xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_ag.h"
39 #include "xfs_sb.h"
40 #include "xfs_trans.h"
41 #include "xfs_dir.h"
42 #include "xfs_dir2.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_error.h"
46 #include "xfs_bmap_btree.h"
47 #include "xfs_alloc.h"
48 #include "xfs_attr_sf.h"
49 #include "xfs_dir_sf.h"
50 #include "xfs_dir2_sf.h"
51 #include "xfs_dinode.h"
52 #include "xfs_imap.h"
53 #include "xfs_inode_item.h"
54 #include "xfs_inode.h"
55 #include "xfs_ialloc_btree.h"
56 #include "xfs_ialloc.h"
57 #include "xfs_log_priv.h"
58 #include "xfs_buf_item.h"
59 #include "xfs_alloc_btree.h"
60 #include "xfs_log_recover.h"
61 #include "xfs_extfree_item.h"
62 #include "xfs_trans_priv.h"
63 #include "xfs_bit.h"
64 #include "xfs_quota.h"
65 #include "xfs_rw.h"
66 
67 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
68 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
69 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
70 					       xlog_recover_item_t *item);
71 #if defined(DEBUG)
72 STATIC void	xlog_recover_check_summary(xlog_t *);
73 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
74 #else
75 #define	xlog_recover_check_summary(log)
76 #define	xlog_recover_check_ail(mp, lip, gen)
77 #endif
78 
79 
80 /*
81  * Sector aligned buffer routines for buffer create/read/write/access
82  */
83 
84 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
85 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
86 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
87 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
88 
89 xfs_buf_t *
90 xlog_get_bp(
91 	xlog_t		*log,
92 	int		num_bblks)
93 {
94 	ASSERT(num_bblks > 0);
95 
96 	if (log->l_sectbb_log) {
97 		if (num_bblks > 1)
98 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
99 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
100 	}
101 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
102 }
103 
104 void
105 xlog_put_bp(
106 	xfs_buf_t	*bp)
107 {
108 	xfs_buf_free(bp);
109 }
110 
111 
112 /*
113  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
114  */
115 int
116 xlog_bread(
117 	xlog_t		*log,
118 	xfs_daddr_t	blk_no,
119 	int		nbblks,
120 	xfs_buf_t	*bp)
121 {
122 	int		error;
123 
124 	if (log->l_sectbb_log) {
125 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
126 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
127 	}
128 
129 	ASSERT(nbblks > 0);
130 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
131 	ASSERT(bp);
132 
133 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
134 	XFS_BUF_READ(bp);
135 	XFS_BUF_BUSY(bp);
136 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
137 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
138 
139 	xfsbdstrat(log->l_mp, bp);
140 	if ((error = xfs_iowait(bp)))
141 		xfs_ioerror_alert("xlog_bread", log->l_mp,
142 				  bp, XFS_BUF_ADDR(bp));
143 	return error;
144 }
145 
146 /*
147  * Write out the buffer at the given block for the given number of blocks.
148  * The buffer is kept locked across the write and is returned locked.
149  * This can only be used for synchronous log writes.
150  */
151 int
152 xlog_bwrite(
153 	xlog_t		*log,
154 	xfs_daddr_t	blk_no,
155 	int		nbblks,
156 	xfs_buf_t	*bp)
157 {
158 	int		error;
159 
160 	if (log->l_sectbb_log) {
161 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
162 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
163 	}
164 
165 	ASSERT(nbblks > 0);
166 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
167 
168 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
169 	XFS_BUF_ZEROFLAGS(bp);
170 	XFS_BUF_BUSY(bp);
171 	XFS_BUF_HOLD(bp);
172 	XFS_BUF_PSEMA(bp, PRIBIO);
173 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
174 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
175 
176 	if ((error = xfs_bwrite(log->l_mp, bp)))
177 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
178 				  bp, XFS_BUF_ADDR(bp));
179 	return error;
180 }
181 
182 xfs_caddr_t
183 xlog_align(
184 	xlog_t		*log,
185 	xfs_daddr_t	blk_no,
186 	int		nbblks,
187 	xfs_buf_t	*bp)
188 {
189 	xfs_caddr_t	ptr;
190 
191 	if (!log->l_sectbb_log)
192 		return XFS_BUF_PTR(bp);
193 
194 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
195 	ASSERT(XFS_BUF_SIZE(bp) >=
196 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
197 	return ptr;
198 }
199 
200 #ifdef DEBUG
201 /*
202  * dump debug superblock and log record information
203  */
204 STATIC void
205 xlog_header_check_dump(
206 	xfs_mount_t		*mp,
207 	xlog_rec_header_t	*head)
208 {
209 	int			b;
210 
211 	printk("%s:  SB : uuid = ", __FUNCTION__);
212 	for (b = 0; b < 16; b++)
213 		printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
214 	printk(", fmt = %d\n", XLOG_FMT);
215 	printk("    log : uuid = ");
216 	for (b = 0; b < 16; b++)
217 		printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
218 	printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
219 }
220 #else
221 #define xlog_header_check_dump(mp, head)
222 #endif
223 
224 /*
225  * check log record header for recovery
226  */
227 STATIC int
228 xlog_header_check_recover(
229 	xfs_mount_t		*mp,
230 	xlog_rec_header_t	*head)
231 {
232 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
233 
234 	/*
235 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
236 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
237 	 * a dirty log created in IRIX.
238 	 */
239 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
240 		xlog_warn(
241 	"XFS: dirty log written in incompatible format - can't recover");
242 		xlog_header_check_dump(mp, head);
243 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
244 				 XFS_ERRLEVEL_HIGH, mp);
245 		return XFS_ERROR(EFSCORRUPTED);
246 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
247 		xlog_warn(
248 	"XFS: dirty log entry has mismatched uuid - can't recover");
249 		xlog_header_check_dump(mp, head);
250 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
251 				 XFS_ERRLEVEL_HIGH, mp);
252 		return XFS_ERROR(EFSCORRUPTED);
253 	}
254 	return 0;
255 }
256 
257 /*
258  * read the head block of the log and check the header
259  */
260 STATIC int
261 xlog_header_check_mount(
262 	xfs_mount_t		*mp,
263 	xlog_rec_header_t	*head)
264 {
265 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
266 
267 	if (uuid_is_nil(&head->h_fs_uuid)) {
268 		/*
269 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
270 		 * h_fs_uuid is nil, we assume this log was last mounted
271 		 * by IRIX and continue.
272 		 */
273 		xlog_warn("XFS: nil uuid in log - IRIX style log");
274 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
275 		xlog_warn("XFS: log has mismatched uuid - can't recover");
276 		xlog_header_check_dump(mp, head);
277 		XFS_ERROR_REPORT("xlog_header_check_mount",
278 				 XFS_ERRLEVEL_HIGH, mp);
279 		return XFS_ERROR(EFSCORRUPTED);
280 	}
281 	return 0;
282 }
283 
284 STATIC void
285 xlog_recover_iodone(
286 	struct xfs_buf	*bp)
287 {
288 	xfs_mount_t	*mp;
289 
290 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
291 
292 	if (XFS_BUF_GETERROR(bp)) {
293 		/*
294 		 * We're not going to bother about retrying
295 		 * this during recovery. One strike!
296 		 */
297 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
298 		xfs_ioerror_alert("xlog_recover_iodone",
299 				  mp, bp, XFS_BUF_ADDR(bp));
300 		xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
301 	}
302 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
303 	XFS_BUF_CLR_IODONE_FUNC(bp);
304 	xfs_biodone(bp);
305 }
306 
307 /*
308  * This routine finds (to an approximation) the first block in the physical
309  * log which contains the given cycle.  It uses a binary search algorithm.
310  * Note that the algorithm can not be perfect because the disk will not
311  * necessarily be perfect.
312  */
313 int
314 xlog_find_cycle_start(
315 	xlog_t		*log,
316 	xfs_buf_t	*bp,
317 	xfs_daddr_t	first_blk,
318 	xfs_daddr_t	*last_blk,
319 	uint		cycle)
320 {
321 	xfs_caddr_t	offset;
322 	xfs_daddr_t	mid_blk;
323 	uint		mid_cycle;
324 	int		error;
325 
326 	mid_blk = BLK_AVG(first_blk, *last_blk);
327 	while (mid_blk != first_blk && mid_blk != *last_blk) {
328 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
329 			return error;
330 		offset = xlog_align(log, mid_blk, 1, bp);
331 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
332 		if (mid_cycle == cycle) {
333 			*last_blk = mid_blk;
334 			/* last_half_cycle == mid_cycle */
335 		} else {
336 			first_blk = mid_blk;
337 			/* first_half_cycle == mid_cycle */
338 		}
339 		mid_blk = BLK_AVG(first_blk, *last_blk);
340 	}
341 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
342 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
343 
344 	return 0;
345 }
346 
347 /*
348  * Check that the range of blocks does not contain the cycle number
349  * given.  The scan needs to occur from front to back and the ptr into the
350  * region must be updated since a later routine will need to perform another
351  * test.  If the region is completely good, we end up returning the same
352  * last block number.
353  *
354  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
355  * since we don't ever expect logs to get this large.
356  */
357 STATIC int
358 xlog_find_verify_cycle(
359 	xlog_t		*log,
360 	xfs_daddr_t	start_blk,
361 	int		nbblks,
362 	uint		stop_on_cycle_no,
363 	xfs_daddr_t	*new_blk)
364 {
365 	xfs_daddr_t	i, j;
366 	uint		cycle;
367 	xfs_buf_t	*bp;
368 	xfs_daddr_t	bufblks;
369 	xfs_caddr_t	buf = NULL;
370 	int		error = 0;
371 
372 	bufblks = 1 << ffs(nbblks);
373 
374 	while (!(bp = xlog_get_bp(log, bufblks))) {
375 		/* can't get enough memory to do everything in one big buffer */
376 		bufblks >>= 1;
377 		if (bufblks <= log->l_sectbb_log)
378 			return ENOMEM;
379 	}
380 
381 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
382 		int	bcount;
383 
384 		bcount = min(bufblks, (start_blk + nbblks - i));
385 
386 		if ((error = xlog_bread(log, i, bcount, bp)))
387 			goto out;
388 
389 		buf = xlog_align(log, i, bcount, bp);
390 		for (j = 0; j < bcount; j++) {
391 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
392 			if (cycle == stop_on_cycle_no) {
393 				*new_blk = i+j;
394 				goto out;
395 			}
396 
397 			buf += BBSIZE;
398 		}
399 	}
400 
401 	*new_blk = -1;
402 
403 out:
404 	xlog_put_bp(bp);
405 	return error;
406 }
407 
408 /*
409  * Potentially backup over partial log record write.
410  *
411  * In the typical case, last_blk is the number of the block directly after
412  * a good log record.  Therefore, we subtract one to get the block number
413  * of the last block in the given buffer.  extra_bblks contains the number
414  * of blocks we would have read on a previous read.  This happens when the
415  * last log record is split over the end of the physical log.
416  *
417  * extra_bblks is the number of blocks potentially verified on a previous
418  * call to this routine.
419  */
420 STATIC int
421 xlog_find_verify_log_record(
422 	xlog_t			*log,
423 	xfs_daddr_t		start_blk,
424 	xfs_daddr_t		*last_blk,
425 	int			extra_bblks)
426 {
427 	xfs_daddr_t		i;
428 	xfs_buf_t		*bp;
429 	xfs_caddr_t		offset = NULL;
430 	xlog_rec_header_t	*head = NULL;
431 	int			error = 0;
432 	int			smallmem = 0;
433 	int			num_blks = *last_blk - start_blk;
434 	int			xhdrs;
435 
436 	ASSERT(start_blk != 0 || *last_blk != start_blk);
437 
438 	if (!(bp = xlog_get_bp(log, num_blks))) {
439 		if (!(bp = xlog_get_bp(log, 1)))
440 			return ENOMEM;
441 		smallmem = 1;
442 	} else {
443 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
444 			goto out;
445 		offset = xlog_align(log, start_blk, num_blks, bp);
446 		offset += ((num_blks - 1) << BBSHIFT);
447 	}
448 
449 	for (i = (*last_blk) - 1; i >= 0; i--) {
450 		if (i < start_blk) {
451 			/* valid log record not found */
452 			xlog_warn(
453 		"XFS: Log inconsistent (didn't find previous header)");
454 			ASSERT(0);
455 			error = XFS_ERROR(EIO);
456 			goto out;
457 		}
458 
459 		if (smallmem) {
460 			if ((error = xlog_bread(log, i, 1, bp)))
461 				goto out;
462 			offset = xlog_align(log, i, 1, bp);
463 		}
464 
465 		head = (xlog_rec_header_t *)offset;
466 
467 		if (XLOG_HEADER_MAGIC_NUM ==
468 		    INT_GET(head->h_magicno, ARCH_CONVERT))
469 			break;
470 
471 		if (!smallmem)
472 			offset -= BBSIZE;
473 	}
474 
475 	/*
476 	 * We hit the beginning of the physical log & still no header.  Return
477 	 * to caller.  If caller can handle a return of -1, then this routine
478 	 * will be called again for the end of the physical log.
479 	 */
480 	if (i == -1) {
481 		error = -1;
482 		goto out;
483 	}
484 
485 	/*
486 	 * We have the final block of the good log (the first block
487 	 * of the log record _before_ the head. So we check the uuid.
488 	 */
489 	if ((error = xlog_header_check_mount(log->l_mp, head)))
490 		goto out;
491 
492 	/*
493 	 * We may have found a log record header before we expected one.
494 	 * last_blk will be the 1st block # with a given cycle #.  We may end
495 	 * up reading an entire log record.  In this case, we don't want to
496 	 * reset last_blk.  Only when last_blk points in the middle of a log
497 	 * record do we update last_blk.
498 	 */
499 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
500 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
501 
502 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
503 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
504 			xhdrs++;
505 	} else {
506 		xhdrs = 1;
507 	}
508 
509 	if (*last_blk - i + extra_bblks
510 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
511 		*last_blk = i;
512 
513 out:
514 	xlog_put_bp(bp);
515 	return error;
516 }
517 
518 /*
519  * Head is defined to be the point of the log where the next log write
520  * write could go.  This means that incomplete LR writes at the end are
521  * eliminated when calculating the head.  We aren't guaranteed that previous
522  * LR have complete transactions.  We only know that a cycle number of
523  * current cycle number -1 won't be present in the log if we start writing
524  * from our current block number.
525  *
526  * last_blk contains the block number of the first block with a given
527  * cycle number.
528  *
529  * Return: zero if normal, non-zero if error.
530  */
531 int
532 xlog_find_head(
533 	xlog_t 		*log,
534 	xfs_daddr_t	*return_head_blk)
535 {
536 	xfs_buf_t	*bp;
537 	xfs_caddr_t	offset;
538 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
539 	int		num_scan_bblks;
540 	uint		first_half_cycle, last_half_cycle;
541 	uint		stop_on_cycle;
542 	int		error, log_bbnum = log->l_logBBsize;
543 
544 	/* Is the end of the log device zeroed? */
545 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
546 		*return_head_blk = first_blk;
547 
548 		/* Is the whole lot zeroed? */
549 		if (!first_blk) {
550 			/* Linux XFS shouldn't generate totally zeroed logs -
551 			 * mkfs etc write a dummy unmount record to a fresh
552 			 * log so we can store the uuid in there
553 			 */
554 			xlog_warn("XFS: totally zeroed log");
555 		}
556 
557 		return 0;
558 	} else if (error) {
559 		xlog_warn("XFS: empty log check failed");
560 		return error;
561 	}
562 
563 	first_blk = 0;			/* get cycle # of 1st block */
564 	bp = xlog_get_bp(log, 1);
565 	if (!bp)
566 		return ENOMEM;
567 	if ((error = xlog_bread(log, 0, 1, bp)))
568 		goto bp_err;
569 	offset = xlog_align(log, 0, 1, bp);
570 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
571 
572 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
573 	if ((error = xlog_bread(log, last_blk, 1, bp)))
574 		goto bp_err;
575 	offset = xlog_align(log, last_blk, 1, bp);
576 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
577 	ASSERT(last_half_cycle != 0);
578 
579 	/*
580 	 * If the 1st half cycle number is equal to the last half cycle number,
581 	 * then the entire log is stamped with the same cycle number.  In this
582 	 * case, head_blk can't be set to zero (which makes sense).  The below
583 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
584 	 * we set it to log_bbnum which is an invalid block number, but this
585 	 * value makes the math correct.  If head_blk doesn't changed through
586 	 * all the tests below, *head_blk is set to zero at the very end rather
587 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
588 	 * in a circular file.
