xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * This routine is called to map an inode number within a file
128  * system to the buffer containing the on-disk version of the
129  * inode.  It returns a pointer to the buffer containing the
130  * on-disk inode in the bpp parameter, and in the dip parameter
131  * it returns a pointer to the on-disk inode within that buffer.
132  *
133  * If a non-zero error is returned, then the contents of bpp and
134  * dipp are undefined.
135  *
136  * Use xfs_imap() to determine the size and location of the
137  * buffer to read from disk.
138  */
139 STATIC int
140 xfs_inotobp(
141 	xfs_mount_t	*mp,
142 	xfs_trans_t	*tp,
143 	xfs_ino_t	ino,
144 	xfs_dinode_t	**dipp,
145 	xfs_buf_t	**bpp,
146 	int		*offset)
147 {
148 	int		di_ok;
149 	xfs_imap_t	imap;
150 	xfs_buf_t	*bp;
151 	int		error;
152 	xfs_dinode_t	*dip;
153 
154 	/*
155 	 * Call the space management code to find the location of the
156 	 * inode on disk.
157 	 */
158 	imap.im_blkno = 0;
159 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 	if (error != 0) {
161 		cmn_err(CE_WARN,
162 	"xfs_inotobp: xfs_imap()  returned an "
163 	"error %d on %s.  Returning error.", error, mp->m_fsname);
164 		return error;
165 	}
166 
167 	/*
168 	 * If the inode number maps to a block outside the bounds of the
169 	 * file system then return NULL rather than calling read_buf
170 	 * and panicing when we get an error from the driver.
171 	 */
172 	if ((imap.im_blkno + imap.im_len) >
173 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 		cmn_err(CE_WARN,
175 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 	"of the file system %s.  Returning EINVAL.",
177 			(unsigned long long)imap.im_blkno,
178 			imap.im_len, mp->m_fsname);
179 		return XFS_ERROR(EINVAL);
180 	}
181 
182 	/*
183 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
184 	 * default to just a read_buf() call.
185 	 */
186 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
188 
189 	if (error) {
190 		cmn_err(CE_WARN,
191 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
192 	"error %d on %s.  Returning error.", error, mp->m_fsname);
193 		return error;
194 	}
195 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 	di_ok =
197 		be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 		XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 			XFS_RANDOM_ITOBP_INOTOBP))) {
201 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 		xfs_trans_brelse(tp, bp);
203 		cmn_err(CE_WARN,
204 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
205 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
206 		return XFS_ERROR(EFSCORRUPTED);
207 	}
208 
209 	xfs_inobp_check(mp, bp);
210 
211 	/*
212 	 * Set *dipp to point to the on-disk inode in the buffer.
213 	 */
214 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 	*bpp = bp;
216 	*offset = imap.im_boffset;
217 	return 0;
218 }
219 
220 
221 /*
222  * This routine is called to map an inode to the buffer containing
223  * the on-disk version of the inode.  It returns a pointer to the
224  * buffer containing the on-disk inode in the bpp parameter, and in
225  * the dip parameter it returns a pointer to the on-disk inode within
226  * that buffer.
227  *
228  * If a non-zero error is returned, then the contents of bpp and
229  * dipp are undefined.
230  *
231  * If the inode is new and has not yet been initialized, use xfs_imap()
232  * to determine the size and location of the buffer to read from disk.
233  * If the inode has already been mapped to its buffer and read in once,
234  * then use the mapping information stored in the inode rather than
235  * calling xfs_imap().  This allows us to avoid the overhead of looking
236  * at the inode btree for small block file systems (see xfs_dilocate()).
237  * We can tell whether the inode has been mapped in before by comparing
238  * its disk block address to 0.  Only uninitialized inodes will have
239  * 0 for the disk block address.
240  */
241 int
242 xfs_itobp(
243 	xfs_mount_t	*mp,
244 	xfs_trans_t	*tp,
245 	xfs_inode_t	*ip,
246 	xfs_dinode_t	**dipp,
247 	xfs_buf_t	**bpp,
248 	xfs_daddr_t	bno,
249 	uint		imap_flags)
250 {
251 	xfs_imap_t	imap;
252 	xfs_buf_t	*bp;
253 	int		error;
254 	int		i;
255 	int		ni;
256 
257 	if (ip->i_blkno == (xfs_daddr_t)0) {
258 		/*
259 		 * Call the space management code to find the location of the
260 		 * inode on disk.
