xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 
50 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 					       xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void	xlog_recover_check_summary(xlog_t *);
56 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define	xlog_recover_check_summary(log)
59 #define	xlog_recover_check_ail(mp, lip, gen)
60 #endif
61 
62 
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66 
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
68 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
71 
72 xfs_buf_t *
73 xlog_get_bp(
74 	xlog_t		*log,
75 	int		num_bblks)
76 {
77 	ASSERT(num_bblks > 0);
78 
79 	if (log->l_sectbb_log) {
80 		if (num_bblks > 1)
81 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 	}
84 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86 
87 void
88 xlog_put_bp(
89 	xfs_buf_t	*bp)
90 {
91 	xfs_buf_free(bp);
92 }
93 
94 
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100 	xlog_t		*log,
101 	xfs_daddr_t	blk_no,
102 	int		nbblks,
103 	xfs_buf_t	*bp)
104 {
105 	int		error;
106 
107 	if (log->l_sectbb_log) {
108 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 	}
111 
112 	ASSERT(nbblks > 0);
113 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 	ASSERT(bp);
115 
116 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 	XFS_BUF_READ(bp);
118 	XFS_BUF_BUSY(bp);
119 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121 
122 	xfsbdstrat(log->l_mp, bp);
123 	if ((error = xfs_iowait(bp)))
124 		xfs_ioerror_alert("xlog_bread", log->l_mp,
125 				  bp, XFS_BUF_ADDR(bp));
126 	return error;
127 }
128 
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136 	xlog_t		*log,
137 	xfs_daddr_t	blk_no,
138 	int		nbblks,
139 	xfs_buf_t	*bp)
140 {
141 	int		error;
142 
143 	if (log->l_sectbb_log) {
144 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 	}
147 
148 	ASSERT(nbblks > 0);
149 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150 
151 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 	XFS_BUF_ZEROFLAGS(bp);
153 	XFS_BUF_BUSY(bp);
154 	XFS_BUF_HOLD(bp);
155 	XFS_BUF_PSEMA(bp, PRIBIO);
156 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158 
159 	if ((error = xfs_bwrite(log->l_mp, bp)))
160 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 				  bp, XFS_BUF_ADDR(bp));
162 	return error;
163 }
164 
165 STATIC xfs_caddr_t
166 xlog_align(
167 	xlog_t		*log,
168 	xfs_daddr_t	blk_no,
169 	int		nbblks,
170 	xfs_buf_t	*bp)
171 {
172 	xfs_caddr_t	ptr;
173 
174 	if (!log->l_sectbb_log)
175 		return XFS_BUF_PTR(bp);
176 
177 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 	ASSERT(XFS_BUF_SIZE(bp) >=
179 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 	return ptr;
181 }
182 
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189 	xfs_mount_t		*mp,
190 	xlog_rec_header_t	*head)
191 {
192 	int			b;
193 
194 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195 	for (b = 0; b < 16; b++)
196 		cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 	cmn_err(CE_DEBUG, "    log : uuid = ");
199 	for (b = 0; b < 16; b++)
200 		cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 	cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206 
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212 	xfs_mount_t		*mp,
213 	xlog_rec_header_t	*head)
214 {
215 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216 
217 	/*
218 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 	 * a dirty log created in IRIX.
221 	 */
222 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223 		xlog_warn(
224 	"XFS: dirty log written in incompatible format - can't recover");
225 		xlog_header_check_dump(mp, head);
226 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 				 XFS_ERRLEVEL_HIGH, mp);
228 		return XFS_ERROR(EFSCORRUPTED);
229 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 		xlog_warn(
231 	"XFS: dirty log entry has mismatched uuid - can't recover");
232 		xlog_header_check_dump(mp, head);
233 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 				 XFS_ERRLEVEL_HIGH, mp);
235 		return XFS_ERROR(EFSCORRUPTED);
236 	}
237 	return 0;
238 }
239 
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245 	xfs_mount_t		*mp,
246 	xlog_rec_header_t	*head)
247 {
248 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249 
250 	if (uuid_is_nil(&head->h_fs_uuid)) {
251 		/*
252 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 		 * h_fs_uuid is nil, we assume this log was last mounted
254 		 * by IRIX and continue.
255 		 */
256 		xlog_warn("XFS: nil uuid in log - IRIX style log");
257 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 		xlog_warn("XFS: log has mismatched uuid - can't recover");
259 		xlog_header_check_dump(mp, head);
260 		XFS_ERROR_REPORT("xlog_header_check_mount",
261 				 XFS_ERRLEVEL_HIGH, mp);
262 		return XFS_ERROR(EFSCORRUPTED);
263 	}
264 	return 0;
265 }
266 
267 STATIC void
268 xlog_recover_iodone(
269 	struct xfs_buf	*bp)
270 {
271 	xfs_mount_t	*mp;
272 
273 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274 
275 	if (XFS_BUF_GETERROR(bp)) {
276 		/*
277 		 * We're not going to bother about retrying
278 		 * this during recovery. One strike!
279 		 */
280 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 		xfs_ioerror_alert("xlog_recover_iodone",
282 				  mp, bp, XFS_BUF_ADDR(bp));
283 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284 	}
285 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 	XFS_BUF_CLR_IODONE_FUNC(bp);
287 	xfs_biodone(bp);
288 }
289 
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298 	xlog_t		*log,
299 	xfs_buf_t	*bp,
300 	xfs_daddr_t	first_blk,
301 	xfs_daddr_t	*last_blk,
302 	uint		cycle)
303 {
304 	xfs_caddr_t	offset;
305 	xfs_daddr_t	mid_blk;
306 	uint		mid_cycle;
307 	int		error;
308 
309 	mid_blk = BLK_AVG(first_blk, *last_blk);
310 	while (mid_blk != first_blk && mid_blk != *last_blk) {
311 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 			return error;
313 		offset = xlog_align(log, mid_blk, 1, bp);
314 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315 		if (mid_cycle == cycle) {
316 			*last_blk = mid_blk;
317 			/* last_half_cycle == mid_cycle */
318 		} else {
319 			first_blk = mid_blk;
320 			/* first_half_cycle == mid_cycle */
321 		}
322 		mid_blk = BLK_AVG(first_blk, *last_blk);
323 	}
324 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
326 
327 	return 0;
328 }
329 
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342 	xlog_t		*log,
343 	xfs_daddr_t	start_blk,
344 	int		nbblks,
345 	uint		stop_on_cycle_no,
346 	xfs_daddr_t	*new_blk)
347 {
348 	xfs_daddr_t	i, j;
349 	uint		cycle;
350 	xfs_buf_t	*bp;
351 	xfs_daddr_t	bufblks;
352 	xfs_caddr_t	buf = NULL;
353 	int		error = 0;
354 
355 	bufblks = 1 << ffs(nbblks);
356 
357 	while (!(bp = xlog_get_bp(log, bufblks))) {
358 		/* can't get enough memory to do everything in one big buffer */
359 		bufblks >>= 1;
360 		if (bufblks <= log->l_sectbb_log)
361 			return ENOMEM;
362 	}
363 
364 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 		int	bcount;
366 
367 		bcount = min(bufblks, (start_blk + nbblks - i));
368 
369 		if ((error = xlog_bread(log, i, bcount, bp)))
370 			goto out;
371 
372 		buf = xlog_align(log, i, bcount, bp);
373 		for (j = 0; j < bcount; j++) {
374 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
375 			if (cycle == stop_on_cycle_no) {
376 				*new_blk = i+j;
377 				goto out;
378 			}
379 
380 			buf += BBSIZE;
381 		}
382 	}
383 
384 	*new_blk = -1;
385 
386 out:
387 	xlog_put_bp(bp);
388 	return error;
389 }
390 
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405 	xlog_t			*log,
406 	xfs_daddr_t		start_blk,
407 	xfs_daddr_t		*last_blk,
408 	int			extra_bblks)
409 {
410 	xfs_daddr_t		i;
411 	xfs_buf_t		*bp;
412 	xfs_caddr_t		offset = NULL;
413 	xlog_rec_header_t	*head = NULL;
414 	int			error = 0;
415 	int			smallmem = 0;
416 	int			num_blks = *last_blk - start_blk;
417 	int			xhdrs;
418 
419 	ASSERT(start_blk != 0 || *last_blk != start_blk);
420 
421 	if (!(bp = xlog_get_bp(log, num_blks))) {
422 		if (!(bp = xlog_get_bp(log, 1)))
423 			return ENOMEM;
424 		smallmem = 1;
425 	} else {
426 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 			goto out;
428 		offset = xlog_align(log, start_blk, num_blks, bp);
429 		offset += ((num_blks - 1) << BBSHIFT);
430 	}
431 
432 	for (i = (*last_blk) - 1; i >= 0; i--) {
433 		if (i < start_blk) {
434 			/* valid log record not found */
435 			xlog_warn(
436 		"XFS: Log inconsistent (didn't find previous header)");
437 			ASSERT(0);
438 			error = XFS_ERROR(EIO);
439 			goto out;
440 		}
441 
442 		if (smallmem) {
443 			if ((error = xlog_bread(log, i, 1, bp)))
444 				goto out;
445 			offset = xlog_align(log, i, 1, bp);
446 		}
447 
448 		head = (xlog_rec_header_t *)offset;
449 
450 		if (XLOG_HEADER_MAGIC_NUM ==
451 		    INT_GET(head->h_magicno, ARCH_CONVERT))
452 			break;
453 
454 		if (!smallmem)
455 			offset -= BBSIZE;
456 	}
457 
458 	/*
459 	 * We hit the beginning of the physical log & still no header.  Return
460 	 * to caller.  If caller can handle a return of -1, then this routine
461 	 * will be called again for the end of the physical log.
462 	 */
463 	if (i == -1) {
464 		error = -1;
465 		goto out;
466 	}
467 
468 	/*
469 	 * We have the final block of the good log (the first block
470 	 * of the log record _before_ the head. So we check the uuid.
471 	 */
472 	if ((error = xlog_header_check_mount(log->l_mp, head)))
473 		goto out;
474 
475 	/*
476 	 * We may have found a log record header before we expected one.
477 	 * last_blk will be the 1st block # with a given cycle #.  We may end
478 	 * up reading an entire log record.  In this case, we don't want to
479 	 * reset last_blk.  Only when last_blk points in the middle of a log
480 	 * record do we update last_blk.
481 	 */
482 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
484 
485 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
487 			xhdrs++;
488 	} else {
489 		xhdrs = 1;
490 	}
491 
492 	if (*last_blk - i + extra_bblks
493 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494 		*last_blk = i;
495 
496 out:
497 	xlog_put_bp(bp);
498 	return error;
499 }
500 
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516 	xlog_t 		*log,
517 	xfs_daddr_t	*return_head_blk)
518 {
519 	xfs_buf_t	*bp;
520 	xfs_caddr_t	offset;
521 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
522 	int		num_scan_bblks;
523 	uint		first_half_cycle, last_half_cycle;
524 	uint		stop_on_cycle;
525 	int		error, log_bbnum = log->l_logBBsize;
526 
527 	/* Is the end of the log device zeroed? */
528 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529 		*return_head_blk = first_blk;
530 
531 		/* Is the whole lot zeroed? */
532 		if (!first_blk) {
533 			/* Linux XFS shouldn't generate totally zeroed logs -
534 			 * mkfs etc write a dummy unmount record to a fresh
535 			 * log so we can store the uuid in there
536 			 */
537 			xlog_warn("XFS: totally zeroed log");
538 		}
539 
540 		return 0;
541 	} else if (error) {
542 		xlog_warn("XFS: empty log check failed");
543 		return error;
544 	}
545 
546 	first_blk = 0;			/* get cycle # of 1st block */
547 	bp = xlog_get_bp(log, 1);
548 	if (!bp)
549 		return ENOMEM;
550 	if ((error = xlog_bread(log, 0, 1, bp)))
551 		goto bp_err;
552 	offset = xlog_align(log, 0, 1, bp);
553 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554 
555 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
556 	if ((error = xlog_bread(log, last_blk, 1, bp)))
557 		goto bp_err;
558 	offset = xlog_align(log, last_blk, 1, bp);
559 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560 	ASSERT(last_half_cycle != 0);
561 
562 	/*
563 	 * If the 1st half cycle number is equal to the last half cycle number,
564 	 * then the entire log is stamped with the same cycle number.  In this
565 	 * case, head_blk can't be set to zero (which makes sense).  The below
566 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
567 	 * we set it to log_bbnum which is an invalid block number, but this
568 	 * value makes the math correct.  If head_blk doesn't changed through
569 	 * all the tests below, *head_blk is set to zero at the very end rather
570 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571 	 * in a circular file.
572 	 */
573 	if (first_half_cycle == last_half_cycle) {
574 		/*
575 		 * In this case we believe that the entire log should have
576 		 * cycle number last_half_cycle.  We need to scan backwards
577 		 * from the end verifying that there are no holes still
578 		 * containing last_half_cycle - 1.  If we find such a hole,
579 		 * then the start of that hole will be the new head.  The
580 		 * simple case looks like
581 		 *        x | x ... | x - 1 | x
582 		 * Another case that fits this picture would be
583 		 *        x | x + 1 | x ... | x
584 		 * In this case the head really is somewhere at the end of the
585 		 * log, as one of the latest writes at the beginning was
586 		 * incomplete.
587 		 * One more case is
588 		 *        x | x + 1 | x ... | x - 1 | x
589 		 * This is really the combination of the above two cases, and
590 		 * the head has to end up at the start of the x-1 hole at the
591 		 * end of the log.
592 		 *
593 		 * In the 256k log case, we will read from the beginning to the
594 		 * end of the log and search for cycle numbers equal to x-1.
595 		 * We don't worry about the x+1 blocks that we encounter,
596 		 * because we know that they cannot be the head since the log
597 		 * started with x.
598 		 */
599 		head_blk = log_bbnum;
600 		stop_on_cycle = last_half_cycle - 1;
601 	} else {
602 		/*
603 		 * In this case we want to find the first block with cycle
604 		 * number matching last_half_cycle.  We expect the log to be
605 		 * some variation on
606 		 *        x + 1 ... | x ...
607 		 * The first block with cycle number x (last_half_cycle) will
608 		 * be where the new head belongs.  First we do a binary search
609 		 * for the first occurrence of last_half_cycle.  The binary
610 		 * search may not be totally accurate, so then we scan back
611 		 * from there looking for occurrences of last_half_cycle before
612 		 * us.  If that backwards scan wraps around the beginning of
613 		 * the log, then we look for occurrences of last_half_cycle - 1
614 		 * at the end of the log.  The cases we're looking for look
615 		 * like
616 		 *        x + 1 ... | x | x + 1 | x ...
617 		 *                               ^ binary search stopped here
618 		 * or
619 		 *        x + 1 ... | x ... | x - 1 | x
620 		 *        <---------> less than scan distance
621 		 */
622 		stop_on_cycle = last_half_cycle;
623 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
624 						&head_blk, last_half_cycle)))
625 			goto bp_err;
626 	}
627 
628 	/*
629 	 * Now validate the answer.  Scan back some number of maximum possible
630 	 * blocks and make sure each one has the expected cycle number.  The
631 	 * maximum is determined by the total possible amount of buffering
632 	 * in the in-core log.  The following number can be made tighter if
633 	 * we actually look at the block size of the filesystem.
634 	 */
635 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636 	if (head_blk >= num_scan_bblks) {
637 		/*
638 		 * We are guaranteed that the entire check can be performed
639 		 * in one buffer.
640 		 */
641 		start_blk = head_blk - num_scan_bblks;
642 		if ((error = xlog_find_verify_cycle(log,
643 						start_blk, num_scan_bblks,
644 						stop_on_cycle, &new_blk)))
645 			goto bp_err;
646 		if (new_blk != -1)
647 			head_blk = new_blk;
648 	} else {		/* need to read 2 parts of log */
649 		/*
650 		 * We are going to scan backwards in the log in two parts.