589 	 */
590 	if (first_half_cycle == last_half_cycle) {
591 		/*
592 		 * In this case we believe that the entire log should have
593 		 * cycle number last_half_cycle.  We need to scan backwards
594 		 * from the end verifying that there are no holes still
595 		 * containing last_half_cycle - 1.  If we find such a hole,
596 		 * then the start of that hole will be the new head.  The
597 		 * simple case looks like
598 		 *        x | x ... | x - 1 | x
599 		 * Another case that fits this picture would be
600 		 *        x | x + 1 | x ... | x
601 		 * In this case the head really is somwhere at the end of the
602 		 * log, as one of the latest writes at the beginning was
603 		 * incomplete.
604 		 * One more case is
605 		 *        x | x + 1 | x ... | x - 1 | x
606 		 * This is really the combination of the above two cases, and
607 		 * the head has to end up at the start of the x-1 hole at the
608 		 * end of the log.
609 		 *
610 		 * In the 256k log case, we will read from the beginning to the
611 		 * end of the log and search for cycle numbers equal to x-1.
612 		 * We don't worry about the x+1 blocks that we encounter,
613 		 * because we know that they cannot be the head since the log
614 		 * started with x.
615 		 */
616 		head_blk = log_bbnum;
617 		stop_on_cycle = last_half_cycle - 1;
618 	} else {
619 		/*
620 		 * In this case we want to find the first block with cycle
621 		 * number matching last_half_cycle.  We expect the log to be
622 		 * some variation on
623 		 *        x + 1 ... | x ...
624 		 * The first block with cycle number x (last_half_cycle) will
625 		 * be where the new head belongs.  First we do a binary search
626 		 * for the first occurrence of last_half_cycle.  The binary
627 		 * search may not be totally accurate, so then we scan back
628 		 * from there looking for occurrences of last_half_cycle before
629 		 * us.  If that backwards scan wraps around the beginning of
630 		 * the log, then we look for occurrences of last_half_cycle - 1
631 		 * at the end of the log.  The cases we're looking for look
632 		 * like
633 		 *        x + 1 ... | x | x + 1 | x ...
634 		 *                               ^ binary search stopped here
635 		 * or
636 		 *        x + 1 ... | x ... | x - 1 | x
637 		 *        <---------> less than scan distance
638 		 */
639 		stop_on_cycle = last_half_cycle;
640 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
641 						&head_blk, last_half_cycle)))
642 			goto bp_err;
643 	}
644 
645 	/*
646 	 * Now validate the answer.  Scan back some number of maximum possible
647 	 * blocks and make sure each one has the expected cycle number.  The
648 	 * maximum is determined by the total possible amount of buffering
649 	 * in the in-core log.  The following number can be made tighter if
650 	 * we actually look at the block size of the filesystem.
651 	 */
652 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
653 	if (head_blk >= num_scan_bblks) {
654 		/*
655 		 * We are guaranteed that the entire check can be performed
656 		 * in one buffer.
657 		 */
658 		start_blk = head_blk - num_scan_bblks;
659 		if ((error = xlog_find_verify_cycle(log,
660 						start_blk, num_scan_bblks,
661 						stop_on_cycle, &new_blk)))
662 			goto bp_err;
663 		if (new_blk != -1)
664 			head_blk = new_blk;
665 	} else {		/* need to read 2 parts of log */
666 		/*
667 		 * We are going to scan backwards in the log in two parts.
668 		 * First we scan the physical end of the log.  In this part
669 		 * of the log, we are looking for blocks with cycle number
670 		 * last_half_cycle - 1.
671 		 * If we find one, then we know that the log starts there, as
672 		 * we've found a hole that didn't get written in going around
673 		 * the end of the physical log.  The simple case for this is
674 		 *        x + 1 ... | x ... | x - 1 | x
675 		 *        <---------> less than scan distance
676 		 * If all of the blocks at the end of the log have cycle number
677 		 * last_half_cycle, then we check the blocks at the start of
678 		 * the log looking for occurrences of last_half_cycle.  If we
679 		 * find one, then our current estimate for the location of the
680 		 * first occurrence of last_half_cycle is wrong and we move
681 		 * back to the hole we've found.  This case looks like
682 		 *        x + 1 ... | x | x + 1 | x ...
683 		 *                               ^ binary search stopped here
684 		 * Another case we need to handle that only occurs in 256k
685 		 * logs is
686 		 *        x + 1 ... | x ... | x+1 | x ...
687 		 *                   ^ binary search stops here
688 		 * In a 256k log, the scan at the end of the log will see the
689 		 * x + 1 blocks.  We need to skip past those since that is
690 		 * certainly not the head of the log.  By searching for
691 		 * last_half_cycle-1 we accomplish that.
692 		 */
693 		start_blk = log_bbnum - num_scan_bblks + head_blk;
694 		ASSERT(head_blk <= INT_MAX &&
695 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
696 		if ((error = xlog_find_verify_cycle(log, start_blk,
697 					num_scan_bblks - (int)head_blk,
698 					(stop_on_cycle - 1), &new_blk)))
699 			goto bp_err;
700 		if (new_blk != -1) {
701 			head_blk = new_blk;
702 			goto bad_blk;
703 		}
704 
705 		/*
706 		 * Scan beginning of log now.  The last part of the physical
707 		 * log is good.  This scan needs to verify that it doesn't find
708 		 * the last_half_cycle.
709 		 */
710 		start_blk = 0;
711 		ASSERT(head_blk <= INT_MAX);
712 		if ((error = xlog_find_verify_cycle(log,
713 					start_blk, (int)head_blk,
714 					stop_on_cycle, &new_blk)))
715 			goto bp_err;
716 		if (new_blk != -1)
717 			head_blk = new_blk;
718 	}
719 
720  bad_blk:
721 	/*
722 	 * Now we need to make sure head_blk is not pointing to a block in
723 	 * the middle of a log record.
724 	 */
725 	num_scan_bblks = XLOG_REC_SHIFT(log);
726 	if (head_blk >= num_scan_bblks) {
727 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
728 
729 		/* start ptr at last block ptr before head_blk */
730 		if ((error = xlog_find_verify_log_record(log, start_blk,
731 							&head_blk, 0)) == -1) {
732 			error = XFS_ERROR(EIO);
733 			goto bp_err;
734 		} else if (error)
735 			goto bp_err;
736 	} else {
737 		start_blk = 0;
738 		ASSERT(head_blk <= INT_MAX);
739 		if ((error = xlog_find_verify_log_record(log, start_blk,
740 							&head_blk, 0)) == -1) {
741 			/* We hit the beginning of the log during our search */
742 			start_blk = log_bbnum - num_scan_bblks + head_blk;
743 			new_blk = log_bbnum;
744 			ASSERT(start_blk <= INT_MAX &&
745 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
746 			ASSERT(head_blk <= INT_MAX);
747 			if ((error = xlog_find_verify_log_record(log,
748 							start_blk, &new_blk,
749 							(int)head_blk)) == -1) {
750 				error = XFS_ERROR(EIO);
751 				goto bp_err;
752 			} else if (error)
753 				goto bp_err;
754 			if (new_blk != log_bbnum)
755 				head_blk = new_blk;
756 		} else if (error)
757 			goto bp_err;
758 	}
759 
760 	xlog_put_bp(bp);
761 	if (head_blk == log_bbnum)
762 		*return_head_blk = 0;
763 	else
764 		*return_head_blk = head_blk;
765 	/*
766 	 * When returning here, we have a good block number.  Bad block
767 	 * means that during a previous crash, we didn't have a clean break
768 	 * from cycle number N to cycle number N-1.  In this case, we need
769 	 * to find the first block with cycle number N-1.
770 	 */
771 	return 0;
772 
773  bp_err:
774 	xlog_put_bp(bp);
775 
776 	if (error)
777 	    xlog_warn("XFS: failed to find log head");
778 	return error;
779 }
780 
781 /*
782  * Find the sync block number or the tail of the log.
783  *
784  * This will be the block number of the last record to have its
785  * associated buffers synced to disk.  Every log record header has
786  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
787  * to get a sync block number.  The only concern is to figure out which
788  * log record header to believe.
789  *
790  * The following algorithm uses the log record header with the largest
791  * lsn.  The entire log record does not need to be valid.  We only care
792  * that the header is valid.
793  *
794  * We could speed up search by using current head_blk buffer, but it is not
795  * available.
796  */
797 int
798 xlog_find_tail(
799 	xlog_t			*log,
800 	xfs_daddr_t		*head_blk,
801 	xfs_daddr_t		*tail_blk,
802 	int			readonly)
803 {
804 	xlog_rec_header_t	*rhead;
805 	xlog_op_header_t	*op_head;
806 	xfs_caddr_t		offset = NULL;
807 	xfs_buf_t		*bp;
808 	int			error, i, found;
809 	xfs_daddr_t		umount_data_blk;
810 	xfs_daddr_t		after_umount_blk;
811 	xfs_lsn_t		tail_lsn;
812 	int			hblks;
813 
814 	found = 0;
815 
816 	/*
817 	 * Find previous log record
818 	 */
819 	if ((error = xlog_find_head(log, head_blk)))
820 		return error;
821 
822 	bp = xlog_get_bp(log, 1);
823 	if (!bp)
824 		return ENOMEM;
825 	if (*head_blk == 0) {				/* special case */
826 		if ((error = xlog_bread(log, 0, 1, bp)))
827 			goto bread_err;
828 		offset = xlog_align(log, 0, 1, bp);
829 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
830 			*tail_blk = 0;
831 			/* leave all other log inited values alone */
832 			goto exit;
833 		}
834 	}
835 
836 	/*
837 	 * Search backwards looking for log record header block
838 	 */
839 	ASSERT(*head_blk < INT_MAX);
840 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
841 		if ((error = xlog_bread(log, i, 1, bp)))
842 			goto bread_err;
843 		offset = xlog_align(log, i, 1, bp);
844 		if (XLOG_HEADER_MAGIC_NUM ==
845 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
846 			found = 1;
847 			break;
848 		}
849 	}
850 	/*
851 	 * If we haven't found the log record header block, start looking
852 	 * again from the end of the physical log.  XXXmiken: There should be
853 	 * a check here to make sure we didn't search more than N blocks in
854 	 * the previous code.
855 	 */
856 	if (!found) {
857 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
858 			if ((error = xlog_bread(log, i, 1, bp)))
859 				goto bread_err;
860 			offset = xlog_align(log, i, 1, bp);
861 			if (XLOG_HEADER_MAGIC_NUM ==
862 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
863 				found = 2;
864 				break;
865 			}
866 		}
867 	}
868 	if (!found) {
869 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
870 		ASSERT(0);
871 		return XFS_ERROR(EIO);
872 	}
873 
874 	/* find blk_no of tail of log */
875 	rhead = (xlog_rec_header_t *)offset;
876 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
877 
878 	/*
879 	 * Reset log values according to the state of the log when we
880 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
881 	 * one because the next write starts a new cycle rather than
882 	 * continuing the cycle of the last good log record.  At this
883 	 * point we have guaranteed that all partial log records have been
884 	 * accounted for.  Therefore, we know that the last good log record
885 	 * written was complete and ended exactly on the end boundary
886 	 * of the physical log.
887 	 */
888 	log->l_prev_block = i;
889 	log->l_curr_block = (int)*head_blk;
890 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
891 	if (found == 2)
892 		log->l_curr_cycle++;
893 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
894 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
895 	log->l_grant_reserve_cycle = log->l_curr_cycle;
896 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
897 	log->l_grant_write_cycle = log->l_curr_cycle;
898 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
899 
900 	/*
901 	 * Look for unmount record.  If we find it, then we know there
902 	 * was a clean unmount.  Since 'i' could be the last block in
903 	 * the physical log, we convert to a log block before comparing
904 	 * to the head_blk.
905 	 *
906 	 * Save the current tail lsn to use to pass to
907 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
908 	 * unmount record if there is one, so we pass the lsn of the
909 	 * unmount record rather than the block after it.
910 	 */
911 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
912 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
913 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
914 
915 		if ((h_version & XLOG_VERSION_2) &&
916 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
917 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
918 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
919 				hblks++;
920 		} else {
921 			hblks = 1;
922 		}
923 	} else {
924 		hblks = 1;
925 	}
926 	after_umount_blk = (i + hblks + (int)
927 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
928 	tail_lsn = log->l_tail_lsn;
929 	if (*head_blk == after_umount_blk &&
930 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
931 		umount_data_blk = (i + hblks) % log->l_logBBsize;
932 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
933 			goto bread_err;
934 		}
935 		offset = xlog_align(log, umount_data_blk, 1, bp);
936 		op_head = (xlog_op_header_t *)offset;
937 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
938 			/*
939 			 * Set tail and last sync so that newly written
940 			 * log records will point recovery to after the
941 			 * current unmount record.
942 			 */
943 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
944 					after_umount_blk);
945 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
946 					after_umount_blk);
947 			*tail_blk = after_umount_blk;
948 		}
949 	}
950 
951 	/*
952 	 * Make sure that there are no blocks in front of the head
953 	 * with the same cycle number as the head.  This can happen
954 	 * because we allow multiple outstanding log writes concurrently,
955 	 * and the later writes might make it out before earlier ones.
956 	 *
957 	 * We use the lsn from before modifying it so that we'll never
958 	 * overwrite the unmount record after a clean unmount.
959 	 *
960 	 * Do this only if we are going to recover the filesystem
961 	 *
962 	 * NOTE: This used to say "if (!readonly)"
963 	 * However on Linux, we can & do recover a read-only filesystem.
964 	 * We only skip recovery if NORECOVERY is specified on mount,
965 	 * in which case we would not be here.
966 	 *
967 	 * But... if the -device- itself is readonly, just skip this.
968 	 * We can't recover this device anyway, so it won't matter.
969 	 */
970 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
971 		error = xlog_clear_stale_blocks(log, tail_lsn);
972 	}
973 
974 bread_err:
975 exit:
976 	xlog_put_bp(bp);
977 
978 	if (error)
979 		xlog_warn("XFS: failed to locate log tail");
980 	return error;
981 }
982 
983 /*
984  * Is the log zeroed at all?
985  *
986  * The last binary search should be changed to perform an X block read
987  * once X becomes small enough.  You can then search linearly through
988  * the X blocks.  This will cut down on the number of reads we need to do.
989  *
990  * If the log is partially zeroed, this routine will pass back the blkno
991  * of the first block with cycle number 0.  It won't have a complete LR
992  * preceding it.
993  *
994  * Return:
995  *	0  => the log is completely written to
996  *	-1 => use *blk_no as the first block of the log
997  *	>0 => error has occurred
998  */
999 int
1000 xlog_find_zeroed(
1001 	xlog_t		*log,
1002 	xfs_daddr_t	*blk_no)
1003 {
1004 	xfs_buf_t	*bp;
1005 	xfs_caddr_t	offset;
1006 	uint	        first_cycle, last_cycle;
1007 	xfs_daddr_t	new_blk, last_blk, start_blk;
1008 	xfs_daddr_t     num_scan_bblks;
1009 	int	        error, log_bbnum = log->l_logBBsize;
1010 
1011 	/* check totally zeroed log */
1012 	bp = xlog_get_bp(log, 1);
1013 	if (!bp)
1014 		return ENOMEM;
1015 	if ((error = xlog_bread(log, 0, 1, bp)))
1016 		goto bp_err;
1017 	offset = xlog_align(log, 0, 1, bp);
1018 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1019 	if (first_cycle == 0) {		/* completely zeroed log */
1020 		*blk_no = 0;
1021 		xlog_put_bp(bp);
1022 		return -1;
1023 	}
1024 
1025 	/* check partially zeroed log */
1026 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1027 		goto bp_err;
1028 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1029 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1030 	if (last_cycle != 0) {		/* log completely written to */
1031 		xlog_put_bp(bp);
1032 		return 0;
1033 	} else if (first_cycle != 1) {
1034 		/*
1035 		 * If the cycle of the last block is zero, the cycle of
1036 		 * the first block must be 1. If it's not, maybe we're
1037 		 * not looking at a log... Bail out.
1038 		 */
1039 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1040 		return XFS_ERROR(EINVAL);
1041 	}
1042 
1043 	/* we have a partially zeroed log */
1044 	last_blk = log_bbnum-1;
1045 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1046 		goto bp_err;
1047 
1048 	/*
1049 	 * Validate the answer.  Because there is no way to guarantee that
1050 	 * the entire log is made up of log records which are the same size,
1051 	 * we scan over the defined maximum blocks.  At this point, the maximum
1052 	 * is not chosen to mean anything special.   XXXmiken
1053 	 */
1054 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1055 	ASSERT(num_scan_bblks <= INT_MAX);
1056 
1057 	if (last_blk < num_scan_bblks)
1058 		num_scan_bblks = last_blk;
1059 	start_blk = last_blk - num_scan_bblks;
1060 
1061 	/*
1062 	 * We search for any instances of cycle number 0 that occur before
1063 	 * our current estimate of the head.  What we're trying to detect is
1064 	 *        1 ... | 0 | 1 | 0...
