138 xfs_error_sysfs_del(mp); 1139 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1140 xfs_sysfs_del(&mp->m_kobj); 1141 } 1142 1143 /* 1144 * Determine whether modifications can proceed. The caller specifies the minimum 1145 * freeze level for which modifications should not be allowed. This allows 1146 * certain operations to proceed while the freeze sequence is in progress, if 1147 * necessary. 1148 */ 1149 bool 1150 xfs_fs_writable( 1151 struct xfs_mount *mp, 1152 int level) 1153 { 1154 ASSERT(level > SB_UNFROZEN); 1155 if ((mp->m_super->s_writers.frozen >= level) || 1156 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /* 1163 * Deltas for the block count can vary from 1 to very large, but lock contention 1164 * only occurs on frequent small block count updates such as in the delayed 1165 * allocation path for buffered writes (page a time updates). Hence we set 1166 * a large batch count (1024) to minimise global counter updates except when 1167 * we get near to ENOSPC and we have to be very accurate with our updates. 1168 */ 1169 #define XFS_FDBLOCKS_BATCH 1024 1170 int 1171 xfs_mod_fdblocks( 1172 struct xfs_mount *mp, 1173 int64_t delta, 1174 bool rsvd) 1175 { 1176 int64_t lcounter; 1177 long long res_used; 1178 s32 batch; 1179 1180 if (delta > 0) { 1181 /* 1182 * If the reserve pool is depleted, put blocks back into it 1183 * first. Most of the time the pool is full. 1184 */ 1185 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1186 percpu_counter_add(&mp->m_fdblocks, delta); 1187 return 0; 1188 } 1189 1190 spin_lock(&mp->m_sb_lock); 1191 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1192 1193 if (res_used > delta) { 1194 mp->m_resblks_avail += delta; 1195 } else { 1196 delta -= res_used; 1197 mp->m_resblks_avail = mp->m_resblks; 1198 percpu_counter_add(&mp->m_fdblocks, delta); 1199 } 1200 spin_unlock(&mp->m_sb_lock); 1201 return 0; 1202 } 1203 1204 /* 1205 * Taking blocks away, need to be more accurate the closer we 1206 * are to zero. 1207 * 1208 * If the counter has a value of less than 2 * max batch size, 1209 * then make everything serialise as we are real close to 1210 * ENOSPC. 1211 */ 1212 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1213 XFS_FDBLOCKS_BATCH) < 0) 1214 batch = 1; 1215 else 1216 batch = XFS_FDBLOCKS_BATCH; 1217 1218 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1219 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1220 XFS_FDBLOCKS_BATCH) >= 0) { 1221 /* we had space! */ 1222 return 0; 1223 } 1224 1225 /* 1226 * lock up the sb for dipping into reserves before releasing the space 1227 * that took us to ENOSPC. 1228 */ 1229 spin_lock(&mp->m_sb_lock); 1230 percpu_counter_add(&mp->m_fdblocks, -delta); 1231 if (!rsvd) 1232 goto fdblocks_enospc; 1233 1234 lcounter = (long long)mp->m_resblks_avail + delta; 1235 if (lcounter >= 0) { 1236 mp->m_resblks_avail = lcounter; 1237 spin_unlock(&mp->m_sb_lock); 1238 return 0; 1239 } 1240 xfs_warn_once(mp, 1241 "Reserve blocks depleted! Consider increasing reserve pool size."); 1242 1243 fdblocks_enospc: 1244 spin_unlock(&mp->m_sb_lock); 1245 return -ENOSPC; 1246 } 1247 1248 int 1249 xfs_mod_frextents( 1250 struct xfs_mount *mp, 1251 int64_t delta) 1252 { 1253 int64_t lcounter; 1254 int ret = 0; 1255 1256 spin_lock(&mp->m_sb_lock); 1257 lcounter = mp->m_sb.sb_frextents + delta; 1258 if (lcounter < 0) 1259 ret = -ENOSPC; 1260 else 1261 mp->m_sb.sb_frextents = lcounter; 1262 spin_unlock(&mp->m_sb_lock); 1263 return ret; 1264 } 1265 1266 /* 1267 * Used to free the superblock along various error paths. 1268 */ 1269 void 1270 xfs_freesb( 1271 struct xfs_mount *mp) 1272 { 1273 struct xfs_buf *bp = mp->m_sb_bp; 1274 1275 xfs_buf_lock(bp); 1276 mp->m_sb_bp = NULL; 1277 xfs_buf_relse(bp); 1278 } 1279 1280 /* 1281 * If the underlying (data/log/rt) device is readonly, there are some 1282 * operations that cannot proceed. 1283 */ 1284 int 1285 xfs_dev_is_read_only( 1286 struct xfs_mount *mp, 1287 char *message) 1288 { 1289 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1290 xfs_readonly_buftarg(mp->m_logdev_targp) || 1291 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1292 xfs_notice(mp, "%s required on read-only device.", message); 1293 xfs_notice(mp, "write access unavailable, cannot proceed."); 1294 return -EROFS; 1295 } 1296 return 0; 1297 } 1298 1299 /* Force the summary counters to be recalculated at next mount. */ 1300 void 1301 xfs_force_summary_recalc( 1302 struct xfs_mount *mp) 1303 { 1304 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1305 return; 1306 1307 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1308 } 1309 1310 /* 1311 * Update the in-core delayed block counter. 1312 * 1313 * We prefer to update the counter without having to take a spinlock for every 1314 * counter update (i.e. batching). Each change to delayed allocation 1315 * reservations can change can easily exceed the default percpu counter 1316 * batching, so we use a larger batch factor here. 1317 * 1318 * Note that we don't currently have any callers requiring fast summation 1319 * (e.g. percpu_counter_read) so we can use a big batch value here. 1320 */ 1321 #define XFS_DELALLOC_BATCH (4096) 1322 void 1323 xfs_mod_delalloc( 1324 struct xfs_mount *mp, 1325 int64_t delta) 1326 { 1327 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1328 XFS_DELALLOC_BATCH); 1329 } 1330