651 		 * First we scan the physical end of the log.  In this part
652 		 * of the log, we are looking for blocks with cycle number
653 		 * last_half_cycle - 1.
654 		 * If we find one, then we know that the log starts there, as
655 		 * we've found a hole that didn't get written in going around
656 		 * the end of the physical log.  The simple case for this is
657 		 *        x + 1 ... | x ... | x - 1 | x
658 		 *        <---------> less than scan distance
659 		 * If all of the blocks at the end of the log have cycle number
660 		 * last_half_cycle, then we check the blocks at the start of
661 		 * the log looking for occurrences of last_half_cycle.  If we
662 		 * find one, then our current estimate for the location of the
663 		 * first occurrence of last_half_cycle is wrong and we move
664 		 * back to the hole we've found.  This case looks like
665 		 *        x + 1 ... | x | x + 1 | x ...
666 		 *                               ^ binary search stopped here
667 		 * Another case we need to handle that only occurs in 256k
668 		 * logs is
669 		 *        x + 1 ... | x ... | x+1 | x ...
670 		 *                   ^ binary search stops here
671 		 * In a 256k log, the scan at the end of the log will see the
672 		 * x + 1 blocks.  We need to skip past those since that is
673 		 * certainly not the head of the log.  By searching for
674 		 * last_half_cycle-1 we accomplish that.
675 		 */
676 		start_blk = log_bbnum - num_scan_bblks + head_blk;
677 		ASSERT(head_blk <= INT_MAX &&
678 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679 		if ((error = xlog_find_verify_cycle(log, start_blk,
680 					num_scan_bblks - (int)head_blk,
681 					(stop_on_cycle - 1), &new_blk)))
682 			goto bp_err;
683 		if (new_blk != -1) {
684 			head_blk = new_blk;
685 			goto bad_blk;
686 		}
687 
688 		/*
689 		 * Scan beginning of log now.  The last part of the physical
690 		 * log is good.  This scan needs to verify that it doesn't find
691 		 * the last_half_cycle.
692 		 */
693 		start_blk = 0;
694 		ASSERT(head_blk <= INT_MAX);
695 		if ((error = xlog_find_verify_cycle(log,
696 					start_blk, (int)head_blk,
697 					stop_on_cycle, &new_blk)))
698 			goto bp_err;
699 		if (new_blk != -1)
700 			head_blk = new_blk;
701 	}
702 
703  bad_blk:
704 	/*
705 	 * Now we need to make sure head_blk is not pointing to a block in
706 	 * the middle of a log record.
707 	 */
708 	num_scan_bblks = XLOG_REC_SHIFT(log);
709 	if (head_blk >= num_scan_bblks) {
710 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711 
712 		/* start ptr at last block ptr before head_blk */
713 		if ((error = xlog_find_verify_log_record(log, start_blk,
714 							&head_blk, 0)) == -1) {
715 			error = XFS_ERROR(EIO);
716 			goto bp_err;
717 		} else if (error)
718 			goto bp_err;
719 	} else {
720 		start_blk = 0;
721 		ASSERT(head_blk <= INT_MAX);
722 		if ((error = xlog_find_verify_log_record(log, start_blk,
723 							&head_blk, 0)) == -1) {
724 			/* We hit the beginning of the log during our search */
725 			start_blk = log_bbnum - num_scan_bblks + head_blk;
726 			new_blk = log_bbnum;
727 			ASSERT(start_blk <= INT_MAX &&
728 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
729 			ASSERT(head_blk <= INT_MAX);
730 			if ((error = xlog_find_verify_log_record(log,
731 							start_blk, &new_blk,
732 							(int)head_blk)) == -1) {
733 				error = XFS_ERROR(EIO);
734 				goto bp_err;
735 			} else if (error)
736 				goto bp_err;
737 			if (new_blk != log_bbnum)
738 				head_blk = new_blk;
739 		} else if (error)
740 			goto bp_err;
741 	}
742 
743 	xlog_put_bp(bp);
744 	if (head_blk == log_bbnum)
745 		*return_head_blk = 0;
746 	else
747 		*return_head_blk = head_blk;
748 	/*
749 	 * When returning here, we have a good block number.  Bad block
750 	 * means that during a previous crash, we didn't have a clean break
751 	 * from cycle number N to cycle number N-1.  In this case, we need
752 	 * to find the first block with cycle number N-1.
753 	 */
754 	return 0;
755 
756  bp_err:
757 	xlog_put_bp(bp);
758 
759 	if (error)
760 	    xlog_warn("XFS: failed to find log head");
761 	return error;
762 }
763 
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782 	xlog_t			*log,
783 	xfs_daddr_t		*head_blk,
784 	xfs_daddr_t		*tail_blk)
785 {
786 	xlog_rec_header_t	*rhead;
787 	xlog_op_header_t	*op_head;
788 	xfs_caddr_t		offset = NULL;
789 	xfs_buf_t		*bp;
790 	int			error, i, found;
791 	xfs_daddr_t		umount_data_blk;
792 	xfs_daddr_t		after_umount_blk;
793 	xfs_lsn_t		tail_lsn;
794 	int			hblks;
795 
796 	found = 0;
797 
798 	/*
799 	 * Find previous log record
800 	 */
801 	if ((error = xlog_find_head(log, head_blk)))
802 		return error;
803 
804 	bp = xlog_get_bp(log, 1);
805 	if (!bp)
806 		return ENOMEM;
807 	if (*head_blk == 0) {				/* special case */
808 		if ((error = xlog_bread(log, 0, 1, bp)))
809 			goto bread_err;
810 		offset = xlog_align(log, 0, 1, bp);
811 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812 			*tail_blk = 0;
813 			/* leave all other log inited values alone */
814 			goto exit;
815 		}
816 	}
817 
818 	/*
819 	 * Search backwards looking for log record header block
820 	 */
821 	ASSERT(*head_blk < INT_MAX);
822 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823 		if ((error = xlog_bread(log, i, 1, bp)))
824 			goto bread_err;
825 		offset = xlog_align(log, i, 1, bp);
826 		if (XLOG_HEADER_MAGIC_NUM ==
827 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828 			found = 1;
829 			break;
830 		}
831 	}
832 	/*
833 	 * If we haven't found the log record header block, start looking
834 	 * again from the end of the physical log.  XXXmiken: There should be
835 	 * a check here to make sure we didn't search more than N blocks in
836 	 * the previous code.
837 	 */
838 	if (!found) {
839 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 			if ((error = xlog_bread(log, i, 1, bp)))
841 				goto bread_err;
842 			offset = xlog_align(log, i, 1, bp);
843 			if (XLOG_HEADER_MAGIC_NUM ==
844 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845 				found = 2;
846 				break;
847 			}
848 		}
849 	}
850 	if (!found) {
851 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 		ASSERT(0);
853 		return XFS_ERROR(EIO);
854 	}
855 
856 	/* find blk_no of tail of log */
857 	rhead = (xlog_rec_header_t *)offset;
858 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859 
860 	/*
861 	 * Reset log values according to the state of the log when we
862 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
863 	 * one because the next write starts a new cycle rather than
864 	 * continuing the cycle of the last good log record.  At this
865 	 * point we have guaranteed that all partial log records have been
866 	 * accounted for.  Therefore, we know that the last good log record
867 	 * written was complete and ended exactly on the end boundary
868 	 * of the physical log.
869 	 */
870 	log->l_prev_block = i;
871 	log->l_curr_block = (int)*head_blk;
872 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873 	if (found == 2)
874 		log->l_curr_cycle++;
875 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877 	log->l_grant_reserve_cycle = log->l_curr_cycle;
878 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 	log->l_grant_write_cycle = log->l_curr_cycle;
880 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881 
882 	/*
883 	 * Look for unmount record.  If we find it, then we know there
884 	 * was a clean unmount.  Since 'i' could be the last block in
885 	 * the physical log, we convert to a log block before comparing
886 	 * to the head_blk.
887 	 *
888 	 * Save the current tail lsn to use to pass to
889 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
890 	 * unmount record if there is one, so we pass the lsn of the
891 	 * unmount record rather than the block after it.
892 	 */
893 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896 
897 		if ((h_version & XLOG_VERSION_2) &&
898 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 				hblks++;
902 		} else {
903 			hblks = 1;
904 		}
905 	} else {
906 		hblks = 1;
907 	}
908 	after_umount_blk = (i + hblks + (int)
909 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910 	tail_lsn = log->l_tail_lsn;
911 	if (*head_blk == after_umount_blk &&
912 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913 		umount_data_blk = (i + hblks) % log->l_logBBsize;
914 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 			goto bread_err;
916 		}
917 		offset = xlog_align(log, umount_data_blk, 1, bp);
918 		op_head = (xlog_op_header_t *)offset;
919 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 			/*
921 			 * Set tail and last sync so that newly written
922 			 * log records will point recovery to after the
923 			 * current unmount record.
924 			 */
925 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926 					after_umount_blk);
927 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928 					after_umount_blk);
929 			*tail_blk = after_umount_blk;
930 
931 			/*
932 			 * Note that the unmount was clean. If the unmount
933 			 * was not clean, we need to know this to rebuild the
934 			 * superblock counters from the perag headers if we
935 			 * have a filesystem using non-persistent counters.
936 			 */
937 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
938 		}
939 	}
940 
941 	/*
942 	 * Make sure that there are no blocks in front of the head
943 	 * with the same cycle number as the head.  This can happen
944 	 * because we allow multiple outstanding log writes concurrently,
945 	 * and the later writes might make it out before earlier ones.
946 	 *
947 	 * We use the lsn from before modifying it so that we'll never
948 	 * overwrite the unmount record after a clean unmount.
949 	 *
950 	 * Do this only if we are going to recover the filesystem
951 	 *
952 	 * NOTE: This used to say "if (!readonly)"
953 	 * However on Linux, we can & do recover a read-only filesystem.
954 	 * We only skip recovery if NORECOVERY is specified on mount,
955 	 * in which case we would not be here.
956 	 *
957 	 * But... if the -device- itself is readonly, just skip this.
958 	 * We can't recover this device anyway, so it won't matter.
959 	 */
960 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 		error = xlog_clear_stale_blocks(log, tail_lsn);
962 	}
963 
964 bread_err:
965 exit:
966 	xlog_put_bp(bp);
967 
968 	if (error)
969 		xlog_warn("XFS: failed to locate log tail");
970 	return error;
971 }
972 
973 /*
974  * Is the log zeroed at all?
975  *
976  * The last binary search should be changed to perform an X block read
977  * once X becomes small enough.  You can then search linearly through
978  * the X blocks.  This will cut down on the number of reads we need to do.
979  *
980  * If the log is partially zeroed, this routine will pass back the blkno
981  * of the first block with cycle number 0.  It won't have a complete LR
982  * preceding it.
983  *
984  * Return:
985  *	0  => the log is completely written to
986  *	-1 => use *blk_no as the first block of the log
987  *	>0 => error has occurred
988  */
989 int
990 xlog_find_zeroed(
991 	xlog_t		*log,
992 	xfs_daddr_t	*blk_no)
993 {
994 	xfs_buf_t	*bp;
995 	xfs_caddr_t	offset;
996 	uint	        first_cycle, last_cycle;
997 	xfs_daddr_t	new_blk, last_blk, start_blk;
998 	xfs_daddr_t     num_scan_bblks;
999 	int	        error, log_bbnum = log->l_logBBsize;
1000 
1001 	*blk_no = 0;
1002 
1003 	/* check totally zeroed log */
1004 	bp = xlog_get_bp(log, 1);
1005 	if (!bp)
1006 		return ENOMEM;
1007 	if ((error = xlog_bread(log, 0, 1, bp)))
1008 		goto bp_err;
1009 	offset = xlog_align(log, 0, 1, bp);
1010 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1011 	if (first_cycle == 0) {		/* completely zeroed log */
1012 		*blk_no = 0;
1013 		xlog_put_bp(bp);
1014 		return -1;
1015 	}
1016 
1017 	/* check partially zeroed log */
1018 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019 		goto bp_err;
1020 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1021 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1022 	if (last_cycle != 0) {		/* log completely written to */
1023 		xlog_put_bp(bp);
1024 		return 0;
1025 	} else if (first_cycle != 1) {
1026 		/*
1027 		 * If the cycle of the last block is zero, the cycle of
1028 		 * the first block must be 1. If it's not, maybe we're
1029 		 * not looking at a log... Bail out.
1030 		 */
1031 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 		return XFS_ERROR(EINVAL);
1033 	}
1034 
1035 	/* we have a partially zeroed log */
1036 	last_blk = log_bbnum-1;
1037 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038 		goto bp_err;
1039 
1040 	/*
1041 	 * Validate the answer.  Because there is no way to guarantee that
1042 	 * the entire log is made up of log records which are the same size,
1043 	 * we scan over the defined maximum blocks.  At this point, the maximum
1044 	 * is not chosen to mean anything special.   XXXmiken
1045 	 */
1046 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 	ASSERT(num_scan_bblks <= INT_MAX);
1048 
1049 	if (last_blk < num_scan_bblks)
1050 		num_scan_bblks = last_blk;
1051 	start_blk = last_blk - num_scan_bblks;
1052 
1053 	/*
1054 	 * We search for any instances of cycle number 0 that occur before
1055 	 * our current estimate of the head.  What we're trying to detect is
1056 	 *        1 ... | 0 | 1 | 0...
1057 	 *                       ^ binary search ends here
1058 	 */
1059 	if ((error = xlog_find_verify_cycle(log, start_blk,
1060 					 (int)num_scan_bblks, 0, &new_blk)))
1061 		goto bp_err;
1062 	if (new_blk != -1)
1063 		last_blk = new_blk;
1064 
1065 	/*
1066 	 * Potentially backup over partial log record write.  We don't need
1067 	 * to search the end of the log because we know it is zero.
1068 	 */
1069 	if ((error = xlog_find_verify_log_record(log, start_blk,
1070 				&last_blk, 0)) == -1) {
1071 	    error = XFS_ERROR(EIO);
1072 	    goto bp_err;
1073 	} else if (error)
1074 	    goto bp_err;
1075 
1076 	*blk_no = last_blk;
1077 bp_err:
1078 	xlog_put_bp(bp);
1079 	if (error)
1080 		return error;
1081 	return -1;
1082 }
1083 
1084 /*
1085  * These are simple subroutines used by xlog_clear_stale_blocks() below
1086  * to initialize a buffer full of empty log record headers and write
1087  * them into the log.
1088  */
1089 STATIC void
1090 xlog_add_record(
1091 	xlog_t			*log,
1092 	xfs_caddr_t		buf,
1093 	int			cycle,
1094 	int			block,
1095 	int			tail_cycle,
1096 	int			tail_block)
1097 {
1098 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1099 
1100 	memset(buf, 0, BBSIZE);
1101 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1102 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1103 	INT_SET(recp->h_version, ARCH_CONVERT,
1104 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1105 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1106 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1107 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1108 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109 }
1110 
1111 STATIC int
1112 xlog_write_log_records(
1113 	xlog_t		*log,
1114 	int		cycle,
1115 	int		start_block,
1116 	int		blocks,
1117 	int		tail_cycle,
1118 	int		tail_block)
1119 {
1120 	xfs_caddr_t	offset;
1121 	xfs_buf_t	*bp;
1122 	int		balign, ealign;
1123 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 	int		end_block = start_block + blocks;
1125 	int		bufblks;
1126 	int		error = 0;
1127 	int		i, j = 0;
1128 
1129 	bufblks = 1 << ffs(blocks);
1130 	while (!(bp = xlog_get_bp(log, bufblks))) {
1131 		bufblks >>= 1;
1132 		if (bufblks <= log->l_sectbb_log)
1133 			return ENOMEM;
1134 	}
1135 
1136 	/* We may need to do a read at the start to fill in part of
1137 	 * the buffer in the starting sector not covered by the first
1138 	 * write below.