1065 	 *                       ^ binary search ends here
1066 	 */
1067 	if ((error = xlog_find_verify_cycle(log, start_blk,
1068 					 (int)num_scan_bblks, 0, &new_blk)))
1069 		goto bp_err;
1070 	if (new_blk != -1)
1071 		last_blk = new_blk;
1072 
1073 	/*
1074 	 * Potentially backup over partial log record write.  We don't need
1075 	 * to search the end of the log because we know it is zero.
1076 	 */
1077 	if ((error = xlog_find_verify_log_record(log, start_blk,
1078 				&last_blk, 0)) == -1) {
1079 	    error = XFS_ERROR(EIO);
1080 	    goto bp_err;
1081 	} else if (error)
1082 	    goto bp_err;
1083 
1084 	*blk_no = last_blk;
1085 bp_err:
1086 	xlog_put_bp(bp);
1087 	if (error)
1088 		return error;
1089 	return -1;
1090 }
1091 
1092 /*
1093  * These are simple subroutines used by xlog_clear_stale_blocks() below
1094  * to initialize a buffer full of empty log record headers and write
1095  * them into the log.
1096  */
1097 STATIC void
1098 xlog_add_record(
1099 	xlog_t			*log,
1100 	xfs_caddr_t		buf,
1101 	int			cycle,
1102 	int			block,
1103 	int			tail_cycle,
1104 	int			tail_block)
1105 {
1106 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1107 
1108 	memset(buf, 0, BBSIZE);
1109 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1110 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1111 	INT_SET(recp->h_version, ARCH_CONVERT,
1112 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1113 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1114 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1115 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1116 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1117 }
1118 
1119 STATIC int
1120 xlog_write_log_records(
1121 	xlog_t		*log,
1122 	int		cycle,
1123 	int		start_block,
1124 	int		blocks,
1125 	int		tail_cycle,
1126 	int		tail_block)
1127 {
1128 	xfs_caddr_t	offset;
1129 	xfs_buf_t	*bp;
1130 	int		balign, ealign;
1131 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1132 	int		end_block = start_block + blocks;
1133 	int		bufblks;
1134 	int		error = 0;
1135 	int		i, j = 0;
1136 
1137 	bufblks = 1 << ffs(blocks);
1138 	while (!(bp = xlog_get_bp(log, bufblks))) {
1139 		bufblks >>= 1;
1140 		if (bufblks <= log->l_sectbb_log)
1141 			return ENOMEM;
1142 	}
1143 
1144 	/* We may need to do a read at the start to fill in part of
1145 	 * the buffer in the starting sector not covered by the first
1146 	 * write below.
1147 	 */
1148 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1149 	if (balign != start_block) {
1150 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1151 			xlog_put_bp(bp);
1152 			return error;
1153 		}
1154 		j = start_block - balign;
1155 	}
1156 
1157 	for (i = start_block; i < end_block; i += bufblks) {
1158 		int		bcount, endcount;
1159 
1160 		bcount = min(bufblks, end_block - start_block);
1161 		endcount = bcount - j;
1162 
1163 		/* We may need to do a read at the end to fill in part of
1164 		 * the buffer in the final sector not covered by the write.
1165 		 * If this is the same sector as the above read, skip it.
1166 		 */
1167 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1168 		if (j == 0 && (start_block + endcount > ealign)) {
1169 			offset = XFS_BUF_PTR(bp);
1170 			balign = BBTOB(ealign - start_block);
1171 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1172 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1173 				break;
1174 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1175 		}
1176 
1177 		offset = xlog_align(log, start_block, endcount, bp);
1178 		for (; j < endcount; j++) {
1179 			xlog_add_record(log, offset, cycle, i+j,
1180 					tail_cycle, tail_block);
1181 			offset += BBSIZE;
1182 		}
1183 		error = xlog_bwrite(log, start_block, endcount, bp);
1184 		if (error)
1185 			break;
1186 		start_block += endcount;
1187 		j = 0;
1188 	}
1189 	xlog_put_bp(bp);
1190 	return error;
1191 }
1192 
1193 /*
1194  * This routine is called to blow away any incomplete log writes out
1195  * in front of the log head.  We do this so that we won't become confused
1196  * if we come up, write only a little bit more, and then crash again.
1197  * If we leave the partial log records out there, this situation could
1198  * cause us to think those partial writes are valid blocks since they
1199  * have the current cycle number.  We get rid of them by overwriting them
1200  * with empty log records with the old cycle number rather than the
1201  * current one.
1202  *
1203  * The tail lsn is passed in rather than taken from
1204  * the log so that we will not write over the unmount record after a
1205  * clean unmount in a 512 block log.  Doing so would leave the log without
1206  * any valid log records in it until a new one was written.  If we crashed
1207  * during that time we would not be able to recover.
1208  */
1209 STATIC int
1210 xlog_clear_stale_blocks(
1211 	xlog_t		*log,
1212 	xfs_lsn_t	tail_lsn)
1213 {
1214 	int		tail_cycle, head_cycle;
1215 	int		tail_block, head_block;
1216 	int		tail_distance, max_distance;
1217 	int		distance;
1218 	int		error;
1219 
1220 	tail_cycle = CYCLE_LSN(tail_lsn);
1221 	tail_block = BLOCK_LSN(tail_lsn);
1222 	head_cycle = log->l_curr_cycle;
1223 	head_block = log->l_curr_block;
1224 
1225 	/*
1226 	 * Figure out the distance between the new head of the log
1227 	 * and the tail.  We want to write over any blocks beyond the
1228 	 * head that we may have written just before the crash, but
1229 	 * we don't want to overwrite the tail of the log.
1230 	 */
1231 	if (head_cycle == tail_cycle) {
1232 		/*
1233 		 * The tail is behind the head in the physical log,
1234 		 * so the distance from the head to the tail is the
1235 		 * distance from the head to the end of the log plus
1236 		 * the distance from the beginning of the log to the
1237 		 * tail.
1238 		 */
1239 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1240 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1241 					 XFS_ERRLEVEL_LOW, log->l_mp);
1242 			return XFS_ERROR(EFSCORRUPTED);
1243 		}
1244 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1245 	} else {
1246 		/*
1247 		 * The head is behind the tail in the physical log,
1248 		 * so the distance from the head to the tail is just
1249 		 * the tail block minus the head block.
1250 		 */
1251 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1252 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1253 					 XFS_ERRLEVEL_LOW, log->l_mp);
1254 			return XFS_ERROR(EFSCORRUPTED);
1255 		}
1256 		tail_distance = tail_block - head_block;
1257 	}
1258 
1259 	/*
1260 	 * If the head is right up against the tail, we can't clear
1261 	 * anything.
1262 	 */
1263 	if (tail_distance <= 0) {
1264 		ASSERT(tail_distance == 0);
1265 		return 0;
1266 	}
1267 
1268 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1269 	/*
1270 	 * Take the smaller of the maximum amount of outstanding I/O
1271 	 * we could have and the distance to the tail to clear out.
1272 	 * We take the smaller so that we don't overwrite the tail and
1273 	 * we don't waste all day writing from the head to the tail
1274 	 * for no reason.
1275 	 */
1276 	max_distance = MIN(max_distance, tail_distance);
1277 
1278 	if ((head_block + max_distance) <= log->l_logBBsize) {
1279 		/*
1280 		 * We can stomp all the blocks we need to without
1281 		 * wrapping around the end of the log.  Just do it
1282 		 * in a single write.  Use the cycle number of the
1283 		 * current cycle minus one so that the log will look like:
1284 		 *     n ... | n - 1 ...
1285 		 */
1286 		error = xlog_write_log_records(log, (head_cycle - 1),
1287 				head_block, max_distance, tail_cycle,
1288 				tail_block);
1289 		if (error)
1290 			return error;
1291 	} else {
1292 		/*
1293 		 * We need to wrap around the end of the physical log in
1294 		 * order to clear all the blocks.  Do it in two separate
1295 		 * I/Os.  The first write should be from the head to the
1296 		 * end of the physical log, and it should use the current
1297 		 * cycle number minus one just like above.
1298 		 */
1299 		distance = log->l_logBBsize - head_block;
1300 		error = xlog_write_log_records(log, (head_cycle - 1),
1301 				head_block, distance, tail_cycle,
1302 				tail_block);
1303 
1304 		if (error)
1305 			return error;
1306 
1307 		/*
1308 		 * Now write the blocks at the start of the physical log.
1309 		 * This writes the remainder of the blocks we want to clear.
1310 		 * It uses the current cycle number since we're now on the
1311 		 * same cycle as the head so that we get:
1312 		 *    n ... n ... | n - 1 ...
1313 		 *    ^^^^^ blocks we're writing
1314 		 */
1315 		distance = max_distance - (log->l_logBBsize - head_block);
1316 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1317 				tail_cycle, tail_block);
1318 		if (error)
1319 			return error;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 /******************************************************************************
1326  *
1327  *		Log recover routines
1328  *
1329  ******************************************************************************
1330  */
1331 
1332 STATIC xlog_recover_t *
1333 xlog_recover_find_tid(
1334 	xlog_recover_t		*q,
1335 	xlog_tid_t		tid)
1336 {
1337 	xlog_recover_t		*p = q;
1338 
1339 	while (p != NULL) {
1340 		if (p->r_log_tid == tid)
1341 		    break;
1342 		p = p->r_next;
1343 	}
1344 	return p;
1345 }
1346 
1347 STATIC void
1348 xlog_recover_put_hashq(
1349 	xlog_recover_t		**q,
1350 	xlog_recover_t		*trans)
1351 {
1352 	trans->r_next = *q;
1353 	*q = trans;
1354 }
1355 
1356 STATIC void
1357 xlog_recover_add_item(
1358 	xlog_recover_item_t	**itemq)
1359 {
1360 	xlog_recover_item_t	*item;
1361 
1362 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1363 	xlog_recover_insert_item_backq(itemq, item);
1364 }
1365 
1366 STATIC int
1367 xlog_recover_add_to_cont_trans(
1368 	xlog_recover_t		*trans,
1369 	xfs_caddr_t		dp,
1370 	int			len)
1371 {
1372 	xlog_recover_item_t	*item;
1373 	xfs_caddr_t		ptr, old_ptr;
1374 	int			old_len;
1375 
1376 	item = trans->r_itemq;
1377 	if (item == 0) {
1378 		/* finish copying rest of trans header */
1379 		xlog_recover_add_item(&trans->r_itemq);
1380 		ptr = (xfs_caddr_t) &trans->r_theader +
1381 				sizeof(xfs_trans_header_t) - len;
1382 		memcpy(ptr, dp, len); /* d, s, l */
1383 		return 0;
1384 	}
1385 	item = item->ri_prev;
1386 
1387 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1388 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1389 
1390 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0);
1391 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1392 	item->ri_buf[item->ri_cnt-1].i_len += len;
1393 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1394 	return 0;
1395 }
1396 
1397 /*
1398  * The next region to add is the start of a new region.  It could be
1399  * a whole region or it could be the first part of a new region.  Because
1400  * of this, the assumption here is that the type and size fields of all
1401  * format structures fit into the first 32 bits of the structure.
1402  *
1403  * This works because all regions must be 32 bit aligned.  Therefore, we
1404  * either have both fields or we have neither field.  In the case we have
1405  * neither field, the data part of the region is zero length.  We only have
1406  * a log_op_header and can throw away the header since a new one will appear
1407  * later.  If we have at least 4 bytes, then we can determine how many regions
1408  * will appear in the current log item.
1409  */
1410 STATIC int
1411 xlog_recover_add_to_trans(
1412 	xlog_recover_t		*trans,
1413 	xfs_caddr_t		dp,
1414 	int			len)
1415 {
1416 	xfs_inode_log_format_t	*in_f;			/* any will do */
1417 	xlog_recover_item_t	*item;
1418 	xfs_caddr_t		ptr;
1419 
1420 	if (!len)
1421 		return 0;
1422 	item = trans->r_itemq;
1423 	if (item == 0) {
1424 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1425 		if (len == sizeof(xfs_trans_header_t))
1426 			xlog_recover_add_item(&trans->r_itemq);
1427 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1428 		return 0;
1429 	}
1430 
1431 	ptr = kmem_alloc(len, KM_SLEEP);
1432 	memcpy(ptr, dp, len);
1433 	in_f = (xfs_inode_log_format_t *)ptr;
1434 
1435 	if (item->ri_prev->ri_total != 0 &&
1436 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1437 		xlog_recover_add_item(&trans->r_itemq);
1438 	}
1439 	item = trans->r_itemq;
1440 	item = item->ri_prev;
1441 
1442 	if (item->ri_total == 0) {		/* first region to be added */
1443 		item->ri_total	= in_f->ilf_size;
1444 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1445 		item->ri_buf = kmem_zalloc((item->ri_total *
1446 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1447 	}
1448 	ASSERT(item->ri_total > item->ri_cnt);
1449 	/* Description region is ri_buf[0] */
1450 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1451 	item->ri_buf[item->ri_cnt].i_len  = len;
1452 	item->ri_cnt++;
1453 	return 0;
1454 }
1455 
1456 STATIC void
1457 xlog_recover_new_tid(
1458 	xlog_recover_t		**q,
1459 	xlog_tid_t		tid,
1460 	xfs_lsn_t		lsn)
1461 {
1462 	xlog_recover_t		*trans;
1463 
1464 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1465 	trans->r_log_tid   = tid;
1466 	trans->r_lsn	   = lsn;
1467 	xlog_recover_put_hashq(q, trans);
1468 }
1469 
1470 STATIC int
1471 xlog_recover_unlink_tid(
1472 	xlog_recover_t		**q,
1473 	xlog_recover_t		*trans)
1474 {
1475 	xlog_recover_t		*tp;
1476 	int			found = 0;
1477 
1478 	ASSERT(trans != 0);
1479 	if (trans == *q) {
1480 		*q = (*q)->r_next;
1481 	} else {
1482 		tp = *q;
1483 		while (tp != 0) {
1484 			if (tp->r_next == trans) {
1485 				found = 1;
1486 				break;
1487 			}
1488 			tp = tp->r_next;
1489 		}
1490 		if (!found) {
1491 			xlog_warn(
1492 			     "XFS: xlog_recover_unlink_tid: trans not found");
1493 			ASSERT(0);
1494 			return XFS_ERROR(EIO);
1495 		}
1496 		tp->r_next = tp->r_next->r_next;
1497 	}
1498 	return 0;
1499 }
1500 
1501 STATIC void
1502 xlog_recover_insert_item_backq(
1503 	xlog_recover_item_t	**q,
1504 	xlog_recover_item_t	*item)
1505 {
1506 	if (*q == 0) {
1507 		item->ri_prev = item->ri_next = item;
1508 		*q = item;
1509 	} else {
1510 		item->ri_next		= *q;
1511 		item->ri_prev		= (*q)->ri_prev;
1512 		(*q)->ri_prev		= item;
1513 		item->ri_prev->ri_next	= item;
1514 	}
1515 }
1516 
1517 STATIC void
1518 xlog_recover_insert_item_frontq(
1519 	xlog_recover_item_t	**q,
1520 	xlog_recover_item_t	*item)
1521 {
1522 	xlog_recover_insert_item_backq(q, item);
1523 	*q = item;
1524 }
1525 
1526 STATIC int
1527 xlog_recover_reorder_trans(
1528 	xlog_t			*log,
1529 	xlog_recover_t		*trans)
1530 {
1531 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1532 	xfs_buf_log_format_t	*buf_f;
1533 	xfs_buf_log_format_v1_t	*obuf_f;
1534 	ushort			flags = 0;
1535 
1536 	first_item = itemq = trans->r_itemq;
1537 	trans->r_itemq = NULL;
1538 	do {
1539 		itemq_next = itemq->ri_next;
1540 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1541 		switch (ITEM_TYPE(itemq)) {
1542 		case XFS_LI_BUF:
1543 			flags = buf_f->blf_flags;
1544 			break;
1545 		case XFS_LI_6_1_BUF:
1546 		case XFS_LI_5_3_BUF:
1547 			obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1548 			flags = obuf_f->blf_flags;
1549 			break;
1550 		}
1551 
1552 		switch (ITEM_TYPE(itemq)) {
1553 		case XFS_LI_BUF:
1554 		case XFS_LI_6_1_BUF:
1555 		case XFS_LI_5_3_BUF:
1556 			if (!(flags & XFS_BLI_CANCEL)) {
1557 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1558 								itemq);
1559 				break;
1560 			}
1561 		case XFS_LI_INODE:
1562 		case XFS_LI_6_1_INODE:
1563 		case XFS_LI_5_3_INODE:
1564 		case XFS_LI_DQUOT:
1565 		case XFS_LI_QUOTAOFF:
1566 		case XFS_LI_EFD:
1567 		case XFS_LI_EFI:
1568 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1569 			break;
1570 		default:
1571 			xlog_warn(
1572 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1573 			ASSERT(0);
1574 			return XFS_ERROR(EIO);
1575 		}
1576 		itemq = itemq_next;
1577 	} while (first_item != itemq);
1578 	return 0;
1579 }
1580 
1581 /*
1582  * Build up the table of buf cancel records so that we don't replay
1583  * cancelled data in the second pass.  For buffer records that are
1584  * not cancel records, there is nothing to do here so we just return.
