1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_imap.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_log_priv.h" 43 #include "xfs_buf_item.h" 44 #include "xfs_log_recover.h" 45 #include "xfs_extfree_item.h" 46 #include "xfs_trans_priv.h" 47 #include "xfs_quota.h" 48 #include "xfs_rw.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 57 #else 58 #define xlog_recover_check_summary(log) 59 #define xlog_recover_check_ail(mp, lip, gen) 60 #endif 61 62 63 /* 64 * Sector aligned buffer routines for buffer create/read/write/access 65 */ 66 67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 71 72 xfs_buf_t * 73 xlog_get_bp( 74 xlog_t *log, 75 int num_bblks) 76 { 77 ASSERT(num_bblks > 0); 78 79 if (log->l_sectbb_log) { 80 if (num_bblks > 1) 81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 83 } 84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 85 } 86 87 void 88 xlog_put_bp( 89 xfs_buf_t *bp) 90 { 91 xfs_buf_free(bp); 92 } 93 94 95 /* 96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 97 */ 98 int 99 xlog_bread( 100 xlog_t *log, 101 xfs_daddr_t blk_no, 102 int nbblks, 103 xfs_buf_t *bp) 104 { 105 int error; 106 107 if (log->l_sectbb_log) { 108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 110 } 111 112 ASSERT(nbblks > 0); 113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 114 ASSERT(bp); 115 116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 117 XFS_BUF_READ(bp); 118 XFS_BUF_BUSY(bp); 119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 121 122 xfsbdstrat(log->l_mp, bp); 123 if ((error = xfs_iowait(bp))) 124 xfs_ioerror_alert("xlog_bread", log->l_mp, 125 bp, XFS_BUF_ADDR(bp)); 126 return error; 127 } 128 129 /* 130 * Write out the buffer at the given block for the given number of blocks. 131 * The buffer is kept locked across the write and is returned locked. 132 * This can only be used for synchronous log writes. 133 */ 134 STATIC int 135 xlog_bwrite( 136 xlog_t *log, 137 xfs_daddr_t blk_no, 138 int nbblks, 139 xfs_buf_t *bp) 140 { 141 int error; 142 143 if (log->l_sectbb_log) { 144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 146 } 147 148 ASSERT(nbblks > 0); 149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 150 151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 152 XFS_BUF_ZEROFLAGS(bp); 153 XFS_BUF_BUSY(bp); 154 XFS_BUF_HOLD(bp); 155 XFS_BUF_PSEMA(bp, PRIBIO); 156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 158 159 if ((error = xfs_bwrite(log->l_mp, bp))) 160 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 161 bp, XFS_BUF_ADDR(bp)); 162 return error; 163 } 164 165 STATIC xfs_caddr_t 166 xlog_align( 167 xlog_t *log, 168 xfs_daddr_t blk_no, 169 int nbblks, 170 xfs_buf_t *bp) 171 { 172 xfs_caddr_t ptr; 173 174 if (!log->l_sectbb_log) 175 return XFS_BUF_PTR(bp); 176 177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 178 ASSERT(XFS_BUF_SIZE(bp) >= 179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 180 return ptr; 181 } 182 183 #ifdef DEBUG 184 /* 185 * dump debug superblock and log record information 186 */ 187 STATIC void 188 xlog_header_check_dump( 189 xfs_mount_t *mp, 190 xlog_rec_header_t *head) 191 { 192 int b; 193 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__); 195 for (b = 0; b < 16; b++) 196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 198 cmn_err(CE_DEBUG, " log : uuid = "); 199 for (b = 0; b < 16; b++) 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 202 } 203 #else 204 #define xlog_header_check_dump(mp, head) 205 #endif 206 207 /* 208 * check log record header for recovery 209 */ 210 STATIC int 211 xlog_header_check_recover( 212 xfs_mount_t *mp, 213 xlog_rec_header_t *head) 214 { 215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 216 217 /* 218 * IRIX doesn't write the h_fmt field and leaves it zeroed 219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 220 * a dirty log created in IRIX. 221 */ 222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 223 xlog_warn( 224 "XFS: dirty log written in incompatible format - can't recover"); 225 xlog_header_check_dump(mp, head); 226 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 227 XFS_ERRLEVEL_HIGH, mp); 228 return XFS_ERROR(EFSCORRUPTED); 229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 230 xlog_warn( 231 "XFS: dirty log entry has mismatched uuid - can't recover"); 232 xlog_header_check_dump(mp, head); 233 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 234 XFS_ERRLEVEL_HIGH, mp); 235 return XFS_ERROR(EFSCORRUPTED); 236 } 237 return 0; 238 } 239 240 /* 241 * read the head block of the log and check the header 242 */ 243 STATIC int 244 xlog_header_check_mount( 245 xfs_mount_t *mp, 246 xlog_rec_header_t *head) 247 { 248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 249 250 if (uuid_is_nil(&head->h_fs_uuid)) { 251 /* 252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 253 * h_fs_uuid is nil, we assume this log was last mounted 254 * by IRIX and continue. 255 */ 256 xlog_warn("XFS: nil uuid in log - IRIX style log"); 257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 258 xlog_warn("XFS: log has mismatched uuid - can't recover"); 259 xlog_header_check_dump(mp, head); 260 XFS_ERROR_REPORT("xlog_header_check_mount", 261 XFS_ERRLEVEL_HIGH, mp); 262 return XFS_ERROR(EFSCORRUPTED); 263 } 264 return 0; 265 } 266 267 STATIC void 268 xlog_recover_iodone( 269 struct xfs_buf *bp) 270 { 271 xfs_mount_t *mp; 272 273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 274 275 if (XFS_BUF_GETERROR(bp)) { 276 /* 277 * We're not going to bother about retrying 278 * this during recovery. One strike! 279 */ 280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 281 xfs_ioerror_alert("xlog_recover_iodone", 282 mp, bp, XFS_BUF_ADDR(bp)); 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 284 } 285 XFS_BUF_SET_FSPRIVATE(bp, NULL); 286 XFS_BUF_CLR_IODONE_FUNC(bp); 287 xfs_biodone(bp); 288 } 289 290 /* 291 * This routine finds (to an approximation) the first block in the physical 292 * log which contains the given cycle. It uses a binary search algorithm. 293 * Note that the algorithm can not be perfect because the disk will not 294 * necessarily be perfect. 295 */ 296 int 297 xlog_find_cycle_start( 298 xlog_t *log, 299 xfs_buf_t *bp, 300 xfs_daddr_t first_blk, 301 xfs_daddr_t *last_blk, 302 uint cycle) 303 { 304 xfs_caddr_t offset; 305 xfs_daddr_t mid_blk; 306 uint mid_cycle; 307 int error; 308 309 mid_blk = BLK_AVG(first_blk, *last_blk); 310 while (mid_blk != first_blk && mid_blk != *last_blk) { 311 if ((error = xlog_bread(log, mid_blk, 1, bp))) 312 return error; 313 offset = xlog_align(log, mid_blk, 1, bp); 314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 315 if (mid_cycle == cycle) { 316 *last_blk = mid_blk; 317 /* last_half_cycle == mid_cycle */ 318 } else { 319 first_blk = mid_blk; 320 /* first_half_cycle == mid_cycle */ 321 } 322 mid_blk = BLK_AVG(first_blk, *last_blk); 323 } 324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 325 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 326 327 return 0; 328 } 329 330 /* 331 * Check that the range of blocks does not contain the cycle number 332 * given. The scan needs to occur from front to back and the ptr into the 333 * region must be updated since a later routine will need to perform another 334 * test. If the region is completely good, we end up returning the same 335 * last block number. 336 * 337 * Set blkno to -1 if we encounter no errors. This is an invalid block number 338 * since we don't ever expect logs to get this large. 339 */ 340 STATIC int 341 xlog_find_verify_cycle( 342 xlog_t *log, 343 xfs_daddr_t start_blk, 344 int nbblks, 345 uint stop_on_cycle_no, 346 xfs_daddr_t *new_blk) 347 { 348 xfs_daddr_t i, j; 349 uint cycle; 350 xfs_buf_t *bp; 351 xfs_daddr_t bufblks; 352 xfs_caddr_t buf = NULL; 353 int error = 0; 354 355 bufblks = 1 << ffs(nbblks); 356 357 while (!(bp = xlog_get_bp(log, bufblks))) { 358 /* can't get enough memory to do everything in one big buffer */ 359 bufblks >>= 1; 360 if (bufblks <= log->l_sectbb_log) 361 return ENOMEM; 362 } 363 364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 365 int bcount; 366 367 bcount = min(bufblks, (start_blk + nbblks - i)); 368 369 if ((error = xlog_bread(log, i, bcount, bp))) 370 goto out; 371 372 buf = xlog_align(log, i, bcount, bp); 373 for (j = 0; j < bcount; j++) { 374 cycle = GET_CYCLE(buf, ARCH_CONVERT); 375 if (cycle == stop_on_cycle_no) { 376 *new_blk = i+j; 377 goto out; 378 } 379 380 buf += BBSIZE; 381 } 382 } 383 384 *new_blk = -1; 385 386 out: 387 xlog_put_bp(bp); 388 return error; 389 } 390 391 /* 392 * Potentially backup over partial log record write. 393 * 394 * In the typical case, last_blk is the number of the block directly after 395 * a good log record. Therefore, we subtract one to get the block number 396 * of the last block in the given buffer. extra_bblks contains the number 397 * of blocks we would have read on a previous read. This happens when the 398 * last log record is split over the end of the physical log. 399 * 400 * extra_bblks is the number of blocks potentially verified on a previous 401 * call to this routine. 402 */ 403 STATIC int 404 xlog_find_verify_log_record( 405 xlog_t *log, 406 xfs_daddr_t start_blk, 407 xfs_daddr_t *last_blk, 408 int extra_bblks) 409 { 410 xfs_daddr_t i; 411 xfs_buf_t *bp; 412 xfs_caddr_t offset = NULL; 413 xlog_rec_header_t *head = NULL; 414 int error = 0; 415 int smallmem = 0; 416 int num_blks = *last_blk - start_blk; 417 int xhdrs; 418 419 ASSERT(start_blk != 0 || *last_blk != start_blk); 420 421 if (!(bp = xlog_get_bp(log, num_blks))) { 422 if (!(bp = xlog_get_bp(log, 1))) 423 return ENOMEM; 424 smallmem = 1; 425 } else { 426 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 427 goto out; 428 offset = xlog_align(log, start_blk, num_blks, bp); 429 offset += ((num_blks - 1) << BBSHIFT); 430 } 431 432 for (i = (*last_blk) - 1; i >= 0; i--) { 433 if (i < start_blk) { 434 /* valid log record not found */ 435 xlog_warn( 436 "XFS: Log inconsistent (didn't find previous header)"); 437 ASSERT(0); 438 error = XFS_ERROR(EIO); 439 goto out; 440 } 441 442 if (smallmem) { 443 if ((error = xlog_bread(log, i, 1, bp))) 444 goto out; 445 offset = xlog_align(log, i, 1, bp); 446 } 447 448 head = (xlog_rec_header_t *)offset; 449 450 if (XLOG_HEADER_MAGIC_NUM == 451 INT_GET(head->h_magicno, ARCH_CONVERT)) 452 break; 453 454 if (!smallmem) 455 offset -= BBSIZE; 456 } 457 458 /* 459 * We hit the beginning of the physical log & still no header. Return 460 * to caller. If caller can handle a return of -1, then this routine 461 * will be called again for the end of the physical log. 462 */ 463 if (i == -1) { 464 error = -1; 465 goto out; 466 } 467 468 /* 469 * We have the final block of the good log (the first block 470 * of the log record _before_ the head. So we check the uuid. 471 */ 472 if ((error = xlog_header_check_mount(log->l_mp, head))) 473 goto out; 474 475 /* 476 * We may have found a log record header before we expected one. 477 * last_blk will be the 1st block # with a given cycle #. We may end 478 * up reading an entire log record. In this case, we don't want to 479 * reset last_blk. Only when last_blk points in the middle of a log 480 * record do we update last_blk. 481 */ 482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 484 485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 486 if (h_size % XLOG_HEADER_CYCLE_SIZE) 487 xhdrs++; 488 } else { 489 xhdrs = 1; 490 } 491 492 if (*last_blk - i + extra_bblks 493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 494 *last_blk = i; 495 496 out: 497 xlog_put_bp(bp); 498 return error; 499 } 500 501 /* 502 * Head is defined to be the point of the log where the next log write 503 * write could go. This means that incomplete LR writes at the end are 504 * eliminated when calculating the head. We aren't guaranteed that previous 505 * LR have complete transactions. We only know that a cycle number of 506 * current cycle number -1 won't be present in the log if we start writing 507 * from our current block number. 508 * 509 * last_blk contains the block number of the first block with a given 510 * cycle number. 511 * 512 * Return: zero if normal, non-zero if error. 513 */ 514 STATIC int 515 xlog_find_head( 516 xlog_t *log, 517 xfs_daddr_t *return_head_blk) 518 { 519 xfs_buf_t *bp; 520 xfs_caddr_t offset; 521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 522 int num_scan_bblks; 523 uint first_half_cycle, last_half_cycle; 524 uint stop_on_cycle; 525 int error, log_bbnum = log->l_logBBsize; 526 527 /* Is the end of the log device zeroed? */ 528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 529 *return_head_blk = first_blk; 530 531 /* Is the whole lot zeroed? */ 532 if (!first_blk) { 533 /* Linux XFS shouldn't generate totally zeroed logs - 534 * mkfs etc write a dummy unmount record to a fresh 535 * log so we can store the uuid in there 536 */ 537 xlog_warn("XFS: totally zeroed log"); 538 } 539 540 return 0; 541 } else if (error) { 542 xlog_warn("XFS: empty log check failed"); 543 return error; 544 } 545 546 first_blk = 0; /* get cycle # of 1st block */ 547 bp = xlog_get_bp(log, 1); 548 if (!bp) 549 return ENOMEM; 550 if ((error = xlog_bread(log, 0, 1, bp))) 551 goto bp_err; 552 offset = xlog_align(log, 0, 1, bp); 553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 554 555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 556 if ((error = xlog_bread(log, last_blk, 1, bp))) 557 goto bp_err; 558 offset = xlog_align(log, last_blk, 1, bp); 559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 560 ASSERT(last_half_cycle != 0); 561 562 /* 563 * If the 1st half cycle number is equal to the last half cycle number, 564 * then the entire log is stamped with the same cycle number. In this 565 * case, head_blk can't be set to zero (which makes sense). The below 566 * math doesn't work out properly with head_blk equal to zero. Instead, 567 * we set it to log_bbnum which is an invalid block number, but this 568 * value makes the math correct. If head_blk doesn't changed through 569 * all the tests below, *head_blk is set to zero at the very end rather 570 * than log_bbnum. In a sense, log_bbnum and zero are the same block 571 * in a circular file. 572 */ 573 if (first_half_cycle == last_half_cycle) { 574 /* 575 * In this case we believe that the entire log should have 576 * cycle number last_half_cycle. We need to scan backwards 577 * from the end verifying that there are no holes still 578 * containing last_half_cycle - 1. If we find such a hole, 579 * then the start of that hole will be the new head. The 580 * simple case looks like 581 * x | x ... | x - 1 | x 582 * Another case that fits this picture would be 583 * x | x + 1 | x ... | x 584 * In this case the head really is somewhere at the end of the 585 * log, as one of the latest writes at the beginning was 586 * incomplete. 