1139 	 */
1140 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 	if (balign != start_block) {
1142 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1143 			xlog_put_bp(bp);
1144 			return error;
1145 		}
1146 		j = start_block - balign;
1147 	}
1148 
1149 	for (i = start_block; i < end_block; i += bufblks) {
1150 		int		bcount, endcount;
1151 
1152 		bcount = min(bufblks, end_block - start_block);
1153 		endcount = bcount - j;
1154 
1155 		/* We may need to do a read at the end to fill in part of
1156 		 * the buffer in the final sector not covered by the write.
1157 		 * If this is the same sector as the above read, skip it.
1158 		 */
1159 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 		if (j == 0 && (start_block + endcount > ealign)) {
1161 			offset = XFS_BUF_PTR(bp);
1162 			balign = BBTOB(ealign - start_block);
1163 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1164 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1165 				break;
1166 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1167 		}
1168 
1169 		offset = xlog_align(log, start_block, endcount, bp);
1170 		for (; j < endcount; j++) {
1171 			xlog_add_record(log, offset, cycle, i+j,
1172 					tail_cycle, tail_block);
1173 			offset += BBSIZE;
1174 		}
1175 		error = xlog_bwrite(log, start_block, endcount, bp);
1176 		if (error)
1177 			break;
1178 		start_block += endcount;
1179 		j = 0;
1180 	}
1181 	xlog_put_bp(bp);
1182 	return error;
1183 }
1184 
1185 /*
1186  * This routine is called to blow away any incomplete log writes out
1187  * in front of the log head.  We do this so that we won't become confused
1188  * if we come up, write only a little bit more, and then crash again.
1189  * If we leave the partial log records out there, this situation could
1190  * cause us to think those partial writes are valid blocks since they
1191  * have the current cycle number.  We get rid of them by overwriting them
1192  * with empty log records with the old cycle number rather than the
1193  * current one.
1194  *
1195  * The tail lsn is passed in rather than taken from
1196  * the log so that we will not write over the unmount record after a
1197  * clean unmount in a 512 block log.  Doing so would leave the log without
1198  * any valid log records in it until a new one was written.  If we crashed
1199  * during that time we would not be able to recover.
1200  */
1201 STATIC int
1202 xlog_clear_stale_blocks(
1203 	xlog_t		*log,
1204 	xfs_lsn_t	tail_lsn)
1205 {
1206 	int		tail_cycle, head_cycle;
1207 	int		tail_block, head_block;
1208 	int		tail_distance, max_distance;
1209 	int		distance;
1210 	int		error;
1211 
1212 	tail_cycle = CYCLE_LSN(tail_lsn);
1213 	tail_block = BLOCK_LSN(tail_lsn);
1214 	head_cycle = log->l_curr_cycle;
1215 	head_block = log->l_curr_block;
1216 
1217 	/*
1218 	 * Figure out the distance between the new head of the log
1219 	 * and the tail.  We want to write over any blocks beyond the
1220 	 * head that we may have written just before the crash, but
1221 	 * we don't want to overwrite the tail of the log.
1222 	 */
1223 	if (head_cycle == tail_cycle) {
1224 		/*
1225 		 * The tail is behind the head in the physical log,
1226 		 * so the distance from the head to the tail is the
1227 		 * distance from the head to the end of the log plus
1228 		 * the distance from the beginning of the log to the
1229 		 * tail.
1230 		 */
1231 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1232 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1233 					 XFS_ERRLEVEL_LOW, log->l_mp);
1234 			return XFS_ERROR(EFSCORRUPTED);
1235 		}
1236 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1237 	} else {
1238 		/*
1239 		 * The head is behind the tail in the physical log,
1240 		 * so the distance from the head to the tail is just
1241 		 * the tail block minus the head block.
1242 		 */
1243 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1244 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1245 					 XFS_ERRLEVEL_LOW, log->l_mp);
1246 			return XFS_ERROR(EFSCORRUPTED);
1247 		}
1248 		tail_distance = tail_block - head_block;
1249 	}
1250 
1251 	/*
1252 	 * If the head is right up against the tail, we can't clear
1253 	 * anything.
1254 	 */
1255 	if (tail_distance <= 0) {
1256 		ASSERT(tail_distance == 0);
1257 		return 0;
1258 	}
1259 
1260 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1261 	/*
1262 	 * Take the smaller of the maximum amount of outstanding I/O
1263 	 * we could have and the distance to the tail to clear out.
1264 	 * We take the smaller so that we don't overwrite the tail and
1265 	 * we don't waste all day writing from the head to the tail
1266 	 * for no reason.
1267 	 */
1268 	max_distance = MIN(max_distance, tail_distance);
1269 
1270 	if ((head_block + max_distance) <= log->l_logBBsize) {
1271 		/*
1272 		 * We can stomp all the blocks we need to without
1273 		 * wrapping around the end of the log.  Just do it
1274 		 * in a single write.  Use the cycle number of the
1275 		 * current cycle minus one so that the log will look like:
1276 		 *     n ... | n - 1 ...
1277 		 */
1278 		error = xlog_write_log_records(log, (head_cycle - 1),
1279 				head_block, max_distance, tail_cycle,
1280 				tail_block);
1281 		if (error)
1282 			return error;
1283 	} else {
1284 		/*
1285 		 * We need to wrap around the end of the physical log in
1286 		 * order to clear all the blocks.  Do it in two separate
1287 		 * I/Os.  The first write should be from the head to the
1288 		 * end of the physical log, and it should use the current
1289 		 * cycle number minus one just like above.
1290 		 */
1291 		distance = log->l_logBBsize - head_block;
1292 		error = xlog_write_log_records(log, (head_cycle - 1),
1293 				head_block, distance, tail_cycle,
1294 				tail_block);
1295 
1296 		if (error)
1297 			return error;
1298 
1299 		/*
1300 		 * Now write the blocks at the start of the physical log.
1301 		 * This writes the remainder of the blocks we want to clear.
1302 		 * It uses the current cycle number since we're now on the
1303 		 * same cycle as the head so that we get:
1304 		 *    n ... n ... | n - 1 ...
1305 		 *    ^^^^^ blocks we're writing
1306 		 */
1307 		distance = max_distance - (log->l_logBBsize - head_block);
1308 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1309 				tail_cycle, tail_block);
1310 		if (error)
1311 			return error;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 /******************************************************************************
1318  *
1319  *		Log recover routines
1320  *
1321  ******************************************************************************
1322  */
1323 
1324 STATIC xlog_recover_t *
1325 xlog_recover_find_tid(
1326 	xlog_recover_t		*q,
1327 	xlog_tid_t		tid)
1328 {
1329 	xlog_recover_t		*p = q;
1330 
1331 	while (p != NULL) {
1332 		if (p->r_log_tid == tid)
1333 		    break;
1334 		p = p->r_next;
1335 	}
1336 	return p;
1337 }
1338 
1339 STATIC void
1340 xlog_recover_put_hashq(
1341 	xlog_recover_t		**q,
1342 	xlog_recover_t		*trans)
1343 {
1344 	trans->r_next = *q;
1345 	*q = trans;
1346 }
1347 
1348 STATIC void
1349 xlog_recover_add_item(
1350 	xlog_recover_item_t	**itemq)
1351 {
1352 	xlog_recover_item_t	*item;
1353 
1354 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1355 	xlog_recover_insert_item_backq(itemq, item);
1356 }
1357 
1358 STATIC int
1359 xlog_recover_add_to_cont_trans(
1360 	xlog_recover_t		*trans,
1361 	xfs_caddr_t		dp,
1362 	int			len)
1363 {
1364 	xlog_recover_item_t	*item;
1365 	xfs_caddr_t		ptr, old_ptr;
1366 	int			old_len;
1367 
1368 	item = trans->r_itemq;
1369 	if (item == NULL) {
1370 		/* finish copying rest of trans header */
1371 		xlog_recover_add_item(&trans->r_itemq);
1372 		ptr = (xfs_caddr_t) &trans->r_theader +
1373 				sizeof(xfs_trans_header_t) - len;
1374 		memcpy(ptr, dp, len); /* d, s, l */
1375 		return 0;
1376 	}
1377 	item = item->ri_prev;
1378 
1379 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1380 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1381 
1382 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1383 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1384 	item->ri_buf[item->ri_cnt-1].i_len += len;
1385 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1386 	return 0;
1387 }
1388 
1389 /*
1390  * The next region to add is the start of a new region.  It could be
1391  * a whole region or it could be the first part of a new region.  Because
1392  * of this, the assumption here is that the type and size fields of all
1393  * format structures fit into the first 32 bits of the structure.
1394  *
1395  * This works because all regions must be 32 bit aligned.  Therefore, we
1396  * either have both fields or we have neither field.  In the case we have
1397  * neither field, the data part of the region is zero length.  We only have
1398  * a log_op_header and can throw away the header since a new one will appear
1399  * later.  If we have at least 4 bytes, then we can determine how many regions
1400  * will appear in the current log item.
1401  */
1402 STATIC int
1403 xlog_recover_add_to_trans(
1404 	xlog_recover_t		*trans,
1405 	xfs_caddr_t		dp,
1406 	int			len)
1407 {
1408 	xfs_inode_log_format_t	*in_f;			/* any will do */
1409 	xlog_recover_item_t	*item;
1410 	xfs_caddr_t		ptr;
1411 
1412 	if (!len)
1413 		return 0;
1414 	item = trans->r_itemq;
1415 	if (item == NULL) {
1416 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1417 		if (len == sizeof(xfs_trans_header_t))
1418 			xlog_recover_add_item(&trans->r_itemq);
1419 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1420 		return 0;
1421 	}
1422 
1423 	ptr = kmem_alloc(len, KM_SLEEP);
1424 	memcpy(ptr, dp, len);
1425 	in_f = (xfs_inode_log_format_t *)ptr;
1426 
1427 	if (item->ri_prev->ri_total != 0 &&
1428 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1429 		xlog_recover_add_item(&trans->r_itemq);
1430 	}
1431 	item = trans->r_itemq;
1432 	item = item->ri_prev;
1433 
1434 	if (item->ri_total == 0) {		/* first region to be added */
1435 		item->ri_total	= in_f->ilf_size;
1436 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1437 		item->ri_buf = kmem_zalloc((item->ri_total *
1438 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1439 	}
1440 	ASSERT(item->ri_total > item->ri_cnt);
1441 	/* Description region is ri_buf[0] */
1442 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1443 	item->ri_buf[item->ri_cnt].i_len  = len;
1444 	item->ri_cnt++;
1445 	return 0;
1446 }
1447 
1448 STATIC void
1449 xlog_recover_new_tid(
1450 	xlog_recover_t		**q,
1451 	xlog_tid_t		tid,
1452 	xfs_lsn_t		lsn)
1453 {
1454 	xlog_recover_t		*trans;
1455 
1456 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1457 	trans->r_log_tid   = tid;
1458 	trans->r_lsn	   = lsn;
1459 	xlog_recover_put_hashq(q, trans);
1460 }
1461 
1462 STATIC int
1463 xlog_recover_unlink_tid(
1464 	xlog_recover_t		**q,
1465 	xlog_recover_t		*trans)
1466 {
1467 	xlog_recover_t		*tp;
1468 	int			found = 0;
1469 
1470 	ASSERT(trans != NULL);
1471 	if (trans == *q) {
1472 		*q = (*q)->r_next;
1473 	} else {
1474 		tp = *q;
1475 		while (tp) {
1476 			if (tp->r_next == trans) {
1477 				found = 1;
1478 				break;
1479 			}
1480 			tp = tp->r_next;
1481 		}
1482 		if (!found) {
1483 			xlog_warn(
1484 			     "XFS: xlog_recover_unlink_tid: trans not found");
1485 			ASSERT(0);
1486 			return XFS_ERROR(EIO);
1487 		}
1488 		tp->r_next = tp->r_next->r_next;
1489 	}
1490 	return 0;
1491 }
1492 
1493 STATIC void
1494 xlog_recover_insert_item_backq(
1495 	xlog_recover_item_t	**q,
1496 	xlog_recover_item_t	*item)
1497 {
1498 	if (*q == NULL) {
1499 		item->ri_prev = item->ri_next = item;
1500 		*q = item;
1501 	} else {
1502 		item->ri_next		= *q;
1503 		item->ri_prev		= (*q)->ri_prev;
1504 		(*q)->ri_prev		= item;
1505 		item->ri_prev->ri_next	= item;
1506 	}
1507 }
1508 
1509 STATIC void
1510 xlog_recover_insert_item_frontq(
1511 	xlog_recover_item_t	**q,
1512 	xlog_recover_item_t	*item)
1513 {
1514 	xlog_recover_insert_item_backq(q, item);
1515 	*q = item;
1516 }
1517 
1518 STATIC int
1519 xlog_recover_reorder_trans(
1520 	xlog_recover_t		*trans)
1521 {
1522 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1523 	xfs_buf_log_format_t	*buf_f;
1524 	ushort			flags = 0;
1525 
1526 	first_item = itemq = trans->r_itemq;
1527 	trans->r_itemq = NULL;
1528 	do {
1529 		itemq_next = itemq->ri_next;
1530 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1531 
1532 		switch (ITEM_TYPE(itemq)) {
1533 		case XFS_LI_BUF:
1534 			flags = buf_f->blf_flags;
1535 			if (!(flags & XFS_BLI_CANCEL)) {
1536 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1537 								itemq);
1538 				break;
1539 			}
1540 		case XFS_LI_INODE:
1541 		case XFS_LI_DQUOT:
1542 		case XFS_LI_QUOTAOFF:
1543 		case XFS_LI_EFD:
1544 		case XFS_LI_EFI:
1545 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1546 			break;
1547 		default:
1548 			xlog_warn(
1549 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1550 			ASSERT(0);
1551 			return XFS_ERROR(EIO);
1552 		}
1553 		itemq = itemq_next;
1554 	} while (first_item != itemq);
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Build up the table of buf cancel records so that we don't replay
1560  * cancelled data in the second pass.  For buffer records that are
1561  * not cancel records, there is nothing to do here so we just return.
1562  *
1563  * If we get a cancel record which is already in the table, this indicates
1564  * that the buffer was cancelled multiple times.  In order to ensure
1565  * that during pass 2 we keep the record in the table until we reach its
1566  * last occurrence in the log, we keep a reference count in the cancel
1567  * record in the table to tell us how many times we expect to see this
1568  * record during the second pass.
1569  */
1570 STATIC void
1571 xlog_recover_do_buffer_pass1(
1572 	xlog_t			*log,
1573 	xfs_buf_log_format_t	*buf_f)
1574 {
1575 	xfs_buf_cancel_t	*bcp;
1576 	xfs_buf_cancel_t	*nextp;
1577 	xfs_buf_cancel_t	*prevp;
1578 	xfs_buf_cancel_t	**bucket;
1579 	xfs_daddr_t		blkno = 0;
1580 	uint			len = 0;
1581 	ushort			flags = 0;
1582 
1583 	switch (buf_f->blf_type) {
1584 	case XFS_LI_BUF:
1585 		blkno = buf_f->blf_blkno;
1586 		len = buf_f->blf_len;
1587 		flags = buf_f->blf_flags;
1588 		break;
1589 	}
1590 
1591 	/*
1592 	 * If this isn't a cancel buffer item, then just return.
1593 	 */
1594 	if (!(flags & XFS_BLI_CANCEL))
1595 		return;
1596 
1597 	/*
1598 	 * Insert an xfs_buf_cancel record into the hash table of
1599 	 * them.  If there is already an identical record, bump
1600 	 * its reference count.
1601 	 */
1602 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1603 					  XLOG_BC_TABLE_SIZE];
1604 	/*
1605 	 * If the hash bucket is empty then just insert a new record into
1606 	 * the bucket.