261 		 */
262 		imap.im_blkno = bno;
263 		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 					XFS_IMAP_LOOKUP | imap_flags)))
265 			return error;
266 
267 		/*
268 		 * If the inode number maps to a block outside the bounds
269 		 * of the file system then return NULL rather than calling
270 		 * read_buf and panicing when we get an error from the
271 		 * driver.
272 		 */
273 		if ((imap.im_blkno + imap.im_len) >
274 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 					"(imap.im_blkno (0x%llx) "
278 					"+ imap.im_len (0x%llx)) > "
279 					" XFS_FSB_TO_BB(mp, "
280 					"mp->m_sb.sb_dblocks) (0x%llx)",
281 					(unsigned long long) imap.im_blkno,
282 					(unsigned long long) imap.im_len,
283 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 			return XFS_ERROR(EINVAL);
286 		}
287 
288 		/*
289 		 * Fill in the fields in the inode that will be used to
290 		 * map the inode to its buffer from now on.
291 		 */
292 		ip->i_blkno = imap.im_blkno;
293 		ip->i_len = imap.im_len;
294 		ip->i_boffset = imap.im_boffset;
295 	} else {
296 		/*
297 		 * We've already mapped the inode once, so just use the
298 		 * mapping that we saved the first time.
299 		 */
300 		imap.im_blkno = ip->i_blkno;
301 		imap.im_len = ip->i_len;
302 		imap.im_boffset = ip->i_boffset;
303 	}
304 	ASSERT(bno == 0 || bno == imap.im_blkno);
305 
306 	/*
307 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
308 	 * default to just a read_buf() call.
309 	 */
310 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 	if (error) {
313 #ifdef DEBUG
314 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 				"xfs_trans_read_buf() returned error %d, "
316 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 				error, (unsigned long long) imap.im_blkno,
318 				(unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 		return error;
321 	}
322 
323 	/*
324 	 * Validate the magic number and version of every inode in the buffer
325 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 	 * No validation is done here in userspace (xfs_repair).
327 	 */
328 #if !defined(__KERNEL__)
329 	ni = 0;
330 #elif defined(DEBUG)
331 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else	/* usual case */
333 	ni = 1;
334 #endif
335 
336 	for (i = 0; i < ni; i++) {
337 		int		di_ok;
338 		xfs_dinode_t	*dip;
339 
340 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 					(i << mp->m_sb.sb_inodelog));
342 		di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 			    XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 						XFS_ERRTAG_ITOBP_INOTOBP,
346 						XFS_RANDOM_ITOBP_INOTOBP))) {
347 			if (imap_flags & XFS_IMAP_BULKSTAT) {
348 				xfs_trans_brelse(tp, bp);
349 				return XFS_ERROR(EINVAL);
350 			}
351 #ifdef DEBUG
352 			cmn_err(CE_ALERT,
353 					"Device %s - bad inode magic/vsn "
354 					"daddr %lld #%d (magic=%x)",
355 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 				(unsigned long long)imap.im_blkno, i,
357 				be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 					     mp, dip);
361 			xfs_trans_brelse(tp, bp);
362 			return XFS_ERROR(EFSCORRUPTED);
363 		}
364 	}
365 
366 	xfs_inobp_check(mp, bp);
367 
368 	/*
369 	 * Mark the buffer as an inode buffer now that it looks good
370 	 */
371 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372 
373 	/*
374 	 * Set *dipp to point to the on-disk inode in the buffer.
375 	 */
376 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 	*bpp = bp;
378 	return 0;
379 }
380 
381 /*
382  * Move inode type and inode format specific information from the
383  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
384  * this means set if_rdev to the proper value.  For files, directories,
385  * and symlinks this means to bring in the in-line data or extent
386  * pointers.  For a file in B-tree format, only the root is immediately
387  * brought in-core.  The rest will be in-lined in if_extents when it
388  * is first referenced (see xfs_iread_extents()).