587 * One more case is 588 * x | x + 1 | x ... | x - 1 | x 589 * This is really the combination of the above two cases, and 590 * the head has to end up at the start of the x-1 hole at the 591 * end of the log. 592 * 593 * In the 256k log case, we will read from the beginning to the 594 * end of the log and search for cycle numbers equal to x-1. 595 * We don't worry about the x+1 blocks that we encounter, 596 * because we know that they cannot be the head since the log 597 * started with x. 598 */ 599 head_blk = log_bbnum; 600 stop_on_cycle = last_half_cycle - 1; 601 } else { 602 /* 603 * In this case we want to find the first block with cycle 604 * number matching last_half_cycle. We expect the log to be 605 * some variation on 606 * x + 1 ... | x ... 607 * The first block with cycle number x (last_half_cycle) will 608 * be where the new head belongs. First we do a binary search 609 * for the first occurrence of last_half_cycle. The binary 610 * search may not be totally accurate, so then we scan back 611 * from there looking for occurrences of last_half_cycle before 612 * us. If that backwards scan wraps around the beginning of 613 * the log, then we look for occurrences of last_half_cycle - 1 614 * at the end of the log. The cases we're looking for look 615 * like 616 * x + 1 ... | x | x + 1 | x ... 617 * ^ binary search stopped here 618 * or 619 * x + 1 ... | x ... | x - 1 | x 620 * <---------> less than scan distance 621 */ 622 stop_on_cycle = last_half_cycle; 623 if ((error = xlog_find_cycle_start(log, bp, first_blk, 624 &head_blk, last_half_cycle))) 625 goto bp_err; 626 } 627 628 /* 629 * Now validate the answer. Scan back some number of maximum possible 630 * blocks and make sure each one has the expected cycle number. The 631 * maximum is determined by the total possible amount of buffering 632 * in the in-core log. The following number can be made tighter if 633 * we actually look at the block size of the filesystem. 634 */ 635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 636 if (head_blk >= num_scan_bblks) { 637 /* 638 * We are guaranteed that the entire check can be performed 639 * in one buffer. 640 */ 641 start_blk = head_blk - num_scan_bblks; 642 if ((error = xlog_find_verify_cycle(log, 643 start_blk, num_scan_bblks, 644 stop_on_cycle, &new_blk))) 645 goto bp_err; 646 if (new_blk != -1) 647 head_blk = new_blk; 648 } else { /* need to read 2 parts of log */ 649 /* 650 * We are going to scan backwards in the log in two parts. 651 * First we scan the physical end of the log. In this part 652 * of the log, we are looking for blocks with cycle number 653 * last_half_cycle - 1. 654 * If we find one, then we know that the log starts there, as 655 * we've found a hole that didn't get written in going around 656 * the end of the physical log. The simple case for this is 657 * x + 1 ... | x ... | x - 1 | x 658 * <---------> less than scan distance 659 * If all of the blocks at the end of the log have cycle number 660 * last_half_cycle, then we check the blocks at the start of 661 * the log looking for occurrences of last_half_cycle. If we 662 * find one, then our current estimate for the location of the 663 * first occurrence of last_half_cycle is wrong and we move 664 * back to the hole we've found. This case looks like 665 * x + 1 ... | x | x + 1 | x ... 666 * ^ binary search stopped here 667 * Another case we need to handle that only occurs in 256k 668 * logs is 669 * x + 1 ... | x ... | x+1 | x ... 670 * ^ binary search stops here 671 * In a 256k log, the scan at the end of the log will see the 672 * x + 1 blocks. We need to skip past those since that is 673 * certainly not the head of the log. By searching for 674 * last_half_cycle-1 we accomplish that. 675 */ 676 start_blk = log_bbnum - num_scan_bblks + head_blk; 677 ASSERT(head_blk <= INT_MAX && 678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 679 if ((error = xlog_find_verify_cycle(log, start_blk, 680 num_scan_bblks - (int)head_blk, 681 (stop_on_cycle - 1), &new_blk))) 682 goto bp_err; 683 if (new_blk != -1) { 684 head_blk = new_blk; 685 goto bad_blk; 686 } 687 688 /* 689 * Scan beginning of log now. The last part of the physical 690 * log is good. This scan needs to verify that it doesn't find 691 * the last_half_cycle. 692 */ 693 start_blk = 0; 694 ASSERT(head_blk <= INT_MAX); 695 if ((error = xlog_find_verify_cycle(log, 696 start_blk, (int)head_blk, 697 stop_on_cycle, &new_blk))) 698 goto bp_err; 699 if (new_blk != -1) 700 head_blk = new_blk; 701 } 702 703 bad_blk: 704 /* 705 * Now we need to make sure head_blk is not pointing to a block in 706 * the middle of a log record. 707 */ 708 num_scan_bblks = XLOG_REC_SHIFT(log); 709 if (head_blk >= num_scan_bblks) { 710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 711 712 /* start ptr at last block ptr before head_blk */ 713 if ((error = xlog_find_verify_log_record(log, start_blk, 714 &head_blk, 0)) == -1) { 715 error = XFS_ERROR(EIO); 716 goto bp_err; 717 } else if (error) 718 goto bp_err; 719 } else { 720 start_blk = 0; 721 ASSERT(head_blk <= INT_MAX); 722 if ((error = xlog_find_verify_log_record(log, start_blk, 723 &head_blk, 0)) == -1) { 724 /* We hit the beginning of the log during our search */ 725 start_blk = log_bbnum - num_scan_bblks + head_blk; 726 new_blk = log_bbnum; 727 ASSERT(start_blk <= INT_MAX && 728 (xfs_daddr_t) log_bbnum-start_blk >= 0); 729 ASSERT(head_blk <= INT_MAX); 730 if ((error = xlog_find_verify_log_record(log, 731 start_blk, &new_blk, 732 (int)head_blk)) == -1) { 733 error = XFS_ERROR(EIO); 734 goto bp_err; 735 } else if (error) 736 goto bp_err; 737 if (new_blk != log_bbnum) 738 head_blk = new_blk; 739 } else if (error) 740 goto bp_err; 741 } 742 743 xlog_put_bp(bp); 744 if (head_blk == log_bbnum) 745 *return_head_blk = 0; 746 else 747 *return_head_blk = head_blk; 748 /* 749 * When returning here, we have a good block number. Bad block 750 * means that during a previous crash, we didn't have a clean break 751 * from cycle number N to cycle number N-1. In this case, we need 752 * to find the first block with cycle number N-1. 753 */ 754 return 0; 755 756 bp_err: 757 xlog_put_bp(bp); 758 759 if (error) 760 xlog_warn("XFS: failed to find log head"); 761 return error; 762 } 763 764 /* 765 * Find the sync block number or the tail of the log. 766 * 767 * This will be the block number of the last record to have its 768 * associated buffers synced to disk. Every log record header has 769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 770 * to get a sync block number. The only concern is to figure out which 771 * log record header to believe. 772 * 773 * The following algorithm uses the log record header with the largest 774 * lsn. The entire log record does not need to be valid. We only care 775 * that the header is valid. 776 * 777 * We could speed up search by using current head_blk buffer, but it is not 778 * available. 779 */ 780 int 781 xlog_find_tail( 782 xlog_t *log, 783 xfs_daddr_t *head_blk, 784 xfs_daddr_t *tail_blk) 785 { 786 xlog_rec_header_t *rhead; 787 xlog_op_header_t *op_head; 788 xfs_caddr_t offset = NULL; 789 xfs_buf_t *bp; 790 int error, i, found; 791 xfs_daddr_t umount_data_blk; 792 xfs_daddr_t after_umount_blk; 793 xfs_lsn_t tail_lsn; 794 int hblks; 795 796 found = 0; 797 798 /* 799 * Find previous log record 800 */ 801 if ((error = xlog_find_head(log, head_blk))) 802 return error; 803 804 bp = xlog_get_bp(log, 1); 805 if (!bp) 806 return ENOMEM; 807 if (*head_blk == 0) { /* special case */ 808 if ((error = xlog_bread(log, 0, 1, bp))) 809 goto bread_err; 810 offset = xlog_align(log, 0, 1, bp); 811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 812 *tail_blk = 0; 813 /* leave all other log inited values alone */ 814 goto exit; 815 } 816 } 817 818 /* 819 * Search backwards looking for log record header block 820 */ 821 ASSERT(*head_blk < INT_MAX); 822 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 823 if ((error = xlog_bread(log, i, 1, bp))) 824 goto bread_err; 825 offset = xlog_align(log, i, 1, bp); 826 if (XLOG_HEADER_MAGIC_NUM == 827 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 828 found = 1; 829 break; 830 } 831 } 832 /* 833 * If we haven't found the log record header block, start looking 834 * again from the end of the physical log. XXXmiken: There should be 835 * a check here to make sure we didn't search more than N blocks in 836 * the previous code. 837 */ 838 if (!found) { 839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 840 if ((error = xlog_bread(log, i, 1, bp))) 841 goto bread_err; 842 offset = xlog_align(log, i, 1, bp); 843 if (XLOG_HEADER_MAGIC_NUM == 844 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 845 found = 2; 846 break; 847 } 848 } 849 } 850 if (!found) { 851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 852 ASSERT(0); 853 return XFS_ERROR(EIO); 854 } 855 856 /* find blk_no of tail of log */ 857 rhead = (xlog_rec_header_t *)offset; 858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 859 860 /* 861 * Reset log values according to the state of the log when we 862 * crashed. In the case where head_blk == 0, we bump curr_cycle 863 * one because the next write starts a new cycle rather than 864 * continuing the cycle of the last good log record. At this 865 * point we have guaranteed that all partial log records have been 866 * accounted for. Therefore, we know that the last good log record 867 * written was complete and ended exactly on the end boundary 868 * of the physical log. 869 */ 870 log->l_prev_block = i; 871 log->l_curr_block = (int)*head_blk; 872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 873 if (found == 2) 874 log->l_curr_cycle++; 875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 877 log->l_grant_reserve_cycle = log->l_curr_cycle; 878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 879 log->l_grant_write_cycle = log->l_curr_cycle; 880 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 881 882 /* 883 * Look for unmount record. If we find it, then we know there 884 * was a clean unmount. Since 'i' could be the last block in 885 * the physical log, we convert to a log block before comparing 886 * to the head_blk. 887 * 888 * Save the current tail lsn to use to pass to 889 * xlog_clear_stale_blocks() below. We won't want to clear the 890 * unmount record if there is one, so we pass the lsn of the 891 * unmount record rather than the block after it. 892 */ 893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 896 897 if ((h_version & XLOG_VERSION_2) && 898 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 900 if (h_size % XLOG_HEADER_CYCLE_SIZE) 901 hblks++; 902 } else { 903 hblks = 1; 904 } 905 } else { 906 hblks = 1; 907 } 908 after_umount_blk = (i + hblks + (int) 909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 910 tail_lsn = log->l_tail_lsn; 911 if (*head_blk == after_umount_blk && 912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 913 umount_data_blk = (i + hblks) % log->l_logBBsize; 914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 915 goto bread_err; 916 } 917 offset = xlog_align(log, umount_data_blk, 1, bp); 918 op_head = (xlog_op_header_t *)offset; 919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 920 /* 921 * Set tail and last sync so that newly written 922 * log records will point recovery to after the 923 * current unmount record. 924 */ 925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 926 after_umount_blk); 927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 928 after_umount_blk); 929 *tail_blk = after_umount_blk; 930 931 /* 932 * Note that the unmount was clean. If the unmount 933 * was not clean, we need to know this to rebuild the 934 * superblock counters from the perag headers if we 935 * have a filesystem using non-persistent counters. 936 */ 937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 938 } 939 } 940 941 /* 942 * Make sure that there are no blocks in front of the head 943 * with the same cycle number as the head. This can happen 944 * because we allow multiple outstanding log writes concurrently, 945 * and the later writes might make it out before earlier ones. 946 * 947 * We use the lsn from before modifying it so that we'll never 948 * overwrite the unmount record after a clean unmount. 949 * 950 * Do this only if we are going to recover the filesystem 951 * 952 * NOTE: This used to say "if (!readonly)" 953 * However on Linux, we can & do recover a read-only filesystem. 954 * We only skip recovery if NORECOVERY is specified on mount, 955 * in which case we would not be here. 956 * 957 * But... if the -device- itself is readonly, just skip this. 958 * We can't recover this device anyway, so it won't matter. 959 */ 960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 961 error = xlog_clear_stale_blocks(log, tail_lsn); 962 } 963 964 bread_err: 965 exit: 966 xlog_put_bp(bp); 967 968 if (error) 969 xlog_warn("XFS: failed to locate log tail"); 970 return error; 971 } 972 973 /* 974 * Is the log zeroed at all? 975 * 976 * The last binary search should be changed to perform an X block read 977 * once X becomes small enough. You can then search linearly through 978 * the X blocks. This will cut down on the number of reads we need to do. 979 * 980 * If the log is partially zeroed, this routine will pass back the blkno 981 * of the first block with cycle number 0. It won't have a complete LR 982 * preceding it. 983 * 984 * Return: 985 * 0 => the log is completely written to 986 * -1 => use *blk_no as the first block of the log 987 * >0 => error has occurred 988 */ 989 int 990 xlog_find_zeroed( 991 xlog_t *log, 992 xfs_daddr_t *blk_no) 993 { 994 xfs_buf_t *bp; 995 xfs_caddr_t offset; 996 uint first_cycle, last_cycle; 997 xfs_daddr_t new_blk, last_blk, start_blk; 998 xfs_daddr_t num_scan_bblks; 999 int error, log_bbnum = log->l_logBBsize; 1000 1001 *blk_no = 0; 1002 1003 /* check totally zeroed log */ 1004 bp = xlog_get_bp(log, 1); 1005 if (!bp) 1006 return ENOMEM; 1007 if ((error = xlog_bread(log, 0, 1, bp))) 1008 goto bp_err; 1009 offset = xlog_align(log, 0, 1, bp); 1010 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1011 if (first_cycle == 0) { /* completely zeroed log */ 1012 *blk_no = 0; 1013 xlog_put_bp(bp); 1014 return -1; 1015 } 1016 1017 /* check partially zeroed log */ 1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1019 goto bp_err; 1020 offset = xlog_align(log, log_bbnum-1, 1, bp); 1021 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1022 if (last_cycle != 0) { /* log completely written to */ 1023 xlog_put_bp(bp); 1024 return 0; 1025 } else if (first_cycle != 1) { 1026 /* 1027 * If the cycle of the last block is zero, the cycle of 1028 * the first block must be 1. If it's not, maybe we're 1029 * not looking at a log... Bail out. 1030 */ 1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1032 return XFS_ERROR(EINVAL); 1033 } 1034 1035 /* we have a partially zeroed log */ 1036 last_blk = log_bbnum-1; 1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1038 goto bp_err; 1039 1040 /* 1041 * Validate the answer. Because there is no way to guarantee that 1042 * the entire log is made up of log records which are the same size, 1043 * we scan over the defined maximum blocks. At this point, the maximum 1044 * is not chosen to mean anything special. XXXmiken 1045 */ 1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1047 ASSERT(num_scan_bblks <= INT_MAX); 1048 1049 if (last_blk < num_scan_bblks) 1050 num_scan_bblks = last_blk; 1051 start_blk = last_blk - num_scan_bblks; 1052 1053 /* 1054 * We search for any instances of cycle number 0 that occur before 1055 * our current estimate of the head. What we're trying to detect is 1056 * 1 ... | 0 | 1 | 0... 