1607 	 */
1608 	if (*bucket == NULL) {
1609 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1610 						     KM_SLEEP);
1611 		bcp->bc_blkno = blkno;
1612 		bcp->bc_len = len;
1613 		bcp->bc_refcount = 1;
1614 		bcp->bc_next = NULL;
1615 		*bucket = bcp;
1616 		return;
1617 	}
1618 
1619 	/*
1620 	 * The hash bucket is not empty, so search for duplicates of our
1621 	 * record.  If we find one them just bump its refcount.  If not
1622 	 * then add us at the end of the list.
1623 	 */
1624 	prevp = NULL;
1625 	nextp = *bucket;
1626 	while (nextp != NULL) {
1627 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1628 			nextp->bc_refcount++;
1629 			return;
1630 		}
1631 		prevp = nextp;
1632 		nextp = nextp->bc_next;
1633 	}
1634 	ASSERT(prevp != NULL);
1635 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1636 					     KM_SLEEP);
1637 	bcp->bc_blkno = blkno;
1638 	bcp->bc_len = len;
1639 	bcp->bc_refcount = 1;
1640 	bcp->bc_next = NULL;
1641 	prevp->bc_next = bcp;
1642 }
1643 
1644 /*
1645  * Check to see whether the buffer being recovered has a corresponding
1646  * entry in the buffer cancel record table.  If it does then return 1
1647  * so that it will be cancelled, otherwise return 0.  If the buffer is
1648  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1649  * the refcount on the entry in the table and remove it from the table
1650  * if this is the last reference.
1651  *
1652  * We remove the cancel record from the table when we encounter its
1653  * last occurrence in the log so that if the same buffer is re-used
1654  * again after its last cancellation we actually replay the changes
1655  * made at that point.
1656  */
1657 STATIC int
1658 xlog_check_buffer_cancelled(
1659 	xlog_t			*log,
1660 	xfs_daddr_t		blkno,
1661 	uint			len,
1662 	ushort			flags)
1663 {
1664 	xfs_buf_cancel_t	*bcp;
1665 	xfs_buf_cancel_t	*prevp;
1666 	xfs_buf_cancel_t	**bucket;
1667 
1668 	if (log->l_buf_cancel_table == NULL) {
1669 		/*
1670 		 * There is nothing in the table built in pass one,
1671 		 * so this buffer must not be cancelled.
1672 		 */
1673 		ASSERT(!(flags & XFS_BLI_CANCEL));
1674 		return 0;
1675 	}
1676 
1677 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1678 					  XLOG_BC_TABLE_SIZE];
1679 	bcp = *bucket;
1680 	if (bcp == NULL) {
1681 		/*
1682 		 * There is no corresponding entry in the table built
1683 		 * in pass one, so this buffer has not been cancelled.
1684 		 */
1685 		ASSERT(!(flags & XFS_BLI_CANCEL));
1686 		return 0;
1687 	}
1688 
1689 	/*
1690 	 * Search for an entry in the buffer cancel table that
1691 	 * matches our buffer.
1692 	 */
1693 	prevp = NULL;
1694 	while (bcp != NULL) {
1695 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1696 			/*
1697 			 * We've go a match, so return 1 so that the
1698 			 * recovery of this buffer is cancelled.
1699 			 * If this buffer is actually a buffer cancel
1700 			 * log item, then decrement the refcount on the
1701 			 * one in the table and remove it if this is the
1702 			 * last reference.
1703 			 */
1704 			if (flags & XFS_BLI_CANCEL) {
1705 				bcp->bc_refcount--;
1706 				if (bcp->bc_refcount == 0) {
1707 					if (prevp == NULL) {
1708 						*bucket = bcp->bc_next;
1709 					} else {
1710 						prevp->bc_next = bcp->bc_next;
1711 					}
1712 					kmem_free(bcp,
1713 						  sizeof(xfs_buf_cancel_t));
1714 				}
1715 			}
1716 			return 1;
1717 		}
1718 		prevp = bcp;
1719 		bcp = bcp->bc_next;
1720 	}
1721 	/*
1722 	 * We didn't find a corresponding entry in the table, so
1723 	 * return 0 so that the buffer is NOT cancelled.
1724 	 */
1725 	ASSERT(!(flags & XFS_BLI_CANCEL));
1726 	return 0;
1727 }
1728 
1729 STATIC int
1730 xlog_recover_do_buffer_pass2(
1731 	xlog_t			*log,
1732 	xfs_buf_log_format_t	*buf_f)
1733 {
1734 	xfs_daddr_t		blkno = 0;
1735 	ushort			flags = 0;
1736 	uint			len = 0;
1737 
1738 	switch (buf_f->blf_type) {
1739 	case XFS_LI_BUF:
1740 		blkno = buf_f->blf_blkno;
1741 		flags = buf_f->blf_flags;
1742 		len = buf_f->blf_len;
1743 		break;
1744 	}
1745 
1746 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1747 }
1748 
1749 /*
1750  * Perform recovery for a buffer full of inodes.  In these buffers,
1751  * the only data which should be recovered is that which corresponds
1752  * to the di_next_unlinked pointers in the on disk inode structures.
1753  * The rest of the data for the inodes is always logged through the
1754  * inodes themselves rather than the inode buffer and is recovered
1755  * in xlog_recover_do_inode_trans().
1756  *
1757  * The only time when buffers full of inodes are fully recovered is
1758  * when the buffer is full of newly allocated inodes.  In this case
1759  * the buffer will not be marked as an inode buffer and so will be
1760  * sent to xlog_recover_do_reg_buffer() below during recovery.
1761  */
1762 STATIC int
1763 xlog_recover_do_inode_buffer(
1764 	xfs_mount_t		*mp,
1765 	xlog_recover_item_t	*item,
1766 	xfs_buf_t		*bp,
1767 	xfs_buf_log_format_t	*buf_f)
1768 {
1769 	int			i;
1770 	int			item_index;
1771 	int			bit;
1772 	int			nbits;
1773 	int			reg_buf_offset;
1774 	int			reg_buf_bytes;
1775 	int			next_unlinked_offset;
1776 	int			inodes_per_buf;
1777 	xfs_agino_t		*logged_nextp;
1778 	xfs_agino_t		*buffer_nextp;
1779 	unsigned int		*data_map = NULL;
1780 	unsigned int		map_size = 0;
1781 
1782 	switch (buf_f->blf_type) {
1783 	case XFS_LI_BUF:
1784 		data_map = buf_f->blf_data_map;
1785 		map_size = buf_f->blf_map_size;
1786 		break;
1787 	}
1788 	/*
1789 	 * Set the variables corresponding to the current region to
1790 	 * 0 so that we'll initialize them on the first pass through
1791 	 * the loop.
1792 	 */
1793 	reg_buf_offset = 0;
1794 	reg_buf_bytes = 0;
1795 	bit = 0;
1796 	nbits = 0;
1797 	item_index = 0;
1798 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799 	for (i = 0; i < inodes_per_buf; i++) {
1800 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801 			offsetof(xfs_dinode_t, di_next_unlinked);
1802 
1803 		while (next_unlinked_offset >=
1804 		       (reg_buf_offset + reg_buf_bytes)) {
1805 			/*
1806 			 * The next di_next_unlinked field is beyond
1807 			 * the current logged region.  Find the next
1808 			 * logged region that contains or is beyond
1809 			 * the current di_next_unlinked field.
1810 			 */
1811 			bit += nbits;
1812 			bit = xfs_next_bit(data_map, map_size, bit);
1813 
1814 			/*
1815 			 * If there are no more logged regions in the
1816 			 * buffer, then we're done.
1817 			 */
1818 			if (bit == -1) {
1819 				return 0;
1820 			}
1821 
1822 			nbits = xfs_contig_bits(data_map, map_size,
1823 							 bit);
1824 			ASSERT(nbits > 0);
1825 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1826 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827 			item_index++;
1828 		}
1829 
1830 		/*
1831 		 * If the current logged region starts after the current
1832 		 * di_next_unlinked field, then move on to the next
1833 		 * di_next_unlinked field.
1834 		 */
1835 		if (next_unlinked_offset < reg_buf_offset) {
1836 			continue;
1837 		}
1838 
1839 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1842 
1843 		/*
1844 		 * The current logged region contains a copy of the
1845 		 * current di_next_unlinked field.  Extract its value
1846 		 * and copy it to the buffer copy.
1847 		 */
1848 		logged_nextp = (xfs_agino_t *)
1849 			       ((char *)(item->ri_buf[item_index].i_addr) +
1850 				(next_unlinked_offset - reg_buf_offset));
1851 		if (unlikely(*logged_nextp == 0)) {
1852 			xfs_fs_cmn_err(CE_ALERT, mp,
1853 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1854 				item, bp);
1855 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 					 XFS_ERRLEVEL_LOW, mp);
1857 			return XFS_ERROR(EFSCORRUPTED);
1858 		}
1859 
1860 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861 					      next_unlinked_offset);
1862 		*buffer_nextp = *logged_nextp;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Perform a 'normal' buffer recovery.  Each logged region of the
1870  * buffer should be copied over the corresponding region in the
1871  * given buffer.  The bitmap in the buf log format structure indicates
1872  * where to place the logged data.
1873  */
1874 /*ARGSUSED*/
1875 STATIC void
1876 xlog_recover_do_reg_buffer(
1877 	xlog_recover_item_t	*item,
1878 	xfs_buf_t		*bp,
1879 	xfs_buf_log_format_t	*buf_f)
1880 {
1881 	int			i;
1882 	int			bit;
1883 	int			nbits;
1884 	unsigned int		*data_map = NULL;
1885 	unsigned int		map_size = 0;
1886 	int                     error;
1887 
1888 	switch (buf_f->blf_type) {
1889 	case XFS_LI_BUF:
1890 		data_map = buf_f->blf_data_map;
1891 		map_size = buf_f->blf_map_size;
1892 		break;
1893 	}
1894 	bit = 0;
1895 	i = 1;  /* 0 is the buf format structure */
1896 	while (1) {
1897 		bit = xfs_next_bit(data_map, map_size, bit);
1898 		if (bit == -1)
1899 			break;
1900 		nbits = xfs_contig_bits(data_map, map_size, bit);
1901 		ASSERT(nbits > 0);
1902 		ASSERT(item->ri_buf[i].i_addr != NULL);
1903 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1904 		ASSERT(XFS_BUF_COUNT(bp) >=
1905 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1906 
1907 		/*
1908 		 * Do a sanity check if this is a dquot buffer. Just checking
1909 		 * the first dquot in the buffer should do. XXXThis is
1910 		 * probably a good thing to do for other buf types also.
1911 		 */
1912 		error = 0;
1913 		if (buf_f->blf_flags &
1914 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1915 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1916 					       item->ri_buf[i].i_addr,
1917 					       -1, 0, XFS_QMOPT_DOWARN,
1918 					       "dquot_buf_recover");
1919 		}
1920 		if (!error)
1921 			memcpy(xfs_buf_offset(bp,
1922 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1923 				item->ri_buf[i].i_addr,		/* source */
1924 				nbits<<XFS_BLI_SHIFT);		/* length */
1925 		i++;
1926 		bit += nbits;
1927 	}
1928 
1929 	/* Shouldn't be any more regions */
1930 	ASSERT(i == item->ri_total);
1931 }
1932 
1933 /*
1934  * Do some primitive error checking on ondisk dquot data structures.
1935  */
1936 int
1937 xfs_qm_dqcheck(
1938 	xfs_disk_dquot_t *ddq,
1939 	xfs_dqid_t	 id,
1940 	uint		 type,	  /* used only when IO_dorepair is true */
1941 	uint		 flags,
1942 	char		 *str)
1943 {
1944 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1945 	int		errs = 0;
1946 
1947 	/*
1948 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 	 *    used for user data. This is because we take the path of regular
1951 	 *    file deletion; however, the size field of quotainodes is never
1952 	 *    updated, so all the tricks that we play in itruncate_finish
1953 	 *    don't quite matter.
1954 	 *
1955 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 	 *    But the allocation will be replayed so we'll end up with an
1957 	 *    uninitialized quota block.
1958 	 *
1959 	 * This is all fine; things are still consistent, and we haven't lost
1960 	 * any quota information. Just don't complain about bad dquot blks.
1961 	 */
1962 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1963 		if (flags & XFS_QMOPT_DOWARN)
1964 			cmn_err(CE_ALERT,
1965 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1966 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1967 		errs++;
1968 	}
1969 	if (ddq->d_version != XFS_DQUOT_VERSION) {
1970 		if (flags & XFS_QMOPT_DOWARN)
1971 			cmn_err(CE_ALERT,
1972 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1973 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1974 		errs++;
1975 	}
1976 
1977 	if (ddq->d_flags != XFS_DQ_USER &&
1978 	    ddq->d_flags != XFS_DQ_PROJ &&
1979 	    ddq->d_flags != XFS_DQ_GROUP) {
1980 		if (flags & XFS_QMOPT_DOWARN)
1981 			cmn_err(CE_ALERT,
1982 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1983 			str, id, ddq->d_flags);
1984 		errs++;
1985 	}
1986 
1987 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1988 		if (flags & XFS_QMOPT_DOWARN)
1989 			cmn_err(CE_ALERT,
1990 			"%s : ondisk-dquot 0x%p, ID mismatch: "
1991 			"0x%x expected, found id 0x%x",
1992 			str, ddq, id, be32_to_cpu(ddq->d_id));
1993 		errs++;
1994 	}
1995 
1996 	if (!errs && ddq->d_id) {
1997 		if (ddq->d_blk_softlimit &&
1998 		    be64_to_cpu(ddq->d_bcount) >=
1999 				be64_to_cpu(ddq->d_blk_softlimit)) {
2000 			if (!ddq->d_btimer) {
2001 				if (flags & XFS_QMOPT_DOWARN)
2002 					cmn_err(CE_ALERT,
2003 					"%s : Dquot ID 0x%x (0x%p) "
2004 					"BLK TIMER NOT STARTED",
2005 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2006 				errs++;
2007 			}
2008 		}
2009 		if (ddq->d_ino_softlimit &&
2010 		    be64_to_cpu(ddq->d_icount) >=
2011 				be64_to_cpu(ddq->d_ino_softlimit)) {
2012 			if (!ddq->d_itimer) {
2013 				if (flags & XFS_QMOPT_DOWARN)
2014 					cmn_err(CE_ALERT,
2015 					"%s : Dquot ID 0x%x (0x%p) "
2016 					"INODE TIMER NOT STARTED",
2017 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2018 				errs++;
2019 			}
2020 		}
2021 		if (ddq->d_rtb_softlimit &&
2022 		    be64_to_cpu(ddq->d_rtbcount) >=
2023 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2024 			if (!ddq->d_rtbtimer) {
2025 				if (flags & XFS_QMOPT_DOWARN)
2026 					cmn_err(CE_ALERT,
2027 					"%s : Dquot ID 0x%x (0x%p) "
2028 					"RTBLK TIMER NOT STARTED",
2029 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2030 				errs++;
2031 			}
2032 		}
2033 	}
2034 
2035 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2036 		return errs;
2037 
2038 	if (flags & XFS_QMOPT_DOWARN)
2039 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2040 
2041 	/*
2042 	 * Typically, a repair is only requested by quotacheck.
2043 	 */
2044 	ASSERT(id != -1);
2045 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2046 	memset(d, 0, sizeof(xfs_dqblk_t));
2047 
2048 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2049 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2050 	d->dd_diskdq.d_flags = type;
2051 	d->dd_diskdq.d_id = cpu_to_be32(id);
2052 
2053 	return errs;
2054 }
2055 
2056 /*
2057  * Perform a dquot buffer recovery.
2058  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2059  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2060  * Else, treat it as a regular buffer and do recovery.