389  */
390 STATIC int
391 xfs_iformat(
392 	xfs_inode_t		*ip,
393 	xfs_dinode_t		*dip)
394 {
395 	xfs_attr_shortform_t	*atp;
396 	int			size;
397 	int			error;
398 	xfs_fsize_t             di_size;
399 	ip->i_df.if_ext_max =
400 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 	error = 0;
402 
403 	if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 		     be16_to_cpu(dip->di_core.di_anextents) >
405 		     be64_to_cpu(dip->di_core.di_nblocks))) {
406 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 			(unsigned long long)ip->i_ino,
409 			(int)(be32_to_cpu(dip->di_core.di_nextents) +
410 			      be16_to_cpu(dip->di_core.di_anextents)),
411 			(unsigned long long)
412 				be64_to_cpu(dip->di_core.di_nblocks));
413 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 				     ip->i_mount, dip);
415 		return XFS_ERROR(EFSCORRUPTED);
416 	}
417 
418 	if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 			"corrupt dinode %Lu, forkoff = 0x%x.",
421 			(unsigned long long)ip->i_ino,
422 			dip->di_core.di_forkoff);
423 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 				     ip->i_mount, dip);
425 		return XFS_ERROR(EFSCORRUPTED);
426 	}
427 
428 	switch (ip->i_d.di_mode & S_IFMT) {
429 	case S_IFIFO:
430 	case S_IFCHR:
431 	case S_IFBLK:
432 	case S_IFSOCK:
433 		if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 					      ip->i_mount, dip);
436 			return XFS_ERROR(EFSCORRUPTED);
437 		}
438 		ip->i_d.di_size = 0;
439 		ip->i_size = 0;
440 		ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 		break;
442 
443 	case S_IFREG:
444 	case S_IFLNK:
445 	case S_IFDIR:
446 		switch (dip->di_core.di_format) {
447 		case XFS_DINODE_FMT_LOCAL:
448 			/*
449 			 * no local regular files yet
450 			 */
451 			if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 					"corrupt inode %Lu "
454 					"(local format for regular file).",
455 					(unsigned long long) ip->i_ino);
456 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 						     XFS_ERRLEVEL_LOW,
458 						     ip->i_mount, dip);
459 				return XFS_ERROR(EFSCORRUPTED);
460 			}
461 
462 			di_size = be64_to_cpu(dip->di_core.di_size);
463 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 					"corrupt inode %Lu "
466 					"(bad size %Ld for local inode).",
467 					(unsigned long long) ip->i_ino,
468 					(long long) di_size);
469 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 						     XFS_ERRLEVEL_LOW,
471 						     ip->i_mount, dip);
472 				return XFS_ERROR(EFSCORRUPTED);
473 			}
474 
475 			size = (int)di_size;
476 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 			break;
478 		case XFS_DINODE_FMT_EXTENTS:
479 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 			break;
481 		case XFS_DINODE_FMT_BTREE:
482 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 			break;
484 		default:
485 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 					 ip->i_mount);
487 			return XFS_ERROR(EFSCORRUPTED);
488 		}
489 		break;
490 
491 	default:
492 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 		return XFS_ERROR(EFSCORRUPTED);
494 	}
495 	if (error) {
496 		return error;
497 	}
498 	if (!XFS_DFORK_Q(dip))
499 		return 0;
500 	ASSERT(ip->i_afp == NULL);
501 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 	ip->i_afp->if_ext_max =
503 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 	switch (dip->di_core.di_aformat) {
505 	case XFS_DINODE_FMT_LOCAL:
506 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 		size = be16_to_cpu(atp->hdr.totsize);
508 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 		break;
510 	case XFS_DINODE_FMT_EXTENTS:
511 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 		break;
513 	case XFS_DINODE_FMT_BTREE:
514 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 		break;
516 	default:
517 		error = XFS_ERROR(EFSCORRUPTED);
518 		break;
519 	}
520 	if (error) {
521 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 		ip->i_afp = NULL;
523 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 	}
525 	return error;
526 }
527 
528 /*
529  * The file is in-lined in the on-disk inode.
530  * If it fits into if_inline_data, then copy
531  * it there, otherwise allocate a buffer for it
532  * and copy the data there.  Either way, set
533  * if_data to point at the data.
534  * If we allocate a buffer for the data, make
535  * sure that its size is a multiple of 4 and
536  * record the real size in i_real_bytes.
537  */
538 STATIC int
539 xfs_iformat_local(
540 	xfs_inode_t	*ip,
541 	xfs_dinode_t	*dip,
542 	int		whichfork,
543 	int		size)
544 {
545 	xfs_ifork_t	*ifp;
546 	int		real_size;
547 
548 	/*
549 	 * If the size is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu "
556 			"(bad size %d for local fork, size = %d).",
557 			(unsigned long long) ip->i_ino, size,
558 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 				     ip->i_mount, dip);
561 		return XFS_ERROR(EFSCORRUPTED);
562 	}
563 	ifp = XFS_IFORK_PTR(ip, whichfork);
564 	real_size = 0;
565 	if (size == 0)
566 		ifp->if_u1.if_data = NULL;
567 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 	else {
570 		real_size = roundup(size, 4);
571 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 	}
573 	ifp->if_bytes = size;
574 	ifp->if_real_bytes = real_size;
575 	if (size)
576 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 	ifp->if_flags &= ~XFS_IFEXTENTS;
578 	ifp->if_flags |= XFS_IFINLINE;
579 	return 0;
580 }
581 
582 /*
583  * The file consists of a set of extents all
584  * of which fit into the on-disk inode.