1057 * ^ binary search ends here 1058 */ 1059 if ((error = xlog_find_verify_cycle(log, start_blk, 1060 (int)num_scan_bblks, 0, &new_blk))) 1061 goto bp_err; 1062 if (new_blk != -1) 1063 last_blk = new_blk; 1064 1065 /* 1066 * Potentially backup over partial log record write. We don't need 1067 * to search the end of the log because we know it is zero. 1068 */ 1069 if ((error = xlog_find_verify_log_record(log, start_blk, 1070 &last_blk, 0)) == -1) { 1071 error = XFS_ERROR(EIO); 1072 goto bp_err; 1073 } else if (error) 1074 goto bp_err; 1075 1076 *blk_no = last_blk; 1077 bp_err: 1078 xlog_put_bp(bp); 1079 if (error) 1080 return error; 1081 return -1; 1082 } 1083 1084 /* 1085 * These are simple subroutines used by xlog_clear_stale_blocks() below 1086 * to initialize a buffer full of empty log record headers and write 1087 * them into the log. 1088 */ 1089 STATIC void 1090 xlog_add_record( 1091 xlog_t *log, 1092 xfs_caddr_t buf, 1093 int cycle, 1094 int block, 1095 int tail_cycle, 1096 int tail_block) 1097 { 1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1099 1100 memset(buf, 0, BBSIZE); 1101 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1102 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1103 INT_SET(recp->h_version, ARCH_CONVERT, 1104 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1105 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1106 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1107 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1109 } 1110 1111 STATIC int 1112 xlog_write_log_records( 1113 xlog_t *log, 1114 int cycle, 1115 int start_block, 1116 int blocks, 1117 int tail_cycle, 1118 int tail_block) 1119 { 1120 xfs_caddr_t offset; 1121 xfs_buf_t *bp; 1122 int balign, ealign; 1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1124 int end_block = start_block + blocks; 1125 int bufblks; 1126 int error = 0; 1127 int i, j = 0; 1128 1129 bufblks = 1 << ffs(blocks); 1130 while (!(bp = xlog_get_bp(log, bufblks))) { 1131 bufblks >>= 1; 1132 if (bufblks <= log->l_sectbb_log) 1133 return ENOMEM; 1134 } 1135 1136 /* We may need to do a read at the start to fill in part of 1137 * the buffer in the starting sector not covered by the first 1138 * write below. 1139 */ 1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1141 if (balign != start_block) { 1142 if ((error = xlog_bread(log, start_block, 1, bp))) { 1143 xlog_put_bp(bp); 1144 return error; 1145 } 1146 j = start_block - balign; 1147 } 1148 1149 for (i = start_block; i < end_block; i += bufblks) { 1150 int bcount, endcount; 1151 1152 bcount = min(bufblks, end_block - start_block); 1153 endcount = bcount - j; 1154 1155 /* We may need to do a read at the end to fill in part of 1156 * the buffer in the final sector not covered by the write. 1157 * If this is the same sector as the above read, skip it. 1158 */ 1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1160 if (j == 0 && (start_block + endcount > ealign)) { 1161 offset = XFS_BUF_PTR(bp); 1162 balign = BBTOB(ealign - start_block); 1163 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1164 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1165 break; 1166 XFS_BUF_SET_PTR(bp, offset, bufblks); 1167 } 1168 1169 offset = xlog_align(log, start_block, endcount, bp); 1170 for (; j < endcount; j++) { 1171 xlog_add_record(log, offset, cycle, i+j, 1172 tail_cycle, tail_block); 1173 offset += BBSIZE; 1174 } 1175 error = xlog_bwrite(log, start_block, endcount, bp); 1176 if (error) 1177 break; 1178 start_block += endcount; 1179 j = 0; 1180 } 1181 xlog_put_bp(bp); 1182 return error; 1183 } 1184 1185 /* 1186 * This routine is called to blow away any incomplete log writes out 1187 * in front of the log head. We do this so that we won't become confused 1188 * if we come up, write only a little bit more, and then crash again. 1189 * If we leave the partial log records out there, this situation could 1190 * cause us to think those partial writes are valid blocks since they 1191 * have the current cycle number. We get rid of them by overwriting them 1192 * with empty log records with the old cycle number rather than the 1193 * current one. 1194 * 1195 * The tail lsn is passed in rather than taken from 1196 * the log so that we will not write over the unmount record after a 1197 * clean unmount in a 512 block log. Doing so would leave the log without 1198 * any valid log records in it until a new one was written. If we crashed 1199 * during that time we would not be able to recover. 1200 */ 1201 STATIC int 1202 xlog_clear_stale_blocks( 1203 xlog_t *log, 1204 xfs_lsn_t tail_lsn) 1205 { 1206 int tail_cycle, head_cycle; 1207 int tail_block, head_block; 1208 int tail_distance, max_distance; 1209 int distance; 1210 int error; 1211 1212 tail_cycle = CYCLE_LSN(tail_lsn); 1213 tail_block = BLOCK_LSN(tail_lsn); 1214 head_cycle = log->l_curr_cycle; 1215 head_block = log->l_curr_block; 1216 1217 /* 1218 * Figure out the distance between the new head of the log 1219 * and the tail. We want to write over any blocks beyond the 1220 * head that we may have written just before the crash, but 1221 * we don't want to overwrite the tail of the log. 1222 */ 1223 if (head_cycle == tail_cycle) { 1224 /* 1225 * The tail is behind the head in the physical log, 1226 * so the distance from the head to the tail is the 1227 * distance from the head to the end of the log plus 1228 * the distance from the beginning of the log to the 1229 * tail. 1230 */ 1231 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1232 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1233 XFS_ERRLEVEL_LOW, log->l_mp); 1234 return XFS_ERROR(EFSCORRUPTED); 1235 } 1236 tail_distance = tail_block + (log->l_logBBsize - head_block); 1237 } else { 1238 /* 1239 * The head is behind the tail in the physical log, 1240 * so the distance from the head to the tail is just 1241 * the tail block minus the head block. 1242 */ 1243 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1244 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1245 XFS_ERRLEVEL_LOW, log->l_mp); 1246 return XFS_ERROR(EFSCORRUPTED); 1247 } 1248 tail_distance = tail_block - head_block; 1249 } 1250 1251 /* 1252 * If the head is right up against the tail, we can't clear 1253 * anything. 1254 */ 1255 if (tail_distance <= 0) { 1256 ASSERT(tail_distance == 0); 1257 return 0; 1258 } 1259 1260 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1261 /* 1262 * Take the smaller of the maximum amount of outstanding I/O 1263 * we could have and the distance to the tail to clear out. 1264 * We take the smaller so that we don't overwrite the tail and 1265 * we don't waste all day writing from the head to the tail 1266 * for no reason. 1267 */ 1268 max_distance = MIN(max_distance, tail_distance); 1269 1270 if ((head_block + max_distance) <= log->l_logBBsize) { 1271 /* 1272 * We can stomp all the blocks we need to without 1273 * wrapping around the end of the log. Just do it 1274 * in a single write. Use the cycle number of the 1275 * current cycle minus one so that the log will look like: 1276 * n ... | n - 1 ... 1277 */ 1278 error = xlog_write_log_records(log, (head_cycle - 1), 1279 head_block, max_distance, tail_cycle, 1280 tail_block); 1281 if (error) 1282 return error; 1283 } else { 1284 /* 1285 * We need to wrap around the end of the physical log in 1286 * order to clear all the blocks. Do it in two separate 1287 * I/Os. The first write should be from the head to the 1288 * end of the physical log, and it should use the current 1289 * cycle number minus one just like above. 1290 */ 1291 distance = log->l_logBBsize - head_block; 1292 error = xlog_write_log_records(log, (head_cycle - 1), 1293 head_block, distance, tail_cycle, 1294 tail_block); 1295 1296 if (error) 1297 return error; 1298 1299 /* 1300 * Now write the blocks at the start of the physical log. 1301 * This writes the remainder of the blocks we want to clear. 1302 * It uses the current cycle number since we're now on the 1303 * same cycle as the head so that we get: 1304 * n ... n ... | n - 1 ... 1305 * ^^^^^ blocks we're writing 1306 */ 1307 distance = max_distance - (log->l_logBBsize - head_block); 1308 error = xlog_write_log_records(log, head_cycle, 0, distance, 1309 tail_cycle, tail_block); 1310 if (error) 1311 return error; 1312 } 1313 1314 return 0; 1315 } 1316 1317 /****************************************************************************** 1318 * 1319 * Log recover routines 1320 * 1321 ****************************************************************************** 1322 */ 1323 1324 STATIC xlog_recover_t * 1325 xlog_recover_find_tid( 1326 xlog_recover_t *q, 1327 xlog_tid_t tid) 1328 { 1329 xlog_recover_t *p = q; 1330 1331 while (p != NULL) { 1332 if (p->r_log_tid == tid) 1333 break; 1334 p = p->r_next; 1335 } 1336 return p; 1337 } 1338 1339 STATIC void 1340 xlog_recover_put_hashq( 1341 xlog_recover_t **q, 1342 xlog_recover_t *trans) 1343 { 1344 trans->r_next = *q; 1345 *q = trans; 1346 } 1347 1348 STATIC void 1349 xlog_recover_add_item( 1350 xlog_recover_item_t **itemq) 1351 { 1352 xlog_recover_item_t *item; 1353 1354 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1355 xlog_recover_insert_item_backq(itemq, item); 1356 } 1357 1358 STATIC int 1359 xlog_recover_add_to_cont_trans( 1360 xlog_recover_t *trans, 1361 xfs_caddr_t dp, 1362 int len) 1363 { 1364 xlog_recover_item_t *item; 1365 xfs_caddr_t ptr, old_ptr; 1366 int old_len; 1367 1368 item = trans->r_itemq; 1369 if (item == NULL) { 1370 /* finish copying rest of trans header */ 1371 xlog_recover_add_item(&trans->r_itemq); 1372 ptr = (xfs_caddr_t) &trans->r_theader + 1373 sizeof(xfs_trans_header_t) - len; 1374 memcpy(ptr, dp, len); /* d, s, l */ 1375 return 0; 1376 } 1377 item = item->ri_prev; 1378 1379 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1380 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1381 1382 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1383 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1384 item->ri_buf[item->ri_cnt-1].i_len += len; 1385 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1386 return 0; 1387 } 1388 1389 /* 1390 * The next region to add is the start of a new region. It could be 1391 * a whole region or it could be the first part of a new region. Because 1392 * of this, the assumption here is that the type and size fields of all 1393 * format structures fit into the first 32 bits of the structure. 1394 * 1395 * This works because all regions must be 32 bit aligned. Therefore, we 1396 * either have both fields or we have neither field. In the case we have 1397 * neither field, the data part of the region is zero length. We only have 1398 * a log_op_header and can throw away the header since a new one will appear 1399 * later. If we have at least 4 bytes, then we can determine how many regions 1400 * will appear in the current log item. 1401 */ 1402 STATIC int 1403 xlog_recover_add_to_trans( 1404 xlog_recover_t *trans, 1405 xfs_caddr_t dp, 1406 int len) 1407 { 1408 xfs_inode_log_format_t *in_f; /* any will do */ 1409 xlog_recover_item_t *item; 1410 xfs_caddr_t ptr; 1411 1412 if (!len) 1413 return 0; 1414 item = trans->r_itemq; 1415 if (item == NULL) { 1416 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1417 if (len == sizeof(xfs_trans_header_t)) 1418 xlog_recover_add_item(&trans->r_itemq); 1419 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1420 return 0; 1421 } 1422 1423 ptr = kmem_alloc(len, KM_SLEEP); 1424 memcpy(ptr, dp, len); 1425 in_f = (xfs_inode_log_format_t *)ptr; 1426 1427 if (item->ri_prev->ri_total != 0 && 1428 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1429 xlog_recover_add_item(&trans->r_itemq); 1430 } 1431 item = trans->r_itemq; 1432 item = item->ri_prev; 1433 1434 if (item->ri_total == 0) { /* first region to be added */ 1435 item->ri_total = in_f->ilf_size; 1436 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1437 item->ri_buf = kmem_zalloc((item->ri_total * 1438 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1439 } 1440 ASSERT(item->ri_total > item->ri_cnt); 1441 /* Description region is ri_buf[0] */ 1442 item->ri_buf[item->ri_cnt].i_addr = ptr; 1443 item->ri_buf[item->ri_cnt].i_len = len; 1444 item->ri_cnt++; 1445 return 0; 1446 } 1447 1448 STATIC void 1449 xlog_recover_new_tid( 1450 xlog_recover_t **q, 1451 xlog_tid_t tid, 1452 xfs_lsn_t lsn) 1453 { 1454 xlog_recover_t *trans; 1455 1456 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1457 trans->r_log_tid = tid; 1458 trans->r_lsn = lsn; 1459 xlog_recover_put_hashq(q, trans); 1460 } 1461 1462 STATIC int 1463 xlog_recover_unlink_tid( 1464 xlog_recover_t **q, 1465 xlog_recover_t *trans) 1466 { 1467 xlog_recover_t *tp; 1468 int found = 0; 1469 1470 ASSERT(trans != NULL); 1471 if (trans == *q) { 1472 *q = (*q)->r_next; 1473 } else { 1474 tp = *q; 1475 while (tp) { 1476 if (tp->r_next == trans) { 1477 found = 1; 1478 break; 1479 } 1480 tp = tp->r_next; 1481 } 1482 if (!found) { 1483 xlog_warn( 1484 "XFS: xlog_recover_unlink_tid: trans not found"); 1485 ASSERT(0); 1486 return XFS_ERROR(EIO); 1487 } 1488 tp->r_next = tp->r_next->r_next; 1489 } 1490 return 0; 1491 } 1492 1493 STATIC void 1494 xlog_recover_insert_item_backq( 1495 xlog_recover_item_t **q, 1496 xlog_recover_item_t *item) 1497 { 1498 if (*q == NULL) { 1499 item->ri_prev = item->ri_next = item; 1500 *q = item; 1501 } else { 1502 item->ri_next = *q; 1503 item->ri_prev = (*q)->ri_prev; 1504 (*q)->ri_prev = item; 1505 item->ri_prev->ri_next = item; 1506 } 1507 } 1508 1509 STATIC void 1510 xlog_recover_insert_item_frontq( 1511 xlog_recover_item_t **q, 1512 xlog_recover_item_t *item) 1513 { 1514 xlog_recover_insert_item_backq(q, item); 1515 *q = item; 1516 } 1517 1518 STATIC int 1519 xlog_recover_reorder_trans( 1520 xlog_recover_t *trans) 1521 { 1522 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1523 xfs_buf_log_format_t *buf_f; 1524 ushort flags = 0; 1525 1526 first_item = itemq = trans->r_itemq; 1527 trans->r_itemq = NULL; 1528 do { 1529 itemq_next = itemq->ri_next; 1530 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1531 1532 switch (ITEM_TYPE(itemq)) { 1533 case XFS_LI_BUF: 1534 flags = buf_f->blf_flags; 1535 if (!(flags & XFS_BLI_CANCEL)) { 1536 xlog_recover_insert_item_frontq(&trans->r_itemq, 1537 itemq); 1538 break; 1539 } 1540 case XFS_LI_INODE: 1541 case XFS_LI_DQUOT: 1542 case XFS_LI_QUOTAOFF: 1543 case XFS_LI_EFD: 1544 case XFS_LI_EFI: 1545 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1546 break; 1547 default: 1548 xlog_warn( 1549 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1550 ASSERT(0); 1551 return XFS_ERROR(EIO); 1552 } 1553 itemq = itemq_next; 1554 } while (first_item != itemq); 1555 return 0; 1556 } 1557 1558 /* 1559 * Build up the table of buf cancel records so that we don't replay 1560 * cancelled data in the second pass. For buffer records that are 1561 * not cancel records, there is nothing to do here so we just return. 