xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_alloc.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_trace.h"
25 #include "xfs_icache.h"
26 #include "xfs_error.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_ag.h"
29 #include "xfs_quota.h"
30 
31 
32 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
33 
34 STATIC int
35 xlog_find_zeroed(
36 	struct xlog	*,
37 	xfs_daddr_t	*);
38 STATIC int
39 xlog_clear_stale_blocks(
40 	struct xlog	*,
41 	xfs_lsn_t);
42 #if defined(DEBUG)
43 STATIC void
44 xlog_recover_check_summary(
45 	struct xlog *);
46 #else
47 #define	xlog_recover_check_summary(log)
48 #endif
49 STATIC int
50 xlog_do_recovery_pass(
51         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
52 
53 /*
54  * Sector aligned buffer routines for buffer create/read/write/access
55  */
56 
57 /*
58  * Verify the log-relative block number and length in basic blocks are valid for
59  * an operation involving the given XFS log buffer. Returns true if the fields
60  * are valid, false otherwise.
61  */
62 static inline bool
63 xlog_verify_bno(
64 	struct xlog	*log,
65 	xfs_daddr_t	blk_no,
66 	int		bbcount)
67 {
68 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
69 		return false;
70 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
71 		return false;
72 	return true;
73 }
74 
75 /*
76  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
77  * a range of nbblks basic blocks at any valid offset within the log.
78  */
79 static char *
80 xlog_alloc_buffer(
81 	struct xlog	*log,
82 	int		nbblks)
83 {
84 	/*
85 	 * Pass log block 0 since we don't have an addr yet, buffer will be
86 	 * verified on read.
87 	 */
88 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
89 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
90 			nbblks);
91 		return NULL;
92 	}
93 
94 	/*
95 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
96 	 * basic block size), so we round up the requested size to accommodate
97 	 * the basic blocks required for complete log sectors.
98 	 *
99 	 * In addition, the buffer may be used for a non-sector-aligned block
100 	 * offset, in which case an I/O of the requested size could extend
101 	 * beyond the end of the buffer.  If the requested size is only 1 basic
102 	 * block it will never straddle a sector boundary, so this won't be an
103 	 * issue.  Nor will this be a problem if the log I/O is done in basic
104 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
105 	 * extra log sector to ensure there's space to accommodate this
106 	 * possibility.
107 	 */
108 	if (nbblks > 1 && log->l_sectBBsize > 1)
109 		nbblks += log->l_sectBBsize;
110 	nbblks = round_up(nbblks, log->l_sectBBsize);
111 	return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
112 }
113 
114 /*
115  * Return the address of the start of the given block number's data
116  * in a log buffer.  The buffer covers a log sector-aligned region.
117  */
118 static inline unsigned int
119 xlog_align(
120 	struct xlog	*log,
121 	xfs_daddr_t	blk_no)
122 {
123 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
124 }
125 
126 static int
127 xlog_do_io(
128 	struct xlog		*log,
129 	xfs_daddr_t		blk_no,
130 	unsigned int		nbblks,
131 	char			*data,
132 	unsigned int		op)
133 {
134 	int			error;
135 
136 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
137 		xfs_warn(log->l_mp,
138 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
139 			 blk_no, nbblks);
140 		return -EFSCORRUPTED;
141 	}
142 
143 	blk_no = round_down(blk_no, log->l_sectBBsize);
144 	nbblks = round_up(nbblks, log->l_sectBBsize);
145 	ASSERT(nbblks > 0);
146 
147 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
148 			BBTOB(nbblks), data, op);
149 	if (error && !xlog_is_shutdown(log)) {
150 		xfs_alert(log->l_mp,
151 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
152 			  op == REQ_OP_WRITE ? "write" : "read",
153 			  blk_no, nbblks, error);
154 	}
155 	return error;
156 }
157 
158 STATIC int
159 xlog_bread_noalign(
160 	struct xlog	*log,
161 	xfs_daddr_t	blk_no,
162 	int		nbblks,
163 	char		*data)
164 {
165 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
166 }
167 
168 STATIC int
169 xlog_bread(
170 	struct xlog	*log,
171 	xfs_daddr_t	blk_no,
172 	int		nbblks,
173 	char		*data,
174 	char		**offset)
175 {
176 	int		error;
177 
178 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
179 	if (!error)
180 		*offset = data + xlog_align(log, blk_no);
181 	return error;
182 }
183 
184 STATIC int
185 xlog_bwrite(
186 	struct xlog	*log,
187 	xfs_daddr_t	blk_no,
188 	int		nbblks,
189 	char		*data)
190 {
191 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
192 }
193 
194 #ifdef DEBUG
195 /*
196  * dump debug superblock and log record information
197  */
198 STATIC void
199 xlog_header_check_dump(
200 	xfs_mount_t		*mp,
201 	xlog_rec_header_t	*head)
202 {
203 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
204 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
205 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
206 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
207 }
208 #else
209 #define xlog_header_check_dump(mp, head)
210 #endif
211 
212 /*
213  * check log record header for recovery
214  */
215 STATIC int
216 xlog_header_check_recover(
217 	xfs_mount_t		*mp,
218 	xlog_rec_header_t	*head)
219 {
220 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
221 
222 	/*
223 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
224 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
225 	 * a dirty log created in IRIX.
226 	 */
227 	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
228 		xfs_warn(mp,
229 	"dirty log written in incompatible format - can't recover");
230 		xlog_header_check_dump(mp, head);
231 		return -EFSCORRUPTED;
232 	}
233 	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
234 					   &head->h_fs_uuid))) {
235 		xfs_warn(mp,
236 	"dirty log entry has mismatched uuid - can't recover");
237 		xlog_header_check_dump(mp, head);
238 		return -EFSCORRUPTED;
239 	}
240 	return 0;
241 }
242 
243 /*
244  * read the head block of the log and check the header
245  */
246 STATIC int
247 xlog_header_check_mount(
248 	xfs_mount_t		*mp,
249 	xlog_rec_header_t	*head)
250 {
251 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
252 
253 	if (uuid_is_null(&head->h_fs_uuid)) {
254 		/*
255 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
256 		 * h_fs_uuid is null, we assume this log was last mounted
257 		 * by IRIX and continue.
258 		 */
259 		xfs_warn(mp, "null uuid in log - IRIX style log");
260 	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
261 						  &head->h_fs_uuid))) {
262 		xfs_warn(mp, "log has mismatched uuid - can't recover");
263 		xlog_header_check_dump(mp, head);
264 		return -EFSCORRUPTED;
265 	}
266 	return 0;
267 }
268 
269 /*
270  * This routine finds (to an approximation) the first block in the physical
271  * log which contains the given cycle.  It uses a binary search algorithm.
272  * Note that the algorithm can not be perfect because the disk will not
273  * necessarily be perfect.
274  */
275 STATIC int
276 xlog_find_cycle_start(
277 	struct xlog	*log,
278 	char		*buffer,
279 	xfs_daddr_t	first_blk,
280 	xfs_daddr_t	*last_blk,
281 	uint		cycle)
282 {
283 	char		*offset;
284 	xfs_daddr_t	mid_blk;
285 	xfs_daddr_t	end_blk;
286 	uint		mid_cycle;
287 	int		error;
288 
289 	end_blk = *last_blk;
290 	mid_blk = BLK_AVG(first_blk, end_blk);
291 	while (mid_blk != first_blk && mid_blk != end_blk) {
292 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
293 		if (error)
294 			return error;
295 		mid_cycle = xlog_get_cycle(offset);
296 		if (mid_cycle == cycle)
297 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
298 		else
299 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
300 		mid_blk = BLK_AVG(first_blk, end_blk);
301 	}
302 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
303 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
304 
305 	*last_blk = end_blk;
306 
307 	return 0;
308 }
309 
310 /*
311  * Check that a range of blocks does not contain stop_on_cycle_no.
312  * Fill in *new_blk with the block offset where such a block is
313  * found, or with -1 (an invalid block number) if there is no such
314  * block in the range.  The scan needs to occur from front to back
315  * and the pointer into the region must be updated since a later
316  * routine will need to perform another test.
317  */
318 STATIC int
319 xlog_find_verify_cycle(
320 	struct xlog	*log,
321 	xfs_daddr_t	start_blk,
322 	int		nbblks,
323 	uint		stop_on_cycle_no,
324 	xfs_daddr_t	*new_blk)
325 {
326 	xfs_daddr_t	i, j;
327 	uint		cycle;
328 	char		*buffer;
329 	xfs_daddr_t	bufblks;
330 	char		*buf = NULL;
331 	int		error = 0;
332 
333 	/*
334 	 * Greedily allocate a buffer big enough to handle the full
335 	 * range of basic blocks we'll be examining.  If that fails,
336 	 * try a smaller size.  We need to be able to read at least
337 	 * a log sector, or we're out of luck.
338 	 */
339 	bufblks = 1 << ffs(nbblks);
340 	while (bufblks > log->l_logBBsize)
341 		bufblks >>= 1;
342 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
343 		bufblks >>= 1;
344 		if (bufblks < log->l_sectBBsize)
345 			return -ENOMEM;
346 	}
347 
348 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
349 		int	bcount;
350 
351 		bcount = min(bufblks, (start_blk + nbblks - i));
352 
353 		error = xlog_bread(log, i, bcount, buffer, &buf);
354 		if (error)
355 			goto out;
356 
357 		for (j = 0; j < bcount; j++) {
358 			cycle = xlog_get_cycle(buf);
359 			if (cycle == stop_on_cycle_no) {
360 				*new_blk = i+j;
361 				goto out;
362 			}
363 
364 			buf += BBSIZE;
365 		}
366 	}
367 
368 	*new_blk = -1;
369 
370 out:
371 	kmem_free(buffer);
372 	return error;
373 }
374 
375 static inline int
376 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
377 {
378 	if (xfs_has_logv2(log->l_mp)) {
379 		int	h_size = be32_to_cpu(rh->h_size);
380 
381 		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
382 		    h_size > XLOG_HEADER_CYCLE_SIZE)
383 			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
384 	}
385 	return 1;
386 }
387 
388 /*
389  * Potentially backup over partial log record write.
390  *
391  * In the typical case, last_blk is the number of the block directly after
392  * a good log record.  Therefore, we subtract one to get the block number
393  * of the last block in the given buffer.  extra_bblks contains the number
394  * of blocks we would have read on a previous read.  This happens when the
395  * last log record is split over the end of the physical log.
396  *
397  * extra_bblks is the number of blocks potentially verified on a previous
398  * call to this routine.
399  */
400 STATIC int
401 xlog_find_verify_log_record(
402 	struct xlog		*log,
403 	xfs_daddr_t		start_blk,
404 	xfs_daddr_t		*last_blk,
405 	int			extra_bblks)
406 {
407 	xfs_daddr_t		i;
408 	char			*buffer;
409 	char			*offset = NULL;
410 	xlog_rec_header_t	*head = NULL;
411 	int			error = 0;
412 	int			smallmem = 0;
413 	int			num_blks = *last_blk - start_blk;
414 	int			xhdrs;
415 
416 	ASSERT(start_blk != 0 || *last_blk != start_blk);
417 
418 	buffer = xlog_alloc_buffer(log, num_blks);
419 	if (!buffer) {
420 		buffer = xlog_alloc_buffer(log, 1);
421 		if (!buffer)
422 			return -ENOMEM;
423 		smallmem = 1;
424 	} else {
425 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
426 		if (error)
427 			goto out;
428 		offset += ((num_blks - 1) << BBSHIFT);
429 	}
430 
431 	for (i = (*last_blk) - 1; i >= 0; i--) {
432 		if (i < start_blk) {
433 			/* valid log record not found */
434 			xfs_warn(log->l_mp,
435 		"Log inconsistent (didn't find previous header)");
436 			ASSERT(0);
437 			error = -EFSCORRUPTED;
438 			goto out;
439 		}
440 
441 		if (smallmem) {
442 			error = xlog_bread(log, i, 1, buffer, &offset);
443 			if (error)
444 				goto out;
445 		}
446 
447 		head = (xlog_rec_header_t *)offset;
448 
449 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
450 			break;
451 
452 		if (!smallmem)
453 			offset -= BBSIZE;
454 	}
455 
456 	/*
457 	 * We hit the beginning of the physical log & still no header.  Return
458 	 * to caller.  If caller can handle a return of -1, then this routine
459 	 * will be called again for the end of the physical log.
460 	 */
461 	if (i == -1) {
462 		error = 1;
463 		goto out;
464 	}
465 
466 	/*
467 	 * We have the final block of the good log (the first block
468 	 * of the log record _before_ the head. So we check the uuid.
469 	 */
470 	if ((error = xlog_header_check_mount(log->l_mp, head)))
471 		goto out;
472 
473 	/*
474 	 * We may have found a log record header before we expected one.
475 	 * last_blk will be the 1st block # with a given cycle #.  We may end
476 	 * up reading an entire log record.  In this case, we don't want to
477 	 * reset last_blk.  Only when last_blk points in the middle of a log
478 	 * record do we update last_blk.
479 	 */
480 	xhdrs = xlog_logrec_hblks(log, head);
481 
482 	if (*last_blk - i + extra_bblks !=
483 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
484 		*last_blk = i;
485 
486 out:
487 	kmem_free(buffer);
488 	return error;
489 }
490 
491 /*
492  * Head is defined to be the point of the log where the next log write
493  * could go.  This means that incomplete LR writes at the end are
494  * eliminated when calculating the head.  We aren't guaranteed that previous
495  * LR have complete transactions.  We only know that a cycle number of
496  * current cycle number -1 won't be present in the log if we start writing
497  * from our current block number.
498  *
499  * last_blk contains the block number of the first block with a given
500  * cycle number.
501  *
502  * Return: zero if normal, non-zero if error.