585  * If there are few enough extents to fit into
586  * the if_inline_ext, then copy them there.
587  * Otherwise allocate a buffer for them and copy
588  * them into it.  Either way, set if_extents
589  * to point at the extents.
590  */
591 STATIC int
592 xfs_iformat_extents(
593 	xfs_inode_t	*ip,
594 	xfs_dinode_t	*dip,
595 	int		whichfork)
596 {
597 	xfs_bmbt_rec_t	*dp;
598 	xfs_ifork_t	*ifp;
599 	int		nex;
600 	int		size;
601 	int		i;
602 
603 	ifp = XFS_IFORK_PTR(ip, whichfork);
604 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606 
607 	/*
608 	 * If the number of extents is unreasonable, then something
609 	 * is wrong and we just bail out rather than crash in
610 	 * kmem_alloc() or memcpy() below.
611 	 */
612 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 			"corrupt inode %Lu ((a)extents = %d).",
615 			(unsigned long long) ip->i_ino, nex);
616 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 				     ip->i_mount, dip);
618 		return XFS_ERROR(EFSCORRUPTED);
619 	}
620 
621 	ifp->if_real_bytes = 0;
622 	if (nex == 0)
623 		ifp->if_u1.if_extents = NULL;
624 	else if (nex <= XFS_INLINE_EXTS)
625 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 	else
627 		xfs_iext_add(ifp, 0, nex);
628 
629 	ifp->if_bytes = size;
630 	if (size) {
631 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 		for (i = 0; i < nex; i++, dp++) {
634 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 			ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 			ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
637 		}
638 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 		if (whichfork != XFS_DATA_FORK ||
640 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 				if (unlikely(xfs_check_nostate_extents(
642 				    ifp, 0, nex))) {
643 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 							 XFS_ERRLEVEL_LOW,
645 							 ip->i_mount);
646 					return XFS_ERROR(EFSCORRUPTED);
647 				}
648 	}
649 	ifp->if_flags |= XFS_IFEXTENTS;
650 	return 0;
651 }
652 
653 /*
654  * The file has too many extents to fit into
655  * the inode, so they are in B-tree format.
656  * Allocate a buffer for the root of the B-tree
657  * and copy the root into it.  The i_extents
658  * field will remain NULL until all of the
659  * extents are read in (when they are needed).
660  */
661 STATIC int
662 xfs_iformat_btree(
663 	xfs_inode_t		*ip,
664 	xfs_dinode_t		*dip,
665 	int			whichfork)
666 {
667 	xfs_bmdr_block_t	*dfp;
668 	xfs_ifork_t		*ifp;
669 	/* REFERENCED */
670 	int			nrecs;
671 	int			size;
672 
673 	ifp = XFS_IFORK_PTR(ip, whichfork);
674 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 	size = XFS_BMAP_BROOT_SPACE(dfp);
676 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677 
678 	/*
679 	 * blow out if -- fork has less extents than can fit in
680 	 * fork (fork shouldn't be a btree format), root btree
681 	 * block has more records than can fit into the fork,
682 	 * or the number of extents is greater than the number of
683 	 * blocks.
684 	 */
685 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 	    || XFS_BMDR_SPACE_CALC(nrecs) >
687 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 			"corrupt inode %Lu (btree).",
691 			(unsigned long long) ip->i_ino);
692 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 				 ip->i_mount);
694 		return XFS_ERROR(EFSCORRUPTED);
695 	}
696 
697 	ifp->if_broot_bytes = size;
698 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 	ASSERT(ifp->if_broot != NULL);
700 	/*
701 	 * Copy and convert from the on-disk structure
702 	 * to the in-memory structure.