1562 * 1563 * If we get a cancel record which is already in the table, this indicates 1564 * that the buffer was cancelled multiple times. In order to ensure 1565 * that during pass 2 we keep the record in the table until we reach its 1566 * last occurrence in the log, we keep a reference count in the cancel 1567 * record in the table to tell us how many times we expect to see this 1568 * record during the second pass. 1569 */ 1570 STATIC void 1571 xlog_recover_do_buffer_pass1( 1572 xlog_t *log, 1573 xfs_buf_log_format_t *buf_f) 1574 { 1575 xfs_buf_cancel_t *bcp; 1576 xfs_buf_cancel_t *nextp; 1577 xfs_buf_cancel_t *prevp; 1578 xfs_buf_cancel_t **bucket; 1579 xfs_daddr_t blkno = 0; 1580 uint len = 0; 1581 ushort flags = 0; 1582 1583 switch (buf_f->blf_type) { 1584 case XFS_LI_BUF: 1585 blkno = buf_f->blf_blkno; 1586 len = buf_f->blf_len; 1587 flags = buf_f->blf_flags; 1588 break; 1589 } 1590 1591 /* 1592 * If this isn't a cancel buffer item, then just return. 1593 */ 1594 if (!(flags & XFS_BLI_CANCEL)) 1595 return; 1596 1597 /* 1598 * Insert an xfs_buf_cancel record into the hash table of 1599 * them. If there is already an identical record, bump 1600 * its reference count. 1601 */ 1602 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1603 XLOG_BC_TABLE_SIZE]; 1604 /* 1605 * If the hash bucket is empty then just insert a new record into 1606 * the bucket. 1607 */ 1608 if (*bucket == NULL) { 1609 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1610 KM_SLEEP); 1611 bcp->bc_blkno = blkno; 1612 bcp->bc_len = len; 1613 bcp->bc_refcount = 1; 1614 bcp->bc_next = NULL; 1615 *bucket = bcp; 1616 return; 1617 } 1618 1619 /* 1620 * The hash bucket is not empty, so search for duplicates of our 1621 * record. If we find one them just bump its refcount. If not 1622 * then add us at the end of the list. 1623 */ 1624 prevp = NULL; 1625 nextp = *bucket; 1626 while (nextp != NULL) { 1627 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1628 nextp->bc_refcount++; 1629 return; 1630 } 1631 prevp = nextp; 1632 nextp = nextp->bc_next; 1633 } 1634 ASSERT(prevp != NULL); 1635 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1636 KM_SLEEP); 1637 bcp->bc_blkno = blkno; 1638 bcp->bc_len = len; 1639 bcp->bc_refcount = 1; 1640 bcp->bc_next = NULL; 1641 prevp->bc_next = bcp; 1642 } 1643 1644 /* 1645 * Check to see whether the buffer being recovered has a corresponding 1646 * entry in the buffer cancel record table. If it does then return 1 1647 * so that it will be cancelled, otherwise return 0. If the buffer is 1648 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1649 * the refcount on the entry in the table and remove it from the table 1650 * if this is the last reference. 1651 * 1652 * We remove the cancel record from the table when we encounter its 1653 * last occurrence in the log so that if the same buffer is re-used 1654 * again after its last cancellation we actually replay the changes 1655 * made at that point. 1656 */ 1657 STATIC int 1658 xlog_check_buffer_cancelled( 1659 xlog_t *log, 1660 xfs_daddr_t blkno, 1661 uint len, 1662 ushort flags) 1663 { 1664 xfs_buf_cancel_t *bcp; 1665 xfs_buf_cancel_t *prevp; 1666 xfs_buf_cancel_t **bucket; 1667 1668 if (log->l_buf_cancel_table == NULL) { 1669 /* 1670 * There is nothing in the table built in pass one, 1671 * so this buffer must not be cancelled. 1672 */ 1673 ASSERT(!(flags & XFS_BLI_CANCEL)); 1674 return 0; 1675 } 1676 1677 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1678 XLOG_BC_TABLE_SIZE]; 1679 bcp = *bucket; 1680 if (bcp == NULL) { 1681 /* 1682 * There is no corresponding entry in the table built 1683 * in pass one, so this buffer has not been cancelled. 1684 */ 1685 ASSERT(!(flags & XFS_BLI_CANCEL)); 1686 return 0; 1687 } 1688 1689 /* 1690 * Search for an entry in the buffer cancel table that 1691 * matches our buffer. 1692 */ 1693 prevp = NULL; 1694 while (bcp != NULL) { 1695 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1696 /* 1697 * We've go a match, so return 1 so that the 1698 * recovery of this buffer is cancelled. 1699 * If this buffer is actually a buffer cancel 1700 * log item, then decrement the refcount on the 1701 * one in the table and remove it if this is the 1702 * last reference. 1703 */ 1704 if (flags & XFS_BLI_CANCEL) { 1705 bcp->bc_refcount--; 1706 if (bcp->bc_refcount == 0) { 1707 if (prevp == NULL) { 1708 *bucket = bcp->bc_next; 1709 } else { 1710 prevp->bc_next = bcp->bc_next; 1711 } 1712 kmem_free(bcp, 1713 sizeof(xfs_buf_cancel_t)); 1714 } 1715 } 1716 return 1; 1717 } 1718 prevp = bcp; 1719 bcp = bcp->bc_next; 1720 } 1721 /* 1722 * We didn't find a corresponding entry in the table, so 1723 * return 0 so that the buffer is NOT cancelled. 1724 */ 1725 ASSERT(!(flags & XFS_BLI_CANCEL)); 1726 return 0; 1727 } 1728 1729 STATIC int 1730 xlog_recover_do_buffer_pass2( 1731 xlog_t *log, 1732 xfs_buf_log_format_t *buf_f) 1733 { 1734 xfs_daddr_t blkno = 0; 1735 ushort flags = 0; 1736 uint len = 0; 1737 1738 switch (buf_f->blf_type) { 1739 case XFS_LI_BUF: 1740 blkno = buf_f->blf_blkno; 1741 flags = buf_f->blf_flags; 1742 len = buf_f->blf_len; 1743 break; 1744 } 1745 1746 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1747 } 1748 1749 /* 1750 * Perform recovery for a buffer full of inodes. In these buffers, 1751 * the only data which should be recovered is that which corresponds 1752 * to the di_next_unlinked pointers in the on disk inode structures. 1753 * The rest of the data for the inodes is always logged through the 1754 * inodes themselves rather than the inode buffer and is recovered 1755 * in xlog_recover_do_inode_trans(). 1756 * 1757 * The only time when buffers full of inodes are fully recovered is 1758 * when the buffer is full of newly allocated inodes. In this case 1759 * the buffer will not be marked as an inode buffer and so will be 1760 * sent to xlog_recover_do_reg_buffer() below during recovery. 1761 */ 1762 STATIC int 1763 xlog_recover_do_inode_buffer( 1764 xfs_mount_t *mp, 1765 xlog_recover_item_t *item, 1766 xfs_buf_t *bp, 1767 xfs_buf_log_format_t *buf_f) 1768 { 1769 int i; 1770 int item_index; 1771 int bit; 1772 int nbits; 1773 int reg_buf_offset; 1774 int reg_buf_bytes; 1775 int next_unlinked_offset; 1776 int inodes_per_buf; 1777 xfs_agino_t *logged_nextp; 1778 xfs_agino_t *buffer_nextp; 1779 unsigned int *data_map = NULL; 1780 unsigned int map_size = 0; 1781 1782 switch (buf_f->blf_type) { 1783 case XFS_LI_BUF: 1784 data_map = buf_f->blf_data_map; 1785 map_size = buf_f->blf_map_size; 1786 break; 1787 } 1788 /* 1789 * Set the variables corresponding to the current region to 1790 * 0 so that we'll initialize them on the first pass through 1791 * the loop. 1792 */ 1793 reg_buf_offset = 0; 1794 reg_buf_bytes = 0; 1795 bit = 0; 1796 nbits = 0; 1797 item_index = 0; 1798 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1799 for (i = 0; i < inodes_per_buf; i++) { 1800 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1801 offsetof(xfs_dinode_t, di_next_unlinked); 1802 1803 while (next_unlinked_offset >= 1804 (reg_buf_offset + reg_buf_bytes)) { 1805 /* 1806 * The next di_next_unlinked field is beyond 1807 * the current logged region. Find the next 1808 * logged region that contains or is beyond 1809 * the current di_next_unlinked field. 1810 */ 1811 bit += nbits; 1812 bit = xfs_next_bit(data_map, map_size, bit); 1813 1814 /* 1815 * If there are no more logged regions in the 1816 * buffer, then we're done. 1817 */ 1818 if (bit == -1) { 1819 return 0; 1820 } 1821 1822 nbits = xfs_contig_bits(data_map, map_size, 1823 bit); 1824 ASSERT(nbits > 0); 1825 reg_buf_offset = bit << XFS_BLI_SHIFT; 1826 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1827 item_index++; 1828 } 1829 1830 /* 1831 * If the current logged region starts after the current 1832 * di_next_unlinked field, then move on to the next 1833 * di_next_unlinked field. 1834 */ 1835 if (next_unlinked_offset < reg_buf_offset) { 1836 continue; 1837 } 1838 1839 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1842 1843 /* 1844 * The current logged region contains a copy of the 1845 * current di_next_unlinked field. Extract its value 1846 * and copy it to the buffer copy. 1847 */ 1848 logged_nextp = (xfs_agino_t *) 1849 ((char *)(item->ri_buf[item_index].i_addr) + 1850 (next_unlinked_offset - reg_buf_offset)); 1851 if (unlikely(*logged_nextp == 0)) { 1852 xfs_fs_cmn_err(CE_ALERT, mp, 1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1854 item, bp); 1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1856 XFS_ERRLEVEL_LOW, mp); 1857 return XFS_ERROR(EFSCORRUPTED); 1858 } 1859 1860 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1861 next_unlinked_offset); 1862 *buffer_nextp = *logged_nextp; 1863 } 1864 1865 return 0; 1866 } 1867 1868 /* 1869 * Perform a 'normal' buffer recovery. Each logged region of the 1870 * buffer should be copied over the corresponding region in the 1871 * given buffer. The bitmap in the buf log format structure indicates 1872 * where to place the logged data. 1873 */ 1874 /*ARGSUSED*/ 1875 STATIC void 1876 xlog_recover_do_reg_buffer( 1877 xlog_recover_item_t *item, 1878 xfs_buf_t *bp, 1879 xfs_buf_log_format_t *buf_f) 1880 { 1881 int i; 1882 int bit; 1883 int nbits; 1884 unsigned int *data_map = NULL; 1885 unsigned int map_size = 0; 1886 int error; 1887 1888 switch (buf_f->blf_type) { 1889 case XFS_LI_BUF: 1890 data_map = buf_f->blf_data_map; 1891 map_size = buf_f->blf_map_size; 1892 break; 1893 } 1894 bit = 0; 1895 i = 1; /* 0 is the buf format structure */ 1896 while (1) { 1897 bit = xfs_next_bit(data_map, map_size, bit); 1898 if (bit == -1) 1899 break; 1900 nbits = xfs_contig_bits(data_map, map_size, bit); 1901 ASSERT(nbits > 0); 1902 ASSERT(item->ri_buf[i].i_addr != NULL); 1903 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1904 ASSERT(XFS_BUF_COUNT(bp) >= 1905 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1906 1907 /* 1908 * Do a sanity check if this is a dquot buffer. Just checking 1909 * the first dquot in the buffer should do. XXXThis is 1910 * probably a good thing to do for other buf types also. 1911 */ 1912 error = 0; 1913 if (buf_f->blf_flags & 1914 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1915 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1916 item->ri_buf[i].i_addr, 1917 -1, 0, XFS_QMOPT_DOWARN, 1918 "dquot_buf_recover"); 1919 } 1920 if (!error) 1921 memcpy(xfs_buf_offset(bp, 1922 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1923 item->ri_buf[i].i_addr, /* source */ 1924 nbits<<XFS_BLI_SHIFT); /* length */ 1925 i++; 1926 bit += nbits; 1927 } 1928 1929 /* Shouldn't be any more regions */ 1930 ASSERT(i == item->ri_total); 1931 } 1932 1933 /* 1934 * Do some primitive error checking on ondisk dquot data structures. 1935 */ 1936 int 1937 xfs_qm_dqcheck( 1938 xfs_disk_dquot_t *ddq, 1939 xfs_dqid_t id, 1940 uint type, /* used only when IO_dorepair is true */ 1941 uint flags, 1942 char *str) 1943 { 1944 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1945 int errs = 0; 1946 1947 /* 1948 * We can encounter an uninitialized dquot buffer for 2 reasons: 1949 * 1. If we crash while deleting the quotainode(s), and those blks got 1950 * used for user data. This is because we take the path of regular 1951 * file deletion; however, the size field of quotainodes is never 1952 * updated, so all the tricks that we play in itruncate_finish 1953 * don't quite matter. 1954 * 1955 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1956 * But the allocation will be replayed so we'll end up with an 1957 * uninitialized quota block. 1958 * 1959 * This is all fine; things are still consistent, and we haven't lost 1960 * any quota information. Just don't complain about bad dquot blks. 1961 */ 1962 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 1963 if (flags & XFS_QMOPT_DOWARN) 1964 cmn_err(CE_ALERT, 1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1966 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1967 errs++; 1968 } 1969 if (ddq->d_version != XFS_DQUOT_VERSION) { 1970 if (flags & XFS_QMOPT_DOWARN) 1971 cmn_err(CE_ALERT, 1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1973 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1974 errs++; 1975 } 1976 1977 if (ddq->d_flags != XFS_DQ_USER && 1978 ddq->d_flags != XFS_DQ_PROJ && 1979 ddq->d_flags != XFS_DQ_GROUP) { 1980 if (flags & XFS_QMOPT_DOWARN) 1981 cmn_err(CE_ALERT, 1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1983 str, id, ddq->d_flags); 1984 errs++; 1985 } 1986 1987 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1988 if (flags & XFS_QMOPT_DOWARN) 1989 cmn_err(CE_ALERT, 1990 "%s : ondisk-dquot 0x%p, ID mismatch: " 1991 "0x%x expected, found id 0x%x", 1992 str, ddq, id, be32_to_cpu(ddq->d_id)); 1993 errs++; 1994 } 1995 1996 if (!errs && ddq->d_id) { 1997 if (ddq->d_blk_softlimit && 1998 be64_to_cpu(ddq->d_bcount) >= 1999 be64_to_cpu(ddq->d_blk_softlimit)) { 2000 if (!ddq->d_btimer) { 2001 if (flags & XFS_QMOPT_DOWARN) 2002 cmn_err(CE_ALERT, 2003 "%s : Dquot ID 0x%x (0x%p) " 2004 "BLK TIMER NOT STARTED", 2005 str, (int)be32_to_cpu(ddq->d_id), ddq); 2006 errs++; 2007 } 2008 } 2009 if (ddq->d_ino_softlimit && 2010 be64_to_cpu(ddq->d_icount) >= 2011 be64_to_cpu(ddq->d_ino_softlimit)) { 2012 if (!ddq->d_itimer) { 2013 if (flags & XFS_QMOPT_DOWARN) 2014 cmn_err(CE_ALERT, 2015 "%s : Dquot ID 0x%x (0x%p) " 2016 "INODE TIMER NOT STARTED", 2017 str, (int)be32_to_cpu(ddq->d_id), ddq); 2018 errs++; 2019 } 2020 } 2021 if (ddq->d_rtb_softlimit && 2022 be64_to_cpu(ddq->d_rtbcount) >= 2023 be64_to_cpu(ddq->d_rtb_softlimit)) { 2024 if (!ddq->d_rtbtimer) { 2025 if (flags & XFS_QMOPT_DOWARN) 2026 cmn_err(CE_ALERT, 2027 "%s : Dquot ID 0x%x (0x%p) " 2028 "RTBLK TIMER NOT STARTED", 2029 str, (int)be32_to_cpu(ddq->d_id), ddq); 2030 errs++; 2031 } 2032 } 2033 } 2034 2035 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2036 return errs; 2037 2038 if (flags & XFS_QMOPT_DOWARN) 2039 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2040 2041 /* 2042 * Typically, a repair is only requested by quotacheck. 2043 */ 2044 ASSERT(id != -1); 2045 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2046 memset(d, 0, sizeof(xfs_dqblk_t)); 2047 2048 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2049 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2050 d->dd_diskdq.d_flags = type; 2051 d->dd_diskdq.d_id = cpu_to_be32(id); 2052 2053 return errs; 2054 } 2055 2056 /* 2057 * Perform a dquot buffer recovery. 2058 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2059 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2060 * Else, treat it as a regular buffer and do recovery. 