503  */
504 STATIC int
505 xlog_find_head(
506 	struct xlog	*log,
507 	xfs_daddr_t	*return_head_blk)
508 {
509 	char		*buffer;
510 	char		*offset;
511 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
512 	int		num_scan_bblks;
513 	uint		first_half_cycle, last_half_cycle;
514 	uint		stop_on_cycle;
515 	int		error, log_bbnum = log->l_logBBsize;
516 
517 	/* Is the end of the log device zeroed? */
518 	error = xlog_find_zeroed(log, &first_blk);
519 	if (error < 0) {
520 		xfs_warn(log->l_mp, "empty log check failed");
521 		return error;
522 	}
523 	if (error == 1) {
524 		*return_head_blk = first_blk;
525 
526 		/* Is the whole lot zeroed? */
527 		if (!first_blk) {
528 			/* Linux XFS shouldn't generate totally zeroed logs -
529 			 * mkfs etc write a dummy unmount record to a fresh
530 			 * log so we can store the uuid in there
531 			 */
532 			xfs_warn(log->l_mp, "totally zeroed log");
533 		}
534 
535 		return 0;
536 	}
537 
538 	first_blk = 0;			/* get cycle # of 1st block */
539 	buffer = xlog_alloc_buffer(log, 1);
540 	if (!buffer)
541 		return -ENOMEM;
542 
543 	error = xlog_bread(log, 0, 1, buffer, &offset);
544 	if (error)
545 		goto out_free_buffer;
546 
547 	first_half_cycle = xlog_get_cycle(offset);
548 
549 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
550 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
551 	if (error)
552 		goto out_free_buffer;
553 
554 	last_half_cycle = xlog_get_cycle(offset);
555 	ASSERT(last_half_cycle != 0);
556 
557 	/*
558 	 * If the 1st half cycle number is equal to the last half cycle number,
559 	 * then the entire log is stamped with the same cycle number.  In this
560 	 * case, head_blk can't be set to zero (which makes sense).  The below
561 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
562 	 * we set it to log_bbnum which is an invalid block number, but this
563 	 * value makes the math correct.  If head_blk doesn't changed through
564 	 * all the tests below, *head_blk is set to zero at the very end rather
565 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
566 	 * in a circular file.
567 	 */
568 	if (first_half_cycle == last_half_cycle) {
569 		/*
570 		 * In this case we believe that the entire log should have
571 		 * cycle number last_half_cycle.  We need to scan backwards
572 		 * from the end verifying that there are no holes still
573 		 * containing last_half_cycle - 1.  If we find such a hole,
574 		 * then the start of that hole will be the new head.  The
575 		 * simple case looks like
576 		 *        x | x ... | x - 1 | x
577 		 * Another case that fits this picture would be
578 		 *        x | x + 1 | x ... | x
579 		 * In this case the head really is somewhere at the end of the
580 		 * log, as one of the latest writes at the beginning was
581 		 * incomplete.
582 		 * One more case is
583 		 *        x | x + 1 | x ... | x - 1 | x
584 		 * This is really the combination of the above two cases, and
585 		 * the head has to end up at the start of the x-1 hole at the
586 		 * end of the log.
587 		 *
588 		 * In the 256k log case, we will read from the beginning to the
589 		 * end of the log and search for cycle numbers equal to x-1.
590 		 * We don't worry about the x+1 blocks that we encounter,
591 		 * because we know that they cannot be the head since the log
592 		 * started with x.
593 		 */
594 		head_blk = log_bbnum;
595 		stop_on_cycle = last_half_cycle - 1;
596 	} else {
597 		/*
598 		 * In this case we want to find the first block with cycle
599 		 * number matching last_half_cycle.  We expect the log to be
600 		 * some variation on
601 		 *        x + 1 ... | x ... | x
602 		 * The first block with cycle number x (last_half_cycle) will
603 		 * be where the new head belongs.  First we do a binary search
604 		 * for the first occurrence of last_half_cycle.  The binary
605 		 * search may not be totally accurate, so then we scan back
606 		 * from there looking for occurrences of last_half_cycle before
607 		 * us.  If that backwards scan wraps around the beginning of
608 		 * the log, then we look for occurrences of last_half_cycle - 1
609 		 * at the end of the log.  The cases we're looking for look
610 		 * like
611 		 *                               v binary search stopped here
612 		 *        x + 1 ... | x | x + 1 | x ... | x
613 		 *                   ^ but we want to locate this spot
614 		 * or
615 		 *        <---------> less than scan distance
616 		 *        x + 1 ... | x ... | x - 1 | x
617 		 *                           ^ we want to locate this spot
618 		 */
619 		stop_on_cycle = last_half_cycle;
620 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
621 				last_half_cycle);
622 		if (error)
623 			goto out_free_buffer;
624 	}
625 
626 	/*
627 	 * Now validate the answer.  Scan back some number of maximum possible
628 	 * blocks and make sure each one has the expected cycle number.  The
629 	 * maximum is determined by the total possible amount of buffering
630 	 * in the in-core log.  The following number can be made tighter if
631 	 * we actually look at the block size of the filesystem.
632 	 */
633 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
634 	if (head_blk >= num_scan_bblks) {
635 		/*
636 		 * We are guaranteed that the entire check can be performed
637 		 * in one buffer.
638 		 */
639 		start_blk = head_blk - num_scan_bblks;
640 		if ((error = xlog_find_verify_cycle(log,
641 						start_blk, num_scan_bblks,
642 						stop_on_cycle, &new_blk)))
643 			goto out_free_buffer;
644 		if (new_blk != -1)
645 			head_blk = new_blk;
646 	} else {		/* need to read 2 parts of log */
647 		/*
648 		 * We are going to scan backwards in the log in two parts.
649 		 * First we scan the physical end of the log.  In this part
650 		 * of the log, we are looking for blocks with cycle number
651 		 * last_half_cycle - 1.
652 		 * If we find one, then we know that the log starts there, as
653 		 * we've found a hole that didn't get written in going around
654 		 * the end of the physical log.  The simple case for this is
655 		 *        x + 1 ... | x ... | x - 1 | x
656 		 *        <---------> less than scan distance
657 		 * If all of the blocks at the end of the log have cycle number
658 		 * last_half_cycle, then we check the blocks at the start of
659 		 * the log looking for occurrences of last_half_cycle.  If we
660 		 * find one, then our current estimate for the location of the
661 		 * first occurrence of last_half_cycle is wrong and we move
662 		 * back to the hole we've found.  This case looks like
663 		 *        x + 1 ... | x | x + 1 | x ...
664 		 *                               ^ binary search stopped here
665 		 * Another case we need to handle that only occurs in 256k
666 		 * logs is
667 		 *        x + 1 ... | x ... | x+1 | x ...
668 		 *                   ^ binary search stops here
669 		 * In a 256k log, the scan at the end of the log will see the
670 		 * x + 1 blocks.  We need to skip past those since that is
671 		 * certainly not the head of the log.  By searching for
672 		 * last_half_cycle-1 we accomplish that.
673 		 */
674 		ASSERT(head_blk <= INT_MAX &&
675 			(xfs_daddr_t) num_scan_bblks >= head_blk);
676 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
677 		if ((error = xlog_find_verify_cycle(log, start_blk,
678 					num_scan_bblks - (int)head_blk,
679 					(stop_on_cycle - 1), &new_blk)))
680 			goto out_free_buffer;
681 		if (new_blk != -1) {
682 			head_blk = new_blk;
683 			goto validate_head;
684 		}
685 
686 		/*
687 		 * Scan beginning of log now.  The last part of the physical
688 		 * log is good.  This scan needs to verify that it doesn't find
689 		 * the last_half_cycle.
690 		 */
691 		start_blk = 0;
692 		ASSERT(head_blk <= INT_MAX);
693 		if ((error = xlog_find_verify_cycle(log,
694 					start_blk, (int)head_blk,
695 					stop_on_cycle, &new_blk)))
696 			goto out_free_buffer;
697 		if (new_blk != -1)
698 			head_blk = new_blk;
699 	}
700 
701 validate_head:
702 	/*
703 	 * Now we need to make sure head_blk is not pointing to a block in
704 	 * the middle of a log record.
705 	 */
706 	num_scan_bblks = XLOG_REC_SHIFT(log);
707 	if (head_blk >= num_scan_bblks) {
708 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
709 
710 		/* start ptr at last block ptr before head_blk */
711 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
712 		if (error == 1)
713 			error = -EIO;
714 		if (error)
715 			goto out_free_buffer;
716 	} else {
717 		start_blk = 0;
718 		ASSERT(head_blk <= INT_MAX);
719 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
720 		if (error < 0)
721 			goto out_free_buffer;
722 		if (error == 1) {
723 			/* We hit the beginning of the log during our search */
724 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
725 			new_blk = log_bbnum;
726 			ASSERT(start_blk <= INT_MAX &&
727 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
728 			ASSERT(head_blk <= INT_MAX);
729 			error = xlog_find_verify_log_record(log, start_blk,
730 							&new_blk, (int)head_blk);
731 			if (error == 1)
732 				error = -EIO;
733 			if (error)
734 				goto out_free_buffer;
735 			if (new_blk != log_bbnum)
736 				head_blk = new_blk;
737 		} else if (error)
738 			goto out_free_buffer;
739 	}
740 
741 	kmem_free(buffer);
742 	if (head_blk == log_bbnum)
743 		*return_head_blk = 0;
744 	else
745 		*return_head_blk = head_blk;
746 	/*
747 	 * When returning here, we have a good block number.  Bad block
748 	 * means that during a previous crash, we didn't have a clean break
749 	 * from cycle number N to cycle number N-1.  In this case, we need
750 	 * to find the first block with cycle number N-1.
751 	 */
752 	return 0;
753 
754 out_free_buffer:
755 	kmem_free(buffer);
756 	if (error)
757 		xfs_warn(log->l_mp, "failed to find log head");
758 	return error;
759 }
760 
761 /*
762  * Seek backwards in the log for log record headers.
763  *
764  * Given a starting log block, walk backwards until we find the provided number
765  * of records or hit the provided tail block. The return value is the number of
766  * records encountered or a negative error code. The log block and buffer
767  * pointer of the last record seen are returned in rblk and rhead respectively.
768  */
769 STATIC int
770 xlog_rseek_logrec_hdr(
771 	struct xlog		*log,
772 	xfs_daddr_t		head_blk,
773 	xfs_daddr_t		tail_blk,
774 	int			count,
775 	char			*buffer,
776 	xfs_daddr_t		*rblk,
777 	struct xlog_rec_header	**rhead,
778 	bool			*wrapped)
779 {
780 	int			i;
781 	int			error;
782 	int			found = 0;
783 	char			*offset = NULL;
784 	xfs_daddr_t		end_blk;
785 
786 	*wrapped = false;
787 
788 	/*
789 	 * Walk backwards from the head block until we hit the tail or the first
790 	 * block in the log.
791 	 */
792 	end_blk = head_blk > tail_blk ? tail_blk : 0;
793 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
794 		error = xlog_bread(log, i, 1, buffer, &offset);
795 		if (error)
796 			goto out_error;
797 
798 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
799 			*rblk = i;
800 			*rhead = (struct xlog_rec_header *) offset;
801 			if (++found == count)
802 				break;
803 		}
804 	}
805 
806 	/*
807 	 * If we haven't hit the tail block or the log record header count,
808 	 * start looking again from the end of the physical log. Note that
809 	 * callers can pass head == tail if the tail is not yet known.
810 	 */
811 	if (tail_blk >= head_blk && found != count) {
812 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
813 			error = xlog_bread(log, i, 1, buffer, &offset);
814 			if (error)
815 				goto out_error;
816 
817 			if (*(__be32 *)offset ==
818 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
819 				*wrapped = true;
820 				*rblk = i;
821 				*rhead = (struct xlog_rec_header *) offset;
822 				if (++found == count)
823 					break;
824 			}
825 		}
826 	}
827 
828 	return found;
829 
830 out_error:
831 	return error;
832 }
833 
834 /*
835  * Seek forward in the log for log record headers.
836  *
837  * Given head and tail blocks, walk forward from the tail block until we find
838  * the provided number of records or hit the head block. The return value is the
839  * number of records encountered or a negative error code. The log block and
840  * buffer pointer of the last record seen are returned in rblk and rhead
841  * respectively.
842  */
843 STATIC int
844 xlog_seek_logrec_hdr(
845 	struct xlog		*log,
846 	xfs_daddr_t		head_blk,
847 	xfs_daddr_t		tail_blk,
848 	int			count,
849 	char			*buffer,
850 	xfs_daddr_t		*rblk,
851 	struct xlog_rec_header	**rhead,
852 	bool			*wrapped)
853 {
854 	int			i;
855 	int			error;
856 	int			found = 0;
857 	char			*offset = NULL;
858 	xfs_daddr_t		end_blk;
859 
860 	*wrapped = false;
861 
862 	/*
863 	 * Walk forward from the tail block until we hit the head or the last
864 	 * block in the log.
865 	 */
866 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
867 	for (i = (int) tail_blk; i <= end_blk; i++) {
868 		error = xlog_bread(log, i, 1, buffer, &offset);
869 		if (error)
870 			goto out_error;
871 
872 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
873 			*rblk = i;
874 			*rhead = (struct xlog_rec_header *) offset;
875 			if (++found == count)
876 				break;
877 		}
878 	}
879 
880 	/*
881 	 * If we haven't hit the head block or the log record header count,
882 	 * start looking again from the start of the physical log.
883 	 */
884 	if (tail_blk > head_blk && found != count) {
885 		for (i = 0; i < (int) head_blk; i++) {
886 			error = xlog_bread(log, i, 1, buffer, &offset);
887 			if (error)
888 				goto out_error;
889 
890 			if (*(__be32 *)offset ==
891 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
892 				*wrapped = true;
893 				*rblk = i;
894 				*rhead = (struct xlog_rec_header *) offset;
895 				if (++found == count)
896 					break;
897 			}
898 		}
899 	}
900 
901 	return found;
902 
903 out_error:
904 	return error;
905 }
906 
907 /*
908  * Calculate distance from head to tail (i.e., unused space in the log).
909  */
910 static inline int
911 xlog_tail_distance(
912 	struct xlog	*log,
913 	xfs_daddr_t	head_blk,
914 	xfs_daddr_t	tail_blk)
915 {
916 	if (head_blk < tail_blk)
917 		return tail_blk - head_blk;
918 
919 	return tail_blk + (log->l_logBBsize - head_blk);
920 }
921 
922 /*
923  * Verify the log tail. This is particularly important when torn or incomplete
924  * writes have been detected near the front of the log and the head has been
925  * walked back accordingly.
926  *
927  * We also have to handle the case where the tail was pinned and the head
928  * blocked behind the tail right before a crash. If the tail had been pushed
929  * immediately prior to the crash and the subsequent checkpoint was only
930  * partially written, it's possible it overwrote the last referenced tail in the
931  * log with garbage. This is not a coherency problem because the tail must have
932  * been pushed before it can be overwritten, but appears as log corruption to
933  * recovery because we have no way to know the tail was updated if the
934  * subsequent checkpoint didn't write successfully.
935  *
936  * Therefore, CRC check the log from tail to head. If a failure occurs and the
937  * offending record is within max iclog bufs from the head, walk the tail
938  * forward and retry until a valid tail is found or corruption is detected out
939  * of the range of a possible overwrite.
940  */
941 STATIC int
942 xlog_verify_tail(
943 	struct xlog		*log,
944 	xfs_daddr_t		head_blk,
945 	xfs_daddr_t		*tail_blk,
946 	int			hsize)
947 {
948 	struct xlog_rec_header	*thead;
949 	char			*buffer;
950 	xfs_daddr_t		first_bad;
951 	int			error = 0;
952 	bool			wrapped;
953 	xfs_daddr_t		tmp_tail;
954 	xfs_daddr_t		orig_tail = *tail_blk;
955 
956 	buffer = xlog_alloc_buffer(log, 1);
957 	if (!buffer)
958 		return -ENOMEM;
959 
960 	/*
961 	 * Make sure the tail points to a record (returns positive count on
962 	 * success).