703 	 */
704 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 		ifp->if_broot, size);
706 	ifp->if_flags &= ~XFS_IFEXTENTS;
707 	ifp->if_flags |= XFS_IFBROOT;
708 
709 	return 0;
710 }
711 
712 void
713 xfs_dinode_from_disk(
714 	xfs_icdinode_t		*to,
715 	xfs_dinode_core_t	*from)
716 {
717 	to->di_magic = be16_to_cpu(from->di_magic);
718 	to->di_mode = be16_to_cpu(from->di_mode);
719 	to->di_version = from ->di_version;
720 	to->di_format = from->di_format;
721 	to->di_onlink = be16_to_cpu(from->di_onlink);
722 	to->di_uid = be32_to_cpu(from->di_uid);
723 	to->di_gid = be32_to_cpu(from->di_gid);
724 	to->di_nlink = be32_to_cpu(from->di_nlink);
725 	to->di_projid = be16_to_cpu(from->di_projid);
726 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 	to->di_size = be64_to_cpu(from->di_size);
735 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 	to->di_extsize = be32_to_cpu(from->di_extsize);
737 	to->di_nextents = be32_to_cpu(from->di_nextents);
738 	to->di_anextents = be16_to_cpu(from->di_anextents);
739 	to->di_forkoff = from->di_forkoff;
740 	to->di_aformat	= from->di_aformat;
741 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
742 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
743 	to->di_flags	= be16_to_cpu(from->di_flags);
744 	to->di_gen	= be32_to_cpu(from->di_gen);
745 }
746 
747 void
748 xfs_dinode_to_disk(
749 	xfs_dinode_core_t	*to,
750 	xfs_icdinode_t		*from)
751 {
752 	to->di_magic = cpu_to_be16(from->di_magic);
753 	to->di_mode = cpu_to_be16(from->di_mode);
754 	to->di_version = from ->di_version;
755 	to->di_format = from->di_format;
756 	to->di_onlink = cpu_to_be16(from->di_onlink);
757 	to->di_uid = cpu_to_be32(from->di_uid);
758 	to->di_gid = cpu_to_be32(from->di_gid);
759 	to->di_nlink = cpu_to_be32(from->di_nlink);
760 	to->di_projid = cpu_to_be16(from->di_projid);
761 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 	to->di_size = cpu_to_be64(from->di_size);
770 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 	to->di_extsize = cpu_to_be32(from->di_extsize);
772 	to->di_nextents = cpu_to_be32(from->di_nextents);
773 	to->di_anextents = cpu_to_be16(from->di_anextents);
774 	to->di_forkoff = from->di_forkoff;
775 	to->di_aformat = from->di_aformat;
776 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 	to->di_flags = cpu_to_be16(from->di_flags);
779 	to->di_gen = cpu_to_be32(from->di_gen);
780 }
781 
782 STATIC uint
783 _xfs_dic2xflags(
784 	__uint16_t		di_flags)
785 {
786 	uint			flags = 0;
787 
788 	if (di_flags & XFS_DIFLAG_ANY) {
789 		if (di_flags & XFS_DIFLAG_REALTIME)
790 			flags |= XFS_XFLAG_REALTIME;
791 		if (di_flags & XFS_DIFLAG_PREALLOC)
792 			flags |= XFS_XFLAG_PREALLOC;
793 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 			flags |= XFS_XFLAG_IMMUTABLE;
795 		if (di_flags & XFS_DIFLAG_APPEND)
796 			flags |= XFS_XFLAG_APPEND;
797 		if (di_flags & XFS_DIFLAG_SYNC)
798 			flags |= XFS_XFLAG_SYNC;
799 		if (di_flags & XFS_DIFLAG_NOATIME)
800 			flags |= XFS_XFLAG_NOATIME;
801 		if (di_flags & XFS_DIFLAG_NODUMP)
802 			flags |= XFS_XFLAG_NODUMP;
803 		if (di_flags & XFS_DIFLAG_RTINHERIT)
804 			flags |= XFS_XFLAG_RTINHERIT;
805 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 			flags |= XFS_XFLAG_PROJINHERIT;
807 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 			flags |= XFS_XFLAG_NOSYMLINKS;
809 		if (di_flags & XFS_DIFLAG_EXTSIZE)
810 			flags |= XFS_XFLAG_EXTSIZE;
811 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 			flags |= XFS_XFLAG_EXTSZINHERIT;
813 		if (di_flags & XFS_DIFLAG_NODEFRAG)
814 			flags |= XFS_XFLAG_NODEFRAG;
815 		if (di_flags & XFS_DIFLAG_FILESTREAM)
816 			flags |= XFS_XFLAG_FILESTREAM;
817 	}
818 
819 	return flags;
820 }
821 
822 uint
823 xfs_ip2xflags(
824 	xfs_inode_t		*ip)
825 {
826 	xfs_icdinode_t		*dic = &ip->i_d;
827 
828 	return _xfs_dic2xflags(dic->di_flags) |
829 				(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
830 }
831 
832 uint
833 xfs_dic2xflags(
834 	xfs_dinode_core_t	*dic)
835 {
836 	return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 				(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
838 }
839 
840 /*
841  * Given a mount structure and an inode number, return a pointer
842  * to a newly allocated in-core inode corresponding to the given
843  * inode number.
844  *
845  * Initialize the inode's attributes and extent pointers if it
846  * already has them (it will not if the inode has no links).