2061 */ 2062 STATIC void 2063 xlog_recover_do_dquot_buffer( 2064 xfs_mount_t *mp, 2065 xlog_t *log, 2066 xlog_recover_item_t *item, 2067 xfs_buf_t *bp, 2068 xfs_buf_log_format_t *buf_f) 2069 { 2070 uint type; 2071 2072 /* 2073 * Filesystems are required to send in quota flags at mount time. 2074 */ 2075 if (mp->m_qflags == 0) { 2076 return; 2077 } 2078 2079 type = 0; 2080 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2081 type |= XFS_DQ_USER; 2082 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2083 type |= XFS_DQ_PROJ; 2084 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2085 type |= XFS_DQ_GROUP; 2086 /* 2087 * This type of quotas was turned off, so ignore this buffer 2088 */ 2089 if (log->l_quotaoffs_flag & type) 2090 return; 2091 2092 xlog_recover_do_reg_buffer(item, bp, buf_f); 2093 } 2094 2095 /* 2096 * This routine replays a modification made to a buffer at runtime. 2097 * There are actually two types of buffer, regular and inode, which 2098 * are handled differently. Inode buffers are handled differently 2099 * in that we only recover a specific set of data from them, namely 2100 * the inode di_next_unlinked fields. This is because all other inode 2101 * data is actually logged via inode records and any data we replay 2102 * here which overlaps that may be stale. 2103 * 2104 * When meta-data buffers are freed at run time we log a buffer item 2105 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2106 * of the buffer in the log should not be replayed at recovery time. 2107 * This is so that if the blocks covered by the buffer are reused for 2108 * file data before we crash we don't end up replaying old, freed 2109 * meta-data into a user's file. 2110 * 2111 * To handle the cancellation of buffer log items, we make two passes 2112 * over the log during recovery. During the first we build a table of 2113 * those buffers which have been cancelled, and during the second we 2114 * only replay those buffers which do not have corresponding cancel 2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2116 * for more details on the implementation of the table of cancel records. 2117 */ 2118 STATIC int 2119 xlog_recover_do_buffer_trans( 2120 xlog_t *log, 2121 xlog_recover_item_t *item, 2122 int pass) 2123 { 2124 xfs_buf_log_format_t *buf_f; 2125 xfs_mount_t *mp; 2126 xfs_buf_t *bp; 2127 int error; 2128 int cancel; 2129 xfs_daddr_t blkno; 2130 int len; 2131 ushort flags; 2132 2133 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2134 2135 if (pass == XLOG_RECOVER_PASS1) { 2136 /* 2137 * In this pass we're only looking for buf items 2138 * with the XFS_BLI_CANCEL bit set. 2139 */ 2140 xlog_recover_do_buffer_pass1(log, buf_f); 2141 return 0; 2142 } else { 2143 /* 2144 * In this pass we want to recover all the buffers 2145 * which have not been cancelled and are not 2146 * cancellation buffers themselves. The routine 2147 * we call here will tell us whether or not to 2148 * continue with the replay of this buffer. 2149 */ 2150 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2151 if (cancel) { 2152 return 0; 2153 } 2154 } 2155 switch (buf_f->blf_type) { 2156 case XFS_LI_BUF: 2157 blkno = buf_f->blf_blkno; 2158 len = buf_f->blf_len; 2159 flags = buf_f->blf_flags; 2160 break; 2161 default: 2162 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2163 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2164 buf_f->blf_type, log->l_mp->m_logname ? 2165 log->l_mp->m_logname : "internal"); 2166 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2167 XFS_ERRLEVEL_LOW, log->l_mp); 2168 return XFS_ERROR(EFSCORRUPTED); 2169 } 2170 2171 mp = log->l_mp; 2172 if (flags & XFS_BLI_INODE_BUF) { 2173 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2174 XFS_BUF_LOCK); 2175 } else { 2176 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2177 } 2178 if (XFS_BUF_ISERROR(bp)) { 2179 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2180 bp, blkno); 2181 error = XFS_BUF_GETERROR(bp); 2182 xfs_buf_relse(bp); 2183 return error; 2184 } 2185 2186 error = 0; 2187 if (flags & XFS_BLI_INODE_BUF) { 2188 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2189 } else if (flags & 2190 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2191 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2192 } else { 2193 xlog_recover_do_reg_buffer(item, bp, buf_f); 2194 } 2195 if (error) 2196 return XFS_ERROR(error); 2197 2198 /* 2199 * Perform delayed write on the buffer. Asynchronous writes will be 2200 * slower when taking into account all the buffers to be flushed. 2201 * 2202 * Also make sure that only inode buffers with good sizes stay in 2203 * the buffer cache. The kernel moves inodes in buffers of 1 block 2204 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2205 * buffers in the log can be a different size if the log was generated 2206 * by an older kernel using unclustered inode buffers or a newer kernel 2207 * running with a different inode cluster size. Regardless, if the 2208 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2209 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2210 * the buffer out of the buffer cache so that the buffer won't 2211 * overlap with future reads of those inodes. 2212 */ 2213 if (XFS_DINODE_MAGIC == 2214 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2215 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2216 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2217 XFS_BUF_STALE(bp); 2218 error = xfs_bwrite(mp, bp); 2219 } else { 2220 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2221 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2222 XFS_BUF_SET_FSPRIVATE(bp, mp); 2223 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2224 xfs_bdwrite(mp, bp); 2225 } 2226 2227 return (error); 2228 } 2229 2230 STATIC int 2231 xlog_recover_do_inode_trans( 2232 xlog_t *log, 2233 xlog_recover_item_t *item, 2234 int pass) 2235 { 2236 xfs_inode_log_format_t *in_f; 2237 xfs_mount_t *mp; 2238 xfs_buf_t *bp; 2239 xfs_imap_t imap; 2240 xfs_dinode_t *dip; 2241 xfs_ino_t ino; 2242 int len; 2243 xfs_caddr_t src; 2244 xfs_caddr_t dest; 2245 int error; 2246 int attr_index; 2247 uint fields; 2248 xfs_icdinode_t *dicp; 2249 int need_free = 0; 2250 2251 if (pass == XLOG_RECOVER_PASS1) { 2252 return 0; 2253 } 2254 2255 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2256 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2257 } else { 2258 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2259 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2260 need_free = 1; 2261 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2262 if (error) 2263 goto error; 2264 } 2265 ino = in_f->ilf_ino; 2266 mp = log->l_mp; 2267 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2268 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2269 imap.im_len = in_f->ilf_len; 2270 imap.im_boffset = in_f->ilf_boffset; 2271 } else { 2272 /* 2273 * It's an old inode format record. We don't know where 2274 * its cluster is located on disk, and we can't allow 2275 * xfs_imap() to figure it out because the inode btrees 2276 * are not ready to be used. Therefore do not pass the 2277 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2278 * us only the single block in which the inode lives 2279 * rather than its cluster, so we must make sure to 2280 * invalidate the buffer when we write it out below. 2281 */ 2282 imap.im_blkno = 0; 2283 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2284 } 2285 2286 /* 2287 * Inode buffers can be freed, look out for it, 2288 * and do not replay the inode. 2289 */ 2290 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) { 2291 error = 0; 2292 goto error; 2293 } 2294 2295 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2296 XFS_BUF_LOCK); 2297 if (XFS_BUF_ISERROR(bp)) { 2298 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2299 bp, imap.im_blkno); 2300 error = XFS_BUF_GETERROR(bp); 2301 xfs_buf_relse(bp); 2302 goto error; 2303 } 2304 error = 0; 2305 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2306 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2307 2308 /* 2309 * Make sure the place we're flushing out to really looks 2310 * like an inode! 2311 */ 2312 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) { 2313 xfs_buf_relse(bp); 2314 xfs_fs_cmn_err(CE_ALERT, mp, 2315 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2316 dip, bp, ino); 2317 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2318 XFS_ERRLEVEL_LOW, mp); 2319 error = EFSCORRUPTED; 2320 goto error; 2321 } 2322 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); 2323 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2324 xfs_buf_relse(bp); 2325 xfs_fs_cmn_err(CE_ALERT, mp, 2326 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2327 item, ino); 2328 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2329 XFS_ERRLEVEL_LOW, mp); 2330 error = EFSCORRUPTED; 2331 goto error; 2332 } 2333 2334 /* Skip replay when the on disk inode is newer than the log one */ 2335 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) { 2336 /* 2337 * Deal with the wrap case, DI_MAX_FLUSH is less 2338 * than smaller numbers 2339 */ 2340 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH && 2341 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2342 /* do nothing */ 2343 } else { 2344 xfs_buf_relse(bp); 2345 error = 0; 2346 goto error; 2347 } 2348 } 2349 /* Take the opportunity to reset the flush iteration count */ 2350 dicp->di_flushiter = 0; 2351 2352 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2353 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2354 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2355 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2356 XFS_ERRLEVEL_LOW, mp, dicp); 2357 xfs_buf_relse(bp); 2358 xfs_fs_cmn_err(CE_ALERT, mp, 2359 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2360 item, dip, bp, ino); 2361 error = EFSCORRUPTED; 2362 goto error; 2363 } 2364 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2365 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2366 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2367 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2368 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2369 XFS_ERRLEVEL_LOW, mp, dicp); 2370 xfs_buf_relse(bp); 2371 xfs_fs_cmn_err(CE_ALERT, mp, 2372 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2373 item, dip, bp, ino); 2374 error = EFSCORRUPTED; 2375 goto error; 2376 } 2377 } 2378 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2379 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2380 XFS_ERRLEVEL_LOW, mp, dicp); 2381 xfs_buf_relse(bp); 2382 xfs_fs_cmn_err(CE_ALERT, mp, 2383 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2384 item, dip, bp, ino, 2385 dicp->di_nextents + dicp->di_anextents, 2386 dicp->di_nblocks); 2387 error = EFSCORRUPTED; 2388 goto error; 2389 } 2390 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2392 XFS_ERRLEVEL_LOW, mp, dicp); 2393 xfs_buf_relse(bp); 2394 xfs_fs_cmn_err(CE_ALERT, mp, 2395 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2396 item, dip, bp, ino, dicp->di_forkoff); 2397 error = EFSCORRUPTED; 2398 goto error; 2399 } 2400 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2402 XFS_ERRLEVEL_LOW, mp, dicp); 2403 xfs_buf_relse(bp); 2404 xfs_fs_cmn_err(CE_ALERT, mp, 2405 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2406 item->ri_buf[1].i_len, item); 2407 error = EFSCORRUPTED; 2408 goto error; 2409 } 2410 2411 /* The core is in in-core format */ 2412 xfs_dinode_to_disk(&dip->di_core, 2413 (xfs_icdinode_t *)item->ri_buf[1].i_addr); 2414 2415 /* the rest is in on-disk format */ 2416 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2417 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2418 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2419 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2420 } 2421 2422 fields = in_f->ilf_fields; 2423 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2424 case XFS_ILOG_DEV: 2425 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev); 2426 break; 2427 case XFS_ILOG_UUID: 2428 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2429 break; 2430 } 2431 2432 if (in_f->ilf_size == 2) 2433 goto write_inode_buffer; 2434 len = item->ri_buf[2].i_len; 2435 src = item->ri_buf[2].i_addr; 2436 ASSERT(in_f->ilf_size <= 4); 2437 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2438 ASSERT(!(fields & XFS_ILOG_DFORK) || 2439 (len == in_f->ilf_dsize)); 2440 2441 switch (fields & XFS_ILOG_DFORK) { 2442 case XFS_ILOG_DDATA: 2443 case XFS_ILOG_DEXT: 2444 memcpy(&dip->di_u, src, len); 2445 break; 2446 2447 case XFS_ILOG_DBROOT: 2448 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2449 &(dip->di_u.di_bmbt), 2450 XFS_DFORK_DSIZE(dip, mp)); 2451 break; 2452 2453 default: 2454 /* 2455 * There are no data fork flags set. 2456 */ 2457 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2458 break; 2459 } 2460 2461 /* 2462 * If we logged any attribute data, recover it. There may or 2463 * may not have been any other non-core data logged in this 2464 * transaction. 2465 */ 2466 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2467 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2468 attr_index = 3; 2469 } else { 2470 attr_index = 2; 2471 } 2472 len = item->ri_buf[attr_index].i_len; 2473 src = item->ri_buf[attr_index].i_addr; 2474 ASSERT(len == in_f->ilf_asize); 2475 2476 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2477 case XFS_ILOG_ADATA: 2478 case XFS_ILOG_AEXT: 2479 dest = XFS_DFORK_APTR(dip); 2480 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2481 memcpy(dest, src, len); 2482 break; 2483 2484 case XFS_ILOG_ABROOT: 2485 dest = XFS_DFORK_APTR(dip); 2486 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2487 (xfs_bmdr_block_t*)dest, 2488 XFS_DFORK_ASIZE(dip, mp)); 2489 break; 2490 2491 default: 2492 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2493 ASSERT(0); 2494 xfs_buf_relse(bp); 2495 error = EIO; 2496 goto error; 2497 } 2498 } 2499 2500 write_inode_buffer: 2501 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2502 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2503 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2504 XFS_BUF_SET_FSPRIVATE(bp, mp); 2505 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2506 xfs_bdwrite(mp, bp); 2507 } else { 2508 XFS_BUF_STALE(bp); 2509 error = xfs_bwrite(mp, bp); 2510 } 2511 2512 error: 2513 if (need_free) 2514 kmem_free(in_f, sizeof(*in_f)); 2515 return XFS_ERROR(error); 2516 } 2517 2518 /* 2519 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2520 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2521 * of that type. 2522 */ 2523 STATIC int 2524 xlog_recover_do_quotaoff_trans( 2525 xlog_t *log, 2526 xlog_recover_item_t *item, 2527 int pass) 2528 { 2529 xfs_qoff_logformat_t *qoff_f; 2530 2531 if (pass == XLOG_RECOVER_PASS2) { 2532 return (0); 2533 } 2534 2535 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2536 ASSERT(qoff_f); 2537 2538 /* 2539 * The logitem format's flag tells us if this was user quotaoff, 2540 * group/project quotaoff or both. 2541 */ 2542 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2543 log->l_quotaoffs_flag |= XFS_DQ_USER; 2544 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2545 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2546 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2547 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2548 2549 return (0); 2550 } 2551 2552 /* 2553 * Recover a dquot record 2554 */ 2555 STATIC int 2556 xlog_recover_do_dquot_trans( 2557 xlog_t *log, 2558 xlog_recover_item_t *item, 2559 int pass) 2560 { 2561 xfs_mount_t *mp; 2562 xfs_buf_t *bp; 2563 struct xfs_disk_dquot *ddq, *recddq; 2564 int error; 2565 xfs_dq_logformat_t *dq_f; 2566 uint type; 2567 2568 if (pass == XLOG_RECOVER_PASS1) { 2569 return 0; 2570 } 2571 mp = log->l_mp; 2572 2573 /* 2574 * Filesystems are required to send in quota flags at mount time. 2575 */ 2576 if (mp->m_qflags == 0) 2577 return (0); 2578 2579 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2580 ASSERT(recddq); 2581 /* 2582 * This type of quotas was turned off, so ignore this record. 