963 	 */
964 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
965 			&tmp_tail, &thead, &wrapped);
966 	if (error < 0)
967 		goto out;
968 	if (*tail_blk != tmp_tail)
969 		*tail_blk = tmp_tail;
970 
971 	/*
972 	 * Run a CRC check from the tail to the head. We can't just check
973 	 * MAX_ICLOGS records past the tail because the tail may point to stale
974 	 * blocks cleared during the search for the head/tail. These blocks are
975 	 * overwritten with zero-length records and thus record count is not a
976 	 * reliable indicator of the iclog state before a crash.
977 	 */
978 	first_bad = 0;
979 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
980 				      XLOG_RECOVER_CRCPASS, &first_bad);
981 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
982 		int	tail_distance;
983 
984 		/*
985 		 * Is corruption within range of the head? If so, retry from
986 		 * the next record. Otherwise return an error.
987 		 */
988 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
989 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
990 			break;
991 
992 		/* skip to the next record; returns positive count on success */
993 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
994 				buffer, &tmp_tail, &thead, &wrapped);
995 		if (error < 0)
996 			goto out;
997 
998 		*tail_blk = tmp_tail;
999 		first_bad = 0;
1000 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1001 					      XLOG_RECOVER_CRCPASS, &first_bad);
1002 	}
1003 
1004 	if (!error && *tail_blk != orig_tail)
1005 		xfs_warn(log->l_mp,
1006 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1007 			 orig_tail, *tail_blk);
1008 out:
1009 	kmem_free(buffer);
1010 	return error;
1011 }
1012 
1013 /*
1014  * Detect and trim torn writes from the head of the log.
1015  *
1016  * Storage without sector atomicity guarantees can result in torn writes in the
1017  * log in the event of a crash. Our only means to detect this scenario is via
1018  * CRC verification. While we can't always be certain that CRC verification
1019  * failure is due to a torn write vs. an unrelated corruption, we do know that
1020  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1021  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1022  * the log and treat failures in this range as torn writes as a matter of
1023  * policy. In the event of CRC failure, the head is walked back to the last good
1024  * record in the log and the tail is updated from that record and verified.
1025  */
1026 STATIC int
1027 xlog_verify_head(
1028 	struct xlog		*log,
1029 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1030 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1031 	char			*buffer,
1032 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1033 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1034 	bool			*wrapped)	/* last rec. wraps phys. log */
1035 {
1036 	struct xlog_rec_header	*tmp_rhead;
1037 	char			*tmp_buffer;
1038 	xfs_daddr_t		first_bad;
1039 	xfs_daddr_t		tmp_rhead_blk;
1040 	int			found;
1041 	int			error;
1042 	bool			tmp_wrapped;
1043 
1044 	/*
1045 	 * Check the head of the log for torn writes. Search backwards from the
1046 	 * head until we hit the tail or the maximum number of log record I/Os
1047 	 * that could have been in flight at one time. Use a temporary buffer so
1048 	 * we don't trash the rhead/buffer pointers from the caller.
1049 	 */
1050 	tmp_buffer = xlog_alloc_buffer(log, 1);
1051 	if (!tmp_buffer)
1052 		return -ENOMEM;
1053 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1054 				      XLOG_MAX_ICLOGS, tmp_buffer,
1055 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1056 	kmem_free(tmp_buffer);
1057 	if (error < 0)
1058 		return error;
1059 
1060 	/*
1061 	 * Now run a CRC verification pass over the records starting at the
1062 	 * block found above to the current head. If a CRC failure occurs, the
1063 	 * log block of the first bad record is saved in first_bad.
1064 	 */
1065 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1066 				      XLOG_RECOVER_CRCPASS, &first_bad);
1067 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1068 		/*
1069 		 * We've hit a potential torn write. Reset the error and warn
1070 		 * about it.
1071 		 */
1072 		error = 0;
1073 		xfs_warn(log->l_mp,
1074 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1075 			 first_bad, *head_blk);
1076 
1077 		/*
1078 		 * Get the header block and buffer pointer for the last good
1079 		 * record before the bad record.
1080 		 *
1081 		 * Note that xlog_find_tail() clears the blocks at the new head
1082 		 * (i.e., the records with invalid CRC) if the cycle number
1083 		 * matches the current cycle.
1084 		 */
1085 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1086 				buffer, rhead_blk, rhead, wrapped);
1087 		if (found < 0)
1088 			return found;
1089 		if (found == 0)		/* XXX: right thing to do here? */
1090 			return -EIO;
1091 
1092 		/*
1093 		 * Reset the head block to the starting block of the first bad
1094 		 * log record and set the tail block based on the last good
1095 		 * record.
1096 		 *
1097 		 * Bail out if the updated head/tail match as this indicates
1098 		 * possible corruption outside of the acceptable
1099 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1100 		 */
1101 		*head_blk = first_bad;
1102 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1103 		if (*head_blk == *tail_blk) {
1104 			ASSERT(0);
1105 			return 0;
1106 		}
1107 	}
1108 	if (error)
1109 		return error;
1110 
1111 	return xlog_verify_tail(log, *head_blk, tail_blk,
1112 				be32_to_cpu((*rhead)->h_size));
1113 }
1114 
1115 /*
1116  * We need to make sure we handle log wrapping properly, so we can't use the
1117  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1118  * log.
1119  *
1120  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1121  * operation here and cast it back to a 64 bit daddr on return.
1122  */
1123 static inline xfs_daddr_t
1124 xlog_wrap_logbno(
1125 	struct xlog		*log,
1126 	xfs_daddr_t		bno)
1127 {
1128 	int			mod;
1129 
1130 	div_s64_rem(bno, log->l_logBBsize, &mod);
1131 	return mod;
1132 }
1133 
1134 /*
1135  * Check whether the head of the log points to an unmount record. In other
1136  * words, determine whether the log is clean. If so, update the in-core state
1137  * appropriately.
1138  */
1139 static int
1140 xlog_check_unmount_rec(
1141 	struct xlog		*log,
1142 	xfs_daddr_t		*head_blk,
1143 	xfs_daddr_t		*tail_blk,
1144 	struct xlog_rec_header	*rhead,
1145 	xfs_daddr_t		rhead_blk,
1146 	char			*buffer,
1147 	bool			*clean)
1148 {
1149 	struct xlog_op_header	*op_head;
1150 	xfs_daddr_t		umount_data_blk;
1151 	xfs_daddr_t		after_umount_blk;
1152 	int			hblks;
1153 	int			error;
1154 	char			*offset;
1155 
1156 	*clean = false;
1157 
1158 	/*
1159 	 * Look for unmount record. If we find it, then we know there was a
1160 	 * clean unmount. Since 'i' could be the last block in the physical
1161 	 * log, we convert to a log block before comparing to the head_blk.
1162 	 *
1163 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1164 	 * below. We won't want to clear the unmount record if there is one, so
1165 	 * we pass the lsn of the unmount record rather than the block after it.
1166 	 */
1167 	hblks = xlog_logrec_hblks(log, rhead);
1168 	after_umount_blk = xlog_wrap_logbno(log,
1169 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1170 
1171 	if (*head_blk == after_umount_blk &&
1172 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1173 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1174 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1175 		if (error)
1176 			return error;
1177 
1178 		op_head = (struct xlog_op_header *)offset;
1179 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1180 			/*
1181 			 * Set tail and last sync so that newly written log
1182 			 * records will point recovery to after the current
1183 			 * unmount record.
1184 			 */
1185 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1186 					log->l_curr_cycle, after_umount_blk);
1187 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1188 					log->l_curr_cycle, after_umount_blk);
1189 			*tail_blk = after_umount_blk;
1190 
1191 			*clean = true;
1192 		}
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static void
1199 xlog_set_state(
1200 	struct xlog		*log,
1201 	xfs_daddr_t		head_blk,
1202 	struct xlog_rec_header	*rhead,
1203 	xfs_daddr_t		rhead_blk,
1204 	bool			bump_cycle)
1205 {
1206 	/*
1207 	 * Reset log values according to the state of the log when we
1208 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1209 	 * one because the next write starts a new cycle rather than
1210 	 * continuing the cycle of the last good log record.  At this
1211 	 * point we have guaranteed that all partial log records have been
1212 	 * accounted for.  Therefore, we know that the last good log record
1213 	 * written was complete and ended exactly on the end boundary
1214 	 * of the physical log.
1215 	 */
1216 	log->l_prev_block = rhead_blk;
1217 	log->l_curr_block = (int)head_blk;
1218 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1219 	if (bump_cycle)
1220 		log->l_curr_cycle++;
1221 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1222 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1223 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1224 					BBTOB(log->l_curr_block));
1225 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1226 					BBTOB(log->l_curr_block));
1227 }
1228 
1229 /*
1230  * Find the sync block number or the tail of the log.
1231  *
1232  * This will be the block number of the last record to have its
1233  * associated buffers synced to disk.  Every log record header has
1234  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1235  * to get a sync block number.  The only concern is to figure out which
1236  * log record header to believe.
1237  *
1238  * The following algorithm uses the log record header with the largest
1239  * lsn.  The entire log record does not need to be valid.  We only care
1240  * that the header is valid.
1241  *
1242  * We could speed up search by using current head_blk buffer, but it is not
1243  * available.
1244  */
1245 STATIC int
1246 xlog_find_tail(
1247 	struct xlog		*log,
1248 	xfs_daddr_t		*head_blk,
1249 	xfs_daddr_t		*tail_blk)
1250 {
1251 	xlog_rec_header_t	*rhead;
1252 	char			*offset = NULL;
1253 	char			*buffer;
1254 	int			error;
1255 	xfs_daddr_t		rhead_blk;
1256 	xfs_lsn_t		tail_lsn;
1257 	bool			wrapped = false;
1258 	bool			clean = false;
1259 
1260 	/*
1261 	 * Find previous log record
1262 	 */
1263 	if ((error = xlog_find_head(log, head_blk)))
1264 		return error;
1265 	ASSERT(*head_blk < INT_MAX);
1266 
1267 	buffer = xlog_alloc_buffer(log, 1);
1268 	if (!buffer)
1269 		return -ENOMEM;
1270 	if (*head_blk == 0) {				/* special case */
1271 		error = xlog_bread(log, 0, 1, buffer, &offset);
1272 		if (error)
1273 			goto done;
1274 
1275 		if (xlog_get_cycle(offset) == 0) {
1276 			*tail_blk = 0;
1277 			/* leave all other log inited values alone */
1278 			goto done;
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Search backwards through the log looking for the log record header
1284 	 * block. This wraps all the way back around to the head so something is
1285 	 * seriously wrong if we can't find it.
1286 	 */
1287 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1288 				      &rhead_blk, &rhead, &wrapped);
1289 	if (error < 0)
1290 		goto done;
1291 	if (!error) {
1292 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1293 		error = -EFSCORRUPTED;
1294 		goto done;
1295 	}
1296 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1297 
1298 	/*
1299 	 * Set the log state based on the current head record.
1300 	 */
1301 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1302 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1303 
1304 	/*
1305 	 * Look for an unmount record at the head of the log. This sets the log
1306 	 * state to determine whether recovery is necessary.
1307 	 */
1308 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1309 				       rhead_blk, buffer, &clean);
1310 	if (error)
1311 		goto done;
1312 
1313 	/*
1314 	 * Verify the log head if the log is not clean (e.g., we have anything
1315 	 * but an unmount record at the head). This uses CRC verification to
1316 	 * detect and trim torn writes. If discovered, CRC failures are
1317 	 * considered torn writes and the log head is trimmed accordingly.
1318 	 *
1319 	 * Note that we can only run CRC verification when the log is dirty
1320 	 * because there's no guarantee that the log data behind an unmount
1321 	 * record is compatible with the current architecture.
1322 	 */
1323 	if (!clean) {
1324 		xfs_daddr_t	orig_head = *head_blk;
1325 
1326 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1327 					 &rhead_blk, &rhead, &wrapped);
1328 		if (error)
1329 			goto done;
1330 
1331 		/* update in-core state again if the head changed */
1332 		if (*head_blk != orig_head) {
1333 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1334 				       wrapped);
1335 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1336 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1337 						       rhead, rhead_blk, buffer,
1338 						       &clean);
1339 			if (error)
1340 				goto done;
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * Note that the unmount was clean. If the unmount was not clean, we
1346 	 * need to know this to rebuild the superblock counters from the perag
1347 	 * headers if we have a filesystem using non-persistent counters.
1348 	 */
1349 	if (clean)
1350 		set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
1351 
1352 	/*
1353 	 * Make sure that there are no blocks in front of the head
1354 	 * with the same cycle number as the head.  This can happen
1355 	 * because we allow multiple outstanding log writes concurrently,
1356 	 * and the later writes might make it out before earlier ones.
1357 	 *
1358 	 * We use the lsn from before modifying it so that we'll never
1359 	 * overwrite the unmount record after a clean unmount.
1360 	 *
1361 	 * Do this only if we are going to recover the filesystem
1362 	 *
1363 	 * NOTE: This used to say "if (!readonly)"
1364 	 * However on Linux, we can & do recover a read-only filesystem.
1365 	 * We only skip recovery if NORECOVERY is specified on mount,
1366 	 * in which case we would not be here.
1367 	 *
1368 	 * But... if the -device- itself is readonly, just skip this.
1369 	 * We can't recover this device anyway, so it won't matter.
1370 	 */
1371 	if (!xfs_readonly_buftarg(log->l_targ))
1372 		error = xlog_clear_stale_blocks(log, tail_lsn);
1373 
1374 done:
1375 	kmem_free(buffer);
1376 
1377 	if (error)
1378 		xfs_warn(log->l_mp, "failed to locate log tail");
1379 	return error;
1380 }
1381 
1382 /*
1383  * Is the log zeroed at all?
1384  *
1385  * The last binary search should be changed to perform an X block read
1386  * once X becomes small enough.  You can then search linearly through
1387  * the X blocks.  This will cut down on the number of reads we need to do.
1388  *
1389  * If the log is partially zeroed, this routine will pass back the blkno
1390  * of the first block with cycle number 0.  It won't have a complete LR
1391  * preceding it.