1585  *
1586  * If we get a cancel record which is already in the table, this indicates
1587  * that the buffer was cancelled multiple times.  In order to ensure
1588  * that during pass 2 we keep the record in the table until we reach its
1589  * last occurrence in the log, we keep a reference count in the cancel
1590  * record in the table to tell us how many times we expect to see this
1591  * record during the second pass.
1592  */
1593 STATIC void
1594 xlog_recover_do_buffer_pass1(
1595 	xlog_t			*log,
1596 	xfs_buf_log_format_t	*buf_f)
1597 {
1598 	xfs_buf_cancel_t	*bcp;
1599 	xfs_buf_cancel_t	*nextp;
1600 	xfs_buf_cancel_t	*prevp;
1601 	xfs_buf_cancel_t	**bucket;
1602 	xfs_buf_log_format_v1_t	*obuf_f;
1603 	xfs_daddr_t		blkno = 0;
1604 	uint			len = 0;
1605 	ushort			flags = 0;
1606 
1607 	switch (buf_f->blf_type) {
1608 	case XFS_LI_BUF:
1609 		blkno = buf_f->blf_blkno;
1610 		len = buf_f->blf_len;
1611 		flags = buf_f->blf_flags;
1612 		break;
1613 	case XFS_LI_6_1_BUF:
1614 	case XFS_LI_5_3_BUF:
1615 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1616 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1617 		len = obuf_f->blf_len;
1618 		flags = obuf_f->blf_flags;
1619 		break;
1620 	}
1621 
1622 	/*
1623 	 * If this isn't a cancel buffer item, then just return.
1624 	 */
1625 	if (!(flags & XFS_BLI_CANCEL))
1626 		return;
1627 
1628 	/*
1629 	 * Insert an xfs_buf_cancel record into the hash table of
1630 	 * them.  If there is already an identical record, bump
1631 	 * its reference count.
1632 	 */
1633 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1634 					  XLOG_BC_TABLE_SIZE];
1635 	/*
1636 	 * If the hash bucket is empty then just insert a new record into
1637 	 * the bucket.
1638 	 */
1639 	if (*bucket == NULL) {
1640 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1641 						     KM_SLEEP);
1642 		bcp->bc_blkno = blkno;
1643 		bcp->bc_len = len;
1644 		bcp->bc_refcount = 1;
1645 		bcp->bc_next = NULL;
1646 		*bucket = bcp;
1647 		return;
1648 	}
1649 
1650 	/*
1651 	 * The hash bucket is not empty, so search for duplicates of our
1652 	 * record.  If we find one them just bump its refcount.  If not
1653 	 * then add us at the end of the list.
1654 	 */
1655 	prevp = NULL;
1656 	nextp = *bucket;
1657 	while (nextp != NULL) {
1658 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1659 			nextp->bc_refcount++;
1660 			return;
1661 		}
1662 		prevp = nextp;
1663 		nextp = nextp->bc_next;
1664 	}
1665 	ASSERT(prevp != NULL);
1666 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1667 					     KM_SLEEP);
1668 	bcp->bc_blkno = blkno;
1669 	bcp->bc_len = len;
1670 	bcp->bc_refcount = 1;
1671 	bcp->bc_next = NULL;
1672 	prevp->bc_next = bcp;
1673 }
1674 
1675 /*
1676  * Check to see whether the buffer being recovered has a corresponding
1677  * entry in the buffer cancel record table.  If it does then return 1
1678  * so that it will be cancelled, otherwise return 0.  If the buffer is
1679  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1680  * the refcount on the entry in the table and remove it from the table
1681  * if this is the last reference.
1682  *
1683  * We remove the cancel record from the table when we encounter its
1684  * last occurrence in the log so that if the same buffer is re-used
1685  * again after its last cancellation we actually replay the changes
1686  * made at that point.
1687  */
1688 STATIC int
1689 xlog_check_buffer_cancelled(
1690 	xlog_t			*log,
1691 	xfs_daddr_t		blkno,
1692 	uint			len,
1693 	ushort			flags)
1694 {
1695 	xfs_buf_cancel_t	*bcp;
1696 	xfs_buf_cancel_t	*prevp;
1697 	xfs_buf_cancel_t	**bucket;
1698 
1699 	if (log->l_buf_cancel_table == NULL) {
1700 		/*
1701 		 * There is nothing in the table built in pass one,
1702 		 * so this buffer must not be cancelled.
1703 		 */
1704 		ASSERT(!(flags & XFS_BLI_CANCEL));
1705 		return 0;
1706 	}
1707 
1708 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1709 					  XLOG_BC_TABLE_SIZE];
1710 	bcp = *bucket;
1711 	if (bcp == NULL) {
1712 		/*
1713 		 * There is no corresponding entry in the table built
1714 		 * in pass one, so this buffer has not been cancelled.
1715 		 */
1716 		ASSERT(!(flags & XFS_BLI_CANCEL));
1717 		return 0;
1718 	}
1719 
1720 	/*
1721 	 * Search for an entry in the buffer cancel table that
1722 	 * matches our buffer.
1723 	 */
1724 	prevp = NULL;
1725 	while (bcp != NULL) {
1726 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1727 			/*
1728 			 * We've go a match, so return 1 so that the
1729 			 * recovery of this buffer is cancelled.
1730 			 * If this buffer is actually a buffer cancel
1731 			 * log item, then decrement the refcount on the
1732 			 * one in the table and remove it if this is the
1733 			 * last reference.
1734 			 */
1735 			if (flags & XFS_BLI_CANCEL) {
1736 				bcp->bc_refcount--;
1737 				if (bcp->bc_refcount == 0) {
1738 					if (prevp == NULL) {
1739 						*bucket = bcp->bc_next;
1740 					} else {
1741 						prevp->bc_next = bcp->bc_next;
1742 					}
1743 					kmem_free(bcp,
1744 						  sizeof(xfs_buf_cancel_t));
1745 				}
1746 			}
1747 			return 1;
1748 		}
1749 		prevp = bcp;
1750 		bcp = bcp->bc_next;
1751 	}
1752 	/*
1753 	 * We didn't find a corresponding entry in the table, so
1754 	 * return 0 so that the buffer is NOT cancelled.
1755 	 */
1756 	ASSERT(!(flags & XFS_BLI_CANCEL));
1757 	return 0;
1758 }
1759 
1760 STATIC int
1761 xlog_recover_do_buffer_pass2(
1762 	xlog_t			*log,
1763 	xfs_buf_log_format_t	*buf_f)
1764 {
1765 	xfs_buf_log_format_v1_t	*obuf_f;
1766 	xfs_daddr_t		blkno = 0;
1767 	ushort			flags = 0;
1768 	uint			len = 0;
1769 
1770 	switch (buf_f->blf_type) {
1771 	case XFS_LI_BUF:
1772 		blkno = buf_f->blf_blkno;
1773 		flags = buf_f->blf_flags;
1774 		len = buf_f->blf_len;
1775 		break;
1776 	case XFS_LI_6_1_BUF:
1777 	case XFS_LI_5_3_BUF:
1778 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1779 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1780 		flags = obuf_f->blf_flags;
1781 		len = (xfs_daddr_t) obuf_f->blf_len;
1782 		break;
1783 	}
1784 
1785 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1786 }
1787 
1788 /*
1789  * Perform recovery for a buffer full of inodes.  In these buffers,
1790  * the only data which should be recovered is that which corresponds
1791  * to the di_next_unlinked pointers in the on disk inode structures.
1792  * The rest of the data for the inodes is always logged through the
1793  * inodes themselves rather than the inode buffer and is recovered
1794  * in xlog_recover_do_inode_trans().
1795  *
1796  * The only time when buffers full of inodes are fully recovered is
1797  * when the buffer is full of newly allocated inodes.  In this case
1798  * the buffer will not be marked as an inode buffer and so will be
1799  * sent to xlog_recover_do_reg_buffer() below during recovery.
1800  */
1801 STATIC int
1802 xlog_recover_do_inode_buffer(
1803 	xfs_mount_t		*mp,
1804 	xlog_recover_item_t	*item,
1805 	xfs_buf_t		*bp,
1806 	xfs_buf_log_format_t	*buf_f)
1807 {
1808 	int			i;
1809 	int			item_index;
1810 	int			bit;
1811 	int			nbits;
1812 	int			reg_buf_offset;
1813 	int			reg_buf_bytes;
1814 	int			next_unlinked_offset;
1815 	int			inodes_per_buf;
1816 	xfs_agino_t		*logged_nextp;
1817 	xfs_agino_t		*buffer_nextp;
1818 	xfs_buf_log_format_v1_t	*obuf_f;
1819 	unsigned int		*data_map = NULL;
1820 	unsigned int		map_size = 0;
1821 
1822 	switch (buf_f->blf_type) {
1823 	case XFS_LI_BUF:
1824 		data_map = buf_f->blf_data_map;
1825 		map_size = buf_f->blf_map_size;
1826 		break;
1827 	case XFS_LI_6_1_BUF:
1828 	case XFS_LI_5_3_BUF:
1829 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1830 		data_map = obuf_f->blf_data_map;
1831 		map_size = obuf_f->blf_map_size;
1832 		break;
1833 	}
1834 	/*
1835 	 * Set the variables corresponding to the current region to
1836 	 * 0 so that we'll initialize them on the first pass through
1837 	 * the loop.
1838 	 */
1839 	reg_buf_offset = 0;
1840 	reg_buf_bytes = 0;
1841 	bit = 0;
1842 	nbits = 0;
1843 	item_index = 0;
1844 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1845 	for (i = 0; i < inodes_per_buf; i++) {
1846 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1847 			offsetof(xfs_dinode_t, di_next_unlinked);
1848 
1849 		while (next_unlinked_offset >=
1850 		       (reg_buf_offset + reg_buf_bytes)) {
1851 			/*
1852 			 * The next di_next_unlinked field is beyond
1853 			 * the current logged region.  Find the next
1854 			 * logged region that contains or is beyond
1855 			 * the current di_next_unlinked field.
1856 			 */
1857 			bit += nbits;
1858 			bit = xfs_next_bit(data_map, map_size, bit);
1859 
1860 			/*
1861 			 * If there are no more logged regions in the
1862 			 * buffer, then we're done.
1863 			 */
1864 			if (bit == -1) {
1865 				return 0;
1866 			}
1867 
1868 			nbits = xfs_contig_bits(data_map, map_size,
1869 							 bit);
1870 			ASSERT(nbits > 0);
1871 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1872 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1873 			item_index++;
1874 		}
1875 
1876 		/*
1877 		 * If the current logged region starts after the current
1878 		 * di_next_unlinked field, then move on to the next
1879 		 * di_next_unlinked field.
1880 		 */
1881 		if (next_unlinked_offset < reg_buf_offset) {
1882 			continue;
1883 		}
1884 
1885 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1886 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1887 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1888 
1889 		/*
1890 		 * The current logged region contains a copy of the
1891 		 * current di_next_unlinked field.  Extract its value
1892 		 * and copy it to the buffer copy.
1893 		 */
1894 		logged_nextp = (xfs_agino_t *)
1895 			       ((char *)(item->ri_buf[item_index].i_addr) +
1896 				(next_unlinked_offset - reg_buf_offset));
1897 		if (unlikely(*logged_nextp == 0)) {
1898 			xfs_fs_cmn_err(CE_ALERT, mp,
1899 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1900 				item, bp);
1901 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1902 					 XFS_ERRLEVEL_LOW, mp);
1903 			return XFS_ERROR(EFSCORRUPTED);
1904 		}
1905 
1906 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1907 					      next_unlinked_offset);
1908 		INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 /*
1915  * Perform a 'normal' buffer recovery.  Each logged region of the
1916  * buffer should be copied over the corresponding region in the
1917  * given buffer.  The bitmap in the buf log format structure indicates
1918  * where to place the logged data.
1919  */
1920 /*ARGSUSED*/
1921 STATIC void
1922 xlog_recover_do_reg_buffer(
1923 	xfs_mount_t		*mp,
1924 	xlog_recover_item_t	*item,
1925 	xfs_buf_t		*bp,
1926 	xfs_buf_log_format_t	*buf_f)
1927 {
1928 	int			i;
1929 	int			bit;
1930 	int			nbits;
1931 	xfs_buf_log_format_v1_t	*obuf_f;
1932 	unsigned int		*data_map = NULL;
1933 	unsigned int		map_size = 0;
1934 	int                     error;
1935 
1936 	switch (buf_f->blf_type) {
1937 	case XFS_LI_BUF:
1938 		data_map = buf_f->blf_data_map;
1939 		map_size = buf_f->blf_map_size;
1940 		break;
1941 	case XFS_LI_6_1_BUF:
1942 	case XFS_LI_5_3_BUF:
1943 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1944 		data_map = obuf_f->blf_data_map;
1945 		map_size = obuf_f->blf_map_size;
1946 		break;
1947 	}
1948 	bit = 0;
1949 	i = 1;  /* 0 is the buf format structure */
1950 	while (1) {
1951 		bit = xfs_next_bit(data_map, map_size, bit);
1952 		if (bit == -1)
1953 			break;
1954 		nbits = xfs_contig_bits(data_map, map_size, bit);
1955 		ASSERT(nbits > 0);
1956 		ASSERT(item->ri_buf[i].i_addr != 0);
1957 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1958 		ASSERT(XFS_BUF_COUNT(bp) >=
1959 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1960 
1961 		/*
1962 		 * Do a sanity check if this is a dquot buffer. Just checking
1963 		 * the first dquot in the buffer should do. XXXThis is
1964 		 * probably a good thing to do for other buf types also.
1965 		 */
1966 		error = 0;
1967 		if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1968 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1969 					       item->ri_buf[i].i_addr,
1970 					       -1, 0, XFS_QMOPT_DOWARN,
1971 					       "dquot_buf_recover");
1972 		}
1973 		if (!error)
1974 			memcpy(xfs_buf_offset(bp,
1975 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1976 				item->ri_buf[i].i_addr,		/* source */
1977 				nbits<<XFS_BLI_SHIFT);		/* length */
1978 		i++;
1979 		bit += nbits;
1980 	}
1981 
1982 	/* Shouldn't be any more regions */
1983 	ASSERT(i == item->ri_total);
1984 }
1985 
1986 /*
1987  * Do some primitive error checking on ondisk dquot data structures.
1988  */
1989 int
1990 xfs_qm_dqcheck(
1991 	xfs_disk_dquot_t *ddq,
1992 	xfs_dqid_t	 id,
1993 	uint		 type,	  /* used only when IO_dorepair is true */
1994 	uint		 flags,
1995 	char		 *str)
1996 {
1997 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1998 	int		errs = 0;
1999 
2000 	/*
2001 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2002 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2003 	 *    used for user data. This is because we take the path of regular
2004 	 *    file deletion; however, the size field of quotainodes is never
2005 	 *    updated, so all the tricks that we play in itruncate_finish
2006 	 *    don't quite matter.
2007 	 *
2008 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2009 	 *    But the allocation will be replayed so we'll end up with an
2010 	 *    uninitialized quota block.
2011 	 *
2012 	 * This is all fine; things are still consistent, and we haven't lost
2013 	 * any quota information. Just don't complain about bad dquot blks.