2583 */ 2584 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2585 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2586 ASSERT(type); 2587 if (log->l_quotaoffs_flag & type) 2588 return (0); 2589 2590 /* 2591 * At this point we know that quota was _not_ turned off. 2592 * Since the mount flags are not indicating to us otherwise, this 2593 * must mean that quota is on, and the dquot needs to be replayed. 2594 * Remember that we may not have fully recovered the superblock yet, 2595 * so we can't do the usual trick of looking at the SB quota bits. 2596 * 2597 * The other possibility, of course, is that the quota subsystem was 2598 * removed since the last mount - ENOSYS. 2599 */ 2600 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2601 ASSERT(dq_f); 2602 if ((error = xfs_qm_dqcheck(recddq, 2603 dq_f->qlf_id, 2604 0, XFS_QMOPT_DOWARN, 2605 "xlog_recover_do_dquot_trans (log copy)"))) { 2606 return XFS_ERROR(EIO); 2607 } 2608 ASSERT(dq_f->qlf_len == 1); 2609 2610 error = xfs_read_buf(mp, mp->m_ddev_targp, 2611 dq_f->qlf_blkno, 2612 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2613 0, &bp); 2614 if (error) { 2615 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2616 bp, dq_f->qlf_blkno); 2617 return error; 2618 } 2619 ASSERT(bp); 2620 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2621 2622 /* 2623 * At least the magic num portion should be on disk because this 2624 * was among a chunk of dquots created earlier, and we did some 2625 * minimal initialization then. 2626 */ 2627 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2628 "xlog_recover_do_dquot_trans")) { 2629 xfs_buf_relse(bp); 2630 return XFS_ERROR(EIO); 2631 } 2632 2633 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2634 2635 ASSERT(dq_f->qlf_size == 2); 2636 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2637 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2638 XFS_BUF_SET_FSPRIVATE(bp, mp); 2639 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2640 xfs_bdwrite(mp, bp); 2641 2642 return (0); 2643 } 2644 2645 /* 2646 * This routine is called to create an in-core extent free intent 2647 * item from the efi format structure which was logged on disk. 2648 * It allocates an in-core efi, copies the extents from the format 2649 * structure into it, and adds the efi to the AIL with the given 2650 * LSN. 2651 */ 2652 STATIC int 2653 xlog_recover_do_efi_trans( 2654 xlog_t *log, 2655 xlog_recover_item_t *item, 2656 xfs_lsn_t lsn, 2657 int pass) 2658 { 2659 int error; 2660 xfs_mount_t *mp; 2661 xfs_efi_log_item_t *efip; 2662 xfs_efi_log_format_t *efi_formatp; 2663 SPLDECL(s); 2664 2665 if (pass == XLOG_RECOVER_PASS1) { 2666 return 0; 2667 } 2668 2669 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2670 2671 mp = log->l_mp; 2672 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2673 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2674 &(efip->efi_format)))) { 2675 xfs_efi_item_free(efip); 2676 return error; 2677 } 2678 efip->efi_next_extent = efi_formatp->efi_nextents; 2679 efip->efi_flags |= XFS_EFI_COMMITTED; 2680 2681 AIL_LOCK(mp,s); 2682 /* 2683 * xfs_trans_update_ail() drops the AIL lock. 2684 */ 2685 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2686 return 0; 2687 } 2688 2689 2690 /* 2691 * This routine is called when an efd format structure is found in 2692 * a committed transaction in the log. It's purpose is to cancel 2693 * the corresponding efi if it was still in the log. To do this 2694 * it searches the AIL for the efi with an id equal to that in the 2695 * efd format structure. If we find it, we remove the efi from the 2696 * AIL and free it. 2697 */ 2698 STATIC void 2699 xlog_recover_do_efd_trans( 2700 xlog_t *log, 2701 xlog_recover_item_t *item, 2702 int pass) 2703 { 2704 xfs_mount_t *mp; 2705 xfs_efd_log_format_t *efd_formatp; 2706 xfs_efi_log_item_t *efip = NULL; 2707 xfs_log_item_t *lip; 2708 int gen; 2709 __uint64_t efi_id; 2710 SPLDECL(s); 2711 2712 if (pass == XLOG_RECOVER_PASS1) { 2713 return; 2714 } 2715 2716 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2717 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2718 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2719 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2720 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2721 efi_id = efd_formatp->efd_efi_id; 2722 2723 /* 2724 * Search for the efi with the id in the efd format structure 2725 * in the AIL. 2726 */ 2727 mp = log->l_mp; 2728 AIL_LOCK(mp,s); 2729 lip = xfs_trans_first_ail(mp, &gen); 2730 while (lip != NULL) { 2731 if (lip->li_type == XFS_LI_EFI) { 2732 efip = (xfs_efi_log_item_t *)lip; 2733 if (efip->efi_format.efi_id == efi_id) { 2734 /* 2735 * xfs_trans_delete_ail() drops the 2736 * AIL lock. 2737 */ 2738 xfs_trans_delete_ail(mp, lip, s); 2739 break; 2740 } 2741 } 2742 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2743 } 2744 2745 /* 2746 * If we found it, then free it up. If it wasn't there, it 2747 * must have been overwritten in the log. Oh well. 2748 */ 2749 if (lip != NULL) { 2750 xfs_efi_item_free(efip); 2751 } else { 2752 AIL_UNLOCK(mp, s); 2753 } 2754 } 2755 2756 /* 2757 * Perform the transaction 2758 * 2759 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2760 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2761 */ 2762 STATIC int 2763 xlog_recover_do_trans( 2764 xlog_t *log, 2765 xlog_recover_t *trans, 2766 int pass) 2767 { 2768 int error = 0; 2769 xlog_recover_item_t *item, *first_item; 2770 2771 if ((error = xlog_recover_reorder_trans(trans))) 2772 return error; 2773 first_item = item = trans->r_itemq; 2774 do { 2775 /* 2776 * we don't need to worry about the block number being 2777 * truncated in > 1 TB buffers because in user-land, 2778 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2779 * the blknos will get through the user-mode buffer 2780 * cache properly. The only bad case is o32 kernels 2781 * where xfs_daddr_t is 32-bits but mount will warn us 2782 * off a > 1 TB filesystem before we get here. 2783 */ 2784 if ((ITEM_TYPE(item) == XFS_LI_BUF)) { 2785 if ((error = xlog_recover_do_buffer_trans(log, item, 2786 pass))) 2787 break; 2788 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2789 if ((error = xlog_recover_do_inode_trans(log, item, 2790 pass))) 2791 break; 2792 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2793 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2794 pass))) 2795 break; 2796 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2797 xlog_recover_do_efd_trans(log, item, pass); 2798 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2799 if ((error = xlog_recover_do_dquot_trans(log, item, 2800 pass))) 2801 break; 2802 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2803 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2804 pass))) 2805 break; 2806 } else { 2807 xlog_warn("XFS: xlog_recover_do_trans"); 2808 ASSERT(0); 2809 error = XFS_ERROR(EIO); 2810 break; 2811 } 2812 item = item->ri_next; 2813 } while (first_item != item); 2814 2815 return error; 2816 } 2817 2818 /* 2819 * Free up any resources allocated by the transaction 2820 * 2821 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2822 */ 2823 STATIC void 2824 xlog_recover_free_trans( 2825 xlog_recover_t *trans) 2826 { 2827 xlog_recover_item_t *first_item, *item, *free_item; 2828 int i; 2829 2830 item = first_item = trans->r_itemq; 2831 do { 2832 free_item = item; 2833 item = item->ri_next; 2834 /* Free the regions in the item. */ 2835 for (i = 0; i < free_item->ri_cnt; i++) { 2836 kmem_free(free_item->ri_buf[i].i_addr, 2837 free_item->ri_buf[i].i_len); 2838 } 2839 /* Free the item itself */ 2840 kmem_free(free_item->ri_buf, 2841 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2842 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2843 } while (first_item != item); 2844 /* Free the transaction recover structure */ 2845 kmem_free(trans, sizeof(xlog_recover_t)); 2846 } 2847 2848 STATIC int 2849 xlog_recover_commit_trans( 2850 xlog_t *log, 2851 xlog_recover_t **q, 2852 xlog_recover_t *trans, 2853 int pass) 2854 { 2855 int error; 2856 2857 if ((error = xlog_recover_unlink_tid(q, trans))) 2858 return error; 2859 if ((error = xlog_recover_do_trans(log, trans, pass))) 2860 return error; 2861 xlog_recover_free_trans(trans); /* no error */ 2862 return 0; 2863 } 2864 2865 STATIC int 2866 xlog_recover_unmount_trans( 2867 xlog_recover_t *trans) 2868 { 2869 /* Do nothing now */ 2870 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2871 return 0; 2872 } 2873 2874 /* 2875 * There are two valid states of the r_state field. 0 indicates that the 2876 * transaction structure is in a normal state. We have either seen the 2877 * start of the transaction or the last operation we added was not a partial 2878 * operation. If the last operation we added to the transaction was a 2879 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2880 * 2881 * NOTE: skip LRs with 0 data length. 2882 */ 2883 STATIC int 2884 xlog_recover_process_data( 2885 xlog_t *log, 2886 xlog_recover_t *rhash[], 2887 xlog_rec_header_t *rhead, 2888 xfs_caddr_t dp, 2889 int pass) 2890 { 2891 xfs_caddr_t lp; 2892 int num_logops; 2893 xlog_op_header_t *ohead; 2894 xlog_recover_t *trans; 2895 xlog_tid_t tid; 2896 int error; 2897 unsigned long hash; 2898 uint flags; 2899 2900 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2901 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2902 2903 /* check the log format matches our own - else we can't recover */ 2904 if (xlog_header_check_recover(log->l_mp, rhead)) 2905 return (XFS_ERROR(EIO)); 2906 2907 while ((dp < lp) && num_logops) { 2908 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2909 ohead = (xlog_op_header_t *)dp; 2910 dp += sizeof(xlog_op_header_t); 2911 if (ohead->oh_clientid != XFS_TRANSACTION && 2912 ohead->oh_clientid != XFS_LOG) { 2913 xlog_warn( 2914 "XFS: xlog_recover_process_data: bad clientid"); 2915 ASSERT(0); 2916 return (XFS_ERROR(EIO)); 2917 } 2918 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2919 hash = XLOG_RHASH(tid); 2920 trans = xlog_recover_find_tid(rhash[hash], tid); 2921 if (trans == NULL) { /* not found; add new tid */ 2922 if (ohead->oh_flags & XLOG_START_TRANS) 2923 xlog_recover_new_tid(&rhash[hash], tid, 2924 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2925 } else { 2926 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2927 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2928 if (flags & XLOG_WAS_CONT_TRANS) 2929 flags &= ~XLOG_CONTINUE_TRANS; 2930 switch (flags) { 2931 case XLOG_COMMIT_TRANS: 2932 error = xlog_recover_commit_trans(log, 2933 &rhash[hash], trans, pass); 2934 break; 2935 case XLOG_UNMOUNT_TRANS: 2936 error = xlog_recover_unmount_trans(trans); 2937 break; 2938 case XLOG_WAS_CONT_TRANS: 2939 error = xlog_recover_add_to_cont_trans(trans, 2940 dp, INT_GET(ohead->oh_len, 2941 ARCH_CONVERT)); 2942 break; 2943 case XLOG_START_TRANS: 2944 xlog_warn( 2945 "XFS: xlog_recover_process_data: bad transaction"); 2946 ASSERT(0); 2947 error = XFS_ERROR(EIO); 2948 break; 2949 case 0: 2950 case XLOG_CONTINUE_TRANS: 2951 error = xlog_recover_add_to_trans(trans, 2952 dp, INT_GET(ohead->oh_len, 2953 ARCH_CONVERT)); 2954 break; 2955 default: 2956 xlog_warn( 2957 "XFS: xlog_recover_process_data: bad flag"); 2958 ASSERT(0); 2959 error = XFS_ERROR(EIO); 2960 break; 2961 } 2962 if (error) 2963 return error; 2964 } 2965 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 2966 num_logops--; 2967 } 2968 return 0; 2969 } 2970 2971 /* 2972 * Process an extent free intent item that was recovered from 2973 * the log. We need to free the extents that it describes. 2974 */ 2975 STATIC void 2976 xlog_recover_process_efi( 2977 xfs_mount_t *mp, 2978 xfs_efi_log_item_t *efip) 2979 { 2980 xfs_efd_log_item_t *efdp; 2981 xfs_trans_t *tp; 2982 int i; 2983 xfs_extent_t *extp; 2984 xfs_fsblock_t startblock_fsb; 2985 2986 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 2987 2988 /* 2989 * First check the validity of the extents described by the 2990 * EFI. If any are bad, then assume that all are bad and 2991 * just toss the EFI. 2992 */ 2993 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2994 extp = &(efip->efi_format.efi_extents[i]); 2995 startblock_fsb = XFS_BB_TO_FSB(mp, 2996 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2997 if ((startblock_fsb == 0) || 2998 (extp->ext_len == 0) || 2999 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3000 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3001 /* 3002 * This will pull the EFI from the AIL and 3003 * free the memory associated with it. 3004 */ 3005 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3006 return; 3007 } 3008 } 3009 3010 tp = xfs_trans_alloc(mp, 0); 3011 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3012 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3013 3014 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3015 extp = &(efip->efi_format.efi_extents[i]); 3016 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3017 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3018 extp->ext_len); 3019 } 3020 3021 efip->efi_flags |= XFS_EFI_RECOVERED; 3022 xfs_trans_commit(tp, 0); 3023 } 3024 3025 /* 3026 * Verify that once we've encountered something other than an EFI 3027 * in the AIL that there are no more EFIs in the AIL. 3028 */ 3029 #if defined(DEBUG) 3030 STATIC void 3031 xlog_recover_check_ail( 3032 xfs_mount_t *mp, 3033 xfs_log_item_t *lip, 3034 int gen) 3035 { 3036 int orig_gen = gen; 3037 3038 do { 3039 ASSERT(lip->li_type != XFS_LI_EFI); 3040 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3041 /* 3042 * The check will be bogus if we restart from the 3043 * beginning of the AIL, so ASSERT that we don't. 3044 * We never should since we're holding the AIL lock 3045 * the entire time. 3046 */ 3047 ASSERT(gen == orig_gen); 3048 } while (lip != NULL); 3049 } 3050 #endif /* DEBUG */ 3051 3052 /* 3053 * When this is called, all of the EFIs which did not have 3054 * corresponding EFDs should be in the AIL. What we do now 3055 * is free the extents associated with each one. 3056 * 3057 * Since we process the EFIs in normal transactions, they 3058 * will be removed at some point after the commit. This prevents 3059 * us from just walking down the list processing each one. 3060 * We'll use a flag in the EFI to skip those that we've already 3061 * processed and use the AIL iteration mechanism's generation 3062 * count to try to speed this up at least a bit. 3063 * 3064 * When we start, we know that the EFIs are the only things in 3065 * the AIL. As we process them, however, other items are added 3066 * to the AIL. Since everything added to the AIL must come after 3067 * everything already in the AIL, we stop processing as soon as 3068 * we see something other than an EFI in the AIL. 3069 */ 3070 STATIC void 3071 xlog_recover_process_efis( 3072 xlog_t *log) 3073 { 3074 xfs_log_item_t *lip; 3075 xfs_efi_log_item_t *efip; 3076 int gen; 3077 xfs_mount_t *mp; 3078 SPLDECL(s); 3079 3080 mp = log->l_mp; 3081 AIL_LOCK(mp,s); 3082 3083 lip = xfs_trans_first_ail(mp, &gen); 3084 while (lip != NULL) { 3085 /* 3086 * We're done when we see something other than an EFI. 3087 */ 3088 if (lip->li_type != XFS_LI_EFI) { 3089 xlog_recover_check_ail(mp, lip, gen); 3090 break; 3091 } 3092 3093 /* 3094 * Skip EFIs that we've already processed. 