1392  *
1393  * Return:
1394  *	0  => the log is completely written to
1395  *	1 => use *blk_no as the first block of the log
1396  *	<0 => error has occurred
1397  */
1398 STATIC int
1399 xlog_find_zeroed(
1400 	struct xlog	*log,
1401 	xfs_daddr_t	*blk_no)
1402 {
1403 	char		*buffer;
1404 	char		*offset;
1405 	uint	        first_cycle, last_cycle;
1406 	xfs_daddr_t	new_blk, last_blk, start_blk;
1407 	xfs_daddr_t     num_scan_bblks;
1408 	int	        error, log_bbnum = log->l_logBBsize;
1409 
1410 	*blk_no = 0;
1411 
1412 	/* check totally zeroed log */
1413 	buffer = xlog_alloc_buffer(log, 1);
1414 	if (!buffer)
1415 		return -ENOMEM;
1416 	error = xlog_bread(log, 0, 1, buffer, &offset);
1417 	if (error)
1418 		goto out_free_buffer;
1419 
1420 	first_cycle = xlog_get_cycle(offset);
1421 	if (first_cycle == 0) {		/* completely zeroed log */
1422 		*blk_no = 0;
1423 		kmem_free(buffer);
1424 		return 1;
1425 	}
1426 
1427 	/* check partially zeroed log */
1428 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1429 	if (error)
1430 		goto out_free_buffer;
1431 
1432 	last_cycle = xlog_get_cycle(offset);
1433 	if (last_cycle != 0) {		/* log completely written to */
1434 		kmem_free(buffer);
1435 		return 0;
1436 	}
1437 
1438 	/* we have a partially zeroed log */
1439 	last_blk = log_bbnum-1;
1440 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1441 	if (error)
1442 		goto out_free_buffer;
1443 
1444 	/*
1445 	 * Validate the answer.  Because there is no way to guarantee that
1446 	 * the entire log is made up of log records which are the same size,
1447 	 * we scan over the defined maximum blocks.  At this point, the maximum
1448 	 * is not chosen to mean anything special.   XXXmiken
1449 	 */
1450 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1451 	ASSERT(num_scan_bblks <= INT_MAX);
1452 
1453 	if (last_blk < num_scan_bblks)
1454 		num_scan_bblks = last_blk;
1455 	start_blk = last_blk - num_scan_bblks;
1456 
1457 	/*
1458 	 * We search for any instances of cycle number 0 that occur before
1459 	 * our current estimate of the head.  What we're trying to detect is
1460 	 *        1 ... | 0 | 1 | 0...
1461 	 *                       ^ binary search ends here
1462 	 */
1463 	if ((error = xlog_find_verify_cycle(log, start_blk,
1464 					 (int)num_scan_bblks, 0, &new_blk)))
1465 		goto out_free_buffer;
1466 	if (new_blk != -1)
1467 		last_blk = new_blk;
1468 
1469 	/*
1470 	 * Potentially backup over partial log record write.  We don't need
1471 	 * to search the end of the log because we know it is zero.
1472 	 */
1473 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1474 	if (error == 1)
1475 		error = -EIO;
1476 	if (error)
1477 		goto out_free_buffer;
1478 
1479 	*blk_no = last_blk;
1480 out_free_buffer:
1481 	kmem_free(buffer);
1482 	if (error)
1483 		return error;
1484 	return 1;
1485 }
1486 
1487 /*
1488  * These are simple subroutines used by xlog_clear_stale_blocks() below
1489  * to initialize a buffer full of empty log record headers and write
1490  * them into the log.
1491  */
1492 STATIC void
1493 xlog_add_record(
1494 	struct xlog		*log,
1495 	char			*buf,
1496 	int			cycle,
1497 	int			block,
1498 	int			tail_cycle,
1499 	int			tail_block)
1500 {
1501 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1502 
1503 	memset(buf, 0, BBSIZE);
1504 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1505 	recp->h_cycle = cpu_to_be32(cycle);
1506 	recp->h_version = cpu_to_be32(
1507 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1508 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1509 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1510 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1511 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1512 }
1513 
1514 STATIC int
1515 xlog_write_log_records(
1516 	struct xlog	*log,
1517 	int		cycle,
1518 	int		start_block,
1519 	int		blocks,
1520 	int		tail_cycle,
1521 	int		tail_block)
1522 {
1523 	char		*offset;
1524 	char		*buffer;
1525 	int		balign, ealign;
1526 	int		sectbb = log->l_sectBBsize;
1527 	int		end_block = start_block + blocks;
1528 	int		bufblks;
1529 	int		error = 0;
1530 	int		i, j = 0;
1531 
1532 	/*
1533 	 * Greedily allocate a buffer big enough to handle the full
1534 	 * range of basic blocks to be written.  If that fails, try
1535 	 * a smaller size.  We need to be able to write at least a
1536 	 * log sector, or we're out of luck.
1537 	 */
1538 	bufblks = 1 << ffs(blocks);
1539 	while (bufblks > log->l_logBBsize)
1540 		bufblks >>= 1;
1541 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1542 		bufblks >>= 1;
1543 		if (bufblks < sectbb)
1544 			return -ENOMEM;
1545 	}
1546 
1547 	/* We may need to do a read at the start to fill in part of
1548 	 * the buffer in the starting sector not covered by the first
1549 	 * write below.
1550 	 */
1551 	balign = round_down(start_block, sectbb);
1552 	if (balign != start_block) {
1553 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1554 		if (error)
1555 			goto out_free_buffer;
1556 
1557 		j = start_block - balign;
1558 	}
1559 
1560 	for (i = start_block; i < end_block; i += bufblks) {
1561 		int		bcount, endcount;
1562 
1563 		bcount = min(bufblks, end_block - start_block);
1564 		endcount = bcount - j;
1565 
1566 		/* We may need to do a read at the end to fill in part of
1567 		 * the buffer in the final sector not covered by the write.
1568 		 * If this is the same sector as the above read, skip it.
1569 		 */
1570 		ealign = round_down(end_block, sectbb);
1571 		if (j == 0 && (start_block + endcount > ealign)) {
1572 			error = xlog_bread_noalign(log, ealign, sectbb,
1573 					buffer + BBTOB(ealign - start_block));
1574 			if (error)
1575 				break;
1576 
1577 		}
1578 
1579 		offset = buffer + xlog_align(log, start_block);
1580 		for (; j < endcount; j++) {
1581 			xlog_add_record(log, offset, cycle, i+j,
1582 					tail_cycle, tail_block);
1583 			offset += BBSIZE;
1584 		}
1585 		error = xlog_bwrite(log, start_block, endcount, buffer);
1586 		if (error)
1587 			break;
1588 		start_block += endcount;
1589 		j = 0;
1590 	}
1591 
1592 out_free_buffer:
1593 	kmem_free(buffer);
1594 	return error;
1595 }
1596 
1597 /*
1598  * This routine is called to blow away any incomplete log writes out
1599  * in front of the log head.  We do this so that we won't become confused
1600  * if we come up, write only a little bit more, and then crash again.
1601  * If we leave the partial log records out there, this situation could
1602  * cause us to think those partial writes are valid blocks since they
1603  * have the current cycle number.  We get rid of them by overwriting them
1604  * with empty log records with the old cycle number rather than the
1605  * current one.
1606  *
1607  * The tail lsn is passed in rather than taken from
1608  * the log so that we will not write over the unmount record after a
1609  * clean unmount in a 512 block log.  Doing so would leave the log without
1610  * any valid log records in it until a new one was written.  If we crashed
1611  * during that time we would not be able to recover.
1612  */
1613 STATIC int
1614 xlog_clear_stale_blocks(
1615 	struct xlog	*log,
1616 	xfs_lsn_t	tail_lsn)
1617 {
1618 	int		tail_cycle, head_cycle;
1619 	int		tail_block, head_block;
1620 	int		tail_distance, max_distance;
1621 	int		distance;
1622 	int		error;
1623 
1624 	tail_cycle = CYCLE_LSN(tail_lsn);
1625 	tail_block = BLOCK_LSN(tail_lsn);
1626 	head_cycle = log->l_curr_cycle;
1627 	head_block = log->l_curr_block;
1628 
1629 	/*
1630 	 * Figure out the distance between the new head of the log
1631 	 * and the tail.  We want to write over any blocks beyond the
1632 	 * head that we may have written just before the crash, but
1633 	 * we don't want to overwrite the tail of the log.
1634 	 */
1635 	if (head_cycle == tail_cycle) {
1636 		/*
1637 		 * The tail is behind the head in the physical log,
1638 		 * so the distance from the head to the tail is the
1639 		 * distance from the head to the end of the log plus
1640 		 * the distance from the beginning of the log to the
1641 		 * tail.
1642 		 */
1643 		if (XFS_IS_CORRUPT(log->l_mp,
1644 				   head_block < tail_block ||
1645 				   head_block >= log->l_logBBsize))
1646 			return -EFSCORRUPTED;
1647 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1648 	} else {
1649 		/*
1650 		 * The head is behind the tail in the physical log,
1651 		 * so the distance from the head to the tail is just
1652 		 * the tail block minus the head block.
1653 		 */
1654 		if (XFS_IS_CORRUPT(log->l_mp,
1655 				   head_block >= tail_block ||
1656 				   head_cycle != tail_cycle + 1))
1657 			return -EFSCORRUPTED;
1658 		tail_distance = tail_block - head_block;
1659 	}
1660 
1661 	/*
1662 	 * If the head is right up against the tail, we can't clear
1663 	 * anything.
1664 	 */
1665 	if (tail_distance <= 0) {
1666 		ASSERT(tail_distance == 0);
1667 		return 0;
1668 	}
1669 
1670 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1671 	/*
1672 	 * Take the smaller of the maximum amount of outstanding I/O
1673 	 * we could have and the distance to the tail to clear out.
1674 	 * We take the smaller so that we don't overwrite the tail and
1675 	 * we don't waste all day writing from the head to the tail
1676 	 * for no reason.
1677 	 */
1678 	max_distance = min(max_distance, tail_distance);
1679 
1680 	if ((head_block + max_distance) <= log->l_logBBsize) {
1681 		/*
1682 		 * We can stomp all the blocks we need to without
1683 		 * wrapping around the end of the log.  Just do it
1684 		 * in a single write.  Use the cycle number of the
1685 		 * current cycle minus one so that the log will look like:
1686 		 *     n ... | n - 1 ...
1687 		 */
1688 		error = xlog_write_log_records(log, (head_cycle - 1),
1689 				head_block, max_distance, tail_cycle,
1690 				tail_block);
1691 		if (error)
1692 			return error;
1693 	} else {
1694 		/*
1695 		 * We need to wrap around the end of the physical log in
1696 		 * order to clear all the blocks.  Do it in two separate
1697 		 * I/Os.  The first write should be from the head to the
1698 		 * end of the physical log, and it should use the current
1699 		 * cycle number minus one just like above.
1700 		 */
1701 		distance = log->l_logBBsize - head_block;
1702 		error = xlog_write_log_records(log, (head_cycle - 1),
1703 				head_block, distance, tail_cycle,
1704 				tail_block);
1705 
1706 		if (error)
1707 			return error;
1708 
1709 		/*
1710 		 * Now write the blocks at the start of the physical log.
1711 		 * This writes the remainder of the blocks we want to clear.
1712 		 * It uses the current cycle number since we're now on the
1713 		 * same cycle as the head so that we get:
1714 		 *    n ... n ... | n - 1 ...
1715 		 *    ^^^^^ blocks we're writing
1716 		 */
1717 		distance = max_distance - (log->l_logBBsize - head_block);
1718 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1719 				tail_cycle, tail_block);
1720 		if (error)
1721 			return error;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Release the recovered intent item in the AIL that matches the given intent
1729  * type and intent id.
1730  */
1731 void
1732 xlog_recover_release_intent(
1733 	struct xlog		*log,
1734 	unsigned short		intent_type,
1735 	uint64_t		intent_id)
1736 {
1737 	struct xfs_ail_cursor	cur;
1738 	struct xfs_log_item	*lip;
1739 	struct xfs_ail		*ailp = log->l_ailp;
1740 
1741 	spin_lock(&ailp->ail_lock);
1742 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1743 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1744 		if (lip->li_type != intent_type)
1745 			continue;
1746 		if (!lip->li_ops->iop_match(lip, intent_id))
1747 			continue;
1748 
1749 		spin_unlock(&ailp->ail_lock);
1750 		lip->li_ops->iop_release(lip);
1751 		spin_lock(&ailp->ail_lock);
1752 		break;
1753 	}
1754 
1755 	xfs_trans_ail_cursor_done(&cur);
1756 	spin_unlock(&ailp->ail_lock);
1757 }
1758 
1759 int
1760 xlog_recover_iget(
1761 	struct xfs_mount	*mp,
1762 	xfs_ino_t		ino,
1763 	struct xfs_inode	**ipp)
1764 {
1765 	int			error;
1766 
1767 	error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1768 	if (error)
1769 		return error;
1770 
1771 	error = xfs_qm_dqattach(*ipp);
1772 	if (error) {
1773 		xfs_irele(*ipp);
1774 		return error;
1775 	}
1776 
1777 	if (VFS_I(*ipp)->i_nlink == 0)
1778 		xfs_iflags_set(*ipp, XFS_IRECOVERY);
1779 
1780 	return 0;
1781 }
1782 
1783 /******************************************************************************
1784  *
1785  *		Log recover routines
1786  *
1787  ******************************************************************************
1788  */
1789 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1790 	&xlog_buf_item_ops,
1791 	&xlog_inode_item_ops,
1792 	&xlog_dquot_item_ops,
1793 	&xlog_quotaoff_item_ops,
1794 	&xlog_icreate_item_ops,
1795 	&xlog_efi_item_ops,
1796 	&xlog_efd_item_ops,
1797 	&xlog_rui_item_ops,
1798 	&xlog_rud_item_ops,
1799 	&xlog_cui_item_ops,
1800 	&xlog_cud_item_ops,
1801 	&xlog_bui_item_ops,
1802 	&xlog_bud_item_ops,
1803 };
1804 
1805 static const struct xlog_recover_item_ops *
1806 xlog_find_item_ops(
1807 	struct xlog_recover_item		*item)
1808 {
1809 	unsigned int				i;
1810 
1811 	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1812 		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1813 			return xlog_recover_item_ops[i];
1814 
1815 	return NULL;
1816 }
1817 
1818 /*
1819  * Sort the log items in the transaction.
1820  *
1821  * The ordering constraints are defined by the inode allocation and unlink
1822  * behaviour. The rules are:
1823  *
1824  *	1. Every item is only logged once in a given transaction. Hence it
1825  *	   represents the last logged state of the item. Hence ordering is
1826  *	   dependent on the order in which operations need to be performed so
1827  *	   required initial conditions are always met.
1828  *
1829  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1830  *	   there's nothing to replay from them so we can simply cull them
1831  *	   from the transaction. However, we can't do that until after we've
1832  *	   replayed all the other items because they may be dependent on the
1833  *	   cancelled buffer and replaying the cancelled buffer can remove it
1834  *	   form the cancelled buffer table. Hence they have tobe done last.
1835  *
1836  *	3. Inode allocation buffers must be replayed before inode items that
1837  *	   read the buffer and replay changes into it. For filesystems using the
1838  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1839  *	   treated the same as inode allocation buffers as they create and
1840  *	   initialise the buffers directly.