2014 	 */
2015 	if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) {
2016 		if (flags & XFS_QMOPT_DOWARN)
2017 			cmn_err(CE_ALERT,
2018 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2019 			str, id,
2020 			INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC);
2021 		errs++;
2022 	}
2023 	if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) {
2024 		if (flags & XFS_QMOPT_DOWARN)
2025 			cmn_err(CE_ALERT,
2026 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2027 			str, id,
2028 			INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION);
2029 		errs++;
2030 	}
2031 
2032 	if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER &&
2033 	    INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) {
2034 		if (flags & XFS_QMOPT_DOWARN)
2035 			cmn_err(CE_ALERT,
2036 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2037 			str, id, INT_GET(ddq->d_flags, ARCH_CONVERT));
2038 		errs++;
2039 	}
2040 
2041 	if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) {
2042 		if (flags & XFS_QMOPT_DOWARN)
2043 			cmn_err(CE_ALERT,
2044 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2045 			"0x%x expected, found id 0x%x",
2046 			str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT));
2047 		errs++;
2048 	}
2049 
2050 	if (!errs && ddq->d_id) {
2051 		if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) &&
2052 		    INT_GET(ddq->d_bcount, ARCH_CONVERT) >=
2053 				INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) {
2054 			if (!ddq->d_btimer) {
2055 				if (flags & XFS_QMOPT_DOWARN)
2056 					cmn_err(CE_ALERT,
2057 					"%s : Dquot ID 0x%x (0x%p) "
2058 					"BLK TIMER NOT STARTED",
2059 					str, (int)
2060 					INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2061 				errs++;
2062 			}
2063 		}
2064 		if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) &&
2065 		    INT_GET(ddq->d_icount, ARCH_CONVERT) >=
2066 				INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) {
2067 			if (!ddq->d_itimer) {
2068 				if (flags & XFS_QMOPT_DOWARN)
2069 					cmn_err(CE_ALERT,
2070 					"%s : Dquot ID 0x%x (0x%p) "
2071 					"INODE TIMER NOT STARTED",
2072 					str, (int)
2073 					INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2074 				errs++;
2075 			}
2076 		}
2077 		if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) &&
2078 		    INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >=
2079 				INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) {
2080 			if (!ddq->d_rtbtimer) {
2081 				if (flags & XFS_QMOPT_DOWARN)
2082 					cmn_err(CE_ALERT,
2083 					"%s : Dquot ID 0x%x (0x%p) "
2084 					"RTBLK TIMER NOT STARTED",
2085 					str, (int)
2086 					INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2087 				errs++;
2088 			}
2089 		}
2090 	}
2091 
2092 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2093 		return errs;
2094 
2095 	if (flags & XFS_QMOPT_DOWARN)
2096 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2097 
2098 	/*
2099 	 * Typically, a repair is only requested by quotacheck.
2100 	 */
2101 	ASSERT(id != -1);
2102 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2103 	memset(d, 0, sizeof(xfs_dqblk_t));
2104 	INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC);
2105 	INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION);
2106 	INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id);
2107 	INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type);
2108 
2109 	return errs;
2110 }
2111 
2112 /*
2113  * Perform a dquot buffer recovery.
2114  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2115  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2116  * Else, treat it as a regular buffer and do recovery.
2117  */
2118 STATIC void
2119 xlog_recover_do_dquot_buffer(
2120 	xfs_mount_t		*mp,
2121 	xlog_t			*log,
2122 	xlog_recover_item_t	*item,
2123 	xfs_buf_t		*bp,
2124 	xfs_buf_log_format_t	*buf_f)
2125 {
2126 	uint			type;
2127 
2128 	/*
2129 	 * Filesystems are required to send in quota flags at mount time.
2130 	 */
2131 	if (mp->m_qflags == 0) {
2132 		return;
2133 	}
2134 
2135 	type = 0;
2136 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2137 		type |= XFS_DQ_USER;
2138 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2139 		type |= XFS_DQ_GROUP;
2140 	/*
2141 	 * This type of quotas was turned off, so ignore this buffer
2142 	 */
2143 	if (log->l_quotaoffs_flag & type)
2144 		return;
2145 
2146 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2147 }
2148 
2149 /*
2150  * This routine replays a modification made to a buffer at runtime.
2151  * There are actually two types of buffer, regular and inode, which
2152  * are handled differently.  Inode buffers are handled differently
2153  * in that we only recover a specific set of data from them, namely
2154  * the inode di_next_unlinked fields.  This is because all other inode
2155  * data is actually logged via inode records and any data we replay
2156  * here which overlaps that may be stale.
2157  *
2158  * When meta-data buffers are freed at run time we log a buffer item
2159  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2160  * of the buffer in the log should not be replayed at recovery time.
2161  * This is so that if the blocks covered by the buffer are reused for
2162  * file data before we crash we don't end up replaying old, freed
2163  * meta-data into a user's file.
2164  *
2165  * To handle the cancellation of buffer log items, we make two passes
2166  * over the log during recovery.  During the first we build a table of
2167  * those buffers which have been cancelled, and during the second we
2168  * only replay those buffers which do not have corresponding cancel
2169  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2170  * for more details on the implementation of the table of cancel records.
2171  */
2172 STATIC int
2173 xlog_recover_do_buffer_trans(
2174 	xlog_t			*log,
2175 	xlog_recover_item_t	*item,
2176 	int			pass)
2177 {
2178 	xfs_buf_log_format_t	*buf_f;
2179 	xfs_buf_log_format_v1_t	*obuf_f;
2180 	xfs_mount_t		*mp;
2181 	xfs_buf_t		*bp;
2182 	int			error;
2183 	int			cancel;
2184 	xfs_daddr_t		blkno;
2185 	int			len;
2186 	ushort			flags;
2187 
2188 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2189 
2190 	if (pass == XLOG_RECOVER_PASS1) {
2191 		/*
2192 		 * In this pass we're only looking for buf items
2193 		 * with the XFS_BLI_CANCEL bit set.
2194 		 */
2195 		xlog_recover_do_buffer_pass1(log, buf_f);
2196 		return 0;
2197 	} else {
2198 		/*
2199 		 * In this pass we want to recover all the buffers
2200 		 * which have not been cancelled and are not
2201 		 * cancellation buffers themselves.  The routine
2202 		 * we call here will tell us whether or not to
2203 		 * continue with the replay of this buffer.
2204 		 */
2205 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2206 		if (cancel) {
2207 			return 0;
2208 		}
2209 	}
2210 	switch (buf_f->blf_type) {
2211 	case XFS_LI_BUF:
2212 		blkno = buf_f->blf_blkno;
2213 		len = buf_f->blf_len;
2214 		flags = buf_f->blf_flags;
2215 		break;
2216 	case XFS_LI_6_1_BUF:
2217 	case XFS_LI_5_3_BUF:
2218 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2219 		blkno = obuf_f->blf_blkno;
2220 		len = obuf_f->blf_len;
2221 		flags = obuf_f->blf_flags;
2222 		break;
2223 	default:
2224 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2225 			"xfs_log_recover: unknown buffer type 0x%x, dev %s",
2226 			buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ));
2227 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2228 				 XFS_ERRLEVEL_LOW, log->l_mp);
2229 		return XFS_ERROR(EFSCORRUPTED);
2230 	}
2231 
2232 	mp = log->l_mp;
2233 	if (flags & XFS_BLI_INODE_BUF) {
2234 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2235 								XFS_BUF_LOCK);
2236 	} else {
2237 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2238 	}
2239 	if (XFS_BUF_ISERROR(bp)) {
2240 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2241 				  bp, blkno);
2242 		error = XFS_BUF_GETERROR(bp);
2243 		xfs_buf_relse(bp);
2244 		return error;
2245 	}
2246 
2247 	error = 0;
2248 	if (flags & XFS_BLI_INODE_BUF) {
2249 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2250 	} else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) {
2251 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2252 	} else {
2253 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2254 	}
2255 	if (error)
2256 		return XFS_ERROR(error);
2257 
2258 	/*
2259 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2260 	 * slower when taking into account all the buffers to be flushed.
2261 	 *
2262 	 * Also make sure that only inode buffers with good sizes stay in
2263 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2264 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2265 	 * buffers in the log can be a different size if the log was generated
2266 	 * by an older kernel using unclustered inode buffers or a newer kernel
2267 	 * running with a different inode cluster size.  Regardless, if the
2268 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2269 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2270 	 * the buffer out of the buffer cache so that the buffer won't
2271 	 * overlap with future reads of those inodes.
2272 	 */
2273 	if (XFS_DINODE_MAGIC ==
2274 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2275 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2276 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2277 		XFS_BUF_STALE(bp);
2278 		error = xfs_bwrite(mp, bp);
2279 	} else {
2280 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2281 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2282 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2283 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2284 		xfs_bdwrite(mp, bp);
2285 	}
2286 
2287 	return (error);
2288 }
2289 
2290 STATIC int
2291 xlog_recover_do_inode_trans(
2292 	xlog_t			*log,
2293 	xlog_recover_item_t	*item,
2294 	int			pass)
2295 {
2296 	xfs_inode_log_format_t	*in_f;
2297 	xfs_mount_t		*mp;
2298 	xfs_buf_t		*bp;
2299 	xfs_imap_t		imap;
2300 	xfs_dinode_t		*dip;
2301 	xfs_ino_t		ino;
2302 	int			len;
2303 	xfs_caddr_t		src;
2304 	xfs_caddr_t		dest;
2305 	int			error;
2306 	int			attr_index;
2307 	uint			fields;
2308 	xfs_dinode_core_t	*dicp;
2309 
2310 	if (pass == XLOG_RECOVER_PASS1) {
2311 		return 0;
2312 	}
2313 
2314 	in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2315 	ino = in_f->ilf_ino;
2316 	mp = log->l_mp;
2317 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2318 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2319 		imap.im_len = in_f->ilf_len;
2320 		imap.im_boffset = in_f->ilf_boffset;
2321 	} else {
2322 		/*
2323 		 * It's an old inode format record.  We don't know where
2324 		 * its cluster is located on disk, and we can't allow
2325 		 * xfs_imap() to figure it out because the inode btrees
2326 		 * are not ready to be used.  Therefore do not pass the
2327 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2328 		 * us only the single block in which the inode lives
2329 		 * rather than its cluster, so we must make sure to
2330 		 * invalidate the buffer when we write it out below.
2331 		 */
2332 		imap.im_blkno = 0;
2333 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2334 	}
2335 
2336 	/*
2337 	 * Inode buffers can be freed, look out for it,
2338 	 * and do not replay the inode.
2339 	 */
2340 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2341 		return 0;
2342 
2343 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2344 								XFS_BUF_LOCK);
2345 	if (XFS_BUF_ISERROR(bp)) {
2346 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2347 				  bp, imap.im_blkno);
2348 		error = XFS_BUF_GETERROR(bp);
2349 		xfs_buf_relse(bp);
2350 		return error;
2351 	}
2352 	error = 0;
2353 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2354 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2355 
2356 	/*
2357 	 * Make sure the place we're flushing out to really looks
2358 	 * like an inode!
2359 	 */
2360 	if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2361 		xfs_buf_relse(bp);
2362 		xfs_fs_cmn_err(CE_ALERT, mp,
2363 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2364 			dip, bp, ino);
2365 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2366 				 XFS_ERRLEVEL_LOW, mp);
2367 		return XFS_ERROR(EFSCORRUPTED);
2368 	}
2369 	dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2370 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2371 		xfs_buf_relse(bp);
2372 		xfs_fs_cmn_err(CE_ALERT, mp,
2373 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2374 			item, ino);
2375 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2376 				 XFS_ERRLEVEL_LOW, mp);
2377 		return XFS_ERROR(EFSCORRUPTED);
2378 	}
2379 
2380 	/* Skip replay when the on disk inode is newer than the log one */
2381 	if (dicp->di_flushiter <
2382 	    INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2383 		/*
2384 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2385 		 * than smaller numbers
2386 		 */
2387 		if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2388 							== DI_MAX_FLUSH) &&
2389 		    (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2390 			/* do nothing */
2391 		} else {
2392 			xfs_buf_relse(bp);
2393 			return 0;
2394 		}
2395 	}
2396 	/* Take the opportunity to reset the flush iteration count */
2397 	dicp->di_flushiter = 0;
2398 
2399 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2400 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2401 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2402 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2403 					 XFS_ERRLEVEL_LOW, mp, dicp);
2404 			xfs_buf_relse(bp);
2405 			xfs_fs_cmn_err(CE_ALERT, mp,
2406 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2407 				item, dip, bp, ino);
2408 			return XFS_ERROR(EFSCORRUPTED);
2409 		}
2410 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2411 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2412 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2413 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2414 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2415 					     XFS_ERRLEVEL_LOW, mp, dicp);
2416 			xfs_buf_relse(bp);
2417 			xfs_fs_cmn_err(CE_ALERT, mp,
2418 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2419 				item, dip, bp, ino);
2420 			return XFS_ERROR(EFSCORRUPTED);
2421 		}
2422 	}
2423 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2424 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2425 				     XFS_ERRLEVEL_LOW, mp, dicp);
2426 		xfs_buf_relse(bp);
2427 		xfs_fs_cmn_err(CE_ALERT, mp,
2428 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2429 			item, dip, bp, ino,
2430 			dicp->di_nextents + dicp->di_anextents,
2431 			dicp->di_nblocks);
2432 		return XFS_ERROR(EFSCORRUPTED);
2433 	}
2434 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2435 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2436 				     XFS_ERRLEVEL_LOW, mp, dicp);
2437 		xfs_buf_relse(bp);
2438 		xfs_fs_cmn_err(CE_ALERT, mp,
2439 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2440 			item, dip, bp, ino, dicp->di_forkoff);
2441 		return XFS_ERROR(EFSCORRUPTED);
2442 	}
2443 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2444 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2445 				     XFS_ERRLEVEL_LOW, mp, dicp);
2446 		xfs_buf_relse(bp);
2447 		xfs_fs_cmn_err(CE_ALERT, mp,
2448 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2449 			item->ri_buf[1].i_len, item);
2450 		return XFS_ERROR(EFSCORRUPTED);
2451 	}
2452 
2453 	/* The core is in in-core format */
2454 	xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2455 			      (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2456 
2457 	/* the rest is in on-disk format */
2458 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2459 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2460 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2461 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2462 	}
2463 
2464 	fields = in_f->ilf_fields;
2465 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2466 	case XFS_ILOG_DEV:
2467 		INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2468 
2469 		break;
2470 	case XFS_ILOG_UUID:
2471 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2472 		break;
2473 	}
2474 
2475 	if (in_f->ilf_size == 2)
2476 		goto write_inode_buffer;
2477 	len = item->ri_buf[2].i_len;
2478 	src = item->ri_buf[2].i_addr;
2479 	ASSERT(in_f->ilf_size <= 4);
2480 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2481 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2482 	       (len == in_f->ilf_dsize));
2483 
2484 	switch (fields & XFS_ILOG_DFORK) {
2485 	case XFS_ILOG_DDATA:
2486 	case XFS_ILOG_DEXT:
2487 		memcpy(&dip->di_u, src, len);
2488 		break;
2489 
2490 	case XFS_ILOG_DBROOT:
2491 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2492 				 &(dip->di_u.di_bmbt),
2493 				 XFS_DFORK_DSIZE(dip, mp));
2494 		break;
2495 
2496 	default:
2497 		/*
2498 		 * There are no data fork flags set.
2499 		 */
2500 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2501 		break;
2502 	}
2503 
2504 	/*
2505 	 * If we logged any attribute data, recover it.  There may or
2506 	 * may not have been any other non-core data logged in this
2507 	 * transaction.
2508 	 */
2509 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2510 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2511 			attr_index = 3;
2512 		} else {
2513 			attr_index = 2;
2514 		}
2515 		len = item->ri_buf[attr_index].i_len;
2516 		src = item->ri_buf[attr_index].i_addr;
2517 		ASSERT(len == in_f->ilf_asize);
2518 
2519 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 		case XFS_ILOG_ADATA:
2521 		case XFS_ILOG_AEXT:
2522 			dest = XFS_DFORK_APTR(dip);
2523 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2524 			memcpy(dest, src, len);
2525 			break;
2526 
2527 		case XFS_ILOG_ABROOT:
2528 			dest = XFS_DFORK_APTR(dip);
2529 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2530 					 (xfs_bmdr_block_t*)dest,
2531 					 XFS_DFORK_ASIZE(dip, mp));
2532 			break;
2533 
2534 		default:
2535 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2536 			ASSERT(0);
2537 			xfs_buf_relse(bp);
2538 			return XFS_ERROR(EIO);
2539 		}
2540 	}
2541 
2542 write_inode_buffer:
2543 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2544 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2545 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2546 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2547 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2548 		xfs_bdwrite(mp, bp);
2549 	} else {
2550 		XFS_BUF_STALE(bp);
2551 		error = xfs_bwrite(mp, bp);
2552 	}
2553 
2554 	return (error);
2555 }
2556 
2557 /*
2558  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2559  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2560  * of that type.
2561  */
2562 STATIC int
2563 xlog_recover_do_quotaoff_trans(
2564 	xlog_t			*log,
2565 	xlog_recover_item_t	*item,
2566 	int			pass)
2567 {
2568 	xfs_qoff_logformat_t	*qoff_f;
2569 
2570 	if (pass == XLOG_RECOVER_PASS2) {
2571 		return (0);
2572 	}
2573 
2574 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2575 	ASSERT(qoff_f);
2576 
2577 	/*
2578 	 * The logitem format's flag tells us if this was user quotaoff,
2579 	 * group quotaoff or both.