3095 */ 3096 efip = (xfs_efi_log_item_t *)lip; 3097 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3098 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3099 continue; 3100 } 3101 3102 AIL_UNLOCK(mp, s); 3103 xlog_recover_process_efi(mp, efip); 3104 AIL_LOCK(mp,s); 3105 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3106 } 3107 AIL_UNLOCK(mp, s); 3108 } 3109 3110 /* 3111 * This routine performs a transaction to null out a bad inode pointer 3112 * in an agi unlinked inode hash bucket. 3113 */ 3114 STATIC void 3115 xlog_recover_clear_agi_bucket( 3116 xfs_mount_t *mp, 3117 xfs_agnumber_t agno, 3118 int bucket) 3119 { 3120 xfs_trans_t *tp; 3121 xfs_agi_t *agi; 3122 xfs_buf_t *agibp; 3123 int offset; 3124 int error; 3125 3126 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3127 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3128 3129 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3130 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3131 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3132 if (error) { 3133 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3134 return; 3135 } 3136 3137 agi = XFS_BUF_TO_AGI(agibp); 3138 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) { 3139 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3140 return; 3141 } 3142 3143 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3144 offset = offsetof(xfs_agi_t, agi_unlinked) + 3145 (sizeof(xfs_agino_t) * bucket); 3146 xfs_trans_log_buf(tp, agibp, offset, 3147 (offset + sizeof(xfs_agino_t) - 1)); 3148 3149 (void) xfs_trans_commit(tp, 0); 3150 } 3151 3152 /* 3153 * xlog_iunlink_recover 3154 * 3155 * This is called during recovery to process any inodes which 3156 * we unlinked but not freed when the system crashed. These 3157 * inodes will be on the lists in the AGI blocks. What we do 3158 * here is scan all the AGIs and fully truncate and free any 3159 * inodes found on the lists. Each inode is removed from the 3160 * lists when it has been fully truncated and is freed. The 3161 * freeing of the inode and its removal from the list must be 3162 * atomic. 3163 */ 3164 void 3165 xlog_recover_process_iunlinks( 3166 xlog_t *log) 3167 { 3168 xfs_mount_t *mp; 3169 xfs_agnumber_t agno; 3170 xfs_agi_t *agi; 3171 xfs_buf_t *agibp; 3172 xfs_buf_t *ibp; 3173 xfs_dinode_t *dip; 3174 xfs_inode_t *ip; 3175 xfs_agino_t agino; 3176 xfs_ino_t ino; 3177 int bucket; 3178 int error; 3179 uint mp_dmevmask; 3180 3181 mp = log->l_mp; 3182 3183 /* 3184 * Prevent any DMAPI event from being sent while in this function. 3185 */ 3186 mp_dmevmask = mp->m_dmevmask; 3187 mp->m_dmevmask = 0; 3188 3189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3190 /* 3191 * Find the agi for this ag. 3192 */ 3193 agibp = xfs_buf_read(mp->m_ddev_targp, 3194 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3195 XFS_FSS_TO_BB(mp, 1), 0); 3196 if (XFS_BUF_ISERROR(agibp)) { 3197 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3198 log->l_mp, agibp, 3199 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3200 } 3201 agi = XFS_BUF_TO_AGI(agibp); 3202 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3203 3204 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3205 3206 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3207 while (agino != NULLAGINO) { 3208 3209 /* 3210 * Release the agi buffer so that it can 3211 * be acquired in the normal course of the 3212 * transaction to truncate and free the inode. 3213 */ 3214 xfs_buf_relse(agibp); 3215 3216 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3217 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3218 ASSERT(error || (ip != NULL)); 3219 3220 if (!error) { 3221 /* 3222 * Get the on disk inode to find the 3223 * next inode in the bucket. 3224 */ 3225 error = xfs_itobp(mp, NULL, ip, &dip, 3226 &ibp, 0, 0); 3227 ASSERT(error || (dip != NULL)); 3228 } 3229 3230 if (!error) { 3231 ASSERT(ip->i_d.di_nlink == 0); 3232 3233 /* setup for the next pass */ 3234 agino = be32_to_cpu( 3235 dip->di_next_unlinked); 3236 xfs_buf_relse(ibp); 3237 /* 3238 * Prevent any DMAPI event from 3239 * being sent when the 3240 * reference on the inode is 3241 * dropped. 3242 */ 3243 ip->i_d.di_dmevmask = 0; 3244 3245 /* 3246 * If this is a new inode, handle 3247 * it specially. Otherwise, 3248 * just drop our reference to the 3249 * inode. If there are no 3250 * other references, this will 3251 * send the inode to 3252 * xfs_inactive() which will 3253 * truncate the file and free 3254 * the inode. 3255 */ 3256 if (ip->i_d.di_mode == 0) 3257 xfs_iput_new(ip, 0); 3258 else 3259 VN_RELE(XFS_ITOV(ip)); 3260 } else { 3261 /* 3262 * We can't read in the inode 3263 * this bucket points to, or 3264 * this inode is messed up. Just 3265 * ditch this bucket of inodes. We 3266 * will lose some inodes and space, 3267 * but at least we won't hang. Call 3268 * xlog_recover_clear_agi_bucket() 3269 * to perform a transaction to clear 3270 * the inode pointer in the bucket. 3271 */ 3272 xlog_recover_clear_agi_bucket(mp, agno, 3273 bucket); 3274 3275 agino = NULLAGINO; 3276 } 3277 3278 /* 3279 * Reacquire the agibuffer and continue around 3280 * the loop. 3281 */ 3282 agibp = xfs_buf_read(mp->m_ddev_targp, 3283 XFS_AG_DADDR(mp, agno, 3284 XFS_AGI_DADDR(mp)), 3285 XFS_FSS_TO_BB(mp, 1), 0); 3286 if (XFS_BUF_ISERROR(agibp)) { 3287 xfs_ioerror_alert( 3288 "xlog_recover_process_iunlinks(#2)", 3289 log->l_mp, agibp, 3290 XFS_AG_DADDR(mp, agno, 3291 XFS_AGI_DADDR(mp))); 3292 } 3293 agi = XFS_BUF_TO_AGI(agibp); 3294 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3295 agi->agi_magicnum)); 3296 } 3297 } 3298 3299 /* 3300 * Release the buffer for the current agi so we can 3301 * go on to the next one. 3302 */ 3303 xfs_buf_relse(agibp); 3304 } 3305 3306 mp->m_dmevmask = mp_dmevmask; 3307 } 3308 3309 3310 #ifdef DEBUG 3311 STATIC void 3312 xlog_pack_data_checksum( 3313 xlog_t *log, 3314 xlog_in_core_t *iclog, 3315 int size) 3316 { 3317 int i; 3318 uint *up; 3319 uint chksum = 0; 3320 3321 up = (uint *)iclog->ic_datap; 3322 /* divide length by 4 to get # words */ 3323 for (i = 0; i < (size >> 2); i++) { 3324 chksum ^= INT_GET(*up, ARCH_CONVERT); 3325 up++; 3326 } 3327 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3328 } 3329 #else 3330 #define xlog_pack_data_checksum(log, iclog, size) 3331 #endif 3332 3333 /* 3334 * Stamp cycle number in every block 3335 */ 3336 void 3337 xlog_pack_data( 3338 xlog_t *log, 3339 xlog_in_core_t *iclog, 3340 int roundoff) 3341 { 3342 int i, j, k; 3343 int size = iclog->ic_offset + roundoff; 3344 uint cycle_lsn; 3345 xfs_caddr_t dp; 3346 xlog_in_core_2_t *xhdr; 3347 3348 xlog_pack_data_checksum(log, iclog, size); 3349 3350 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3351 3352 dp = iclog->ic_datap; 3353 for (i = 0; i < BTOBB(size) && 3354 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3355 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3356 *(uint *)dp = cycle_lsn; 3357 dp += BBSIZE; 3358 } 3359 3360 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3361 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3362 for ( ; i < BTOBB(size); i++) { 3363 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3364 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3365 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3366 *(uint *)dp = cycle_lsn; 3367 dp += BBSIZE; 3368 } 3369 3370 for (i = 1; i < log->l_iclog_heads; i++) { 3371 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3372 } 3373 } 3374 } 3375 3376 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3377 STATIC void 3378 xlog_unpack_data_checksum( 3379 xlog_rec_header_t *rhead, 3380 xfs_caddr_t dp, 3381 xlog_t *log) 3382 { 3383 uint *up = (uint *)dp; 3384 uint chksum = 0; 3385 int i; 3386 3387 /* divide length by 4 to get # words */ 3388 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3389 chksum ^= INT_GET(*up, ARCH_CONVERT); 3390 up++; 3391 } 3392 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3393 if (rhead->h_chksum || 3394 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3395 cmn_err(CE_DEBUG, 3396 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3397 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3398 cmn_err(CE_DEBUG, 3399 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3400 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3401 cmn_err(CE_DEBUG, 3402 "XFS: LogR this is a LogV2 filesystem\n"); 3403 } 3404 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3405 } 3406 } 3407 } 3408 #else 3409 #define xlog_unpack_data_checksum(rhead, dp, log) 3410 #endif 3411 3412 STATIC void 3413 xlog_unpack_data( 3414 xlog_rec_header_t *rhead, 3415 xfs_caddr_t dp, 3416 xlog_t *log) 3417 { 3418 int i, j, k; 3419 xlog_in_core_2_t *xhdr; 3420 3421 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3422 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3423 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3424 dp += BBSIZE; 3425 } 3426 3427 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3428 xhdr = (xlog_in_core_2_t *)rhead; 3429 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3430 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3431 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3432 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3433 dp += BBSIZE; 3434 } 3435 } 3436 3437 xlog_unpack_data_checksum(rhead, dp, log); 3438 } 3439 3440 STATIC int 3441 xlog_valid_rec_header( 3442 xlog_t *log, 3443 xlog_rec_header_t *rhead, 3444 xfs_daddr_t blkno) 3445 { 3446 int hlen; 3447 3448 if (unlikely( 3449 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3450 XLOG_HEADER_MAGIC_NUM))) { 3451 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3452 XFS_ERRLEVEL_LOW, log->l_mp); 3453 return XFS_ERROR(EFSCORRUPTED); 3454 } 3455 if (unlikely( 3456 (!rhead->h_version || 3457 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3458 (~XLOG_VERSION_OKBITS)) != 0))) { 3459 xlog_warn("XFS: %s: unrecognised log version (%d).", 3460 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3461 return XFS_ERROR(EIO); 3462 } 3463 3464 /* LR body must have data or it wouldn't have been written */ 3465 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3466 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3467 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3468 XFS_ERRLEVEL_LOW, log->l_mp); 3469 return XFS_ERROR(EFSCORRUPTED); 3470 } 3471 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3472 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3473 XFS_ERRLEVEL_LOW, log->l_mp); 3474 return XFS_ERROR(EFSCORRUPTED); 3475 } 3476 return 0; 3477 } 3478 3479 /* 3480 * Read the log from tail to head and process the log records found. 3481 * Handle the two cases where the tail and head are in the same cycle 3482 * and where the active portion of the log wraps around the end of 3483 * the physical log separately. The pass parameter is passed through 3484 * to the routines called to process the data and is not looked at 3485 * here. 3486 */ 3487 STATIC int 3488 xlog_do_recovery_pass( 3489 xlog_t *log, 3490 xfs_daddr_t head_blk, 3491 xfs_daddr_t tail_blk, 3492 int pass) 3493 { 3494 xlog_rec_header_t *rhead; 3495 xfs_daddr_t blk_no; 3496 xfs_caddr_t bufaddr, offset; 3497 xfs_buf_t *hbp, *dbp; 3498 int error = 0, h_size; 3499 int bblks, split_bblks; 3500 int hblks, split_hblks, wrapped_hblks; 3501 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3502 3503 ASSERT(head_blk != tail_blk); 3504 3505 /* 3506 * Read the header of the tail block and get the iclog buffer size from 3507 * h_size. Use this to tell how many sectors make up the log header. 3508 */ 3509 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3510 /* 3511 * When using variable length iclogs, read first sector of 3512 * iclog header and extract the header size from it. Get a 3513 * new hbp that is the correct size. 3514 */ 3515 hbp = xlog_get_bp(log, 1); 3516 if (!hbp) 3517 return ENOMEM; 3518 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3519 goto bread_err1; 3520 offset = xlog_align(log, tail_blk, 1, hbp); 3521 rhead = (xlog_rec_header_t *)offset; 3522 error = xlog_valid_rec_header(log, rhead, tail_blk); 3523 if (error) 3524 goto bread_err1; 3525 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3526 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3527 & XLOG_VERSION_2) && 3528 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3529 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3530 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3531 hblks++; 3532 xlog_put_bp(hbp); 3533 hbp = xlog_get_bp(log, hblks); 3534 } else { 3535 hblks = 1; 3536 } 3537 } else { 3538 ASSERT(log->l_sectbb_log == 0); 3539 hblks = 1; 3540 hbp = xlog_get_bp(log, 1); 3541 h_size = XLOG_BIG_RECORD_BSIZE; 3542 } 3543 3544 if (!hbp) 3545 return ENOMEM; 3546 dbp = xlog_get_bp(log, BTOBB(h_size)); 3547 if (!dbp) { 3548 xlog_put_bp(hbp); 3549 return ENOMEM; 3550 } 3551 3552 memset(rhash, 0, sizeof(rhash)); 3553 if (tail_blk <= head_blk) { 3554 for (blk_no = tail_blk; blk_no < head_blk; ) { 3555 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3556 goto bread_err2; 3557 offset = xlog_align(log, blk_no, hblks, hbp); 3558 rhead = (xlog_rec_header_t *)offset; 3559 error = xlog_valid_rec_header(log, rhead, blk_no); 3560 if (error) 3561 goto bread_err2; 3562 3563 /* blocks in data section */ 3564 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3565 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3566 if (error) 3567 goto bread_err2; 3568 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3569 xlog_unpack_data(rhead, offset, log); 3570 if ((error = xlog_recover_process_data(log, 3571 rhash, rhead, offset, pass))) 3572 goto bread_err2; 3573 blk_no += bblks + hblks; 3574 } 3575 } else { 3576 /* 3577 * Perform recovery around the end of the physical log. 3578 * When the head is not on the same cycle number as the tail, 3579 * we can't do a sequential recovery as above. 