1841  *
1842  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1843  *	   This ensures that inodes are completely flushed to the inode buffer
1844  *	   in a "free" state before we remove the unlinked inode list pointer.
1845  *
1846  * Hence the ordering needs to be inode allocation buffers first, inode items
1847  * second, inode unlink buffers third and cancelled buffers last.
1848  *
1849  * But there's a problem with that - we can't tell an inode allocation buffer
1850  * apart from a regular buffer, so we can't separate them. We can, however,
1851  * tell an inode unlink buffer from the others, and so we can separate them out
1852  * from all the other buffers and move them to last.
1853  *
1854  * Hence, 4 lists, in order from head to tail:
1855  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1856  *	- item_list for all non-buffer items
1857  *	- inode_buffer_list for inode unlink buffers
1858  *	- cancel_list for the cancelled buffers
1859  *
1860  * Note that we add objects to the tail of the lists so that first-to-last
1861  * ordering is preserved within the lists. Adding objects to the head of the
1862  * list means when we traverse from the head we walk them in last-to-first
1863  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1864  * but for all other items there may be specific ordering that we need to
1865  * preserve.
1866  */
1867 STATIC int
1868 xlog_recover_reorder_trans(
1869 	struct xlog		*log,
1870 	struct xlog_recover	*trans,
1871 	int			pass)
1872 {
1873 	struct xlog_recover_item *item, *n;
1874 	int			error = 0;
1875 	LIST_HEAD(sort_list);
1876 	LIST_HEAD(cancel_list);
1877 	LIST_HEAD(buffer_list);
1878 	LIST_HEAD(inode_buffer_list);
1879 	LIST_HEAD(item_list);
1880 
1881 	list_splice_init(&trans->r_itemq, &sort_list);
1882 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1883 		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1884 
1885 		item->ri_ops = xlog_find_item_ops(item);
1886 		if (!item->ri_ops) {
1887 			xfs_warn(log->l_mp,
1888 				"%s: unrecognized type of log operation (%d)",
1889 				__func__, ITEM_TYPE(item));
1890 			ASSERT(0);
1891 			/*
1892 			 * return the remaining items back to the transaction
1893 			 * item list so they can be freed in caller.
1894 			 */
1895 			if (!list_empty(&sort_list))
1896 				list_splice_init(&sort_list, &trans->r_itemq);
1897 			error = -EFSCORRUPTED;
1898 			break;
1899 		}
1900 
1901 		if (item->ri_ops->reorder)
1902 			fate = item->ri_ops->reorder(item);
1903 
1904 		switch (fate) {
1905 		case XLOG_REORDER_BUFFER_LIST:
1906 			list_move_tail(&item->ri_list, &buffer_list);
1907 			break;
1908 		case XLOG_REORDER_CANCEL_LIST:
1909 			trace_xfs_log_recover_item_reorder_head(log,
1910 					trans, item, pass);
1911 			list_move(&item->ri_list, &cancel_list);
1912 			break;
1913 		case XLOG_REORDER_INODE_BUFFER_LIST:
1914 			list_move(&item->ri_list, &inode_buffer_list);
1915 			break;
1916 		case XLOG_REORDER_ITEM_LIST:
1917 			trace_xfs_log_recover_item_reorder_tail(log,
1918 							trans, item, pass);
1919 			list_move_tail(&item->ri_list, &item_list);
1920 			break;
1921 		}
1922 	}
1923 
1924 	ASSERT(list_empty(&sort_list));
1925 	if (!list_empty(&buffer_list))
1926 		list_splice(&buffer_list, &trans->r_itemq);
1927 	if (!list_empty(&item_list))
1928 		list_splice_tail(&item_list, &trans->r_itemq);
1929 	if (!list_empty(&inode_buffer_list))
1930 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1931 	if (!list_empty(&cancel_list))
1932 		list_splice_tail(&cancel_list, &trans->r_itemq);
1933 	return error;
1934 }
1935 
1936 void
1937 xlog_buf_readahead(
1938 	struct xlog		*log,
1939 	xfs_daddr_t		blkno,
1940 	uint			len,
1941 	const struct xfs_buf_ops *ops)
1942 {
1943 	if (!xlog_is_buffer_cancelled(log, blkno, len))
1944 		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1945 }
1946 
1947 STATIC int
1948 xlog_recover_items_pass2(
1949 	struct xlog                     *log,
1950 	struct xlog_recover             *trans,
1951 	struct list_head                *buffer_list,
1952 	struct list_head                *item_list)
1953 {
1954 	struct xlog_recover_item	*item;
1955 	int				error = 0;
1956 
1957 	list_for_each_entry(item, item_list, ri_list) {
1958 		trace_xfs_log_recover_item_recover(log, trans, item,
1959 				XLOG_RECOVER_PASS2);
1960 
1961 		if (item->ri_ops->commit_pass2)
1962 			error = item->ri_ops->commit_pass2(log, buffer_list,
1963 					item, trans->r_lsn);
1964 		if (error)
1965 			return error;
1966 	}
1967 
1968 	return error;
1969 }
1970 
1971 /*
1972  * Perform the transaction.
1973  *
1974  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1975  * EFIs and EFDs get queued up by adding entries into the AIL for them.
1976  */
1977 STATIC int
1978 xlog_recover_commit_trans(
1979 	struct xlog		*log,
1980 	struct xlog_recover	*trans,
1981 	int			pass,
1982 	struct list_head	*buffer_list)
1983 {
1984 	int				error = 0;
1985 	int				items_queued = 0;
1986 	struct xlog_recover_item	*item;
1987 	struct xlog_recover_item	*next;
1988 	LIST_HEAD			(ra_list);
1989 	LIST_HEAD			(done_list);
1990 
1991 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1992 
1993 	hlist_del_init(&trans->r_list);
1994 
1995 	error = xlog_recover_reorder_trans(log, trans, pass);
1996 	if (error)
1997 		return error;
1998 
1999 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2000 		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2001 
2002 		switch (pass) {
2003 		case XLOG_RECOVER_PASS1:
2004 			if (item->ri_ops->commit_pass1)
2005 				error = item->ri_ops->commit_pass1(log, item);
2006 			break;
2007 		case XLOG_RECOVER_PASS2:
2008 			if (item->ri_ops->ra_pass2)
2009 				item->ri_ops->ra_pass2(log, item);
2010 			list_move_tail(&item->ri_list, &ra_list);
2011 			items_queued++;
2012 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2013 				error = xlog_recover_items_pass2(log, trans,
2014 						buffer_list, &ra_list);
2015 				list_splice_tail_init(&ra_list, &done_list);
2016 				items_queued = 0;
2017 			}
2018 
2019 			break;
2020 		default:
2021 			ASSERT(0);
2022 		}
2023 
2024 		if (error)
2025 			goto out;
2026 	}
2027 
2028 out:
2029 	if (!list_empty(&ra_list)) {
2030 		if (!error)
2031 			error = xlog_recover_items_pass2(log, trans,
2032 					buffer_list, &ra_list);
2033 		list_splice_tail_init(&ra_list, &done_list);
2034 	}
2035 
2036 	if (!list_empty(&done_list))
2037 		list_splice_init(&done_list, &trans->r_itemq);
2038 
2039 	return error;
2040 }
2041 
2042 STATIC void
2043 xlog_recover_add_item(
2044 	struct list_head	*head)
2045 {
2046 	struct xlog_recover_item *item;
2047 
2048 	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2049 	INIT_LIST_HEAD(&item->ri_list);
2050 	list_add_tail(&item->ri_list, head);
2051 }
2052 
2053 STATIC int
2054 xlog_recover_add_to_cont_trans(
2055 	struct xlog		*log,
2056 	struct xlog_recover	*trans,
2057 	char			*dp,
2058 	int			len)
2059 {
2060 	struct xlog_recover_item *item;
2061 	char			*ptr, *old_ptr;
2062 	int			old_len;
2063 
2064 	/*
2065 	 * If the transaction is empty, the header was split across this and the
2066 	 * previous record. Copy the rest of the header.
2067 	 */
2068 	if (list_empty(&trans->r_itemq)) {
2069 		ASSERT(len <= sizeof(struct xfs_trans_header));
2070 		if (len > sizeof(struct xfs_trans_header)) {
2071 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2072 			return -EFSCORRUPTED;
2073 		}
2074 
2075 		xlog_recover_add_item(&trans->r_itemq);
2076 		ptr = (char *)&trans->r_theader +
2077 				sizeof(struct xfs_trans_header) - len;
2078 		memcpy(ptr, dp, len);
2079 		return 0;
2080 	}
2081 
2082 	/* take the tail entry */
2083 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2084 			  ri_list);
2085 
2086 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2087 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2088 
2089 	ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
2090 	if (!ptr)
2091 		return -ENOMEM;
2092 	memcpy(&ptr[old_len], dp, len);
2093 	item->ri_buf[item->ri_cnt-1].i_len += len;
2094 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2095 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2096 	return 0;
2097 }
2098 
2099 /*
2100  * The next region to add is the start of a new region.  It could be
2101  * a whole region or it could be the first part of a new region.  Because
2102  * of this, the assumption here is that the type and size fields of all
2103  * format structures fit into the first 32 bits of the structure.
2104  *
2105  * This works because all regions must be 32 bit aligned.  Therefore, we
2106  * either have both fields or we have neither field.  In the case we have
2107  * neither field, the data part of the region is zero length.  We only have
2108  * a log_op_header and can throw away the header since a new one will appear
2109  * later.  If we have at least 4 bytes, then we can determine how many regions
2110  * will appear in the current log item.
2111  */
2112 STATIC int
2113 xlog_recover_add_to_trans(
2114 	struct xlog		*log,
2115 	struct xlog_recover	*trans,
2116 	char			*dp,
2117 	int			len)
2118 {
2119 	struct xfs_inode_log_format	*in_f;			/* any will do */
2120 	struct xlog_recover_item *item;
2121 	char			*ptr;
2122 
2123 	if (!len)
2124 		return 0;
2125 	if (list_empty(&trans->r_itemq)) {
2126 		/* we need to catch log corruptions here */
2127 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2128 			xfs_warn(log->l_mp, "%s: bad header magic number",
2129 				__func__);
2130 			ASSERT(0);
2131 			return -EFSCORRUPTED;
2132 		}
2133 
2134 		if (len > sizeof(struct xfs_trans_header)) {
2135 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2136 			ASSERT(0);
2137 			return -EFSCORRUPTED;
2138 		}
2139 
2140 		/*
2141 		 * The transaction header can be arbitrarily split across op
2142 		 * records. If we don't have the whole thing here, copy what we
2143 		 * do have and handle the rest in the next record.
2144 		 */
2145 		if (len == sizeof(struct xfs_trans_header))
2146 			xlog_recover_add_item(&trans->r_itemq);
2147 		memcpy(&trans->r_theader, dp, len);
2148 		return 0;
2149 	}
2150 
2151 	ptr = kmem_alloc(len, 0);
2152 	memcpy(ptr, dp, len);
2153 	in_f = (struct xfs_inode_log_format *)ptr;
2154 
2155 	/* take the tail entry */
2156 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2157 			  ri_list);
2158 	if (item->ri_total != 0 &&
2159 	     item->ri_total == item->ri_cnt) {
2160 		/* tail item is in use, get a new one */
2161 		xlog_recover_add_item(&trans->r_itemq);
2162 		item = list_entry(trans->r_itemq.prev,
2163 					struct xlog_recover_item, ri_list);
2164 	}
2165 
2166 	if (item->ri_total == 0) {		/* first region to be added */
2167 		if (in_f->ilf_size == 0 ||
2168 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2169 			xfs_warn(log->l_mp,
2170 		"bad number of regions (%d) in inode log format",
2171 				  in_f->ilf_size);
2172 			ASSERT(0);
2173 			kmem_free(ptr);
2174 			return -EFSCORRUPTED;
2175 		}
2176 
2177 		item->ri_total = in_f->ilf_size;
2178 		item->ri_buf =
2179 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2180 				    0);
2181 	}
2182 
2183 	if (item->ri_total <= item->ri_cnt) {
2184 		xfs_warn(log->l_mp,
2185 	"log item region count (%d) overflowed size (%d)",
2186 				item->ri_cnt, item->ri_total);
2187 		ASSERT(0);
2188 		kmem_free(ptr);
2189 		return -EFSCORRUPTED;
2190 	}
2191 
2192 	/* Description region is ri_buf[0] */
2193 	item->ri_buf[item->ri_cnt].i_addr = ptr;
2194 	item->ri_buf[item->ri_cnt].i_len  = len;
2195 	item->ri_cnt++;
2196 	trace_xfs_log_recover_item_add(log, trans, item, 0);
2197 	return 0;
2198 }
2199 
2200 /*
2201  * Free up any resources allocated by the transaction
2202  *
2203  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2204  */
2205 STATIC void
2206 xlog_recover_free_trans(
2207 	struct xlog_recover	*trans)
2208 {
2209 	struct xlog_recover_item *item, *n;
2210 	int			i;
2211 
2212 	hlist_del_init(&trans->r_list);
2213 
2214 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2215 		/* Free the regions in the item. */
2216 		list_del(&item->ri_list);
2217 		for (i = 0; i < item->ri_cnt; i++)
2218 			kmem_free(item->ri_buf[i].i_addr);
2219 		/* Free the item itself */
2220 		kmem_free(item->ri_buf);
2221 		kmem_free(item);
2222 	}
2223 	/* Free the transaction recover structure */
2224 	kmem_free(trans);
2225 }
2226 
2227 /*
2228  * On error or completion, trans is freed.
2229  */
2230 STATIC int
2231 xlog_recovery_process_trans(
2232 	struct xlog		*log,
2233 	struct xlog_recover	*trans,
2234 	char			*dp,
2235 	unsigned int		len,
2236 	unsigned int		flags,
2237 	int			pass,
2238 	struct list_head	*buffer_list)
2239 {
2240 	int			error = 0;
2241 	bool			freeit = false;
2242 
2243 	/* mask off ophdr transaction container flags */
2244 	flags &= ~XLOG_END_TRANS;
2245 	if (flags & XLOG_WAS_CONT_TRANS)
2246 		flags &= ~XLOG_CONTINUE_TRANS;
2247 
2248 	/*
2249 	 * Callees must not free the trans structure. We'll decide if we need to
2250 	 * free it or not based on the operation being done and it's result.