2580 	 */
2581 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2582 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2583 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2584 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2585 
2586 	return (0);
2587 }
2588 
2589 /*
2590  * Recover a dquot record
2591  */
2592 STATIC int
2593 xlog_recover_do_dquot_trans(
2594 	xlog_t			*log,
2595 	xlog_recover_item_t	*item,
2596 	int			pass)
2597 {
2598 	xfs_mount_t		*mp;
2599 	xfs_buf_t		*bp;
2600 	struct xfs_disk_dquot	*ddq, *recddq;
2601 	int			error;
2602 	xfs_dq_logformat_t	*dq_f;
2603 	uint			type;
2604 
2605 	if (pass == XLOG_RECOVER_PASS1) {
2606 		return 0;
2607 	}
2608 	mp = log->l_mp;
2609 
2610 	/*
2611 	 * Filesystems are required to send in quota flags at mount time.
2612 	 */
2613 	if (mp->m_qflags == 0)
2614 		return (0);
2615 
2616 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2617 	ASSERT(recddq);
2618 	/*
2619 	 * This type of quotas was turned off, so ignore this record.
2620 	 */
2621 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2622 			(XFS_DQ_USER | XFS_DQ_GROUP);
2623 	ASSERT(type);
2624 	if (log->l_quotaoffs_flag & type)
2625 		return (0);
2626 
2627 	/*
2628 	 * At this point we know that quota was _not_ turned off.
2629 	 * Since the mount flags are not indicating to us otherwise, this
2630 	 * must mean that quota is on, and the dquot needs to be replayed.
2631 	 * Remember that we may not have fully recovered the superblock yet,
2632 	 * so we can't do the usual trick of looking at the SB quota bits.
2633 	 *
2634 	 * The other possibility, of course, is that the quota subsystem was
2635 	 * removed since the last mount - ENOSYS.
2636 	 */
2637 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2638 	ASSERT(dq_f);
2639 	if ((error = xfs_qm_dqcheck(recddq,
2640 			   dq_f->qlf_id,
2641 			   0, XFS_QMOPT_DOWARN,
2642 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2643 		return XFS_ERROR(EIO);
2644 	}
2645 	ASSERT(dq_f->qlf_len == 1);
2646 
2647 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2648 			     dq_f->qlf_blkno,
2649 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2650 			     0, &bp);
2651 	if (error) {
2652 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2653 				  bp, dq_f->qlf_blkno);
2654 		return error;
2655 	}
2656 	ASSERT(bp);
2657 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2658 
2659 	/*
2660 	 * At least the magic num portion should be on disk because this
2661 	 * was among a chunk of dquots created earlier, and we did some
2662 	 * minimal initialization then.
2663 	 */
2664 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2665 			   "xlog_recover_do_dquot_trans")) {
2666 		xfs_buf_relse(bp);
2667 		return XFS_ERROR(EIO);
2668 	}
2669 
2670 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2671 
2672 	ASSERT(dq_f->qlf_size == 2);
2673 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2674 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2675 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2676 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2677 	xfs_bdwrite(mp, bp);
2678 
2679 	return (0);
2680 }
2681 
2682 /*
2683  * This routine is called to create an in-core extent free intent
2684  * item from the efi format structure which was logged on disk.
2685  * It allocates an in-core efi, copies the extents from the format
2686  * structure into it, and adds the efi to the AIL with the given
2687  * LSN.
2688  */
2689 STATIC void
2690 xlog_recover_do_efi_trans(
2691 	xlog_t			*log,
2692 	xlog_recover_item_t	*item,
2693 	xfs_lsn_t		lsn,
2694 	int			pass)
2695 {
2696 	xfs_mount_t		*mp;
2697 	xfs_efi_log_item_t	*efip;
2698 	xfs_efi_log_format_t	*efi_formatp;
2699 	SPLDECL(s);
2700 
2701 	if (pass == XLOG_RECOVER_PASS1) {
2702 		return;
2703 	}
2704 
2705 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2706 	ASSERT(item->ri_buf[0].i_len ==
2707 	       (sizeof(xfs_efi_log_format_t) +
2708 		((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2709 
2710 	mp = log->l_mp;
2711 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2712 	memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2713 	      sizeof(xfs_efi_log_format_t) +
2714 	      ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2715 	efip->efi_next_extent = efi_formatp->efi_nextents;
2716 	efip->efi_flags |= XFS_EFI_COMMITTED;
2717 
2718 	AIL_LOCK(mp,s);
2719 	/*
2720 	 * xfs_trans_update_ail() drops the AIL lock.
2721 	 */
2722 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2723 }
2724 
2725 
2726 /*
2727  * This routine is called when an efd format structure is found in
2728  * a committed transaction in the log.  It's purpose is to cancel
2729  * the corresponding efi if it was still in the log.  To do this
2730  * it searches the AIL for the efi with an id equal to that in the
2731  * efd format structure.  If we find it, we remove the efi from the
2732  * AIL and free it.
2733  */
2734 STATIC void
2735 xlog_recover_do_efd_trans(
2736 	xlog_t			*log,
2737 	xlog_recover_item_t	*item,
2738 	int			pass)
2739 {
2740 	xfs_mount_t		*mp;
2741 	xfs_efd_log_format_t	*efd_formatp;
2742 	xfs_efi_log_item_t	*efip = NULL;
2743 	xfs_log_item_t		*lip;
2744 	int			gen;
2745 	int			nexts;
2746 	__uint64_t		efi_id;
2747 	SPLDECL(s);
2748 
2749 	if (pass == XLOG_RECOVER_PASS1) {
2750 		return;
2751 	}
2752 
2753 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2754 	ASSERT(item->ri_buf[0].i_len ==
2755 	       (sizeof(xfs_efd_log_format_t) +
2756 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2757 	efi_id = efd_formatp->efd_efi_id;
2758 
2759 	/*
2760 	 * Search for the efi with the id in the efd format structure
2761 	 * in the AIL.
2762 	 */
2763 	mp = log->l_mp;
2764 	AIL_LOCK(mp,s);
2765 	lip = xfs_trans_first_ail(mp, &gen);
2766 	while (lip != NULL) {
2767 		if (lip->li_type == XFS_LI_EFI) {
2768 			efip = (xfs_efi_log_item_t *)lip;
2769 			if (efip->efi_format.efi_id == efi_id) {
2770 				/*
2771 				 * xfs_trans_delete_ail() drops the
2772 				 * AIL lock.
2773 				 */
2774 				xfs_trans_delete_ail(mp, lip, s);
2775 				break;
2776 			}
2777 		}
2778 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2779 	}
2780 	if (lip == NULL) {
2781 		AIL_UNLOCK(mp, s);
2782 	}
2783 
2784 	/*
2785 	 * If we found it, then free it up.  If it wasn't there, it
2786 	 * must have been overwritten in the log.  Oh well.
2787 	 */
2788 	if (lip != NULL) {
2789 		nexts = efip->efi_format.efi_nextents;
2790 		if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
2791 			kmem_free(lip, sizeof(xfs_efi_log_item_t) +
2792 				  ((nexts - 1) * sizeof(xfs_extent_t)));
2793 		} else {
2794 			kmem_zone_free(xfs_efi_zone, efip);
2795 		}
2796 	}
2797 }
2798 
2799 /*
2800  * Perform the transaction
2801  *
2802  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2803  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2804  */
2805 STATIC int
2806 xlog_recover_do_trans(
2807 	xlog_t			*log,
2808 	xlog_recover_t		*trans,
2809 	int			pass)
2810 {
2811 	int			error = 0;
2812 	xlog_recover_item_t	*item, *first_item;
2813 
2814 	if ((error = xlog_recover_reorder_trans(log, trans)))
2815 		return error;
2816 	first_item = item = trans->r_itemq;
2817 	do {
2818 		/*
2819 		 * we don't need to worry about the block number being
2820 		 * truncated in > 1 TB buffers because in user-land,
2821 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2822 		 * the blkno's will get through the user-mode buffer
2823 		 * cache properly.  The only bad case is o32 kernels
2824 		 * where xfs_daddr_t is 32-bits but mount will warn us
2825 		 * off a > 1 TB filesystem before we get here.
2826 		 */
2827 		if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2828 		    (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2829 		    (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2830 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2831 								 pass)))
2832 				break;
2833 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2834 			   (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2835 			   (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2836 			if ((error = xlog_recover_do_inode_trans(log, item,
2837 								pass)))
2838 				break;
2839 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2840 			xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2841 						  pass);
2842 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2843 			xlog_recover_do_efd_trans(log, item, pass);
2844 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2845 			if ((error = xlog_recover_do_dquot_trans(log, item,
2846 								   pass)))
2847 					break;
2848 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2849 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2850 								   pass)))
2851 					break;
2852 		} else {
2853 			xlog_warn("XFS: xlog_recover_do_trans");
2854 			ASSERT(0);
2855 			error = XFS_ERROR(EIO);
2856 			break;
2857 		}
2858 		item = item->ri_next;
2859 	} while (first_item != item);
2860 
2861 	return error;
2862 }
2863 
2864 /*
2865  * Free up any resources allocated by the transaction
2866  *
2867  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2868  */
2869 STATIC void
2870 xlog_recover_free_trans(
2871 	xlog_recover_t		*trans)
2872 {
2873 	xlog_recover_item_t	*first_item, *item, *free_item;
2874 	int			i;
2875 
2876 	item = first_item = trans->r_itemq;
2877 	do {
2878 		free_item = item;
2879 		item = item->ri_next;
2880 		 /* Free the regions in the item. */
2881 		for (i = 0; i < free_item->ri_cnt; i++) {
2882 			kmem_free(free_item->ri_buf[i].i_addr,
2883 				  free_item->ri_buf[i].i_len);
2884 		}
2885 		/* Free the item itself */
2886 		kmem_free(free_item->ri_buf,
2887 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2888 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2889 	} while (first_item != item);
2890 	/* Free the transaction recover structure */
2891 	kmem_free(trans, sizeof(xlog_recover_t));
2892 }
2893 
2894 STATIC int
2895 xlog_recover_commit_trans(
2896 	xlog_t			*log,
2897 	xlog_recover_t		**q,
2898 	xlog_recover_t		*trans,
2899 	int			pass)
2900 {
2901 	int			error;
2902 
2903 	if ((error = xlog_recover_unlink_tid(q, trans)))
2904 		return error;
2905 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2906 		return error;
2907 	xlog_recover_free_trans(trans);			/* no error */
2908 	return 0;
2909 }
2910 
2911 STATIC int
2912 xlog_recover_unmount_trans(
2913 	xlog_recover_t		*trans)
2914 {
2915 	/* Do nothing now */
2916 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2917 	return 0;
2918 }
2919 
2920 /*
2921  * There are two valid states of the r_state field.  0 indicates that the
2922  * transaction structure is in a normal state.  We have either seen the
2923  * start of the transaction or the last operation we added was not a partial
2924  * operation.  If the last operation we added to the transaction was a
2925  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2926  *
2927  * NOTE: skip LRs with 0 data length.
2928  */
2929 STATIC int
2930 xlog_recover_process_data(
2931 	xlog_t			*log,
2932 	xlog_recover_t		*rhash[],
2933 	xlog_rec_header_t	*rhead,
2934 	xfs_caddr_t		dp,
2935 	int			pass)
2936 {
2937 	xfs_caddr_t		lp;
2938 	int			num_logops;
2939 	xlog_op_header_t	*ohead;
2940 	xlog_recover_t		*trans;
2941 	xlog_tid_t		tid;
2942 	int			error;
2943 	unsigned long		hash;
2944 	uint			flags;
2945 
2946 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2947 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2948 
2949 	/* check the log format matches our own - else we can't recover */
2950 	if (xlog_header_check_recover(log->l_mp, rhead))
2951 		return (XFS_ERROR(EIO));
2952 
2953 	while ((dp < lp) && num_logops) {
2954 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2955 		ohead = (xlog_op_header_t *)dp;
2956 		dp += sizeof(xlog_op_header_t);
2957 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2958 		    ohead->oh_clientid != XFS_LOG) {
2959 			xlog_warn(
2960 		"XFS: xlog_recover_process_data: bad clientid");
2961 			ASSERT(0);
2962 			return (XFS_ERROR(EIO));
2963 		}
2964 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2965 		hash = XLOG_RHASH(tid);
2966 		trans = xlog_recover_find_tid(rhash[hash], tid);
2967 		if (trans == NULL) {		   /* not found; add new tid */
2968 			if (ohead->oh_flags & XLOG_START_TRANS)
2969 				xlog_recover_new_tid(&rhash[hash], tid,
2970 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2971 		} else {
2972 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2973 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2974 			if (flags & XLOG_WAS_CONT_TRANS)
2975 				flags &= ~XLOG_CONTINUE_TRANS;
2976 			switch (flags) {
2977 			case XLOG_COMMIT_TRANS:
2978 				error = xlog_recover_commit_trans(log,
2979 						&rhash[hash], trans, pass);
2980 				break;
2981 			case XLOG_UNMOUNT_TRANS:
2982 				error = xlog_recover_unmount_trans(trans);
2983 				break;
2984 			case XLOG_WAS_CONT_TRANS:
2985 				error = xlog_recover_add_to_cont_trans(trans,
2986 						dp, INT_GET(ohead->oh_len,
2987 							ARCH_CONVERT));
2988 				break;
2989 			case XLOG_START_TRANS:
2990 				xlog_warn(
2991 			"XFS: xlog_recover_process_data: bad transaction");
2992 				ASSERT(0);
2993 				error = XFS_ERROR(EIO);
2994 				break;
2995 			case 0:
2996 			case XLOG_CONTINUE_TRANS:
2997 				error = xlog_recover_add_to_trans(trans,
2998 						dp, INT_GET(ohead->oh_len,
2999 							ARCH_CONVERT));
3000 				break;
3001 			default:
3002 				xlog_warn(
3003 			"XFS: xlog_recover_process_data: bad flag");
3004 				ASSERT(0);
3005 				error = XFS_ERROR(EIO);
3006 				break;
3007 			}
3008 			if (error)
3009 				return error;
3010 		}
3011 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3012 		num_logops--;
3013 	}
3014 	return 0;
3015 }
3016 
3017 /*
3018  * Process an extent free intent item that was recovered from
3019  * the log.  We need to free the extents that it describes.
3020  */
3021 STATIC void
3022 xlog_recover_process_efi(
3023 	xfs_mount_t		*mp,
3024 	xfs_efi_log_item_t	*efip)
3025 {
3026 	xfs_efd_log_item_t	*efdp;
3027 	xfs_trans_t		*tp;
3028 	int			i;
3029 	xfs_extent_t		*extp;
3030 	xfs_fsblock_t		startblock_fsb;
3031 
3032 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3033 
3034 	/*
3035 	 * First check the validity of the extents described by the
3036 	 * EFI.  If any are bad, then assume that all are bad and
3037 	 * just toss the EFI.
3038 	 */
3039 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3040 		extp = &(efip->efi_format.efi_extents[i]);
3041 		startblock_fsb = XFS_BB_TO_FSB(mp,
3042 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3043 		if ((startblock_fsb == 0) ||
3044 		    (extp->ext_len == 0) ||
3045 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3046 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3047 			/*
3048 			 * This will pull the EFI from the AIL and
3049 			 * free the memory associated with it.
3050 			 */
3051 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3052 			return;
3053 		}
3054 	}
3055 
3056 	tp = xfs_trans_alloc(mp, 0);
3057 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3058 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3059 
3060 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3061 		extp = &(efip->efi_format.efi_extents[i]);
3062 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3063 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3064 					 extp->ext_len);
3065 	}
3066 
3067 	efip->efi_flags |= XFS_EFI_RECOVERED;
3068 	xfs_trans_commit(tp, 0, NULL);
3069 }
3070 
3071 /*
3072  * Verify that once we've encountered something other than an EFI
3073  * in the AIL that there are no more EFIs in the AIL.
3074  */
3075 #if defined(DEBUG)
3076 STATIC void
3077 xlog_recover_check_ail(
3078 	xfs_mount_t		*mp,
3079 	xfs_log_item_t		*lip,
3080 	int			gen)
3081 {
3082 	int			orig_gen = gen;
3083 
3084 	do {
3085 		ASSERT(lip->li_type != XFS_LI_EFI);
3086 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3087 		/*
3088 		 * The check will be bogus if we restart from the
3089 		 * beginning of the AIL, so ASSERT that we don't.
3090 		 * We never should since we're holding the AIL lock
3091 		 * the entire time.
3092 		 */
3093 		ASSERT(gen == orig_gen);
3094 	} while (lip != NULL);
3095 }
3096 #endif	/* DEBUG */
3097 
3098 /*
3099  * When this is called, all of the EFIs which did not have
3100  * corresponding EFDs should be in the AIL.  What we do now
3101  * is free the extents associated with each one.