847  */
848 int
849 xfs_iread(
850 	xfs_mount_t	*mp,
851 	xfs_trans_t	*tp,
852 	xfs_ino_t	ino,
853 	xfs_inode_t	**ipp,
854 	xfs_daddr_t	bno,
855 	uint		imap_flags)
856 {
857 	xfs_buf_t	*bp;
858 	xfs_dinode_t	*dip;
859 	xfs_inode_t	*ip;
860 	int		error;
861 
862 	ASSERT(xfs_inode_zone != NULL);
863 
864 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 	ip->i_ino = ino;
866 	ip->i_mount = mp;
867 	atomic_set(&ip->i_iocount, 0);
868 	spin_lock_init(&ip->i_flags_lock);
869 
870 	/*
871 	 * Get pointer's to the on-disk inode and the buffer containing it.
872 	 * If the inode number refers to a block outside the file system
873 	 * then xfs_itobp() will return NULL.  In this case we should
874 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
875 	 * know that this is a new incore inode.
876 	 */
877 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 	if (error) {
879 		kmem_zone_free(xfs_inode_zone, ip);
880 		return error;
881 	}
882 
883 	/*
884 	 * Initialize inode's trace buffers.
885 	 * Do this before xfs_iformat in case it adds entries.
886 	 */
887 #ifdef	XFS_VNODE_TRACE
888 	ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMAP_TRACE
891 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_BMBT_TRACE
894 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_RW_TRACE
897 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_ILOCK_TRACE
900 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #endif
902 #ifdef XFS_DIR2_TRACE
903 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904 #endif
905 
906 	/*
907 	 * If we got something that isn't an inode it means someone
908 	 * (nfs or dmi) has a stale handle.
909 	 */
910 	if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 		kmem_zone_free(xfs_inode_zone, ip);
912 		xfs_trans_brelse(tp, bp);
913 #ifdef DEBUG
914 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 				"dip->di_core.di_magic (0x%x) != "
916 				"XFS_DINODE_MAGIC (0x%x)",
917 				be16_to_cpu(dip->di_core.di_magic),
918 				XFS_DINODE_MAGIC);
919 #endif /* DEBUG */
920 		return XFS_ERROR(EINVAL);
921 	}
922 
923 	/*
924 	 * If the on-disk inode is already linked to a directory
925 	 * entry, copy all of the inode into the in-core inode.
926 	 * xfs_iformat() handles copying in the inode format
927 	 * specific information.
928 	 * Otherwise, just get the truly permanent information.
929 	 */
930 	if (dip->di_core.di_mode) {
931 		xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 		error = xfs_iformat(ip, dip);
933 		if (error)  {
934 			kmem_zone_free(xfs_inode_zone, ip);
935 			xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 					"xfs_iformat() returned error %d",
939 					error);
940 #endif /* DEBUG */
941 			return error;
942 		}
943 	} else {
944 		ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 		ip->i_d.di_version = dip->di_core.di_version;
946 		ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
948 		/*
949 		 * Make sure to pull in the mode here as well in
950 		 * case the inode is released without being used.
951 		 * This ensures that xfs_inactive() will see that
952 		 * the inode is already free and not try to mess
953 		 * with the uninitialized part of it.
954 		 */
955 		ip->i_d.di_mode = 0;
956 		/*
957 		 * Initialize the per-fork minima and maxima for a new
958 		 * inode here.  xfs_iformat will do it for old inodes.
959 		 */
960 		ip->i_df.if_ext_max =
961 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 	}
963 
964 	INIT_LIST_HEAD(&ip->i_reclaim);
965 
966 	/*
967 	 * The inode format changed when we moved the link count and
968 	 * made it 32 bits long.  If this is an old format inode,
969 	 * convert it in memory to look like a new one.  If it gets
970 	 * flushed to disk we will convert back before flushing or
971 	 * logging it.  We zero out the new projid field and the old link
972 	 * count field.  We'll handle clearing the pad field (the remains
973 	 * of the old uuid field) when we actually convert the inode to
974 	 * the new format. We don't change the version number so that we
975 	 * can distinguish this from a real new format inode.
976 	 */
977 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 		ip->i_d.di_nlink = ip->i_d.di_onlink;
979 		ip->i_d.di_onlink = 0;
980 		ip->i_d.di_projid = 0;
981 	}
982 
983 	ip->i_delayed_blks = 0;
984 	ip->i_size = ip->i_d.di_size;
985 
986 	/*
987 	 * Mark the buffer containing the inode as something to keep
988 	 * around for a while.  This helps to keep recently accessed
989 	 * meta-data in-core longer.