2251 	 */
2252 	switch (flags) {
2253 	/* expected flag values */
2254 	case 0:
2255 	case XLOG_CONTINUE_TRANS:
2256 		error = xlog_recover_add_to_trans(log, trans, dp, len);
2257 		break;
2258 	case XLOG_WAS_CONT_TRANS:
2259 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2260 		break;
2261 	case XLOG_COMMIT_TRANS:
2262 		error = xlog_recover_commit_trans(log, trans, pass,
2263 						  buffer_list);
2264 		/* success or fail, we are now done with this transaction. */
2265 		freeit = true;
2266 		break;
2267 
2268 	/* unexpected flag values */
2269 	case XLOG_UNMOUNT_TRANS:
2270 		/* just skip trans */
2271 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2272 		freeit = true;
2273 		break;
2274 	case XLOG_START_TRANS:
2275 	default:
2276 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2277 		ASSERT(0);
2278 		error = -EFSCORRUPTED;
2279 		break;
2280 	}
2281 	if (error || freeit)
2282 		xlog_recover_free_trans(trans);
2283 	return error;
2284 }
2285 
2286 /*
2287  * Lookup the transaction recovery structure associated with the ID in the
2288  * current ophdr. If the transaction doesn't exist and the start flag is set in
2289  * the ophdr, then allocate a new transaction for future ID matches to find.
2290  * Either way, return what we found during the lookup - an existing transaction
2291  * or nothing.
2292  */
2293 STATIC struct xlog_recover *
2294 xlog_recover_ophdr_to_trans(
2295 	struct hlist_head	rhash[],
2296 	struct xlog_rec_header	*rhead,
2297 	struct xlog_op_header	*ohead)
2298 {
2299 	struct xlog_recover	*trans;
2300 	xlog_tid_t		tid;
2301 	struct hlist_head	*rhp;
2302 
2303 	tid = be32_to_cpu(ohead->oh_tid);
2304 	rhp = &rhash[XLOG_RHASH(tid)];
2305 	hlist_for_each_entry(trans, rhp, r_list) {
2306 		if (trans->r_log_tid == tid)
2307 			return trans;
2308 	}
2309 
2310 	/*
2311 	 * skip over non-start transaction headers - we could be
2312 	 * processing slack space before the next transaction starts
2313 	 */
2314 	if (!(ohead->oh_flags & XLOG_START_TRANS))
2315 		return NULL;
2316 
2317 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2318 
2319 	/*
2320 	 * This is a new transaction so allocate a new recovery container to
2321 	 * hold the recovery ops that will follow.
2322 	 */
2323 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2324 	trans->r_log_tid = tid;
2325 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2326 	INIT_LIST_HEAD(&trans->r_itemq);
2327 	INIT_HLIST_NODE(&trans->r_list);
2328 	hlist_add_head(&trans->r_list, rhp);
2329 
2330 	/*
2331 	 * Nothing more to do for this ophdr. Items to be added to this new
2332 	 * transaction will be in subsequent ophdr containers.
2333 	 */
2334 	return NULL;
2335 }
2336 
2337 STATIC int
2338 xlog_recover_process_ophdr(
2339 	struct xlog		*log,
2340 	struct hlist_head	rhash[],
2341 	struct xlog_rec_header	*rhead,
2342 	struct xlog_op_header	*ohead,
2343 	char			*dp,
2344 	char			*end,
2345 	int			pass,
2346 	struct list_head	*buffer_list)
2347 {
2348 	struct xlog_recover	*trans;
2349 	unsigned int		len;
2350 	int			error;
2351 
2352 	/* Do we understand who wrote this op? */
2353 	if (ohead->oh_clientid != XFS_TRANSACTION &&
2354 	    ohead->oh_clientid != XFS_LOG) {
2355 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2356 			__func__, ohead->oh_clientid);
2357 		ASSERT(0);
2358 		return -EFSCORRUPTED;
2359 	}
2360 
2361 	/*
2362 	 * Check the ophdr contains all the data it is supposed to contain.
2363 	 */
2364 	len = be32_to_cpu(ohead->oh_len);
2365 	if (dp + len > end) {
2366 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2367 		WARN_ON(1);
2368 		return -EFSCORRUPTED;
2369 	}
2370 
2371 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2372 	if (!trans) {
2373 		/* nothing to do, so skip over this ophdr */
2374 		return 0;
2375 	}
2376 
2377 	/*
2378 	 * The recovered buffer queue is drained only once we know that all
2379 	 * recovery items for the current LSN have been processed. This is
2380 	 * required because:
2381 	 *
2382 	 * - Buffer write submission updates the metadata LSN of the buffer.
2383 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2384 	 *   the recovery item.
2385 	 * - Separate recovery items against the same metadata buffer can share
2386 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2387 	 *   defined as the starting LSN of the first record in which its
2388 	 *   transaction appears, that a record can hold multiple transactions,
2389 	 *   and/or that a transaction can span multiple records.
2390 	 *
2391 	 * In other words, we are allowed to submit a buffer from log recovery
2392 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2393 	 * items and cause corruption.
2394 	 *
2395 	 * We don't know up front whether buffers are updated multiple times per
2396 	 * LSN. Therefore, track the current LSN of each commit log record as it
2397 	 * is processed and drain the queue when it changes. Use commit records
2398 	 * because they are ordered correctly by the logging code.
2399 	 */
2400 	if (log->l_recovery_lsn != trans->r_lsn &&
2401 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2402 		error = xfs_buf_delwri_submit(buffer_list);
2403 		if (error)
2404 			return error;
2405 		log->l_recovery_lsn = trans->r_lsn;
2406 	}
2407 
2408 	return xlog_recovery_process_trans(log, trans, dp, len,
2409 					   ohead->oh_flags, pass, buffer_list);
2410 }
2411 
2412 /*
2413  * There are two valid states of the r_state field.  0 indicates that the
2414  * transaction structure is in a normal state.  We have either seen the
2415  * start of the transaction or the last operation we added was not a partial
2416  * operation.  If the last operation we added to the transaction was a
2417  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2418  *
2419  * NOTE: skip LRs with 0 data length.
2420  */
2421 STATIC int
2422 xlog_recover_process_data(
2423 	struct xlog		*log,
2424 	struct hlist_head	rhash[],
2425 	struct xlog_rec_header	*rhead,
2426 	char			*dp,
2427 	int			pass,
2428 	struct list_head	*buffer_list)
2429 {
2430 	struct xlog_op_header	*ohead;
2431 	char			*end;
2432 	int			num_logops;
2433 	int			error;
2434 
2435 	end = dp + be32_to_cpu(rhead->h_len);
2436 	num_logops = be32_to_cpu(rhead->h_num_logops);
2437 
2438 	/* check the log format matches our own - else we can't recover */
2439 	if (xlog_header_check_recover(log->l_mp, rhead))
2440 		return -EIO;
2441 
2442 	trace_xfs_log_recover_record(log, rhead, pass);
2443 	while ((dp < end) && num_logops) {
2444 
2445 		ohead = (struct xlog_op_header *)dp;
2446 		dp += sizeof(*ohead);
2447 		ASSERT(dp <= end);
2448 
2449 		/* errors will abort recovery */
2450 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2451 						   dp, end, pass, buffer_list);
2452 		if (error)
2453 			return error;
2454 
2455 		dp += be32_to_cpu(ohead->oh_len);
2456 		num_logops--;
2457 	}
2458 	return 0;
2459 }
2460 
2461 /* Take all the collected deferred ops and finish them in order. */
2462 static int
2463 xlog_finish_defer_ops(
2464 	struct xfs_mount	*mp,
2465 	struct list_head	*capture_list)
2466 {
2467 	struct xfs_defer_capture *dfc, *next;
2468 	struct xfs_trans	*tp;
2469 	struct xfs_inode	*ip;
2470 	int			error = 0;
2471 
2472 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2473 		struct xfs_trans_res	resv;
2474 
2475 		/*
2476 		 * Create a new transaction reservation from the captured
2477 		 * information.  Set logcount to 1 to force the new transaction
2478 		 * to regrant every roll so that we can make forward progress
2479 		 * in recovery no matter how full the log might be.
2480 		 */
2481 		resv.tr_logres = dfc->dfc_logres;
2482 		resv.tr_logcount = 1;
2483 		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2484 
2485 		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2486 				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2487 		if (error) {
2488 			xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2489 			return error;
2490 		}
2491 
2492 		/*
2493 		 * Transfer to this new transaction all the dfops we captured
2494 		 * from recovering a single intent item.
2495 		 */
2496 		list_del_init(&dfc->dfc_list);
2497 		xfs_defer_ops_continue(dfc, tp, &ip);
2498 
2499 		error = xfs_trans_commit(tp);
2500 		if (ip) {
2501 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
2502 			xfs_irele(ip);
2503 		}
2504 		if (error)
2505 			return error;
2506 	}
2507 
2508 	ASSERT(list_empty(capture_list));
2509 	return 0;
2510 }
2511 
2512 /* Release all the captured defer ops and capture structures in this list. */
2513 static void
2514 xlog_abort_defer_ops(
2515 	struct xfs_mount		*mp,
2516 	struct list_head		*capture_list)
2517 {
2518 	struct xfs_defer_capture	*dfc;
2519 	struct xfs_defer_capture	*next;
2520 
2521 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2522 		list_del_init(&dfc->dfc_list);
2523 		xfs_defer_ops_release(mp, dfc);
2524 	}
2525 }
2526 /*
2527  * When this is called, all of the log intent items which did not have
2528  * corresponding log done items should be in the AIL.  What we do now
2529  * is update the data structures associated with each one.
2530  *
2531  * Since we process the log intent items in normal transactions, they
2532  * will be removed at some point after the commit.  This prevents us
2533  * from just walking down the list processing each one.  We'll use a
2534  * flag in the intent item to skip those that we've already processed
2535  * and use the AIL iteration mechanism's generation count to try to
2536  * speed this up at least a bit.
2537  *
2538  * When we start, we know that the intents are the only things in the
2539  * AIL.  As we process them, however, other items are added to the
2540  * AIL.
2541  */
2542 STATIC int
2543 xlog_recover_process_intents(
2544 	struct xlog		*log)
2545 {
2546 	LIST_HEAD(capture_list);
2547 	struct xfs_ail_cursor	cur;
2548 	struct xfs_log_item	*lip;
2549 	struct xfs_ail		*ailp;
2550 	int			error = 0;
2551 #if defined(DEBUG) || defined(XFS_WARN)
2552 	xfs_lsn_t		last_lsn;
2553 #endif
2554 
2555 	ailp = log->l_ailp;
2556 	spin_lock(&ailp->ail_lock);
2557 #if defined(DEBUG) || defined(XFS_WARN)
2558 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2559 #endif
2560 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2561 	     lip != NULL;
2562 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2563 		/*
2564 		 * We're done when we see something other than an intent.
2565 		 * There should be no intents left in the AIL now.
2566 		 */
2567 		if (!xlog_item_is_intent(lip)) {
2568 #ifdef DEBUG
2569 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2570 				ASSERT(!xlog_item_is_intent(lip));
2571 #endif
2572 			break;
2573 		}
2574 
2575 		/*
2576 		 * We should never see a redo item with a LSN higher than
2577 		 * the last transaction we found in the log at the start
2578 		 * of recovery.
2579 		 */
2580 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2581 
2582 		/*
2583 		 * NOTE: If your intent processing routine can create more
2584 		 * deferred ops, you /must/ attach them to the capture list in
2585 		 * the recover routine or else those subsequent intents will be
2586 		 * replayed in the wrong order!
2587 		 */
2588 		spin_unlock(&ailp->ail_lock);
2589 		error = lip->li_ops->iop_recover(lip, &capture_list);
2590 		spin_lock(&ailp->ail_lock);
2591 		if (error) {
2592 			trace_xlog_intent_recovery_failed(log->l_mp, error,
2593 					lip->li_ops->iop_recover);
2594 			break;
2595 		}
2596 	}
2597 
2598 	xfs_trans_ail_cursor_done(&cur);
2599 	spin_unlock(&ailp->ail_lock);
2600 	if (error)
2601 		goto err;
2602 
2603 	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2604 	if (error)
2605 		goto err;
2606 
2607 	return 0;
2608 err:
2609 	xlog_abort_defer_ops(log->l_mp, &capture_list);
2610 	return error;
2611 }
2612 
2613 /*
2614  * A cancel occurs when the mount has failed and we're bailing out.
2615  * Release all pending log intent items so they don't pin the AIL.
2616  */
2617 STATIC void
2618 xlog_recover_cancel_intents(
2619 	struct xlog		*log)
2620 {
2621 	struct xfs_log_item	*lip;
2622 	struct xfs_ail_cursor	cur;
2623 	struct xfs_ail		*ailp;
2624 
2625 	ailp = log->l_ailp;
2626 	spin_lock(&ailp->ail_lock);
2627 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2628 	while (lip != NULL) {
2629 		/*
2630 		 * We're done when we see something other than an intent.
2631 		 * There should be no intents left in the AIL now.
2632 		 */
2633 		if (!xlog_item_is_intent(lip)) {
2634 #ifdef DEBUG
2635 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2636 				ASSERT(!xlog_item_is_intent(lip));
2637 #endif
2638 			break;
2639 		}
2640 
2641 		spin_unlock(&ailp->ail_lock);
2642 		lip->li_ops->iop_release(lip);
2643 		spin_lock(&ailp->ail_lock);
2644 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2645 	}
2646 
2647 	xfs_trans_ail_cursor_done(&cur);
2648 	spin_unlock(&ailp->ail_lock);
2649 }
2650 
2651 /*
2652  * This routine performs a transaction to null out a bad inode pointer
2653  * in an agi unlinked inode hash bucket.
2654  */
2655 STATIC void
2656 xlog_recover_clear_agi_bucket(
2657 	xfs_mount_t	*mp,
2658 	xfs_agnumber_t	agno,
2659 	int		bucket)
2660 {
2661 	xfs_trans_t	*tp;
2662 	xfs_agi_t	*agi;
2663 	struct xfs_buf	*agibp;
2664 	int		offset;
2665 	int		error;
2666 
2667 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2668 	if (error)
2669 		goto out_error;
2670 
2671 	error = xfs_read_agi(mp, tp, agno, &agibp);
2672 	if (error)
2673 		goto out_abort;
2674 
2675 	agi = agibp->b_addr;
2676 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2677 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2678 		 (sizeof(xfs_agino_t) * bucket);
2679 	xfs_trans_log_buf(tp, agibp, offset,
2680 			  (offset + sizeof(xfs_agino_t) - 1));
2681 
2682 	error = xfs_trans_commit(tp);
2683 	if (error)
2684 		goto out_error;
2685 	return;
2686 
2687 out_abort:
2688 	xfs_trans_cancel(tp);
2689 out_error:
2690 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2691 	return;
2692 }
2693 
2694 STATIC xfs_agino_t
2695 xlog_recover_process_one_iunlink(
2696 	struct xfs_mount		*mp,
2697 	xfs_agnumber_t			agno,
2698 	xfs_agino_t			agino,
2699 	int				bucket)
2700 {
2701 	struct xfs_buf			*ibp;
2702 	struct xfs_dinode		*dip;
2703 	struct xfs_inode		*ip;
2704 	xfs_ino_t			ino;
2705 	int				error;
2706 
2707 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
2708 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2709 	if (error)
2710 		goto fail;
2711 
2712 	/*
2713 	 * Get the on disk inode to find the next inode in the bucket.