3102  *
3103  * Since we process the EFIs in normal transactions, they
3104  * will be removed at some point after the commit.  This prevents
3105  * us from just walking down the list processing each one.
3106  * We'll use a flag in the EFI to skip those that we've already
3107  * processed and use the AIL iteration mechanism's generation
3108  * count to try to speed this up at least a bit.
3109  *
3110  * When we start, we know that the EFIs are the only things in
3111  * the AIL.  As we process them, however, other items are added
3112  * to the AIL.  Since everything added to the AIL must come after
3113  * everything already in the AIL, we stop processing as soon as
3114  * we see something other than an EFI in the AIL.
3115  */
3116 STATIC void
3117 xlog_recover_process_efis(
3118 	xlog_t			*log)
3119 {
3120 	xfs_log_item_t		*lip;
3121 	xfs_efi_log_item_t	*efip;
3122 	int			gen;
3123 	xfs_mount_t		*mp;
3124 	SPLDECL(s);
3125 
3126 	mp = log->l_mp;
3127 	AIL_LOCK(mp,s);
3128 
3129 	lip = xfs_trans_first_ail(mp, &gen);
3130 	while (lip != NULL) {
3131 		/*
3132 		 * We're done when we see something other than an EFI.
3133 		 */
3134 		if (lip->li_type != XFS_LI_EFI) {
3135 			xlog_recover_check_ail(mp, lip, gen);
3136 			break;
3137 		}
3138 
3139 		/*
3140 		 * Skip EFIs that we've already processed.
3141 		 */
3142 		efip = (xfs_efi_log_item_t *)lip;
3143 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3144 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3145 			continue;
3146 		}
3147 
3148 		AIL_UNLOCK(mp, s);
3149 		xlog_recover_process_efi(mp, efip);
3150 		AIL_LOCK(mp,s);
3151 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3152 	}
3153 	AIL_UNLOCK(mp, s);
3154 }
3155 
3156 /*
3157  * This routine performs a transaction to null out a bad inode pointer
3158  * in an agi unlinked inode hash bucket.
3159  */
3160 STATIC void
3161 xlog_recover_clear_agi_bucket(
3162 	xfs_mount_t	*mp,
3163 	xfs_agnumber_t	agno,
3164 	int		bucket)
3165 {
3166 	xfs_trans_t	*tp;
3167 	xfs_agi_t	*agi;
3168 	xfs_buf_t	*agibp;
3169 	int		offset;
3170 	int		error;
3171 
3172 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3173 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3174 
3175 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3176 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3177 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3178 	if (error) {
3179 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3180 		return;
3181 	}
3182 
3183 	agi = XFS_BUF_TO_AGI(agibp);
3184 	if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) {
3185 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3186 		return;
3187 	}
3188 	ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC);
3189 
3190 	INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO);
3191 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3192 		 (sizeof(xfs_agino_t) * bucket);
3193 	xfs_trans_log_buf(tp, agibp, offset,
3194 			  (offset + sizeof(xfs_agino_t) - 1));
3195 
3196 	(void) xfs_trans_commit(tp, 0, NULL);
3197 }
3198 
3199 /*
3200  * xlog_iunlink_recover
3201  *
3202  * This is called during recovery to process any inodes which
3203  * we unlinked but not freed when the system crashed.  These
3204  * inodes will be on the lists in the AGI blocks.  What we do
3205  * here is scan all the AGIs and fully truncate and free any
3206  * inodes found on the lists.  Each inode is removed from the
3207  * lists when it has been fully truncated and is freed.  The
3208  * freeing of the inode and its removal from the list must be
3209  * atomic.
3210  */
3211 void
3212 xlog_recover_process_iunlinks(
3213 	xlog_t		*log)
3214 {
3215 	xfs_mount_t	*mp;
3216 	xfs_agnumber_t	agno;
3217 	xfs_agi_t	*agi;
3218 	xfs_buf_t	*agibp;
3219 	xfs_buf_t	*ibp;
3220 	xfs_dinode_t	*dip;
3221 	xfs_inode_t	*ip;
3222 	xfs_agino_t	agino;
3223 	xfs_ino_t	ino;
3224 	int		bucket;
3225 	int		error;
3226 	uint		mp_dmevmask;
3227 
3228 	mp = log->l_mp;
3229 
3230 	/*
3231 	 * Prevent any DMAPI event from being sent while in this function.
3232 	 */
3233 	mp_dmevmask = mp->m_dmevmask;
3234 	mp->m_dmevmask = 0;
3235 
3236 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3237 		/*
3238 		 * Find the agi for this ag.
3239 		 */
3240 		agibp = xfs_buf_read(mp->m_ddev_targp,
3241 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3242 				XFS_FSS_TO_BB(mp, 1), 0);
3243 		if (XFS_BUF_ISERROR(agibp)) {
3244 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3245 				log->l_mp, agibp,
3246 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3247 		}
3248 		agi = XFS_BUF_TO_AGI(agibp);
3249 		ASSERT(XFS_AGI_MAGIC ==
3250 			INT_GET(agi->agi_magicnum, ARCH_CONVERT));
3251 
3252 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3253 
3254 			agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT);
3255 			while (agino != NULLAGINO) {
3256 
3257 				/*
3258 				 * Release the agi buffer so that it can
3259 				 * be acquired in the normal course of the
3260 				 * transaction to truncate and free the inode.
3261 				 */
3262 				xfs_buf_relse(agibp);
3263 
3264 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3265 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3266 				ASSERT(error || (ip != NULL));
3267 
3268 				if (!error) {
3269 					/*
3270 					 * Get the on disk inode to find the
3271 					 * next inode in the bucket.
3272 					 */
3273 					error = xfs_itobp(mp, NULL, ip, &dip,
3274 							&ibp, 0);
3275 					ASSERT(error || (dip != NULL));
3276 				}
3277 
3278 				if (!error) {
3279 					ASSERT(ip->i_d.di_nlink == 0);
3280 
3281 					/* setup for the next pass */
3282 					agino = INT_GET(dip->di_next_unlinked,
3283 							ARCH_CONVERT);
3284 					xfs_buf_relse(ibp);
3285 					/*
3286 					 * Prevent any DMAPI event from
3287 					 * being sent when the
3288 					 * reference on the inode is
3289 					 * dropped.
3290 					 */
3291 					ip->i_d.di_dmevmask = 0;
3292 
3293 					/*
3294 					 * If this is a new inode, handle
3295 					 * it specially.  Otherwise,
3296 					 * just drop our reference to the
3297 					 * inode.  If there are no
3298 					 * other references, this will
3299 					 * send the inode to
3300 					 * xfs_inactive() which will
3301 					 * truncate the file and free
3302 					 * the inode.
3303 					 */
3304 					if (ip->i_d.di_mode == 0)
3305 						xfs_iput_new(ip, 0);
3306 					else
3307 						VN_RELE(XFS_ITOV(ip));
3308 				} else {
3309 					/*
3310 					 * We can't read in the inode
3311 					 * this bucket points to, or
3312 					 * this inode is messed up.  Just
3313 					 * ditch this bucket of inodes.  We
3314 					 * will lose some inodes and space,
3315 					 * but at least we won't hang.  Call
3316 					 * xlog_recover_clear_agi_bucket()
3317 					 * to perform a transaction to clear
3318 					 * the inode pointer in the bucket.
3319 					 */
3320 					xlog_recover_clear_agi_bucket(mp, agno,
3321 							bucket);
3322 
3323 					agino = NULLAGINO;
3324 				}
3325 
3326 				/*
3327 				 * Reacquire the agibuffer and continue around
3328 				 * the loop.
3329 				 */
3330 				agibp = xfs_buf_read(mp->m_ddev_targp,
3331 						XFS_AG_DADDR(mp, agno,
3332 							XFS_AGI_DADDR(mp)),
3333 						XFS_FSS_TO_BB(mp, 1), 0);
3334 				if (XFS_BUF_ISERROR(agibp)) {
3335 					xfs_ioerror_alert(
3336 				"xlog_recover_process_iunlinks(#2)",
3337 						log->l_mp, agibp,
3338 						XFS_AG_DADDR(mp, agno,
3339 							XFS_AGI_DADDR(mp)));
3340 				}
3341 				agi = XFS_BUF_TO_AGI(agibp);
3342 				ASSERT(XFS_AGI_MAGIC == INT_GET(
3343 					agi->agi_magicnum, ARCH_CONVERT));
3344 			}
3345 		}
3346 
3347 		/*
3348 		 * Release the buffer for the current agi so we can
3349 		 * go on to the next one.
3350 		 */
3351 		xfs_buf_relse(agibp);
3352 	}
3353 
3354 	mp->m_dmevmask = mp_dmevmask;
3355 }
3356 
3357 
3358 #ifdef DEBUG
3359 STATIC void
3360 xlog_pack_data_checksum(
3361 	xlog_t		*log,
3362 	xlog_in_core_t	*iclog,
3363 	int		size)
3364 {
3365 	int		i;
3366 	uint		*up;
3367 	uint		chksum = 0;
3368 
3369 	up = (uint *)iclog->ic_datap;
3370 	/* divide length by 4 to get # words */
3371 	for (i = 0; i < (size >> 2); i++) {
3372 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3373 		up++;
3374 	}
3375 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3376 }
3377 #else
3378 #define xlog_pack_data_checksum(log, iclog, size)
3379 #endif
3380 
3381 /*
3382  * Stamp cycle number in every block
3383  */
3384 void
3385 xlog_pack_data(
3386 	xlog_t			*log,
3387 	xlog_in_core_t		*iclog,
3388 	int			roundoff)
3389 {
3390 	int			i, j, k;
3391 	int			size = iclog->ic_offset + roundoff;
3392 	uint			cycle_lsn;
3393 	xfs_caddr_t		dp;
3394 	xlog_in_core_2_t	*xhdr;
3395 
3396 	xlog_pack_data_checksum(log, iclog, size);
3397 
3398 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3399 
3400 	dp = iclog->ic_datap;
3401 	for (i = 0; i < BTOBB(size) &&
3402 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3403 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3404 		*(uint *)dp = cycle_lsn;
3405 		dp += BBSIZE;
3406 	}
3407 
3408 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3409 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3410 		for ( ; i < BTOBB(size); i++) {
3411 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3412 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3413 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3414 			*(uint *)dp = cycle_lsn;
3415 			dp += BBSIZE;
3416 		}
3417 
3418 		for (i = 1; i < log->l_iclog_heads; i++) {
3419 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3420 		}
3421 	}
3422 }
3423 
3424 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3425 STATIC void
3426 xlog_unpack_data_checksum(
3427 	xlog_rec_header_t	*rhead,
3428 	xfs_caddr_t		dp,
3429 	xlog_t			*log)
3430 {
3431 	uint			*up = (uint *)dp;
3432 	uint			chksum = 0;
3433 	int			i;
3434 
3435 	/* divide length by 4 to get # words */
3436 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3437 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3438 		up++;
3439 	}
3440 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3441 	    if (rhead->h_chksum ||
3442 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3443 		    cmn_err(CE_DEBUG,
3444 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3445 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3446 		    cmn_err(CE_DEBUG,
3447 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3448 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3449 			    cmn_err(CE_DEBUG,
3450 				"XFS: LogR this is a LogV2 filesystem");
3451 		    }
3452 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3453 	    }
3454 	}
3455 }
3456 #else
3457 #define xlog_unpack_data_checksum(rhead, dp, log)
3458 #endif
3459 
3460 STATIC void
3461 xlog_unpack_data(
3462 	xlog_rec_header_t	*rhead,
3463 	xfs_caddr_t		dp,
3464 	xlog_t			*log)
3465 {
3466 	int			i, j, k;
3467 	xlog_in_core_2_t	*xhdr;
3468 
3469 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3470 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3471 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3472 		dp += BBSIZE;
3473 	}
3474 
3475 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3476 		xhdr = (xlog_in_core_2_t *)rhead;
3477 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3478 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3479 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3481 			dp += BBSIZE;
3482 		}
3483 	}
3484 
3485 	xlog_unpack_data_checksum(rhead, dp, log);
3486 }
3487 
3488 STATIC int
3489 xlog_valid_rec_header(
3490 	xlog_t			*log,
3491 	xlog_rec_header_t	*rhead,
3492 	xfs_daddr_t		blkno)
3493 {
3494 	int			hlen;
3495 
3496 	if (unlikely(
3497 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3498 			XLOG_HEADER_MAGIC_NUM))) {
3499 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3500 				XFS_ERRLEVEL_LOW, log->l_mp);
3501 		return XFS_ERROR(EFSCORRUPTED);
3502 	}
3503 	if (unlikely(
3504 	    (!rhead->h_version ||
3505 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3506 			(~XLOG_VERSION_OKBITS)) != 0))) {
3507 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3508 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3509 		return XFS_ERROR(EIO);
3510 	}
3511 
3512 	/* LR body must have data or it wouldn't have been written */
3513 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3514 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3515 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3516 				XFS_ERRLEVEL_LOW, log->l_mp);
3517 		return XFS_ERROR(EFSCORRUPTED);
3518 	}
3519 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3520 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3521 				XFS_ERRLEVEL_LOW, log->l_mp);
3522 		return XFS_ERROR(EFSCORRUPTED);
3523 	}
3524 	return 0;
3525 }
3526 
3527 /*
3528  * Read the log from tail to head and process the log records found.
3529  * Handle the two cases where the tail and head are in the same cycle
3530  * and where the active portion of the log wraps around the end of
3531  * the physical log separately.  The pass parameter is passed through
3532  * to the routines called to process the data and is not looked at
3533  * here.
3534  */
3535 STATIC int
3536 xlog_do_recovery_pass(
3537 	xlog_t			*log,
3538 	xfs_daddr_t		head_blk,
3539 	xfs_daddr_t		tail_blk,
3540 	int			pass)
3541 {
3542 	xlog_rec_header_t	*rhead;
3543 	xfs_daddr_t		blk_no;
3544 	xfs_caddr_t		bufaddr, offset;
3545 	xfs_buf_t		*hbp, *dbp;
3546 	int			error = 0, h_size;
3547 	int			bblks, split_bblks;
3548 	int			hblks, split_hblks, wrapped_hblks;
3549 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3550 
3551 	ASSERT(head_blk != tail_blk);
3552 
3553 	/*
3554 	 * Read the header of the tail block and get the iclog buffer size from
3555 	 * h_size.  Use this to tell how many sectors make up the log header.
3556 	 */
3557 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3558 		/*
3559 		 * When using variable length iclogs, read first sector of
3560 		 * iclog header and extract the header size from it.  Get a
3561 		 * new hbp that is the correct size.
3562 		 */
3563 		hbp = xlog_get_bp(log, 1);
3564 		if (!hbp)
3565 			return ENOMEM;
3566 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3567 			goto bread_err1;
3568 		offset = xlog_align(log, tail_blk, 1, hbp);
3569 		rhead = (xlog_rec_header_t *)offset;
3570 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3571 		if (error)
3572 			goto bread_err1;
3573 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3574 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3575 				& XLOG_VERSION_2) &&
3576 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3577 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3578 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3579 				hblks++;
3580 			xlog_put_bp(hbp);
3581 			hbp = xlog_get_bp(log, hblks);
3582 		} else {
3583 			hblks = 1;
3584 		}
3585 	} else {
3586 		ASSERT(log->l_sectbb_log == 0);
3587 		hblks = 1;
3588 		hbp = xlog_get_bp(log, 1);
3589 		h_size = XLOG_BIG_RECORD_BSIZE;
3590 	}
3591 
3592 	if (!hbp)
3593 		return ENOMEM;
3594 	dbp = xlog_get_bp(log, BTOBB(h_size));
3595 	if (!dbp) {
3596 		xlog_put_bp(hbp);
3597 		return ENOMEM;
3598 	}
3599 
3600 	memset(rhash, 0, sizeof(rhash));
3601 	if (tail_blk <= head_blk) {
3602 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3603 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3604 				goto bread_err2;
3605 			offset = xlog_align(log, blk_no, hblks, hbp);
3606 			rhead = (xlog_rec_header_t *)offset;
3607 			error = xlog_valid_rec_header(log, rhead, blk_no);
3608 			if (error)
3609 				goto bread_err2;
3610 
3611 			/* blocks in data section */
3612 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3613 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3614 			if (error)
3615 				goto bread_err2;
3616 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3617 			xlog_unpack_data(rhead, offset, log);
3618 			if ((error = xlog_recover_process_data(log,
3619 						rhash, rhead, offset, pass)))
3620 				goto bread_err2;
3621 			blk_no += bblks + hblks;
3622 		}
3623 	} else {
3624 		/*
3625 		 * Perform recovery around the end of the physical log.
3626 		 * When the head is not on the same cycle number as the tail,
3627 		 * we can't do a sequential recovery as above.