2061  */
2062 STATIC void
2063 xlog_recover_do_dquot_buffer(
2064 	xfs_mount_t		*mp,
2065 	xlog_t			*log,
2066 	xlog_recover_item_t	*item,
2067 	xfs_buf_t		*bp,
2068 	xfs_buf_log_format_t	*buf_f)
2069 {
2070 	uint			type;
2071 
2072 	/*
2073 	 * Filesystems are required to send in quota flags at mount time.
2074 	 */
2075 	if (mp->m_qflags == 0) {
2076 		return;
2077 	}
2078 
2079 	type = 0;
2080 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2081 		type |= XFS_DQ_USER;
2082 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2083 		type |= XFS_DQ_PROJ;
2084 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2085 		type |= XFS_DQ_GROUP;
2086 	/*
2087 	 * This type of quotas was turned off, so ignore this buffer
2088 	 */
2089 	if (log->l_quotaoffs_flag & type)
2090 		return;
2091 
2092 	xlog_recover_do_reg_buffer(item, bp, buf_f);
2093 }
2094 
2095 /*
2096  * This routine replays a modification made to a buffer at runtime.
2097  * There are actually two types of buffer, regular and inode, which
2098  * are handled differently.  Inode buffers are handled differently
2099  * in that we only recover a specific set of data from them, namely
2100  * the inode di_next_unlinked fields.  This is because all other inode
2101  * data is actually logged via inode records and any data we replay
2102  * here which overlaps that may be stale.
2103  *
2104  * When meta-data buffers are freed at run time we log a buffer item
2105  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2106  * of the buffer in the log should not be replayed at recovery time.
2107  * This is so that if the blocks covered by the buffer are reused for
2108  * file data before we crash we don't end up replaying old, freed
2109  * meta-data into a user's file.
2110  *
2111  * To handle the cancellation of buffer log items, we make two passes
2112  * over the log during recovery.  During the first we build a table of
2113  * those buffers which have been cancelled, and during the second we
2114  * only replay those buffers which do not have corresponding cancel
2115  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2116  * for more details on the implementation of the table of cancel records.
2117  */
2118 STATIC int
2119 xlog_recover_do_buffer_trans(
2120 	xlog_t			*log,
2121 	xlog_recover_item_t	*item,
2122 	int			pass)
2123 {
2124 	xfs_buf_log_format_t	*buf_f;
2125 	xfs_mount_t		*mp;
2126 	xfs_buf_t		*bp;
2127 	int			error;
2128 	int			cancel;
2129 	xfs_daddr_t		blkno;
2130 	int			len;
2131 	ushort			flags;
2132 
2133 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2134 
2135 	if (pass == XLOG_RECOVER_PASS1) {
2136 		/*
2137 		 * In this pass we're only looking for buf items
2138 		 * with the XFS_BLI_CANCEL bit set.
2139 		 */
2140 		xlog_recover_do_buffer_pass1(log, buf_f);
2141 		return 0;
2142 	} else {
2143 		/*
2144 		 * In this pass we want to recover all the buffers
2145 		 * which have not been cancelled and are not
2146 		 * cancellation buffers themselves.  The routine
2147 		 * we call here will tell us whether or not to
2148 		 * continue with the replay of this buffer.
2149 		 */
2150 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2151 		if (cancel) {
2152 			return 0;
2153 		}
2154 	}
2155 	switch (buf_f->blf_type) {
2156 	case XFS_LI_BUF:
2157 		blkno = buf_f->blf_blkno;
2158 		len = buf_f->blf_len;
2159 		flags = buf_f->blf_flags;
2160 		break;
2161 	default:
2162 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2163 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2164 			buf_f->blf_type, log->l_mp->m_logname ?
2165 			log->l_mp->m_logname : "internal");
2166 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2167 				 XFS_ERRLEVEL_LOW, log->l_mp);
2168 		return XFS_ERROR(EFSCORRUPTED);
2169 	}
2170 
2171 	mp = log->l_mp;
2172 	if (flags & XFS_BLI_INODE_BUF) {
2173 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2174 								XFS_BUF_LOCK);
2175 	} else {
2176 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2177 	}
2178 	if (XFS_BUF_ISERROR(bp)) {
2179 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2180 				  bp, blkno);
2181 		error = XFS_BUF_GETERROR(bp);
2182 		xfs_buf_relse(bp);
2183 		return error;
2184 	}
2185 
2186 	error = 0;
2187 	if (flags & XFS_BLI_INODE_BUF) {
2188 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2189 	} else if (flags &
2190 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2191 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2192 	} else {
2193 		xlog_recover_do_reg_buffer(item, bp, buf_f);
2194 	}
2195 	if (error)
2196 		return XFS_ERROR(error);
2197 
2198 	/*
2199 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2200 	 * slower when taking into account all the buffers to be flushed.
2201 	 *
2202 	 * Also make sure that only inode buffers with good sizes stay in
2203 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2204 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2205 	 * buffers in the log can be a different size if the log was generated
2206 	 * by an older kernel using unclustered inode buffers or a newer kernel
2207 	 * running with a different inode cluster size.  Regardless, if the
2208 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2209 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2210 	 * the buffer out of the buffer cache so that the buffer won't
2211 	 * overlap with future reads of those inodes.
2212 	 */
2213 	if (XFS_DINODE_MAGIC ==
2214 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2215 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2216 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2217 		XFS_BUF_STALE(bp);
2218 		error = xfs_bwrite(mp, bp);
2219 	} else {
2220 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2221 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2222 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2223 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2224 		xfs_bdwrite(mp, bp);
2225 	}
2226 
2227 	return (error);
2228 }
2229 
2230 STATIC int
2231 xlog_recover_do_inode_trans(
2232 	xlog_t			*log,
2233 	xlog_recover_item_t	*item,
2234 	int			pass)
2235 {
2236 	xfs_inode_log_format_t	*in_f;
2237 	xfs_mount_t		*mp;
2238 	xfs_buf_t		*bp;
2239 	xfs_imap_t		imap;
2240 	xfs_dinode_t		*dip;
2241 	xfs_ino_t		ino;
2242 	int			len;
2243 	xfs_caddr_t		src;
2244 	xfs_caddr_t		dest;
2245 	int			error;
2246 	int			attr_index;
2247 	uint			fields;
2248 	xfs_icdinode_t		*dicp;
2249 	int			need_free = 0;
2250 
2251 	if (pass == XLOG_RECOVER_PASS1) {
2252 		return 0;
2253 	}
2254 
2255 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2256 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2257 	} else {
2258 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2259 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2260 		need_free = 1;
2261 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2262 		if (error)
2263 			goto error;
2264 	}
2265 	ino = in_f->ilf_ino;
2266 	mp = log->l_mp;
2267 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2268 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2269 		imap.im_len = in_f->ilf_len;
2270 		imap.im_boffset = in_f->ilf_boffset;
2271 	} else {
2272 		/*
2273 		 * It's an old inode format record.  We don't know where
2274 		 * its cluster is located on disk, and we can't allow
2275 		 * xfs_imap() to figure it out because the inode btrees
2276 		 * are not ready to be used.  Therefore do not pass the
2277 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2278 		 * us only the single block in which the inode lives
2279 		 * rather than its cluster, so we must make sure to
2280 		 * invalidate the buffer when we write it out below.
2281 		 */
2282 		imap.im_blkno = 0;
2283 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2284 	}
2285 
2286 	/*
2287 	 * Inode buffers can be freed, look out for it,
2288 	 * and do not replay the inode.
2289 	 */
2290 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2291 		error = 0;
2292 		goto error;
2293 	}
2294 
2295 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2296 								XFS_BUF_LOCK);
2297 	if (XFS_BUF_ISERROR(bp)) {
2298 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2299 				  bp, imap.im_blkno);
2300 		error = XFS_BUF_GETERROR(bp);
2301 		xfs_buf_relse(bp);
2302 		goto error;
2303 	}
2304 	error = 0;
2305 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2306 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2307 
2308 	/*
2309 	 * Make sure the place we're flushing out to really looks
2310 	 * like an inode!
2311 	 */
2312 	if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2313 		xfs_buf_relse(bp);
2314 		xfs_fs_cmn_err(CE_ALERT, mp,
2315 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2316 			dip, bp, ino);
2317 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2318 				 XFS_ERRLEVEL_LOW, mp);
2319 		error = EFSCORRUPTED;
2320 		goto error;
2321 	}
2322 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2323 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2324 		xfs_buf_relse(bp);
2325 		xfs_fs_cmn_err(CE_ALERT, mp,
2326 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2327 			item, ino);
2328 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2329 				 XFS_ERRLEVEL_LOW, mp);
2330 		error = EFSCORRUPTED;
2331 		goto error;
2332 	}
2333 
2334 	/* Skip replay when the on disk inode is newer than the log one */
2335 	if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2336 		/*
2337 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2338 		 * than smaller numbers
2339 		 */
2340 		if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2341 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2342 			/* do nothing */
2343 		} else {
2344 			xfs_buf_relse(bp);
2345 			error = 0;
2346 			goto error;
2347 		}
2348 	}
2349 	/* Take the opportunity to reset the flush iteration count */
2350 	dicp->di_flushiter = 0;
2351 
2352 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2353 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2354 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2355 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2356 					 XFS_ERRLEVEL_LOW, mp, dicp);
2357 			xfs_buf_relse(bp);
2358 			xfs_fs_cmn_err(CE_ALERT, mp,
2359 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2360 				item, dip, bp, ino);
2361 			error = EFSCORRUPTED;
2362 			goto error;
2363 		}
2364 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2365 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2367 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2368 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2369 					     XFS_ERRLEVEL_LOW, mp, dicp);
2370 			xfs_buf_relse(bp);
2371 			xfs_fs_cmn_err(CE_ALERT, mp,
2372 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373 				item, dip, bp, ino);
2374 			error = EFSCORRUPTED;
2375 			goto error;
2376 		}
2377 	}
2378 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2379 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2380 				     XFS_ERRLEVEL_LOW, mp, dicp);
2381 		xfs_buf_relse(bp);
2382 		xfs_fs_cmn_err(CE_ALERT, mp,
2383 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2384 			item, dip, bp, ino,
2385 			dicp->di_nextents + dicp->di_anextents,
2386 			dicp->di_nblocks);
2387 		error = EFSCORRUPTED;
2388 		goto error;
2389 	}
2390 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2391 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2392 				     XFS_ERRLEVEL_LOW, mp, dicp);
2393 		xfs_buf_relse(bp);
2394 		xfs_fs_cmn_err(CE_ALERT, mp,
2395 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2396 			item, dip, bp, ino, dicp->di_forkoff);
2397 		error = EFSCORRUPTED;
2398 		goto error;
2399 	}
2400 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2401 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2402 				     XFS_ERRLEVEL_LOW, mp, dicp);
2403 		xfs_buf_relse(bp);
2404 		xfs_fs_cmn_err(CE_ALERT, mp,
2405 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2406 			item->ri_buf[1].i_len, item);
2407 		error = EFSCORRUPTED;
2408 		goto error;
2409 	}
2410 
2411 	/* The core is in in-core format */
2412 	xfs_dinode_to_disk(&dip->di_core,
2413 		(xfs_icdinode_t *)item->ri_buf[1].i_addr);
2414 
2415 	/* the rest is in on-disk format */
2416 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2417 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2418 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2419 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2420 	}
2421 
2422 	fields = in_f->ilf_fields;
2423 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2424 	case XFS_ILOG_DEV:
2425 		dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2426 		break;
2427 	case XFS_ILOG_UUID:
2428 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2429 		break;
2430 	}
2431 
2432 	if (in_f->ilf_size == 2)
2433 		goto write_inode_buffer;
2434 	len = item->ri_buf[2].i_len;
2435 	src = item->ri_buf[2].i_addr;
2436 	ASSERT(in_f->ilf_size <= 4);
2437 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2438 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2439 	       (len == in_f->ilf_dsize));
2440 
2441 	switch (fields & XFS_ILOG_DFORK) {
2442 	case XFS_ILOG_DDATA:
2443 	case XFS_ILOG_DEXT:
2444 		memcpy(&dip->di_u, src, len);
2445 		break;
2446 
2447 	case XFS_ILOG_DBROOT:
2448 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2449 				 &(dip->di_u.di_bmbt),
2450 				 XFS_DFORK_DSIZE(dip, mp));
2451 		break;
2452 
2453 	default:
2454 		/*
2455 		 * There are no data fork flags set.
2456 		 */
2457 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2458 		break;
2459 	}
2460 
2461 	/*
2462 	 * If we logged any attribute data, recover it.  There may or
2463 	 * may not have been any other non-core data logged in this
2464 	 * transaction.
2465 	 */
2466 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2467 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2468 			attr_index = 3;
2469 		} else {
2470 			attr_index = 2;
2471 		}
2472 		len = item->ri_buf[attr_index].i_len;
2473 		src = item->ri_buf[attr_index].i_addr;
2474 		ASSERT(len == in_f->ilf_asize);
2475 
2476 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2477 		case XFS_ILOG_ADATA:
2478 		case XFS_ILOG_AEXT:
2479 			dest = XFS_DFORK_APTR(dip);
2480 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2481 			memcpy(dest, src, len);
2482 			break;
2483 
2484 		case XFS_ILOG_ABROOT:
2485 			dest = XFS_DFORK_APTR(dip);
2486 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2487 					 (xfs_bmdr_block_t*)dest,
2488 					 XFS_DFORK_ASIZE(dip, mp));
2489 			break;
2490 
2491 		default:
2492 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2493 			ASSERT(0);
2494 			xfs_buf_relse(bp);
2495 			error = EIO;
2496 			goto error;
2497 		}
2498 	}
2499 
2500 write_inode_buffer:
2501 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2502 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2503 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2504 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2505 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2506 		xfs_bdwrite(mp, bp);
2507 	} else {
2508 		XFS_BUF_STALE(bp);
2509 		error = xfs_bwrite(mp, bp);
2510 	}
2511 
2512 error:
2513 	if (need_free)
2514 		kmem_free(in_f, sizeof(*in_f));
2515 	return XFS_ERROR(error);
2516 }
2517 
2518 /*
2519  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2520  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2521  * of that type.
2522  */
2523 STATIC int
2524 xlog_recover_do_quotaoff_trans(
2525 	xlog_t			*log,
2526 	xlog_recover_item_t	*item,
2527 	int			pass)
2528 {
2529 	xfs_qoff_logformat_t	*qoff_f;
2530 
2531 	if (pass == XLOG_RECOVER_PASS2) {
2532 		return (0);
2533 	}
2534 
2535 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2536 	ASSERT(qoff_f);
2537 
2538 	/*
2539 	 * The logitem format's flag tells us if this was user quotaoff,
2540 	 * group/project quotaoff or both.
2541 	 */
2542 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2543 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2544 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2545 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2546 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2547 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2548 
2549 	return (0);
2550 }
2551 
2552 /*
2553  * Recover a dquot record
2554  */
2555 STATIC int
2556 xlog_recover_do_dquot_trans(
2557 	xlog_t			*log,
2558 	xlog_recover_item_t	*item,
2559 	int			pass)
2560 {
2561 	xfs_mount_t		*mp;
2562 	xfs_buf_t		*bp;
2563 	struct xfs_disk_dquot	*ddq, *recddq;
2564 	int			error;
2565 	xfs_dq_logformat_t	*dq_f;
2566 	uint			type;
2567 
2568 	if (pass == XLOG_RECOVER_PASS1) {
2569 		return 0;
2570 	}
2571 	mp = log->l_mp;
2572 
2573 	/*
2574 	 * Filesystems are required to send in quota flags at mount time.
2575 	 */
2576 	if (mp->m_qflags == 0)
2577 		return (0);
2578 
2579 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2580 	ASSERT(recddq);
2581 	/*
2582 	 * This type of quotas was turned off, so ignore this record.
2583 	 */
2584 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2585 			(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2586 	ASSERT(type);
2587 	if (log->l_quotaoffs_flag & type)
2588 		return (0);
2589 
2590 	/*
2591 	 * At this point we know that quota was _not_ turned off.