2714 	 */
2715 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2716 	if (error)
2717 		goto fail_iput;
2718 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2719 
2720 	xfs_iflags_clear(ip, XFS_IRECOVERY);
2721 	ASSERT(VFS_I(ip)->i_nlink == 0);
2722 	ASSERT(VFS_I(ip)->i_mode != 0);
2723 
2724 	/* setup for the next pass */
2725 	agino = be32_to_cpu(dip->di_next_unlinked);
2726 	xfs_buf_relse(ibp);
2727 
2728 	xfs_irele(ip);
2729 	return agino;
2730 
2731  fail_iput:
2732 	xfs_irele(ip);
2733  fail:
2734 	/*
2735 	 * We can't read in the inode this bucket points to, or this inode
2736 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
2737 	 * some inodes and space, but at least we won't hang.
2738 	 *
2739 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2740 	 * clear the inode pointer in the bucket.
2741 	 */
2742 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
2743 	return NULLAGINO;
2744 }
2745 
2746 /*
2747  * Recover AGI unlinked lists
2748  *
2749  * This is called during recovery to process any inodes which we unlinked but
2750  * not freed when the system crashed.  These inodes will be on the lists in the
2751  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2752  * any inodes found on the lists. Each inode is removed from the lists when it
2753  * has been fully truncated and is freed. The freeing of the inode and its
2754  * removal from the list must be atomic.
2755  *
2756  * If everything we touch in the agi processing loop is already in memory, this
2757  * loop can hold the cpu for a long time. It runs without lock contention,
2758  * memory allocation contention, the need wait for IO, etc, and so will run
2759  * until we either run out of inodes to process, run low on memory or we run out
2760  * of log space.
2761  *
2762  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2763  * and can prevent other filesystem work (such as CIL pushes) from running. This
2764  * can lead to deadlocks if the recovery process runs out of log reservation
2765  * space. Hence we need to yield the CPU when there is other kernel work
2766  * scheduled on this CPU to ensure other scheduled work can run without undue
2767  * latency.
2768  */
2769 STATIC void
2770 xlog_recover_process_iunlinks(
2771 	struct xlog	*log)
2772 {
2773 	struct xfs_mount	*mp = log->l_mp;
2774 	struct xfs_perag	*pag;
2775 	xfs_agnumber_t		agno;
2776 	struct xfs_agi		*agi;
2777 	struct xfs_buf		*agibp;
2778 	xfs_agino_t		agino;
2779 	int			bucket;
2780 	int			error;
2781 
2782 	for_each_perag(mp, agno, pag) {
2783 		error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
2784 		if (error) {
2785 			/*
2786 			 * AGI is b0rked. Don't process it.
2787 			 *
2788 			 * We should probably mark the filesystem as corrupt
2789 			 * after we've recovered all the ag's we can....
2790 			 */
2791 			continue;
2792 		}
2793 		/*
2794 		 * Unlock the buffer so that it can be acquired in the normal
2795 		 * course of the transaction to truncate and free each inode.
2796 		 * Because we are not racing with anyone else here for the AGI
2797 		 * buffer, we don't even need to hold it locked to read the
2798 		 * initial unlinked bucket entries out of the buffer. We keep
2799 		 * buffer reference though, so that it stays pinned in memory
2800 		 * while we need the buffer.
2801 		 */
2802 		agi = agibp->b_addr;
2803 		xfs_buf_unlock(agibp);
2804 
2805 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2806 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2807 			while (agino != NULLAGINO) {
2808 				agino = xlog_recover_process_one_iunlink(mp,
2809 						pag->pag_agno, agino, bucket);
2810 				cond_resched();
2811 			}
2812 		}
2813 		xfs_buf_rele(agibp);
2814 	}
2815 
2816 	/*
2817 	 * Flush the pending unlinked inodes to ensure that the inactivations
2818 	 * are fully completed on disk and the incore inodes can be reclaimed
2819 	 * before we signal that recovery is complete.
2820 	 */
2821 	xfs_inodegc_flush(mp);
2822 }
2823 
2824 STATIC void
2825 xlog_unpack_data(
2826 	struct xlog_rec_header	*rhead,
2827 	char			*dp,
2828 	struct xlog		*log)
2829 {
2830 	int			i, j, k;
2831 
2832 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2833 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2834 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2835 		dp += BBSIZE;
2836 	}
2837 
2838 	if (xfs_has_logv2(log->l_mp)) {
2839 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2840 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2841 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2842 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2843 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2844 			dp += BBSIZE;
2845 		}
2846 	}
2847 }
2848 
2849 /*
2850  * CRC check, unpack and process a log record.
2851  */
2852 STATIC int
2853 xlog_recover_process(
2854 	struct xlog		*log,
2855 	struct hlist_head	rhash[],
2856 	struct xlog_rec_header	*rhead,
2857 	char			*dp,
2858 	int			pass,
2859 	struct list_head	*buffer_list)
2860 {
2861 	__le32			old_crc = rhead->h_crc;
2862 	__le32			crc;
2863 
2864 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2865 
2866 	/*
2867 	 * Nothing else to do if this is a CRC verification pass. Just return
2868 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2869 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2870 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2871 	 * know precisely what failed.
2872 	 */
2873 	if (pass == XLOG_RECOVER_CRCPASS) {
2874 		if (old_crc && crc != old_crc)
2875 			return -EFSBADCRC;
2876 		return 0;
2877 	}
2878 
2879 	/*
2880 	 * We're in the normal recovery path. Issue a warning if and only if the
2881 	 * CRC in the header is non-zero. This is an advisory warning and the
2882 	 * zero CRC check prevents warnings from being emitted when upgrading
2883 	 * the kernel from one that does not add CRCs by default.
2884 	 */
2885 	if (crc != old_crc) {
2886 		if (old_crc || xfs_has_crc(log->l_mp)) {
2887 			xfs_alert(log->l_mp,
2888 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2889 					le32_to_cpu(old_crc),
2890 					le32_to_cpu(crc));
2891 			xfs_hex_dump(dp, 32);
2892 		}
2893 
2894 		/*
2895 		 * If the filesystem is CRC enabled, this mismatch becomes a
2896 		 * fatal log corruption failure.
2897 		 */
2898 		if (xfs_has_crc(log->l_mp)) {
2899 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2900 			return -EFSCORRUPTED;
2901 		}
2902 	}
2903 
2904 	xlog_unpack_data(rhead, dp, log);
2905 
2906 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2907 					 buffer_list);
2908 }
2909 
2910 STATIC int
2911 xlog_valid_rec_header(
2912 	struct xlog		*log,
2913 	struct xlog_rec_header	*rhead,
2914 	xfs_daddr_t		blkno,
2915 	int			bufsize)
2916 {
2917 	int			hlen;
2918 
2919 	if (XFS_IS_CORRUPT(log->l_mp,
2920 			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2921 		return -EFSCORRUPTED;
2922 	if (XFS_IS_CORRUPT(log->l_mp,
2923 			   (!rhead->h_version ||
2924 			   (be32_to_cpu(rhead->h_version) &
2925 			    (~XLOG_VERSION_OKBITS))))) {
2926 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2927 			__func__, be32_to_cpu(rhead->h_version));
2928 		return -EFSCORRUPTED;
2929 	}
2930 
2931 	/*
2932 	 * LR body must have data (or it wouldn't have been written)
2933 	 * and h_len must not be greater than LR buffer size.
2934 	 */
2935 	hlen = be32_to_cpu(rhead->h_len);
2936 	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2937 		return -EFSCORRUPTED;
2938 
2939 	if (XFS_IS_CORRUPT(log->l_mp,
2940 			   blkno > log->l_logBBsize || blkno > INT_MAX))
2941 		return -EFSCORRUPTED;
2942 	return 0;
2943 }
2944 
2945 /*
2946  * Read the log from tail to head and process the log records found.
2947  * Handle the two cases where the tail and head are in the same cycle
2948  * and where the active portion of the log wraps around the end of
2949  * the physical log separately.  The pass parameter is passed through
2950  * to the routines called to process the data and is not looked at
2951  * here.
2952  */
2953 STATIC int
2954 xlog_do_recovery_pass(
2955 	struct xlog		*log,
2956 	xfs_daddr_t		head_blk,
2957 	xfs_daddr_t		tail_blk,
2958 	int			pass,
2959 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2960 {
2961 	xlog_rec_header_t	*rhead;
2962 	xfs_daddr_t		blk_no, rblk_no;
2963 	xfs_daddr_t		rhead_blk;
2964 	char			*offset;
2965 	char			*hbp, *dbp;
2966 	int			error = 0, h_size, h_len;
2967 	int			error2 = 0;
2968 	int			bblks, split_bblks;
2969 	int			hblks, split_hblks, wrapped_hblks;
2970 	int			i;
2971 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2972 	LIST_HEAD		(buffer_list);
2973 
2974 	ASSERT(head_blk != tail_blk);
2975 	blk_no = rhead_blk = tail_blk;
2976 
2977 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2978 		INIT_HLIST_HEAD(&rhash[i]);
2979 
2980 	/*
2981 	 * Read the header of the tail block and get the iclog buffer size from
2982 	 * h_size.  Use this to tell how many sectors make up the log header.
2983 	 */
2984 	if (xfs_has_logv2(log->l_mp)) {
2985 		/*
2986 		 * When using variable length iclogs, read first sector of
2987 		 * iclog header and extract the header size from it.  Get a
2988 		 * new hbp that is the correct size.
2989 		 */
2990 		hbp = xlog_alloc_buffer(log, 1);
2991 		if (!hbp)
2992 			return -ENOMEM;
2993 
2994 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2995 		if (error)
2996 			goto bread_err1;
2997 
2998 		rhead = (xlog_rec_header_t *)offset;
2999 
3000 		/*
3001 		 * xfsprogs has a bug where record length is based on lsunit but
3002 		 * h_size (iclog size) is hardcoded to 32k. Now that we
3003 		 * unconditionally CRC verify the unmount record, this means the
3004 		 * log buffer can be too small for the record and cause an
3005 		 * overrun.
3006 		 *
3007 		 * Detect this condition here. Use lsunit for the buffer size as
3008 		 * long as this looks like the mkfs case. Otherwise, return an
3009 		 * error to avoid a buffer overrun.
3010 		 */
3011 		h_size = be32_to_cpu(rhead->h_size);
3012 		h_len = be32_to_cpu(rhead->h_len);
3013 		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3014 		    rhead->h_num_logops == cpu_to_be32(1)) {
3015 			xfs_warn(log->l_mp,
3016 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
3017 				 h_size, log->l_mp->m_logbsize);
3018 			h_size = log->l_mp->m_logbsize;
3019 		}
3020 
3021 		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3022 		if (error)
3023 			goto bread_err1;
3024 
3025 		hblks = xlog_logrec_hblks(log, rhead);
3026 		if (hblks != 1) {
3027 			kmem_free(hbp);
3028 			hbp = xlog_alloc_buffer(log, hblks);
3029 		}
3030 	} else {
3031 		ASSERT(log->l_sectBBsize == 1);
3032 		hblks = 1;
3033 		hbp = xlog_alloc_buffer(log, 1);
3034 		h_size = XLOG_BIG_RECORD_BSIZE;
3035 	}
3036 
3037 	if (!hbp)
3038 		return -ENOMEM;
3039 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3040 	if (!dbp) {
3041 		kmem_free(hbp);
3042 		return -ENOMEM;
3043 	}
3044 
3045 	memset(rhash, 0, sizeof(rhash));
3046 	if (tail_blk > head_blk) {
3047 		/*
3048 		 * Perform recovery around the end of the physical log.
3049 		 * When the head is not on the same cycle number as the tail,
3050 		 * we can't do a sequential recovery.
3051 		 */
3052 		while (blk_no < log->l_logBBsize) {
3053 			/*
3054 			 * Check for header wrapping around physical end-of-log
3055 			 */
3056 			offset = hbp;
3057 			split_hblks = 0;
3058 			wrapped_hblks = 0;
3059 			if (blk_no + hblks <= log->l_logBBsize) {
3060 				/* Read header in one read */
3061 				error = xlog_bread(log, blk_no, hblks, hbp,
3062 						   &offset);
3063 				if (error)
3064 					goto bread_err2;
3065 			} else {
3066 				/* This LR is split across physical log end */
3067 				if (blk_no != log->l_logBBsize) {
3068 					/* some data before physical log end */
3069 					ASSERT(blk_no <= INT_MAX);
3070 					split_hblks = log->l_logBBsize - (int)blk_no;
3071 					ASSERT(split_hblks > 0);
3072 					error = xlog_bread(log, blk_no,
3073 							   split_hblks, hbp,
3074 							   &offset);
3075 					if (error)
3076 						goto bread_err2;
3077 				}
3078 
3079 				/*
3080 				 * Note: this black magic still works with
3081 				 * large sector sizes (non-512) only because:
3082 				 * - we increased the buffer size originally
3083 				 *   by 1 sector giving us enough extra space
3084 				 *   for the second read;
3085 				 * - the log start is guaranteed to be sector
3086 				 *   aligned;
3087 				 * - we read the log end (LR header start)
3088 				 *   _first_, then the log start (LR header end)
3089 				 *   - order is important.
3090 				 */
3091 				wrapped_hblks = hblks - split_hblks;
3092 				error = xlog_bread_noalign(log, 0,
3093 						wrapped_hblks,
3094 						offset + BBTOB(split_hblks));
3095 				if (error)
3096 					goto bread_err2;
3097 			}
3098 			rhead = (xlog_rec_header_t *)offset;
3099 			error = xlog_valid_rec_header(log, rhead,
3100 					split_hblks ? blk_no : 0, h_size);
3101 			if (error)
3102 				goto bread_err2;
3103 
3104 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3105 			blk_no += hblks;
3106 
3107 			/*
3108 			 * Read the log record data in multiple reads if it
3109 			 * wraps around the end of the log. Note that if the
3110 			 * header already wrapped, blk_no could point past the
3111 			 * end of the log. The record data is contiguous in
3112 			 * that case.