990 	 */
991 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992 
993 	/*
994 	 * Use xfs_trans_brelse() to release the buffer containing the
995 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
997 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
998 	 * will only release the buffer if it is not dirty within the
999 	 * transaction.  It will be OK to release the buffer in this case,
1000 	 * because inodes on disk are never destroyed and we will be
1001 	 * locking the new in-core inode before putting it in the hash
1002 	 * table where other processes can find it.  Thus we don't have
1003 	 * to worry about the inode being changed just because we released
1004 	 * the buffer.
1005 	 */
1006 	xfs_trans_brelse(tp, bp);
1007 	*ipp = ip;
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Read in extents from a btree-format inode.
1013  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1014  */
1015 int
1016 xfs_iread_extents(
1017 	xfs_trans_t	*tp,
1018 	xfs_inode_t	*ip,
1019 	int		whichfork)
1020 {
1021 	int		error;
1022 	xfs_ifork_t	*ifp;
1023 	xfs_extnum_t	nextents;
1024 	size_t		size;
1025 
1026 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 				 ip->i_mount);
1029 		return XFS_ERROR(EFSCORRUPTED);
1030 	}
1031 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 	size = nextents * sizeof(xfs_bmbt_rec_t);
1033 	ifp = XFS_IFORK_PTR(ip, whichfork);
1034 
1035 	/*
1036 	 * We know that the size is valid (it's checked in iformat_btree)
1037 	 */
1038 	ifp->if_lastex = NULLEXTNUM;
1039 	ifp->if_bytes = ifp->if_real_bytes = 0;
1040 	ifp->if_flags |= XFS_IFEXTENTS;
1041 	xfs_iext_add(ifp, 0, nextents);
1042 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 	if (error) {
1044 		xfs_iext_destroy(ifp);
1045 		ifp->if_flags &= ~XFS_IFEXTENTS;
1046 		return error;
1047 	}
1048 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Allocate an inode on disk and return a copy of its in-core version.
1054  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1055  * appropriately within the inode.  The uid and gid for the inode are
1056  * set according to the contents of the given cred structure.
1057  *
1058  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059  * has a free inode available, call xfs_iget()
1060  * to obtain the in-core version of the allocated inode.  Finally,
1061  * fill in the inode and log its initial contents.  In this case,
1062  * ialloc_context would be set to NULL and call_again set to false.
1063  *
1064  * If xfs_dialloc() does not have an available inode,
1065  * it will replenish its supply by doing an allocation. Since we can
1066  * only do one allocation within a transaction without deadlocks, we
1067  * must commit the current transaction before returning the inode itself.
1068  * In this case, therefore, we will set call_again to true and return.
1069  * The caller should then commit the current transaction, start a new
1070  * transaction, and call xfs_ialloc() again to actually get the inode.
1071  *
1072  * To ensure that some other process does not grab the inode that
1073  * was allocated during the first call to xfs_ialloc(), this routine
1074  * also returns the [locked] bp pointing to the head of the freelist
1075  * as ialloc_context.  The caller should hold this buffer across
1076  * the commit and pass it back into this routine on the second call.
1077  *
1078  * If we are allocating quota inodes, we do not have a parent inode
1079  * to attach to or associate with (i.e. pip == NULL) because they
1080  * are not linked into the directory structure - they are attached
1081  * directly to the superblock - and so have no parent.
1082  */
1083 int
1084 xfs_ialloc(
1085 	xfs_trans_t	*tp,
1086 	xfs_inode_t	*pip,
1087 	mode_t		mode,
1088 	xfs_nlink_t	nlink,
1089 	xfs_dev_t	rdev,
1090 	cred_t		*cr,
1091 	xfs_prid_t	prid,
1092 	int		okalloc,
1093 	xfs_buf_t	**ialloc_context,
1094 	boolean_t	*call_again,
1095 	xfs_inode_t	**ipp)
1096 {
1097 	xfs_ino_t	ino;
1098 	xfs_inode_t	*ip;
1099 	bhv_vnode_t	*vp;
1100 	uint		flags;
1101 	int		error;
1102 
1103 	/*
1104 	 * Call the space management code to pick
1105 	 * the on-disk inode to be allocated.
1106 	 */
1107 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 			    ialloc_context, call_again, &ino);
1109 	if (error != 0) {
1110 		return error;
1111 	}
1112 	if (*call_again || ino == NULLFSINO) {
1113 		*ipp = NULL;
1114 		return 0;
1115 	}
1116 	ASSERT(*ialloc_context == NULL);
1117 
1118 	/*
1119 	 * Get the in-core inode with the lock held exclusively.