2592 	 * Since the mount flags are not indicating to us otherwise, this
2593 	 * must mean that quota is on, and the dquot needs to be replayed.
2594 	 * Remember that we may not have fully recovered the superblock yet,
2595 	 * so we can't do the usual trick of looking at the SB quota bits.
2596 	 *
2597 	 * The other possibility, of course, is that the quota subsystem was
2598 	 * removed since the last mount - ENOSYS.
2599 	 */
2600 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2601 	ASSERT(dq_f);
2602 	if ((error = xfs_qm_dqcheck(recddq,
2603 			   dq_f->qlf_id,
2604 			   0, XFS_QMOPT_DOWARN,
2605 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2606 		return XFS_ERROR(EIO);
2607 	}
2608 	ASSERT(dq_f->qlf_len == 1);
2609 
2610 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2611 			     dq_f->qlf_blkno,
2612 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2613 			     0, &bp);
2614 	if (error) {
2615 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2616 				  bp, dq_f->qlf_blkno);
2617 		return error;
2618 	}
2619 	ASSERT(bp);
2620 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2621 
2622 	/*
2623 	 * At least the magic num portion should be on disk because this
2624 	 * was among a chunk of dquots created earlier, and we did some
2625 	 * minimal initialization then.
2626 	 */
2627 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2628 			   "xlog_recover_do_dquot_trans")) {
2629 		xfs_buf_relse(bp);
2630 		return XFS_ERROR(EIO);
2631 	}
2632 
2633 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2634 
2635 	ASSERT(dq_f->qlf_size == 2);
2636 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2637 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2638 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2639 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2640 	xfs_bdwrite(mp, bp);
2641 
2642 	return (0);
2643 }
2644 
2645 /*
2646  * This routine is called to create an in-core extent free intent
2647  * item from the efi format structure which was logged on disk.
2648  * It allocates an in-core efi, copies the extents from the format
2649  * structure into it, and adds the efi to the AIL with the given
2650  * LSN.
2651  */
2652 STATIC int
2653 xlog_recover_do_efi_trans(
2654 	xlog_t			*log,
2655 	xlog_recover_item_t	*item,
2656 	xfs_lsn_t		lsn,
2657 	int			pass)
2658 {
2659 	int			error;
2660 	xfs_mount_t		*mp;
2661 	xfs_efi_log_item_t	*efip;
2662 	xfs_efi_log_format_t	*efi_formatp;
2663 	SPLDECL(s);
2664 
2665 	if (pass == XLOG_RECOVER_PASS1) {
2666 		return 0;
2667 	}
2668 
2669 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2670 
2671 	mp = log->l_mp;
2672 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2673 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2674 					 &(efip->efi_format)))) {
2675 		xfs_efi_item_free(efip);
2676 		return error;
2677 	}
2678 	efip->efi_next_extent = efi_formatp->efi_nextents;
2679 	efip->efi_flags |= XFS_EFI_COMMITTED;
2680 
2681 	AIL_LOCK(mp,s);
2682 	/*
2683 	 * xfs_trans_update_ail() drops the AIL lock.
2684 	 */
2685 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2686 	return 0;
2687 }
2688 
2689 
2690 /*
2691  * This routine is called when an efd format structure is found in
2692  * a committed transaction in the log.  It's purpose is to cancel
2693  * the corresponding efi if it was still in the log.  To do this
2694  * it searches the AIL for the efi with an id equal to that in the
2695  * efd format structure.  If we find it, we remove the efi from the
2696  * AIL and free it.
2697  */
2698 STATIC void
2699 xlog_recover_do_efd_trans(
2700 	xlog_t			*log,
2701 	xlog_recover_item_t	*item,
2702 	int			pass)
2703 {
2704 	xfs_mount_t		*mp;
2705 	xfs_efd_log_format_t	*efd_formatp;
2706 	xfs_efi_log_item_t	*efip = NULL;
2707 	xfs_log_item_t		*lip;
2708 	int			gen;
2709 	__uint64_t		efi_id;
2710 	SPLDECL(s);
2711 
2712 	if (pass == XLOG_RECOVER_PASS1) {
2713 		return;
2714 	}
2715 
2716 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2717 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2718 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2719 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2720 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2721 	efi_id = efd_formatp->efd_efi_id;
2722 
2723 	/*
2724 	 * Search for the efi with the id in the efd format structure
2725 	 * in the AIL.
2726 	 */
2727 	mp = log->l_mp;
2728 	AIL_LOCK(mp,s);
2729 	lip = xfs_trans_first_ail(mp, &gen);
2730 	while (lip != NULL) {
2731 		if (lip->li_type == XFS_LI_EFI) {
2732 			efip = (xfs_efi_log_item_t *)lip;
2733 			if (efip->efi_format.efi_id == efi_id) {
2734 				/*
2735 				 * xfs_trans_delete_ail() drops the
2736 				 * AIL lock.
2737 				 */
2738 				xfs_trans_delete_ail(mp, lip, s);
2739 				break;
2740 			}
2741 		}
2742 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2743 	}
2744 
2745 	/*
2746 	 * If we found it, then free it up.  If it wasn't there, it
2747 	 * must have been overwritten in the log.  Oh well.
2748 	 */
2749 	if (lip != NULL) {
2750 		xfs_efi_item_free(efip);
2751 	} else {
2752 		AIL_UNLOCK(mp, s);
2753 	}
2754 }
2755 
2756 /*
2757  * Perform the transaction
2758  *
2759  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2760  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2761  */
2762 STATIC int
2763 xlog_recover_do_trans(
2764 	xlog_t			*log,
2765 	xlog_recover_t		*trans,
2766 	int			pass)
2767 {
2768 	int			error = 0;
2769 	xlog_recover_item_t	*item, *first_item;
2770 
2771 	if ((error = xlog_recover_reorder_trans(trans)))
2772 		return error;
2773 	first_item = item = trans->r_itemq;
2774 	do {
2775 		/*
2776 		 * we don't need to worry about the block number being
2777 		 * truncated in > 1 TB buffers because in user-land,
2778 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2779 		 * the blknos will get through the user-mode buffer
2780 		 * cache properly.  The only bad case is o32 kernels
2781 		 * where xfs_daddr_t is 32-bits but mount will warn us
2782 		 * off a > 1 TB filesystem before we get here.
2783 		 */
2784 		if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2785 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2786 								 pass)))
2787 				break;
2788 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2789 			if ((error = xlog_recover_do_inode_trans(log, item,
2790 								pass)))
2791 				break;
2792 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2793 			if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2794 						  pass)))
2795 				break;
2796 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2797 			xlog_recover_do_efd_trans(log, item, pass);
2798 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2799 			if ((error = xlog_recover_do_dquot_trans(log, item,
2800 								   pass)))
2801 					break;
2802 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2803 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2804 								   pass)))
2805 					break;
2806 		} else {
2807 			xlog_warn("XFS: xlog_recover_do_trans");
2808 			ASSERT(0);
2809 			error = XFS_ERROR(EIO);
2810 			break;
2811 		}
2812 		item = item->ri_next;
2813 	} while (first_item != item);
2814 
2815 	return error;
2816 }
2817 
2818 /*
2819  * Free up any resources allocated by the transaction
2820  *
2821  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2822  */
2823 STATIC void
2824 xlog_recover_free_trans(
2825 	xlog_recover_t		*trans)
2826 {
2827 	xlog_recover_item_t	*first_item, *item, *free_item;
2828 	int			i;
2829 
2830 	item = first_item = trans->r_itemq;
2831 	do {
2832 		free_item = item;
2833 		item = item->ri_next;
2834 		 /* Free the regions in the item. */
2835 		for (i = 0; i < free_item->ri_cnt; i++) {
2836 			kmem_free(free_item->ri_buf[i].i_addr,
2837 				  free_item->ri_buf[i].i_len);
2838 		}
2839 		/* Free the item itself */
2840 		kmem_free(free_item->ri_buf,
2841 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2842 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2843 	} while (first_item != item);
2844 	/* Free the transaction recover structure */
2845 	kmem_free(trans, sizeof(xlog_recover_t));
2846 }
2847 
2848 STATIC int
2849 xlog_recover_commit_trans(
2850 	xlog_t			*log,
2851 	xlog_recover_t		**q,
2852 	xlog_recover_t		*trans,
2853 	int			pass)
2854 {
2855 	int			error;
2856 
2857 	if ((error = xlog_recover_unlink_tid(q, trans)))
2858 		return error;
2859 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2860 		return error;
2861 	xlog_recover_free_trans(trans);			/* no error */
2862 	return 0;
2863 }
2864 
2865 STATIC int
2866 xlog_recover_unmount_trans(
2867 	xlog_recover_t		*trans)
2868 {
2869 	/* Do nothing now */
2870 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2871 	return 0;
2872 }
2873 
2874 /*
2875  * There are two valid states of the r_state field.  0 indicates that the
2876  * transaction structure is in a normal state.  We have either seen the
2877  * start of the transaction or the last operation we added was not a partial
2878  * operation.  If the last operation we added to the transaction was a
2879  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2880  *
2881  * NOTE: skip LRs with 0 data length.
2882  */
2883 STATIC int
2884 xlog_recover_process_data(
2885 	xlog_t			*log,
2886 	xlog_recover_t		*rhash[],
2887 	xlog_rec_header_t	*rhead,
2888 	xfs_caddr_t		dp,
2889 	int			pass)
2890 {
2891 	xfs_caddr_t		lp;
2892 	int			num_logops;
2893 	xlog_op_header_t	*ohead;
2894 	xlog_recover_t		*trans;
2895 	xlog_tid_t		tid;
2896 	int			error;
2897 	unsigned long		hash;
2898 	uint			flags;
2899 
2900 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2901 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2902 
2903 	/* check the log format matches our own - else we can't recover */
2904 	if (xlog_header_check_recover(log->l_mp, rhead))
2905 		return (XFS_ERROR(EIO));
2906 
2907 	while ((dp < lp) && num_logops) {
2908 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2909 		ohead = (xlog_op_header_t *)dp;
2910 		dp += sizeof(xlog_op_header_t);
2911 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2912 		    ohead->oh_clientid != XFS_LOG) {
2913 			xlog_warn(
2914 		"XFS: xlog_recover_process_data: bad clientid");
2915 			ASSERT(0);
2916 			return (XFS_ERROR(EIO));
2917 		}
2918 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2919 		hash = XLOG_RHASH(tid);
2920 		trans = xlog_recover_find_tid(rhash[hash], tid);
2921 		if (trans == NULL) {		   /* not found; add new tid */
2922 			if (ohead->oh_flags & XLOG_START_TRANS)
2923 				xlog_recover_new_tid(&rhash[hash], tid,
2924 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2925 		} else {
2926 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2927 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2928 			if (flags & XLOG_WAS_CONT_TRANS)
2929 				flags &= ~XLOG_CONTINUE_TRANS;
2930 			switch (flags) {
2931 			case XLOG_COMMIT_TRANS:
2932 				error = xlog_recover_commit_trans(log,
2933 						&rhash[hash], trans, pass);
2934 				break;
2935 			case XLOG_UNMOUNT_TRANS:
2936 				error = xlog_recover_unmount_trans(trans);
2937 				break;
2938 			case XLOG_WAS_CONT_TRANS:
2939 				error = xlog_recover_add_to_cont_trans(trans,
2940 						dp, INT_GET(ohead->oh_len,
2941 							ARCH_CONVERT));
2942 				break;
2943 			case XLOG_START_TRANS:
2944 				xlog_warn(
2945 			"XFS: xlog_recover_process_data: bad transaction");
2946 				ASSERT(0);
2947 				error = XFS_ERROR(EIO);
2948 				break;
2949 			case 0:
2950 			case XLOG_CONTINUE_TRANS:
2951 				error = xlog_recover_add_to_trans(trans,
2952 						dp, INT_GET(ohead->oh_len,
2953 							ARCH_CONVERT));
2954 				break;
2955 			default:
2956 				xlog_warn(
2957 			"XFS: xlog_recover_process_data: bad flag");
2958 				ASSERT(0);
2959 				error = XFS_ERROR(EIO);
2960 				break;
2961 			}
2962 			if (error)
2963 				return error;
2964 		}
2965 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2966 		num_logops--;
2967 	}
2968 	return 0;
2969 }
2970 
2971 /*
2972  * Process an extent free intent item that was recovered from
2973  * the log.  We need to free the extents that it describes.
2974  */
2975 STATIC void
2976 xlog_recover_process_efi(
2977 	xfs_mount_t		*mp,
2978 	xfs_efi_log_item_t	*efip)
2979 {
2980 	xfs_efd_log_item_t	*efdp;
2981 	xfs_trans_t		*tp;
2982 	int			i;
2983 	xfs_extent_t		*extp;
2984 	xfs_fsblock_t		startblock_fsb;
2985 
2986 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2987 
2988 	/*
2989 	 * First check the validity of the extents described by the
2990 	 * EFI.  If any are bad, then assume that all are bad and
2991 	 * just toss the EFI.
2992 	 */
2993 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2994 		extp = &(efip->efi_format.efi_extents[i]);
2995 		startblock_fsb = XFS_BB_TO_FSB(mp,
2996 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2997 		if ((startblock_fsb == 0) ||
2998 		    (extp->ext_len == 0) ||
2999 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3000 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3001 			/*
3002 			 * This will pull the EFI from the AIL and
3003 			 * free the memory associated with it.
3004 			 */
3005 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3006 			return;
3007 		}
3008 	}
3009 
3010 	tp = xfs_trans_alloc(mp, 0);
3011 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3012 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3013 
3014 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3015 		extp = &(efip->efi_format.efi_extents[i]);
3016 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3017 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3018 					 extp->ext_len);
3019 	}
3020 
3021 	efip->efi_flags |= XFS_EFI_RECOVERED;
3022 	xfs_trans_commit(tp, 0);
3023 }
3024 
3025 /*
3026  * Verify that once we've encountered something other than an EFI
3027  * in the AIL that there are no more EFIs in the AIL.
3028  */
3029 #if defined(DEBUG)
3030 STATIC void
3031 xlog_recover_check_ail(
3032 	xfs_mount_t		*mp,
3033 	xfs_log_item_t		*lip,
3034 	int			gen)
3035 {
3036 	int			orig_gen = gen;
3037 
3038 	do {
3039 		ASSERT(lip->li_type != XFS_LI_EFI);
3040 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3041 		/*
3042 		 * The check will be bogus if we restart from the
3043 		 * beginning of the AIL, so ASSERT that we don't.
3044 		 * We never should since we're holding the AIL lock
3045 		 * the entire time.
3046 		 */
3047 		ASSERT(gen == orig_gen);
3048 	} while (lip != NULL);
3049 }
3050 #endif	/* DEBUG */
3051 
3052 /*
3053  * When this is called, all of the EFIs which did not have
3054  * corresponding EFDs should be in the AIL.  What we do now
3055  * is free the extents associated with each one.
3056  *
3057  * Since we process the EFIs in normal transactions, they
3058  * will be removed at some point after the commit.  This prevents
3059  * us from just walking down the list processing each one.
3060  * We'll use a flag in the EFI to skip those that we've already
3061  * processed and use the AIL iteration mechanism's generation
3062  * count to try to speed this up at least a bit.
3063  *
3064  * When we start, we know that the EFIs are the only things in
3065  * the AIL.  As we process them, however, other items are added
3066  * to the AIL.  Since everything added to the AIL must come after
3067  * everything already in the AIL, we stop processing as soon as
3068  * we see something other than an EFI in the AIL.
3069  */
3070 STATIC void
3071 xlog_recover_process_efis(
3072 	xlog_t			*log)
3073 {
3074 	xfs_log_item_t		*lip;
3075 	xfs_efi_log_item_t	*efip;
3076 	int			gen;
3077 	xfs_mount_t		*mp;
3078 	SPLDECL(s);
3079 
3080 	mp = log->l_mp;
3081 	AIL_LOCK(mp,s);
3082 
3083 	lip = xfs_trans_first_ail(mp, &gen);
3084 	while (lip != NULL) {
3085 		/*
3086 		 * We're done when we see something other than an EFI.