3580 */ 3581 blk_no = tail_blk; 3582 while (blk_no < log->l_logBBsize) { 3583 /* 3584 * Check for header wrapping around physical end-of-log 3585 */ 3586 offset = NULL; 3587 split_hblks = 0; 3588 wrapped_hblks = 0; 3589 if (blk_no + hblks <= log->l_logBBsize) { 3590 /* Read header in one read */ 3591 error = xlog_bread(log, blk_no, hblks, hbp); 3592 if (error) 3593 goto bread_err2; 3594 offset = xlog_align(log, blk_no, hblks, hbp); 3595 } else { 3596 /* This LR is split across physical log end */ 3597 if (blk_no != log->l_logBBsize) { 3598 /* some data before physical log end */ 3599 ASSERT(blk_no <= INT_MAX); 3600 split_hblks = log->l_logBBsize - (int)blk_no; 3601 ASSERT(split_hblks > 0); 3602 if ((error = xlog_bread(log, blk_no, 3603 split_hblks, hbp))) 3604 goto bread_err2; 3605 offset = xlog_align(log, blk_no, 3606 split_hblks, hbp); 3607 } 3608 /* 3609 * Note: this black magic still works with 3610 * large sector sizes (non-512) only because: 3611 * - we increased the buffer size originally 3612 * by 1 sector giving us enough extra space 3613 * for the second read; 3614 * - the log start is guaranteed to be sector 3615 * aligned; 3616 * - we read the log end (LR header start) 3617 * _first_, then the log start (LR header end) 3618 * - order is important. 3619 */ 3620 bufaddr = XFS_BUF_PTR(hbp); 3621 XFS_BUF_SET_PTR(hbp, 3622 bufaddr + BBTOB(split_hblks), 3623 BBTOB(hblks - split_hblks)); 3624 wrapped_hblks = hblks - split_hblks; 3625 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3626 if (error) 3627 goto bread_err2; 3628 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3629 if (!offset) 3630 offset = xlog_align(log, 0, 3631 wrapped_hblks, hbp); 3632 } 3633 rhead = (xlog_rec_header_t *)offset; 3634 error = xlog_valid_rec_header(log, rhead, 3635 split_hblks ? blk_no : 0); 3636 if (error) 3637 goto bread_err2; 3638 3639 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3640 blk_no += hblks; 3641 3642 /* Read in data for log record */ 3643 if (blk_no + bblks <= log->l_logBBsize) { 3644 error = xlog_bread(log, blk_no, bblks, dbp); 3645 if (error) 3646 goto bread_err2; 3647 offset = xlog_align(log, blk_no, bblks, dbp); 3648 } else { 3649 /* This log record is split across the 3650 * physical end of log */ 3651 offset = NULL; 3652 split_bblks = 0; 3653 if (blk_no != log->l_logBBsize) { 3654 /* some data is before the physical 3655 * end of log */ 3656 ASSERT(!wrapped_hblks); 3657 ASSERT(blk_no <= INT_MAX); 3658 split_bblks = 3659 log->l_logBBsize - (int)blk_no; 3660 ASSERT(split_bblks > 0); 3661 if ((error = xlog_bread(log, blk_no, 3662 split_bblks, dbp))) 3663 goto bread_err2; 3664 offset = xlog_align(log, blk_no, 3665 split_bblks, dbp); 3666 } 3667 /* 3668 * Note: this black magic still works with 3669 * large sector sizes (non-512) only because: 3670 * - we increased the buffer size originally 3671 * by 1 sector giving us enough extra space 3672 * for the second read; 3673 * - the log start is guaranteed to be sector 3674 * aligned; 3675 * - we read the log end (LR header start) 3676 * _first_, then the log start (LR header end) 3677 * - order is important. 3678 */ 3679 bufaddr = XFS_BUF_PTR(dbp); 3680 XFS_BUF_SET_PTR(dbp, 3681 bufaddr + BBTOB(split_bblks), 3682 BBTOB(bblks - split_bblks)); 3683 if ((error = xlog_bread(log, wrapped_hblks, 3684 bblks - split_bblks, dbp))) 3685 goto bread_err2; 3686 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3687 if (!offset) 3688 offset = xlog_align(log, wrapped_hblks, 3689 bblks - split_bblks, dbp); 3690 } 3691 xlog_unpack_data(rhead, offset, log); 3692 if ((error = xlog_recover_process_data(log, rhash, 3693 rhead, offset, pass))) 3694 goto bread_err2; 3695 blk_no += bblks; 3696 } 3697 3698 ASSERT(blk_no >= log->l_logBBsize); 3699 blk_no -= log->l_logBBsize; 3700 3701 /* read first part of physical log */ 3702 while (blk_no < head_blk) { 3703 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3704 goto bread_err2; 3705 offset = xlog_align(log, blk_no, hblks, hbp); 3706 rhead = (xlog_rec_header_t *)offset; 3707 error = xlog_valid_rec_header(log, rhead, blk_no); 3708 if (error) 3709 goto bread_err2; 3710 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3711 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3712 goto bread_err2; 3713 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3714 xlog_unpack_data(rhead, offset, log); 3715 if ((error = xlog_recover_process_data(log, rhash, 3716 rhead, offset, pass))) 3717 goto bread_err2; 3718 blk_no += bblks + hblks; 3719 } 3720 } 3721 3722 bread_err2: 3723 xlog_put_bp(dbp); 3724 bread_err1: 3725 xlog_put_bp(hbp); 3726 return error; 3727 } 3728 3729 /* 3730 * Do the recovery of the log. We actually do this in two phases. 3731 * The two passes are necessary in order to implement the function 3732 * of cancelling a record written into the log. The first pass 3733 * determines those things which have been cancelled, and the 3734 * second pass replays log items normally except for those which 3735 * have been cancelled. The handling of the replay and cancellations 3736 * takes place in the log item type specific routines. 3737 * 3738 * The table of items which have cancel records in the log is allocated 3739 * and freed at this level, since only here do we know when all of 3740 * the log recovery has been completed. 3741 */ 3742 STATIC int 3743 xlog_do_log_recovery( 3744 xlog_t *log, 3745 xfs_daddr_t head_blk, 3746 xfs_daddr_t tail_blk) 3747 { 3748 int error; 3749 3750 ASSERT(head_blk != tail_blk); 3751 3752 /* 3753 * First do a pass to find all of the cancelled buf log items. 3754 * Store them in the buf_cancel_table for use in the second pass. 3755 */ 3756 log->l_buf_cancel_table = 3757 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3758 sizeof(xfs_buf_cancel_t*), 3759 KM_SLEEP); 3760 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3761 XLOG_RECOVER_PASS1); 3762 if (error != 0) { 3763 kmem_free(log->l_buf_cancel_table, 3764 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3765 log->l_buf_cancel_table = NULL; 3766 return error; 3767 } 3768 /* 3769 * Then do a second pass to actually recover the items in the log. 3770 * When it is complete free the table of buf cancel items. 3771 */ 3772 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3773 XLOG_RECOVER_PASS2); 3774 #ifdef DEBUG 3775 if (!error) { 3776 int i; 3777 3778 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3779 ASSERT(log->l_buf_cancel_table[i] == NULL); 3780 } 3781 #endif /* DEBUG */ 3782 3783 kmem_free(log->l_buf_cancel_table, 3784 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3785 log->l_buf_cancel_table = NULL; 3786 3787 return error; 3788 } 3789 3790 /* 3791 * Do the actual recovery 3792 */ 3793 STATIC int 3794 xlog_do_recover( 3795 xlog_t *log, 3796 xfs_daddr_t head_blk, 3797 xfs_daddr_t tail_blk) 3798 { 3799 int error; 3800 xfs_buf_t *bp; 3801 xfs_sb_t *sbp; 3802 3803 /* 3804 * First replay the images in the log. 3805 */ 3806 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3807 if (error) { 3808 return error; 3809 } 3810 3811 XFS_bflush(log->l_mp->m_ddev_targp); 3812 3813 /* 3814 * If IO errors happened during recovery, bail out. 3815 */ 3816 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3817 return (EIO); 3818 } 3819 3820 /* 3821 * We now update the tail_lsn since much of the recovery has completed 3822 * and there may be space available to use. If there were no extent 3823 * or iunlinks, we can free up the entire log and set the tail_lsn to 3824 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3825 * lsn of the last known good LR on disk. If there are extent frees 3826 * or iunlinks they will have some entries in the AIL; so we look at 3827 * the AIL to determine how to set the tail_lsn. 3828 */ 3829 xlog_assign_tail_lsn(log->l_mp); 3830 3831 /* 3832 * Now that we've finished replaying all buffer and inode 3833 * updates, re-read in the superblock. 3834 */ 3835 bp = xfs_getsb(log->l_mp, 0); 3836 XFS_BUF_UNDONE(bp); 3837 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3838 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3839 XFS_BUF_READ(bp); 3840 XFS_BUF_UNASYNC(bp); 3841 xfsbdstrat(log->l_mp, bp); 3842 if ((error = xfs_iowait(bp))) { 3843 xfs_ioerror_alert("xlog_do_recover", 3844 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3845 ASSERT(0); 3846 xfs_buf_relse(bp); 3847 return error; 3848 } 3849 3850 /* Convert superblock from on-disk format */ 3851 sbp = &log->l_mp->m_sb; 3852 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3853 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3854 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3855 xfs_buf_relse(bp); 3856 3857 /* We've re-read the superblock so re-initialize per-cpu counters */ 3858 xfs_icsb_reinit_counters(log->l_mp); 3859 3860 xlog_recover_check_summary(log); 3861 3862 /* Normal transactions can now occur */ 3863 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3864 return 0; 3865 } 3866 3867 /* 3868 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3869 * 3870 * Return error or zero. 3871 */ 3872 int 3873 xlog_recover( 3874 xlog_t *log) 3875 { 3876 xfs_daddr_t head_blk, tail_blk; 3877 int error; 3878 3879 /* find the tail of the log */ 3880 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3881 return error; 3882 3883 if (tail_blk != head_blk) { 3884 /* There used to be a comment here: 3885 * 3886 * disallow recovery on read-only mounts. note -- mount 3887 * checks for ENOSPC and turns it into an intelligent 3888 * error message. 3889 * ...but this is no longer true. Now, unless you specify 3890 * NORECOVERY (in which case this function would never be 3891 * called), we just go ahead and recover. We do this all 3892 * under the vfs layer, so we can get away with it unless 3893 * the device itself is read-only, in which case we fail. 3894 */ 3895 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3896 return error; 3897 } 3898 3899 cmn_err(CE_NOTE, 3900 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3901 log->l_mp->m_fsname, log->l_mp->m_logname ? 3902 log->l_mp->m_logname : "internal"); 3903 3904 error = xlog_do_recover(log, head_blk, tail_blk); 3905 log->l_flags |= XLOG_RECOVERY_NEEDED; 3906 } 3907 return error; 3908 } 3909 3910 /* 3911 * In the first part of recovery we replay inodes and buffers and build 3912 * up the list of extent free items which need to be processed. Here 3913 * we process the extent free items and clean up the on disk unlinked 3914 * inode lists. This is separated from the first part of recovery so 3915 * that the root and real-time bitmap inodes can be read in from disk in 3916 * between the two stages. This is necessary so that we can free space 3917 * in the real-time portion of the file system. 3918 */ 3919 int 3920 xlog_recover_finish( 3921 xlog_t *log, 3922 int mfsi_flags) 3923 { 3924 /* 3925 * Now we're ready to do the transactions needed for the 3926 * rest of recovery. Start with completing all the extent 3927 * free intent records and then process the unlinked inode 3928 * lists. At this point, we essentially run in normal mode 3929 * except that we're still performing recovery actions 3930 * rather than accepting new requests. 3931 */ 3932 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3933 xlog_recover_process_efis(log); 3934 /* 3935 * Sync the log to get all the EFIs out of the AIL. 3936 * This isn't absolutely necessary, but it helps in 3937 * case the unlink transactions would have problems 3938 * pushing the EFIs out of the way. 3939 */ 3940 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3941 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3942 3943 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3944 xlog_recover_process_iunlinks(log); 3945 } 3946 3947 xlog_recover_check_summary(log); 3948 3949 cmn_err(CE_NOTE, 3950 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3951 log->l_mp->m_fsname, log->l_mp->m_logname ? 3952 log->l_mp->m_logname : "internal"); 3953 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3954 } else { 3955 cmn_err(CE_DEBUG, 3956 "!Ending clean XFS mount for filesystem: %s\n", 3957 log->l_mp->m_fsname); 3958 } 3959 return 0; 3960 } 3961 3962 3963 #if defined(DEBUG) 3964 /* 3965 * Read all of the agf and agi counters and check that they 3966 * are consistent with the superblock counters. 3967 */ 3968 void 3969 xlog_recover_check_summary( 3970 xlog_t *log) 3971 { 3972 xfs_mount_t *mp; 3973 xfs_agf_t *agfp; 3974 xfs_agi_t *agip; 3975 xfs_buf_t *agfbp; 3976 xfs_buf_t *agibp; 3977 xfs_daddr_t agfdaddr; 3978 xfs_daddr_t agidaddr; 3979 xfs_buf_t *sbbp; 3980 #ifdef XFS_LOUD_RECOVERY 3981 xfs_sb_t *sbp; 3982 #endif 3983 xfs_agnumber_t agno; 3984 __uint64_t freeblks; 3985 __uint64_t itotal; 3986 __uint64_t ifree; 3987 3988 mp = log->l_mp; 3989 3990 freeblks = 0LL; 3991 itotal = 0LL; 3992 ifree = 0LL; 3993 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3994 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 3995 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 3996 XFS_FSS_TO_BB(mp, 1), 0); 3997 if (XFS_BUF_ISERROR(agfbp)) { 3998 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 3999 mp, agfbp, agfdaddr); 4000 } 4001 agfp = XFS_BUF_TO_AGF(agfbp); 4002 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 4003 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 4004 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4005 4006 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4007 be32_to_cpu(agfp->agf_flcount); 4008 xfs_buf_relse(agfbp); 4009 4010 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4011 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4012 XFS_FSS_TO_BB(mp, 1), 0); 4013 if (XFS_BUF_ISERROR(agibp)) { 4014 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4015 mp, agibp, agidaddr); 4016 } 4017 agip = XFS_BUF_TO_AGI(agibp); 4018 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4019 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4020 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4021 4022 itotal += be32_to_cpu(agip->agi_count); 4023 ifree += be32_to_cpu(agip->agi_freecount); 4024 xfs_buf_relse(agibp); 4025 } 4026 4027 sbbp = xfs_getsb(mp, 0); 4028 #ifdef XFS_LOUD_RECOVERY 4029 sbp = &mp->m_sb; 4030 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); 4031 cmn_err(CE_NOTE, 4032 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4033 sbp->sb_icount, itotal); 4034 cmn_err(CE_NOTE, 4035 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4036 sbp->sb_ifree, ifree); 4037 cmn_err(CE_NOTE, 4038 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4039 sbp->sb_fdblocks, freeblks); 4040 #if 0 4041 /* 4042 * This is turned off until I account for the allocation 4043 * btree blocks which live in free space. 4044 */ 4045 ASSERT(sbp->sb_icount == itotal); 4046 ASSERT(sbp->sb_ifree == ifree); 4047 ASSERT(sbp->sb_fdblocks == freeblks); 4048 #endif 4049 #endif 4050 xfs_buf_relse(sbbp); 4051 } 4052 #endif /* DEBUG */ 4053