3628 		 */
3629 		blk_no = tail_blk;
3630 		while (blk_no < log->l_logBBsize) {
3631 			/*
3632 			 * Check for header wrapping around physical end-of-log
3633 			 */
3634 			offset = NULL;
3635 			split_hblks = 0;
3636 			wrapped_hblks = 0;
3637 			if (blk_no + hblks <= log->l_logBBsize) {
3638 				/* Read header in one read */
3639 				error = xlog_bread(log, blk_no, hblks, hbp);
3640 				if (error)
3641 					goto bread_err2;
3642 				offset = xlog_align(log, blk_no, hblks, hbp);
3643 			} else {
3644 				/* This LR is split across physical log end */
3645 				if (blk_no != log->l_logBBsize) {
3646 					/* some data before physical log end */
3647 					ASSERT(blk_no <= INT_MAX);
3648 					split_hblks = log->l_logBBsize - (int)blk_no;
3649 					ASSERT(split_hblks > 0);
3650 					if ((error = xlog_bread(log, blk_no,
3651 							split_hblks, hbp)))
3652 						goto bread_err2;
3653 					offset = xlog_align(log, blk_no,
3654 							split_hblks, hbp);
3655 				}
3656 				/*
3657 				 * Note: this black magic still works with
3658 				 * large sector sizes (non-512) only because:
3659 				 * - we increased the buffer size originally
3660 				 *   by 1 sector giving us enough extra space
3661 				 *   for the second read;
3662 				 * - the log start is guaranteed to be sector
3663 				 *   aligned;
3664 				 * - we read the log end (LR header start)
3665 				 *   _first_, then the log start (LR header end)
3666 				 *   - order is important.
3667 				 */
3668 				bufaddr = XFS_BUF_PTR(hbp);
3669 				XFS_BUF_SET_PTR(hbp,
3670 						bufaddr + BBTOB(split_hblks),
3671 						BBTOB(hblks - split_hblks));
3672 				wrapped_hblks = hblks - split_hblks;
3673 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3674 				if (error)
3675 					goto bread_err2;
3676 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3677 				if (!offset)
3678 					offset = xlog_align(log, 0,
3679 							wrapped_hblks, hbp);
3680 			}
3681 			rhead = (xlog_rec_header_t *)offset;
3682 			error = xlog_valid_rec_header(log, rhead,
3683 						split_hblks ? blk_no : 0);
3684 			if (error)
3685 				goto bread_err2;
3686 
3687 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3688 			blk_no += hblks;
3689 
3690 			/* Read in data for log record */
3691 			if (blk_no + bblks <= log->l_logBBsize) {
3692 				error = xlog_bread(log, blk_no, bblks, dbp);
3693 				if (error)
3694 					goto bread_err2;
3695 				offset = xlog_align(log, blk_no, bblks, dbp);
3696 			} else {
3697 				/* This log record is split across the
3698 				 * physical end of log */
3699 				offset = NULL;
3700 				split_bblks = 0;
3701 				if (blk_no != log->l_logBBsize) {
3702 					/* some data is before the physical
3703 					 * end of log */
3704 					ASSERT(!wrapped_hblks);
3705 					ASSERT(blk_no <= INT_MAX);
3706 					split_bblks =
3707 						log->l_logBBsize - (int)blk_no;
3708 					ASSERT(split_bblks > 0);
3709 					if ((error = xlog_bread(log, blk_no,
3710 							split_bblks, dbp)))
3711 						goto bread_err2;
3712 					offset = xlog_align(log, blk_no,
3713 							split_bblks, dbp);
3714 				}
3715 				/*
3716 				 * Note: this black magic still works with
3717 				 * large sector sizes (non-512) only because:
3718 				 * - we increased the buffer size originally
3719 				 *   by 1 sector giving us enough extra space
3720 				 *   for the second read;
3721 				 * - the log start is guaranteed to be sector
3722 				 *   aligned;
3723 				 * - we read the log end (LR header start)
3724 				 *   _first_, then the log start (LR header end)
3725 				 *   - order is important.
3726 				 */
3727 				bufaddr = XFS_BUF_PTR(dbp);
3728 				XFS_BUF_SET_PTR(dbp,
3729 						bufaddr + BBTOB(split_bblks),
3730 						BBTOB(bblks - split_bblks));
3731 				if ((error = xlog_bread(log, wrapped_hblks,
3732 						bblks - split_bblks, dbp)))
3733 					goto bread_err2;
3734 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3735 				if (!offset)
3736 					offset = xlog_align(log, wrapped_hblks,
3737 						bblks - split_bblks, dbp);
3738 			}
3739 			xlog_unpack_data(rhead, offset, log);
3740 			if ((error = xlog_recover_process_data(log, rhash,
3741 							rhead, offset, pass)))
3742 				goto bread_err2;
3743 			blk_no += bblks;
3744 		}
3745 
3746 		ASSERT(blk_no >= log->l_logBBsize);
3747 		blk_no -= log->l_logBBsize;
3748 
3749 		/* read first part of physical log */
3750 		while (blk_no < head_blk) {
3751 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3752 				goto bread_err2;
3753 			offset = xlog_align(log, blk_no, hblks, hbp);
3754 			rhead = (xlog_rec_header_t *)offset;
3755 			error = xlog_valid_rec_header(log, rhead, blk_no);
3756 			if (error)
3757 				goto bread_err2;
3758 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3759 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3760 				goto bread_err2;
3761 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3762 			xlog_unpack_data(rhead, offset, log);
3763 			if ((error = xlog_recover_process_data(log, rhash,
3764 							rhead, offset, pass)))
3765 				goto bread_err2;
3766 			blk_no += bblks + hblks;
3767 		}
3768 	}
3769 
3770  bread_err2:
3771 	xlog_put_bp(dbp);
3772  bread_err1:
3773 	xlog_put_bp(hbp);
3774 	return error;
3775 }
3776 
3777 /*
3778  * Do the recovery of the log.  We actually do this in two phases.
3779  * The two passes are necessary in order to implement the function
3780  * of cancelling a record written into the log.  The first pass
3781  * determines those things which have been cancelled, and the
3782  * second pass replays log items normally except for those which
3783  * have been cancelled.  The handling of the replay and cancellations
3784  * takes place in the log item type specific routines.
3785  *
3786  * The table of items which have cancel records in the log is allocated
3787  * and freed at this level, since only here do we know when all of
3788  * the log recovery has been completed.
3789  */
3790 STATIC int
3791 xlog_do_log_recovery(
3792 	xlog_t		*log,
3793 	xfs_daddr_t	head_blk,
3794 	xfs_daddr_t	tail_blk)
3795 {
3796 	int		error;
3797 
3798 	ASSERT(head_blk != tail_blk);
3799 
3800 	/*
3801 	 * First do a pass to find all of the cancelled buf log items.
3802 	 * Store them in the buf_cancel_table for use in the second pass.
3803 	 */
3804 	log->l_buf_cancel_table =
3805 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3806 						 sizeof(xfs_buf_cancel_t*),
3807 						 KM_SLEEP);
3808 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3809 				      XLOG_RECOVER_PASS1);
3810 	if (error != 0) {
3811 		kmem_free(log->l_buf_cancel_table,
3812 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3813 		log->l_buf_cancel_table = NULL;
3814 		return error;
3815 	}
3816 	/*
3817 	 * Then do a second pass to actually recover the items in the log.
3818 	 * When it is complete free the table of buf cancel items.
3819 	 */
3820 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3821 				      XLOG_RECOVER_PASS2);
3822 #ifdef DEBUG
3823 	{
3824 		int	i;
3825 
3826 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3827 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3828 	}
3829 #endif	/* DEBUG */
3830 
3831 	kmem_free(log->l_buf_cancel_table,
3832 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3833 	log->l_buf_cancel_table = NULL;
3834 
3835 	return error;
3836 }
3837 
3838 /*
3839  * Do the actual recovery
3840  */
3841 STATIC int
3842 xlog_do_recover(
3843 	xlog_t		*log,
3844 	xfs_daddr_t	head_blk,
3845 	xfs_daddr_t	tail_blk)
3846 {
3847 	int		error;
3848 	xfs_buf_t	*bp;
3849 	xfs_sb_t	*sbp;
3850 
3851 	/*
3852 	 * First replay the images in the log.
3853 	 */
3854 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3855 	if (error) {
3856 		return error;
3857 	}
3858 
3859 	XFS_bflush(log->l_mp->m_ddev_targp);
3860 
3861 	/*
3862 	 * If IO errors happened during recovery, bail out.
3863 	 */
3864 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3865 		return (EIO);
3866 	}
3867 
3868 	/*
3869 	 * We now update the tail_lsn since much of the recovery has completed
3870 	 * and there may be space available to use.  If there were no extent
3871 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3872 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3873 	 * lsn of the last known good LR on disk.  If there are extent frees
3874 	 * or iunlinks they will have some entries in the AIL; so we look at
3875 	 * the AIL to determine how to set the tail_lsn.
3876 	 */
3877 	xlog_assign_tail_lsn(log->l_mp);
3878 
3879 	/*
3880 	 * Now that we've finished replaying all buffer and inode
3881 	 * updates, re-read in the superblock.
3882 	 */
3883 	bp = xfs_getsb(log->l_mp, 0);
3884 	XFS_BUF_UNDONE(bp);
3885 	XFS_BUF_READ(bp);
3886 	xfsbdstrat(log->l_mp, bp);
3887 	if ((error = xfs_iowait(bp))) {
3888 		xfs_ioerror_alert("xlog_do_recover",
3889 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3890 		ASSERT(0);
3891 		xfs_buf_relse(bp);
3892 		return error;
3893 	}
3894 
3895 	/* Convert superblock from on-disk format */
3896 	sbp = &log->l_mp->m_sb;
3897 	xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3898 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3899 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3900 	xfs_buf_relse(bp);
3901 
3902 	xlog_recover_check_summary(log);
3903 
3904 	/* Normal transactions can now occur */
3905 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3906 	return 0;
3907 }
3908 
3909 /*
3910  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3911  *
3912  * Return error or zero.
3913  */
3914 int
3915 xlog_recover(
3916 	xlog_t		*log,
3917 	int		readonly)
3918 {
3919 	xfs_daddr_t	head_blk, tail_blk;
3920 	int		error;
3921 
3922 	/* find the tail of the log */
3923 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
3924 		return error;
3925 
3926 	if (tail_blk != head_blk) {
3927 		/* There used to be a comment here:
3928 		 *
3929 		 * disallow recovery on read-only mounts.  note -- mount
3930 		 * checks for ENOSPC and turns it into an intelligent
3931 		 * error message.
3932 		 * ...but this is no longer true.  Now, unless you specify
3933 		 * NORECOVERY (in which case this function would never be
3934 		 * called), we just go ahead and recover.  We do this all
3935 		 * under the vfs layer, so we can get away with it unless
3936 		 * the device itself is read-only, in which case we fail.
3937 		 */
3938 		if ((error = xfs_dev_is_read_only(log->l_mp,
3939 						"recovery required"))) {
3940 			return error;
3941 		}
3942 
3943 		cmn_err(CE_NOTE,
3944 			"Starting XFS recovery on filesystem: %s (dev: %s)",
3945 			log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
3946 
3947 		error = xlog_do_recover(log, head_blk, tail_blk);
3948 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3949 	}
3950 	return error;
3951 }
3952 
3953 /*
3954  * In the first part of recovery we replay inodes and buffers and build
3955  * up the list of extent free items which need to be processed.  Here
3956  * we process the extent free items and clean up the on disk unlinked
3957  * inode lists.  This is separated from the first part of recovery so
3958  * that the root and real-time bitmap inodes can be read in from disk in
3959  * between the two stages.  This is necessary so that we can free space
3960  * in the real-time portion of the file system.
3961  */
3962 int
3963 xlog_recover_finish(
3964 	xlog_t		*log,
3965 	int		mfsi_flags)
3966 {
3967 	/*
3968 	 * Now we're ready to do the transactions needed for the
3969 	 * rest of recovery.  Start with completing all the extent
3970 	 * free intent records and then process the unlinked inode
3971 	 * lists.  At this point, we essentially run in normal mode
3972 	 * except that we're still performing recovery actions
3973 	 * rather than accepting new requests.
3974 	 */
3975 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3976 		xlog_recover_process_efis(log);
3977 		/*
3978 		 * Sync the log to get all the EFIs out of the AIL.
3979 		 * This isn't absolutely necessary, but it helps in
3980 		 * case the unlink transactions would have problems
3981 		 * pushing the EFIs out of the way.
3982 		 */
3983 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3984 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3985 
3986 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3987 			xlog_recover_process_iunlinks(log);
3988 		}
3989 
3990 		xlog_recover_check_summary(log);
3991 
3992 		cmn_err(CE_NOTE,
3993 			"Ending XFS recovery on filesystem: %s (dev: %s)",
3994 			log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
3995 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3996 	} else {
3997 		cmn_err(CE_DEBUG,
3998 			"!Ending clean XFS mount for filesystem: %s",
3999 			log->l_mp->m_fsname);
4000 	}
4001 	return 0;
4002 }
4003 
4004 
4005 #if defined(DEBUG)
4006 /*
4007  * Read all of the agf and agi counters and check that they
4008  * are consistent with the superblock counters.
4009  */
4010 void
4011 xlog_recover_check_summary(
4012 	xlog_t		*log)
4013 {
4014 	xfs_mount_t	*mp;
4015 	xfs_agf_t	*agfp;
4016 	xfs_agi_t	*agip;
4017 	xfs_buf_t	*agfbp;
4018 	xfs_buf_t	*agibp;
4019 	xfs_daddr_t	agfdaddr;
4020 	xfs_daddr_t	agidaddr;
4021 	xfs_buf_t	*sbbp;
4022 #ifdef XFS_LOUD_RECOVERY
4023 	xfs_sb_t	*sbp;
4024 #endif
4025 	xfs_agnumber_t	agno;
4026 	__uint64_t	freeblks;
4027 	__uint64_t	itotal;
4028 	__uint64_t	ifree;
4029 
4030 	mp = log->l_mp;
4031 
4032 	freeblks = 0LL;
4033 	itotal = 0LL;
4034 	ifree = 0LL;
4035 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4036 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4037 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4038 				XFS_FSS_TO_BB(mp, 1), 0);
4039 		if (XFS_BUF_ISERROR(agfbp)) {
4040 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4041 						mp, agfbp, agfdaddr);
4042 		}
4043 		agfp = XFS_BUF_TO_AGF(agfbp);
4044 		ASSERT(XFS_AGF_MAGIC ==
4045 			INT_GET(agfp->agf_magicnum, ARCH_CONVERT));
4046 		ASSERT(XFS_AGF_GOOD_VERSION(
4047 			INT_GET(agfp->agf_versionnum, ARCH_CONVERT)));
4048 		ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno);
4049 
4050 		freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) +
4051 			    INT_GET(agfp->agf_flcount, ARCH_CONVERT);
4052 		xfs_buf_relse(agfbp);
4053 
4054 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4055 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4056 				XFS_FSS_TO_BB(mp, 1), 0);
4057 		if (XFS_BUF_ISERROR(agibp)) {
4058 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4059 					  mp, agibp, agidaddr);
4060 		}
4061 		agip = XFS_BUF_TO_AGI(agibp);
4062 		ASSERT(XFS_AGI_MAGIC ==
4063 			INT_GET(agip->agi_magicnum, ARCH_CONVERT));
4064 		ASSERT(XFS_AGI_GOOD_VERSION(
4065 			INT_GET(agip->agi_versionnum, ARCH_CONVERT)));
4066 		ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno);
4067 
4068 		itotal += INT_GET(agip->agi_count, ARCH_CONVERT);
4069 		ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT);
4070 		xfs_buf_relse(agibp);
4071 	}
4072 
4073 	sbbp = xfs_getsb(mp, 0);
4074 #ifdef XFS_LOUD_RECOVERY
4075 	sbp = &mp->m_sb;
4076 	xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4077 	cmn_err(CE_NOTE,
4078 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4079 		sbp->sb_icount, itotal);
4080 	cmn_err(CE_NOTE,
4081 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4082 		sbp->sb_ifree, ifree);
4083 	cmn_err(CE_NOTE,
4084 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4085 		sbp->sb_fdblocks, freeblks);
4086 #if 0
4087 	/*
4088 	 * This is turned off until I account for the allocation
4089 	 * btree blocks which live in free space.
4090 	 */
4091 	ASSERT(sbp->sb_icount == itotal);
4092 	ASSERT(sbp->sb_ifree == ifree);
4093 	ASSERT(sbp->sb_fdblocks == freeblks);
4094 #endif
4095 #endif
4096 	xfs_buf_relse(sbbp);
4097 }
4098 #endif /* DEBUG */
4099