3087 		 */
3088 		if (lip->li_type != XFS_LI_EFI) {
3089 			xlog_recover_check_ail(mp, lip, gen);
3090 			break;
3091 		}
3092 
3093 		/*
3094 		 * Skip EFIs that we've already processed.
3095 		 */
3096 		efip = (xfs_efi_log_item_t *)lip;
3097 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3098 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3099 			continue;
3100 		}
3101 
3102 		AIL_UNLOCK(mp, s);
3103 		xlog_recover_process_efi(mp, efip);
3104 		AIL_LOCK(mp,s);
3105 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3106 	}
3107 	AIL_UNLOCK(mp, s);
3108 }
3109 
3110 /*
3111  * This routine performs a transaction to null out a bad inode pointer
3112  * in an agi unlinked inode hash bucket.
3113  */
3114 STATIC void
3115 xlog_recover_clear_agi_bucket(
3116 	xfs_mount_t	*mp,
3117 	xfs_agnumber_t	agno,
3118 	int		bucket)
3119 {
3120 	xfs_trans_t	*tp;
3121 	xfs_agi_t	*agi;
3122 	xfs_buf_t	*agibp;
3123 	int		offset;
3124 	int		error;
3125 
3126 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3127 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3128 
3129 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3130 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3131 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3132 	if (error) {
3133 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3134 		return;
3135 	}
3136 
3137 	agi = XFS_BUF_TO_AGI(agibp);
3138 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3139 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3140 		return;
3141 	}
3142 
3143 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3144 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3145 		 (sizeof(xfs_agino_t) * bucket);
3146 	xfs_trans_log_buf(tp, agibp, offset,
3147 			  (offset + sizeof(xfs_agino_t) - 1));
3148 
3149 	(void) xfs_trans_commit(tp, 0);
3150 }
3151 
3152 /*
3153  * xlog_iunlink_recover
3154  *
3155  * This is called during recovery to process any inodes which
3156  * we unlinked but not freed when the system crashed.  These
3157  * inodes will be on the lists in the AGI blocks.  What we do
3158  * here is scan all the AGIs and fully truncate and free any
3159  * inodes found on the lists.  Each inode is removed from the
3160  * lists when it has been fully truncated and is freed.  The
3161  * freeing of the inode and its removal from the list must be
3162  * atomic.
3163  */
3164 void
3165 xlog_recover_process_iunlinks(
3166 	xlog_t		*log)
3167 {
3168 	xfs_mount_t	*mp;
3169 	xfs_agnumber_t	agno;
3170 	xfs_agi_t	*agi;
3171 	xfs_buf_t	*agibp;
3172 	xfs_buf_t	*ibp;
3173 	xfs_dinode_t	*dip;
3174 	xfs_inode_t	*ip;
3175 	xfs_agino_t	agino;
3176 	xfs_ino_t	ino;
3177 	int		bucket;
3178 	int		error;
3179 	uint		mp_dmevmask;
3180 
3181 	mp = log->l_mp;
3182 
3183 	/*
3184 	 * Prevent any DMAPI event from being sent while in this function.
3185 	 */
3186 	mp_dmevmask = mp->m_dmevmask;
3187 	mp->m_dmevmask = 0;
3188 
3189 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3190 		/*
3191 		 * Find the agi for this ag.
3192 		 */
3193 		agibp = xfs_buf_read(mp->m_ddev_targp,
3194 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3195 				XFS_FSS_TO_BB(mp, 1), 0);
3196 		if (XFS_BUF_ISERROR(agibp)) {
3197 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3198 				log->l_mp, agibp,
3199 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3200 		}
3201 		agi = XFS_BUF_TO_AGI(agibp);
3202 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3203 
3204 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3205 
3206 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3207 			while (agino != NULLAGINO) {
3208 
3209 				/*
3210 				 * Release the agi buffer so that it can
3211 				 * be acquired in the normal course of the
3212 				 * transaction to truncate and free the inode.
3213 				 */
3214 				xfs_buf_relse(agibp);
3215 
3216 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3217 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3218 				ASSERT(error || (ip != NULL));
3219 
3220 				if (!error) {
3221 					/*
3222 					 * Get the on disk inode to find the
3223 					 * next inode in the bucket.
3224 					 */
3225 					error = xfs_itobp(mp, NULL, ip, &dip,
3226 							&ibp, 0, 0);
3227 					ASSERT(error || (dip != NULL));
3228 				}
3229 
3230 				if (!error) {
3231 					ASSERT(ip->i_d.di_nlink == 0);
3232 
3233 					/* setup for the next pass */
3234 					agino = be32_to_cpu(
3235 							dip->di_next_unlinked);
3236 					xfs_buf_relse(ibp);
3237 					/*
3238 					 * Prevent any DMAPI event from
3239 					 * being sent when the
3240 					 * reference on the inode is
3241 					 * dropped.
3242 					 */
3243 					ip->i_d.di_dmevmask = 0;
3244 
3245 					/*
3246 					 * If this is a new inode, handle
3247 					 * it specially.  Otherwise,
3248 					 * just drop our reference to the
3249 					 * inode.  If there are no
3250 					 * other references, this will
3251 					 * send the inode to
3252 					 * xfs_inactive() which will
3253 					 * truncate the file and free
3254 					 * the inode.
3255 					 */
3256 					if (ip->i_d.di_mode == 0)
3257 						xfs_iput_new(ip, 0);
3258 					else
3259 						VN_RELE(XFS_ITOV(ip));
3260 				} else {
3261 					/*
3262 					 * We can't read in the inode
3263 					 * this bucket points to, or
3264 					 * this inode is messed up.  Just
3265 					 * ditch this bucket of inodes.  We
3266 					 * will lose some inodes and space,
3267 					 * but at least we won't hang.  Call
3268 					 * xlog_recover_clear_agi_bucket()
3269 					 * to perform a transaction to clear
3270 					 * the inode pointer in the bucket.
3271 					 */
3272 					xlog_recover_clear_agi_bucket(mp, agno,
3273 							bucket);
3274 
3275 					agino = NULLAGINO;
3276 				}
3277 
3278 				/*
3279 				 * Reacquire the agibuffer and continue around
3280 				 * the loop.
3281 				 */
3282 				agibp = xfs_buf_read(mp->m_ddev_targp,
3283 						XFS_AG_DADDR(mp, agno,
3284 							XFS_AGI_DADDR(mp)),
3285 						XFS_FSS_TO_BB(mp, 1), 0);
3286 				if (XFS_BUF_ISERROR(agibp)) {
3287 					xfs_ioerror_alert(
3288 				"xlog_recover_process_iunlinks(#2)",
3289 						log->l_mp, agibp,
3290 						XFS_AG_DADDR(mp, agno,
3291 							XFS_AGI_DADDR(mp)));
3292 				}
3293 				agi = XFS_BUF_TO_AGI(agibp);
3294 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3295 					agi->agi_magicnum));
3296 			}
3297 		}
3298 
3299 		/*
3300 		 * Release the buffer for the current agi so we can
3301 		 * go on to the next one.
3302 		 */
3303 		xfs_buf_relse(agibp);
3304 	}
3305 
3306 	mp->m_dmevmask = mp_dmevmask;
3307 }
3308 
3309 
3310 #ifdef DEBUG
3311 STATIC void
3312 xlog_pack_data_checksum(
3313 	xlog_t		*log,
3314 	xlog_in_core_t	*iclog,
3315 	int		size)
3316 {
3317 	int		i;
3318 	uint		*up;
3319 	uint		chksum = 0;
3320 
3321 	up = (uint *)iclog->ic_datap;
3322 	/* divide length by 4 to get # words */
3323 	for (i = 0; i < (size >> 2); i++) {
3324 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3325 		up++;
3326 	}
3327 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3328 }
3329 #else
3330 #define xlog_pack_data_checksum(log, iclog, size)
3331 #endif
3332 
3333 /*
3334  * Stamp cycle number in every block
3335  */
3336 void
3337 xlog_pack_data(
3338 	xlog_t			*log,
3339 	xlog_in_core_t		*iclog,
3340 	int			roundoff)
3341 {
3342 	int			i, j, k;
3343 	int			size = iclog->ic_offset + roundoff;
3344 	uint			cycle_lsn;
3345 	xfs_caddr_t		dp;
3346 	xlog_in_core_2_t	*xhdr;
3347 
3348 	xlog_pack_data_checksum(log, iclog, size);
3349 
3350 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3351 
3352 	dp = iclog->ic_datap;
3353 	for (i = 0; i < BTOBB(size) &&
3354 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3355 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3356 		*(uint *)dp = cycle_lsn;
3357 		dp += BBSIZE;
3358 	}
3359 
3360 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3361 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3362 		for ( ; i < BTOBB(size); i++) {
3363 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3364 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3365 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3366 			*(uint *)dp = cycle_lsn;
3367 			dp += BBSIZE;
3368 		}
3369 
3370 		for (i = 1; i < log->l_iclog_heads; i++) {
3371 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3372 		}
3373 	}
3374 }
3375 
3376 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3377 STATIC void
3378 xlog_unpack_data_checksum(
3379 	xlog_rec_header_t	*rhead,
3380 	xfs_caddr_t		dp,
3381 	xlog_t			*log)
3382 {
3383 	uint			*up = (uint *)dp;
3384 	uint			chksum = 0;
3385 	int			i;
3386 
3387 	/* divide length by 4 to get # words */
3388 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3389 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3390 		up++;
3391 	}
3392 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3393 	    if (rhead->h_chksum ||
3394 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3395 		    cmn_err(CE_DEBUG,
3396 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3397 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3398 		    cmn_err(CE_DEBUG,
3399 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3400 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3401 			    cmn_err(CE_DEBUG,
3402 				"XFS: LogR this is a LogV2 filesystem\n");
3403 		    }
3404 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3405 	    }
3406 	}
3407 }
3408 #else
3409 #define xlog_unpack_data_checksum(rhead, dp, log)
3410 #endif
3411 
3412 STATIC void
3413 xlog_unpack_data(
3414 	xlog_rec_header_t	*rhead,
3415 	xfs_caddr_t		dp,
3416 	xlog_t			*log)
3417 {
3418 	int			i, j, k;
3419 	xlog_in_core_2_t	*xhdr;
3420 
3421 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3422 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3423 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3424 		dp += BBSIZE;
3425 	}
3426 
3427 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3428 		xhdr = (xlog_in_core_2_t *)rhead;
3429 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3430 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3431 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3432 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3433 			dp += BBSIZE;
3434 		}
3435 	}
3436 
3437 	xlog_unpack_data_checksum(rhead, dp, log);
3438 }
3439 
3440 STATIC int
3441 xlog_valid_rec_header(
3442 	xlog_t			*log,
3443 	xlog_rec_header_t	*rhead,
3444 	xfs_daddr_t		blkno)
3445 {
3446 	int			hlen;
3447 
3448 	if (unlikely(
3449 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3450 			XLOG_HEADER_MAGIC_NUM))) {
3451 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3452 				XFS_ERRLEVEL_LOW, log->l_mp);
3453 		return XFS_ERROR(EFSCORRUPTED);
3454 	}
3455 	if (unlikely(
3456 	    (!rhead->h_version ||
3457 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3458 			(~XLOG_VERSION_OKBITS)) != 0))) {
3459 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3460 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3461 		return XFS_ERROR(EIO);
3462 	}
3463 
3464 	/* LR body must have data or it wouldn't have been written */
3465 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3466 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3467 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3468 				XFS_ERRLEVEL_LOW, log->l_mp);
3469 		return XFS_ERROR(EFSCORRUPTED);
3470 	}
3471 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3472 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3473 				XFS_ERRLEVEL_LOW, log->l_mp);
3474 		return XFS_ERROR(EFSCORRUPTED);
3475 	}
3476 	return 0;
3477 }
3478 
3479 /*
3480  * Read the log from tail to head and process the log records found.
3481  * Handle the two cases where the tail and head are in the same cycle
3482  * and where the active portion of the log wraps around the end of
3483  * the physical log separately.  The pass parameter is passed through
3484  * to the routines called to process the data and is not looked at
3485  * here.
3486  */
3487 STATIC int
3488 xlog_do_recovery_pass(
3489 	xlog_t			*log,
3490 	xfs_daddr_t		head_blk,
3491 	xfs_daddr_t		tail_blk,
3492 	int			pass)
3493 {
3494 	xlog_rec_header_t	*rhead;
3495 	xfs_daddr_t		blk_no;
3496 	xfs_caddr_t		bufaddr, offset;
3497 	xfs_buf_t		*hbp, *dbp;
3498 	int			error = 0, h_size;
3499 	int			bblks, split_bblks;
3500 	int			hblks, split_hblks, wrapped_hblks;
3501 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3502 
3503 	ASSERT(head_blk != tail_blk);
3504 
3505 	/*
3506 	 * Read the header of the tail block and get the iclog buffer size from
3507 	 * h_size.  Use this to tell how many sectors make up the log header.
3508 	 */
3509 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3510 		/*
3511 		 * When using variable length iclogs, read first sector of
3512 		 * iclog header and extract the header size from it.  Get a
3513 		 * new hbp that is the correct size.
3514 		 */
3515 		hbp = xlog_get_bp(log, 1);
3516 		if (!hbp)
3517 			return ENOMEM;
3518 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3519 			goto bread_err1;
3520 		offset = xlog_align(log, tail_blk, 1, hbp);
3521 		rhead = (xlog_rec_header_t *)offset;
3522 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3523 		if (error)
3524 			goto bread_err1;
3525 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3526 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3527 				& XLOG_VERSION_2) &&
3528 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3529 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3530 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3531 				hblks++;
3532 			xlog_put_bp(hbp);
3533 			hbp = xlog_get_bp(log, hblks);
3534 		} else {
3535 			hblks = 1;
3536 		}
3537 	} else {
3538 		ASSERT(log->l_sectbb_log == 0);
3539 		hblks = 1;
3540 		hbp = xlog_get_bp(log, 1);
3541 		h_size = XLOG_BIG_RECORD_BSIZE;
3542 	}
3543 
3544 	if (!hbp)
3545 		return ENOMEM;
3546 	dbp = xlog_get_bp(log, BTOBB(h_size));
3547 	if (!dbp) {
3548 		xlog_put_bp(hbp);
3549 		return ENOMEM;
3550 	}
3551 
3552 	memset(rhash, 0, sizeof(rhash));
3553 	if (tail_blk <= head_blk) {
3554 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3555 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3556 				goto bread_err2;
3557 			offset = xlog_align(log, blk_no, hblks, hbp);
3558 			rhead = (xlog_rec_header_t *)offset;
3559 			error = xlog_valid_rec_header(log, rhead, blk_no);
3560 			if (error)
3561 				goto bread_err2;
3562 
3563 			/* blocks in data section */
3564 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3565 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3566 			if (error)
3567 				goto bread_err2;
3568 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3569 			xlog_unpack_data(rhead, offset, log);
3570 			if ((error = xlog_recover_process_data(log,
3571 						rhash, rhead, offset, pass)))
3572 				goto bread_err2;
3573 			blk_no += bblks + hblks;
3574 		}
3575 	} else {
3576 		/*
3577 		 * Perform recovery around the end of the physical log.
3578 		 * When the head is not on the same cycle number as the tail,
3579 		 * we can't do a sequential recovery as above.