3113 			 */
3114 			if (blk_no + bblks <= log->l_logBBsize ||
3115 			    blk_no >= log->l_logBBsize) {
3116 				rblk_no = xlog_wrap_logbno(log, blk_no);
3117 				error = xlog_bread(log, rblk_no, bblks, dbp,
3118 						   &offset);
3119 				if (error)
3120 					goto bread_err2;
3121 			} else {
3122 				/* This log record is split across the
3123 				 * physical end of log */
3124 				offset = dbp;
3125 				split_bblks = 0;
3126 				if (blk_no != log->l_logBBsize) {
3127 					/* some data is before the physical
3128 					 * end of log */
3129 					ASSERT(!wrapped_hblks);
3130 					ASSERT(blk_no <= INT_MAX);
3131 					split_bblks =
3132 						log->l_logBBsize - (int)blk_no;
3133 					ASSERT(split_bblks > 0);
3134 					error = xlog_bread(log, blk_no,
3135 							split_bblks, dbp,
3136 							&offset);
3137 					if (error)
3138 						goto bread_err2;
3139 				}
3140 
3141 				/*
3142 				 * Note: this black magic still works with
3143 				 * large sector sizes (non-512) only because:
3144 				 * - we increased the buffer size originally
3145 				 *   by 1 sector giving us enough extra space
3146 				 *   for the second read;
3147 				 * - the log start is guaranteed to be sector
3148 				 *   aligned;
3149 				 * - we read the log end (LR header start)
3150 				 *   _first_, then the log start (LR header end)
3151 				 *   - order is important.
3152 				 */
3153 				error = xlog_bread_noalign(log, 0,
3154 						bblks - split_bblks,
3155 						offset + BBTOB(split_bblks));
3156 				if (error)
3157 					goto bread_err2;
3158 			}
3159 
3160 			error = xlog_recover_process(log, rhash, rhead, offset,
3161 						     pass, &buffer_list);
3162 			if (error)
3163 				goto bread_err2;
3164 
3165 			blk_no += bblks;
3166 			rhead_blk = blk_no;
3167 		}
3168 
3169 		ASSERT(blk_no >= log->l_logBBsize);
3170 		blk_no -= log->l_logBBsize;
3171 		rhead_blk = blk_no;
3172 	}
3173 
3174 	/* read first part of physical log */
3175 	while (blk_no < head_blk) {
3176 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3177 		if (error)
3178 			goto bread_err2;
3179 
3180 		rhead = (xlog_rec_header_t *)offset;
3181 		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3182 		if (error)
3183 			goto bread_err2;
3184 
3185 		/* blocks in data section */
3186 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3187 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3188 				   &offset);
3189 		if (error)
3190 			goto bread_err2;
3191 
3192 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3193 					     &buffer_list);
3194 		if (error)
3195 			goto bread_err2;
3196 
3197 		blk_no += bblks + hblks;
3198 		rhead_blk = blk_no;
3199 	}
3200 
3201  bread_err2:
3202 	kmem_free(dbp);
3203  bread_err1:
3204 	kmem_free(hbp);
3205 
3206 	/*
3207 	 * Submit buffers that have been added from the last record processed,
3208 	 * regardless of error status.
3209 	 */
3210 	if (!list_empty(&buffer_list))
3211 		error2 = xfs_buf_delwri_submit(&buffer_list);
3212 
3213 	if (error && first_bad)
3214 		*first_bad = rhead_blk;
3215 
3216 	/*
3217 	 * Transactions are freed at commit time but transactions without commit
3218 	 * records on disk are never committed. Free any that may be left in the
3219 	 * hash table.
3220 	 */
3221 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3222 		struct hlist_node	*tmp;
3223 		struct xlog_recover	*trans;
3224 
3225 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3226 			xlog_recover_free_trans(trans);
3227 	}
3228 
3229 	return error ? error : error2;
3230 }
3231 
3232 /*
3233  * Do the recovery of the log.  We actually do this in two phases.
3234  * The two passes are necessary in order to implement the function
3235  * of cancelling a record written into the log.  The first pass
3236  * determines those things which have been cancelled, and the
3237  * second pass replays log items normally except for those which
3238  * have been cancelled.  The handling of the replay and cancellations
3239  * takes place in the log item type specific routines.
3240  *
3241  * The table of items which have cancel records in the log is allocated
3242  * and freed at this level, since only here do we know when all of
3243  * the log recovery has been completed.
3244  */
3245 STATIC int
3246 xlog_do_log_recovery(
3247 	struct xlog	*log,
3248 	xfs_daddr_t	head_blk,
3249 	xfs_daddr_t	tail_blk)
3250 {
3251 	int		error, i;
3252 
3253 	ASSERT(head_blk != tail_blk);
3254 
3255 	/*
3256 	 * First do a pass to find all of the cancelled buf log items.
3257 	 * Store them in the buf_cancel_table for use in the second pass.
3258 	 */
3259 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3260 						 sizeof(struct list_head),
3261 						 0);
3262 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3263 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3264 
3265 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3266 				      XLOG_RECOVER_PASS1, NULL);
3267 	if (error != 0) {
3268 		kmem_free(log->l_buf_cancel_table);
3269 		log->l_buf_cancel_table = NULL;
3270 		return error;
3271 	}
3272 	/*
3273 	 * Then do a second pass to actually recover the items in the log.
3274 	 * When it is complete free the table of buf cancel items.
3275 	 */
3276 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3277 				      XLOG_RECOVER_PASS2, NULL);
3278 #ifdef DEBUG
3279 	if (!error) {
3280 		int	i;
3281 
3282 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3283 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3284 	}
3285 #endif	/* DEBUG */
3286 
3287 	kmem_free(log->l_buf_cancel_table);
3288 	log->l_buf_cancel_table = NULL;
3289 
3290 	return error;
3291 }
3292 
3293 /*
3294  * Do the actual recovery
3295  */
3296 STATIC int
3297 xlog_do_recover(
3298 	struct xlog		*log,
3299 	xfs_daddr_t		head_blk,
3300 	xfs_daddr_t		tail_blk)
3301 {
3302 	struct xfs_mount	*mp = log->l_mp;
3303 	struct xfs_buf		*bp = mp->m_sb_bp;
3304 	struct xfs_sb		*sbp = &mp->m_sb;
3305 	int			error;
3306 
3307 	trace_xfs_log_recover(log, head_blk, tail_blk);
3308 
3309 	/*
3310 	 * First replay the images in the log.
3311 	 */
3312 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3313 	if (error)
3314 		return error;
3315 
3316 	if (xlog_is_shutdown(log))
3317 		return -EIO;
3318 
3319 	/*
3320 	 * We now update the tail_lsn since much of the recovery has completed
3321 	 * and there may be space available to use.  If there were no extent
3322 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3323 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3324 	 * lsn of the last known good LR on disk.  If there are extent frees
3325 	 * or iunlinks they will have some entries in the AIL; so we look at
3326 	 * the AIL to determine how to set the tail_lsn.
3327 	 */
3328 	xlog_assign_tail_lsn(mp);
3329 
3330 	/*
3331 	 * Now that we've finished replaying all buffer and inode updates,
3332 	 * re-read the superblock and reverify it.
3333 	 */
3334 	xfs_buf_lock(bp);
3335 	xfs_buf_hold(bp);
3336 	error = _xfs_buf_read(bp, XBF_READ);
3337 	if (error) {
3338 		if (!xlog_is_shutdown(log)) {
3339 			xfs_buf_ioerror_alert(bp, __this_address);
3340 			ASSERT(0);
3341 		}
3342 		xfs_buf_relse(bp);
3343 		return error;
3344 	}
3345 
3346 	/* Convert superblock from on-disk format */
3347 	xfs_sb_from_disk(sbp, bp->b_addr);
3348 	xfs_buf_relse(bp);
3349 
3350 	/* re-initialise in-core superblock and geometry structures */
3351 	mp->m_features |= xfs_sb_version_to_features(sbp);
3352 	xfs_reinit_percpu_counters(mp);
3353 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3354 	if (error) {
3355 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3356 		return error;
3357 	}
3358 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3359 
3360 	xlog_recover_check_summary(log);
3361 
3362 	/* Normal transactions can now occur */
3363 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3364 	return 0;
3365 }
3366 
3367 /*
3368  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3369  *
3370  * Return error or zero.
3371  */
3372 int
3373 xlog_recover(
3374 	struct xlog	*log)
3375 {
3376 	xfs_daddr_t	head_blk, tail_blk;
3377 	int		error;
3378 
3379 	/* find the tail of the log */
3380 	error = xlog_find_tail(log, &head_blk, &tail_blk);
3381 	if (error)
3382 		return error;
3383 
3384 	/*
3385 	 * The superblock was read before the log was available and thus the LSN
3386 	 * could not be verified. Check the superblock LSN against the current
3387 	 * LSN now that it's known.
3388 	 */
3389 	if (xfs_has_crc(log->l_mp) &&
3390 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3391 		return -EINVAL;
3392 
3393 	if (tail_blk != head_blk) {
3394 		/* There used to be a comment here:
3395 		 *
3396 		 * disallow recovery on read-only mounts.  note -- mount
3397 		 * checks for ENOSPC and turns it into an intelligent
3398 		 * error message.
3399 		 * ...but this is no longer true.  Now, unless you specify
3400 		 * NORECOVERY (in which case this function would never be
3401 		 * called), we just go ahead and recover.  We do this all
3402 		 * under the vfs layer, so we can get away with it unless
3403 		 * the device itself is read-only, in which case we fail.
3404 		 */
3405 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3406 			return error;
3407 		}
3408 
3409 		/*
3410 		 * Version 5 superblock log feature mask validation. We know the
3411 		 * log is dirty so check if there are any unknown log features
3412 		 * in what we need to recover. If there are unknown features
3413 		 * (e.g. unsupported transactions, then simply reject the
3414 		 * attempt at recovery before touching anything.
3415 		 */
3416 		if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3417 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3418 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3419 			xfs_warn(log->l_mp,
3420 "Superblock has unknown incompatible log features (0x%x) enabled.",
3421 				(log->l_mp->m_sb.sb_features_log_incompat &
3422 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3423 			xfs_warn(log->l_mp,
3424 "The log can not be fully and/or safely recovered by this kernel.");
3425 			xfs_warn(log->l_mp,
3426 "Please recover the log on a kernel that supports the unknown features.");
3427 			return -EINVAL;
3428 		}
3429 
3430 		/*
3431 		 * Delay log recovery if the debug hook is set. This is debug
3432 		 * instrumentation to coordinate simulation of I/O failures with
3433 		 * log recovery.
3434 		 */
3435 		if (xfs_globals.log_recovery_delay) {
3436 			xfs_notice(log->l_mp,
3437 				"Delaying log recovery for %d seconds.",
3438 				xfs_globals.log_recovery_delay);
3439 			msleep(xfs_globals.log_recovery_delay * 1000);
3440 		}
3441 
3442 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3443 				log->l_mp->m_logname ? log->l_mp->m_logname
3444 						     : "internal");
3445 
3446 		error = xlog_do_recover(log, head_blk, tail_blk);
3447 		set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3448 	}
3449 	return error;
3450 }
3451 
3452 /*
3453  * In the first part of recovery we replay inodes and buffers and build up the
3454  * list of intents which need to be processed. Here we process the intents and
3455  * clean up the on disk unlinked inode lists. This is separated from the first
3456  * part of recovery so that the root and real-time bitmap inodes can be read in
3457  * from disk in between the two stages.  This is necessary so that we can free
3458  * space in the real-time portion of the file system.
3459  */
3460 int
3461 xlog_recover_finish(
3462 	struct xlog	*log)
3463 {
3464 	int	error;
3465 
3466 	error = xlog_recover_process_intents(log);
3467 	if (error) {
3468 		/*
3469 		 * Cancel all the unprocessed intent items now so that we don't
3470 		 * leave them pinned in the AIL.  This can cause the AIL to
3471 		 * livelock on the pinned item if anyone tries to push the AIL
3472 		 * (inode reclaim does this) before we get around to
3473 		 * xfs_log_mount_cancel.
3474 		 */
3475 		xlog_recover_cancel_intents(log);
3476 		xfs_alert(log->l_mp, "Failed to recover intents");
3477 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3478 		return error;
3479 	}
3480 
3481 	/*
3482 	 * Sync the log to get all the intents out of the AIL.  This isn't
3483 	 * absolutely necessary, but it helps in case the unlink transactions
3484 	 * would have problems pushing the intents out of the way.
3485 	 */
3486 	xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3487 
3488 	/*
3489 	 * Now that we've recovered the log and all the intents, we can clear
3490 	 * the log incompat feature bits in the superblock because there's no
3491 	 * longer anything to protect.  We rely on the AIL push to write out the
3492 	 * updated superblock after everything else.
3493 	 */
3494 	if (xfs_clear_incompat_log_features(log->l_mp)) {
3495 		error = xfs_sync_sb(log->l_mp, false);
3496 		if (error < 0) {
3497 			xfs_alert(log->l_mp,
3498 	"Failed to clear log incompat features on recovery");
3499 			return error;
3500 		}
3501 	}
3502 
3503 	xlog_recover_process_iunlinks(log);
3504 	xlog_recover_check_summary(log);
3505 	return 0;
3506 }
3507 
3508 void
3509 xlog_recover_cancel(
3510 	struct xlog	*log)
3511 {
3512 	if (xlog_recovery_needed(log))
3513 		xlog_recover_cancel_intents(log);
3514 }
3515 
3516 #if defined(DEBUG)
3517 /*
3518  * Read all of the agf and agi counters and check that they
3519  * are consistent with the superblock counters.
3520  */
3521 STATIC void
3522 xlog_recover_check_summary(
3523 	struct xlog		*log)
3524 {
3525 	struct xfs_mount	*mp = log->l_mp;
3526 	struct xfs_perag	*pag;
3527 	struct xfs_buf		*agfbp;
3528 	struct xfs_buf		*agibp;
3529 	xfs_agnumber_t		agno;
3530 	uint64_t		freeblks;
3531 	uint64_t		itotal;
3532 	uint64_t		ifree;
3533 	int			error;
3534 
3535 	mp = log->l_mp;
3536 
3537 	freeblks = 0LL;
3538 	itotal = 0LL;
3539 	ifree = 0LL;
3540 	for_each_perag(mp, agno, pag) {
3541 		error = xfs_read_agf(mp, NULL, pag->pag_agno, 0, &agfbp);
3542 		if (error) {
3543 			xfs_alert(mp, "%s agf read failed agno %d error %d",
3544 						__func__, pag->pag_agno, error);
3545 		} else {
3546 			struct xfs_agf	*agfp = agfbp->b_addr;
3547 
3548 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3549 				    be32_to_cpu(agfp->agf_flcount);
3550 			xfs_buf_relse(agfbp);
3551 		}
3552 
3553 		error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
3554 		if (error) {
3555 			xfs_alert(mp, "%s agi read failed agno %d error %d",
3556 						__func__, pag->pag_agno, error);
3557 		} else {
3558 			struct xfs_agi	*agi = agibp->b_addr;
3559 
3560 			itotal += be32_to_cpu(agi->agi_count);
3561 			ifree += be32_to_cpu(agi->agi_freecount);
3562 			xfs_buf_relse(agibp);
3563 		}
3564 	}
3565 }
3566 #endif /* DEBUG */
3567