3580 		 */
3581 		blk_no = tail_blk;
3582 		while (blk_no < log->l_logBBsize) {
3583 			/*
3584 			 * Check for header wrapping around physical end-of-log
3585 			 */
3586 			offset = NULL;
3587 			split_hblks = 0;
3588 			wrapped_hblks = 0;
3589 			if (blk_no + hblks <= log->l_logBBsize) {
3590 				/* Read header in one read */
3591 				error = xlog_bread(log, blk_no, hblks, hbp);
3592 				if (error)
3593 					goto bread_err2;
3594 				offset = xlog_align(log, blk_no, hblks, hbp);
3595 			} else {
3596 				/* This LR is split across physical log end */
3597 				if (blk_no != log->l_logBBsize) {
3598 					/* some data before physical log end */
3599 					ASSERT(blk_no <= INT_MAX);
3600 					split_hblks = log->l_logBBsize - (int)blk_no;
3601 					ASSERT(split_hblks > 0);
3602 					if ((error = xlog_bread(log, blk_no,
3603 							split_hblks, hbp)))
3604 						goto bread_err2;
3605 					offset = xlog_align(log, blk_no,
3606 							split_hblks, hbp);
3607 				}
3608 				/*
3609 				 * Note: this black magic still works with
3610 				 * large sector sizes (non-512) only because:
3611 				 * - we increased the buffer size originally
3612 				 *   by 1 sector giving us enough extra space
3613 				 *   for the second read;
3614 				 * - the log start is guaranteed to be sector
3615 				 *   aligned;
3616 				 * - we read the log end (LR header start)
3617 				 *   _first_, then the log start (LR header end)
3618 				 *   - order is important.
3619 				 */
3620 				bufaddr = XFS_BUF_PTR(hbp);
3621 				XFS_BUF_SET_PTR(hbp,
3622 						bufaddr + BBTOB(split_hblks),
3623 						BBTOB(hblks - split_hblks));
3624 				wrapped_hblks = hblks - split_hblks;
3625 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3626 				if (error)
3627 					goto bread_err2;
3628 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3629 				if (!offset)
3630 					offset = xlog_align(log, 0,
3631 							wrapped_hblks, hbp);
3632 			}
3633 			rhead = (xlog_rec_header_t *)offset;
3634 			error = xlog_valid_rec_header(log, rhead,
3635 						split_hblks ? blk_no : 0);
3636 			if (error)
3637 				goto bread_err2;
3638 
3639 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3640 			blk_no += hblks;
3641 
3642 			/* Read in data for log record */
3643 			if (blk_no + bblks <= log->l_logBBsize) {
3644 				error = xlog_bread(log, blk_no, bblks, dbp);
3645 				if (error)
3646 					goto bread_err2;
3647 				offset = xlog_align(log, blk_no, bblks, dbp);
3648 			} else {
3649 				/* This log record is split across the
3650 				 * physical end of log */
3651 				offset = NULL;
3652 				split_bblks = 0;
3653 				if (blk_no != log->l_logBBsize) {
3654 					/* some data is before the physical
3655 					 * end of log */
3656 					ASSERT(!wrapped_hblks);
3657 					ASSERT(blk_no <= INT_MAX);
3658 					split_bblks =
3659 						log->l_logBBsize - (int)blk_no;
3660 					ASSERT(split_bblks > 0);
3661 					if ((error = xlog_bread(log, blk_no,
3662 							split_bblks, dbp)))
3663 						goto bread_err2;
3664 					offset = xlog_align(log, blk_no,
3665 							split_bblks, dbp);
3666 				}
3667 				/*
3668 				 * Note: this black magic still works with
3669 				 * large sector sizes (non-512) only because:
3670 				 * - we increased the buffer size originally
3671 				 *   by 1 sector giving us enough extra space
3672 				 *   for the second read;
3673 				 * - the log start is guaranteed to be sector
3674 				 *   aligned;
3675 				 * - we read the log end (LR header start)
3676 				 *   _first_, then the log start (LR header end)
3677 				 *   - order is important.
3678 				 */
3679 				bufaddr = XFS_BUF_PTR(dbp);
3680 				XFS_BUF_SET_PTR(dbp,
3681 						bufaddr + BBTOB(split_bblks),
3682 						BBTOB(bblks - split_bblks));
3683 				if ((error = xlog_bread(log, wrapped_hblks,
3684 						bblks - split_bblks, dbp)))
3685 					goto bread_err2;
3686 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3687 				if (!offset)
3688 					offset = xlog_align(log, wrapped_hblks,
3689 						bblks - split_bblks, dbp);
3690 			}
3691 			xlog_unpack_data(rhead, offset, log);
3692 			if ((error = xlog_recover_process_data(log, rhash,
3693 							rhead, offset, pass)))
3694 				goto bread_err2;
3695 			blk_no += bblks;
3696 		}
3697 
3698 		ASSERT(blk_no >= log->l_logBBsize);
3699 		blk_no -= log->l_logBBsize;
3700 
3701 		/* read first part of physical log */
3702 		while (blk_no < head_blk) {
3703 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3704 				goto bread_err2;
3705 			offset = xlog_align(log, blk_no, hblks, hbp);
3706 			rhead = (xlog_rec_header_t *)offset;
3707 			error = xlog_valid_rec_header(log, rhead, blk_no);
3708 			if (error)
3709 				goto bread_err2;
3710 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3711 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3712 				goto bread_err2;
3713 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3714 			xlog_unpack_data(rhead, offset, log);
3715 			if ((error = xlog_recover_process_data(log, rhash,
3716 							rhead, offset, pass)))
3717 				goto bread_err2;
3718 			blk_no += bblks + hblks;
3719 		}
3720 	}
3721 
3722  bread_err2:
3723 	xlog_put_bp(dbp);
3724  bread_err1:
3725 	xlog_put_bp(hbp);
3726 	return error;
3727 }
3728 
3729 /*
3730  * Do the recovery of the log.  We actually do this in two phases.
3731  * The two passes are necessary in order to implement the function
3732  * of cancelling a record written into the log.  The first pass
3733  * determines those things which have been cancelled, and the
3734  * second pass replays log items normally except for those which
3735  * have been cancelled.  The handling of the replay and cancellations
3736  * takes place in the log item type specific routines.
3737  *
3738  * The table of items which have cancel records in the log is allocated
3739  * and freed at this level, since only here do we know when all of
3740  * the log recovery has been completed.
3741  */
3742 STATIC int
3743 xlog_do_log_recovery(
3744 	xlog_t		*log,
3745 	xfs_daddr_t	head_blk,
3746 	xfs_daddr_t	tail_blk)
3747 {
3748 	int		error;
3749 
3750 	ASSERT(head_blk != tail_blk);
3751 
3752 	/*
3753 	 * First do a pass to find all of the cancelled buf log items.
3754 	 * Store them in the buf_cancel_table for use in the second pass.
3755 	 */
3756 	log->l_buf_cancel_table =
3757 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3758 						 sizeof(xfs_buf_cancel_t*),
3759 						 KM_SLEEP);
3760 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3761 				      XLOG_RECOVER_PASS1);
3762 	if (error != 0) {
3763 		kmem_free(log->l_buf_cancel_table,
3764 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3765 		log->l_buf_cancel_table = NULL;
3766 		return error;
3767 	}
3768 	/*
3769 	 * Then do a second pass to actually recover the items in the log.
3770 	 * When it is complete free the table of buf cancel items.
3771 	 */
3772 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3773 				      XLOG_RECOVER_PASS2);
3774 #ifdef DEBUG
3775 	if (!error) {
3776 		int	i;
3777 
3778 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3779 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3780 	}
3781 #endif	/* DEBUG */
3782 
3783 	kmem_free(log->l_buf_cancel_table,
3784 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3785 	log->l_buf_cancel_table = NULL;
3786 
3787 	return error;
3788 }
3789 
3790 /*
3791  * Do the actual recovery
3792  */
3793 STATIC int
3794 xlog_do_recover(
3795 	xlog_t		*log,
3796 	xfs_daddr_t	head_blk,
3797 	xfs_daddr_t	tail_blk)
3798 {
3799 	int		error;
3800 	xfs_buf_t	*bp;
3801 	xfs_sb_t	*sbp;
3802 
3803 	/*
3804 	 * First replay the images in the log.
3805 	 */
3806 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3807 	if (error) {
3808 		return error;
3809 	}
3810 
3811 	XFS_bflush(log->l_mp->m_ddev_targp);
3812 
3813 	/*
3814 	 * If IO errors happened during recovery, bail out.
3815 	 */
3816 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3817 		return (EIO);
3818 	}
3819 
3820 	/*
3821 	 * We now update the tail_lsn since much of the recovery has completed
3822 	 * and there may be space available to use.  If there were no extent
3823 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3824 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3825 	 * lsn of the last known good LR on disk.  If there are extent frees
3826 	 * or iunlinks they will have some entries in the AIL; so we look at
3827 	 * the AIL to determine how to set the tail_lsn.
3828 	 */
3829 	xlog_assign_tail_lsn(log->l_mp);
3830 
3831 	/*
3832 	 * Now that we've finished replaying all buffer and inode
3833 	 * updates, re-read in the superblock.
3834 	 */
3835 	bp = xfs_getsb(log->l_mp, 0);
3836 	XFS_BUF_UNDONE(bp);
3837 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3838 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3839 	XFS_BUF_READ(bp);
3840 	XFS_BUF_UNASYNC(bp);
3841 	xfsbdstrat(log->l_mp, bp);
3842 	if ((error = xfs_iowait(bp))) {
3843 		xfs_ioerror_alert("xlog_do_recover",
3844 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3845 		ASSERT(0);
3846 		xfs_buf_relse(bp);
3847 		return error;
3848 	}
3849 
3850 	/* Convert superblock from on-disk format */
3851 	sbp = &log->l_mp->m_sb;
3852 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3853 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3854 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3855 	xfs_buf_relse(bp);
3856 
3857 	/* We've re-read the superblock so re-initialize per-cpu counters */
3858 	xfs_icsb_reinit_counters(log->l_mp);
3859 
3860 	xlog_recover_check_summary(log);
3861 
3862 	/* Normal transactions can now occur */
3863 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3864 	return 0;
3865 }
3866 
3867 /*
3868  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3869  *
3870  * Return error or zero.
3871  */
3872 int
3873 xlog_recover(
3874 	xlog_t		*log)
3875 {
3876 	xfs_daddr_t	head_blk, tail_blk;
3877 	int		error;
3878 
3879 	/* find the tail of the log */
3880 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3881 		return error;
3882 
3883 	if (tail_blk != head_blk) {
3884 		/* There used to be a comment here:
3885 		 *
3886 		 * disallow recovery on read-only mounts.  note -- mount
3887 		 * checks for ENOSPC and turns it into an intelligent
3888 		 * error message.
3889 		 * ...but this is no longer true.  Now, unless you specify
3890 		 * NORECOVERY (in which case this function would never be
3891 		 * called), we just go ahead and recover.  We do this all
3892 		 * under the vfs layer, so we can get away with it unless
3893 		 * the device itself is read-only, in which case we fail.
3894 		 */
3895 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3896 			return error;
3897 		}
3898 
3899 		cmn_err(CE_NOTE,
3900 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3901 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3902 			log->l_mp->m_logname : "internal");
3903 
3904 		error = xlog_do_recover(log, head_blk, tail_blk);
3905 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3906 	}
3907 	return error;
3908 }
3909 
3910 /*
3911  * In the first part of recovery we replay inodes and buffers and build
3912  * up the list of extent free items which need to be processed.  Here
3913  * we process the extent free items and clean up the on disk unlinked
3914  * inode lists.  This is separated from the first part of recovery so
3915  * that the root and real-time bitmap inodes can be read in from disk in
3916  * between the two stages.  This is necessary so that we can free space
3917  * in the real-time portion of the file system.
3918  */
3919 int
3920 xlog_recover_finish(
3921 	xlog_t		*log,
3922 	int		mfsi_flags)
3923 {
3924 	/*
3925 	 * Now we're ready to do the transactions needed for the
3926 	 * rest of recovery.  Start with completing all the extent
3927 	 * free intent records and then process the unlinked inode
3928 	 * lists.  At this point, we essentially run in normal mode
3929 	 * except that we're still performing recovery actions
3930 	 * rather than accepting new requests.
3931 	 */
3932 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3933 		xlog_recover_process_efis(log);
3934 		/*
3935 		 * Sync the log to get all the EFIs out of the AIL.
3936 		 * This isn't absolutely necessary, but it helps in
3937 		 * case the unlink transactions would have problems
3938 		 * pushing the EFIs out of the way.
3939 		 */
3940 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3941 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3942 
3943 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3944 			xlog_recover_process_iunlinks(log);
3945 		}
3946 
3947 		xlog_recover_check_summary(log);
3948 
3949 		cmn_err(CE_NOTE,
3950 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3951 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3952 			log->l_mp->m_logname : "internal");
3953 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3954 	} else {
3955 		cmn_err(CE_DEBUG,
3956 			"!Ending clean XFS mount for filesystem: %s\n",
3957 			log->l_mp->m_fsname);
3958 	}
3959 	return 0;
3960 }
3961 
3962 
3963 #if defined(DEBUG)
3964 /*
3965  * Read all of the agf and agi counters and check that they
3966  * are consistent with the superblock counters.
3967  */
3968 void
3969 xlog_recover_check_summary(
3970 	xlog_t		*log)
3971 {
3972 	xfs_mount_t	*mp;
3973 	xfs_agf_t	*agfp;
3974 	xfs_agi_t	*agip;
3975 	xfs_buf_t	*agfbp;
3976 	xfs_buf_t	*agibp;
3977 	xfs_daddr_t	agfdaddr;
3978 	xfs_daddr_t	agidaddr;
3979 	xfs_buf_t	*sbbp;
3980 #ifdef XFS_LOUD_RECOVERY
3981 	xfs_sb_t	*sbp;
3982 #endif
3983 	xfs_agnumber_t	agno;
3984 	__uint64_t	freeblks;
3985 	__uint64_t	itotal;
3986 	__uint64_t	ifree;
3987 
3988 	mp = log->l_mp;
3989 
3990 	freeblks = 0LL;
3991 	itotal = 0LL;
3992 	ifree = 0LL;
3993 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3994 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3995 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3996 				XFS_FSS_TO_BB(mp, 1), 0);
3997 		if (XFS_BUF_ISERROR(agfbp)) {
3998 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3999 						mp, agfbp, agfdaddr);
4000 		}
4001 		agfp = XFS_BUF_TO_AGF(agfbp);
4002 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4003 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4004 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4005 
4006 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4007 			    be32_to_cpu(agfp->agf_flcount);
4008 		xfs_buf_relse(agfbp);
4009 
4010 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4011 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4012 				XFS_FSS_TO_BB(mp, 1), 0);
4013 		if (XFS_BUF_ISERROR(agibp)) {
4014 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4015 					  mp, agibp, agidaddr);
4016 		}
4017 		agip = XFS_BUF_TO_AGI(agibp);
4018 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4019 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4020 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4021 
4022 		itotal += be32_to_cpu(agip->agi_count);
4023 		ifree += be32_to_cpu(agip->agi_freecount);
4024 		xfs_buf_relse(agibp);
4025 	}
4026 
4027 	sbbp = xfs_getsb(mp, 0);
4028 #ifdef XFS_LOUD_RECOVERY
4029 	sbp = &mp->m_sb;
4030 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4031 	cmn_err(CE_NOTE,
4032 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4033 		sbp->sb_icount, itotal);
4034 	cmn_err(CE_NOTE,
4035 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4036 		sbp->sb_ifree, ifree);
4037 	cmn_err(CE_NOTE,
4038 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4039 		sbp->sb_fdblocks, freeblks);
4040 #if 0
4041 	/*
4042 	 * This is turned off until I account for the allocation
4043 	 * btree blocks which live in free space.
4044 	 */
4045 	ASSERT(sbp->sb_icount == itotal);
4046 	ASSERT(sbp->sb_ifree == ifree);
4047 	ASSERT(sbp->sb_fdblocks == freeblks);
4048 #endif
4049 #endif
4050 	xfs_buf_relse(sbbp);
4051 }
4052 #endif /* DEBUG */
4053