1120 	 * This is because we're setting fields here we need
1121 	 * to prevent others from looking at until we're done.
1122 	 */
1123 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 	if (error != 0) {
1126 		return error;
1127 	}
1128 	ASSERT(ip != NULL);
1129 
1130 	vp = XFS_ITOV(ip);
1131 	ip->i_d.di_mode = (__uint16_t)mode;
1132 	ip->i_d.di_onlink = 0;
1133 	ip->i_d.di_nlink = nlink;
1134 	ASSERT(ip->i_d.di_nlink == nlink);
1135 	ip->i_d.di_uid = current_fsuid(cr);
1136 	ip->i_d.di_gid = current_fsgid(cr);
1137 	ip->i_d.di_projid = prid;
1138 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139 
1140 	/*
1141 	 * If the superblock version is up to where we support new format
1142 	 * inodes and this is currently an old format inode, then change
1143 	 * the inode version number now.  This way we only do the conversion
1144 	 * here rather than here and in the flush/logging code.
1145 	 */
1146 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 		/*
1150 		 * We've already zeroed the old link count, the projid field,
1151 		 * and the pad field.
1152 		 */
1153 	}
1154 
1155 	/*
1156 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 	 */
1158 	if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 		xfs_bump_ino_vers2(tp, ip);
1160 
1161 	if (pip && XFS_INHERIT_GID(pip)) {
1162 		ip->i_d.di_gid = pip->i_d.di_gid;
1163 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 			ip->i_d.di_mode |= S_ISGID;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * If the group ID of the new file does not match the effective group
1170 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 	 */
1173 	if ((irix_sgid_inherit) &&
1174 	    (ip->i_d.di_mode & S_ISGID) &&
1175 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 		ip->i_d.di_mode &= ~S_ISGID;
1177 	}
1178 
1179 	ip->i_d.di_size = 0;
1180 	ip->i_size = 0;
1181 	ip->i_d.di_nextents = 0;
1182 	ASSERT(ip->i_d.di_nblocks == 0);
1183 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 	/*
1185 	 * di_gen will have been taken care of in xfs_iread.
1186 	 */
1187 	ip->i_d.di_extsize = 0;
1188 	ip->i_d.di_dmevmask = 0;
1189 	ip->i_d.di_dmstate = 0;
1190 	ip->i_d.di_flags = 0;
1191 	flags = XFS_ILOG_CORE;
1192 	switch (mode & S_IFMT) {
1193 	case S_IFIFO:
1194 	case S_IFCHR:
1195 	case S_IFBLK:
1196 	case S_IFSOCK:
1197 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 		ip->i_df.if_u2.if_rdev = rdev;
1199 		ip->i_df.if_flags = 0;
1200 		flags |= XFS_ILOG_DEV;
1201 		break;
1202 	case S_IFREG:
1203 		if (pip && xfs_inode_is_filestream(pip)) {
1204 			error = xfs_filestream_associate(pip, ip);
1205 			if (error < 0)
1206 				return -error;
1207 			if (!error)
1208 				xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 		}
1210 		/* fall through */
1211 	case S_IFDIR:
1212 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1213 			uint	di_flags = 0;
1214 
1215 			if ((mode & S_IFMT) == S_IFDIR) {
1216 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 					di_flags |= XFS_DIFLAG_RTINHERIT;
1218 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 				}
1222 			} else if ((mode & S_IFMT) == S_IFREG) {
1223 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1224 					di_flags |= XFS_DIFLAG_REALTIME;
1225 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1226 				}
1227 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 					di_flags |= XFS_DIFLAG_EXTSIZE;
1229 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1230 				}
1231 			}
1232 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 			    xfs_inherit_noatime)
1234 				di_flags |= XFS_DIFLAG_NOATIME;
1235 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 			    xfs_inherit_nodump)
1237 				di_flags |= XFS_DIFLAG_NODUMP;
1238 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 			    xfs_inherit_sync)
1240 				di_flags |= XFS_DIFLAG_SYNC;
1241 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 			    xfs_inherit_nosymlinks)
1243 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1246 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 			    xfs_inherit_nodefrag)
1248 				di_flags |= XFS_DIFLAG_NODEFRAG;
1249 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 				di_flags |= XFS_DIFLAG_FILESTREAM;
1251 			ip->i_d.di_flags |= di_flags;
1252 		}
1253 		/* FALLTHROUGH */
1254 	case S_IFLNK:
1255 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 		ip->i_df.if_flags = XFS_IFEXTENTS;
1257 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 		ip->i_df.if_u1.if_extents = NULL;
1259 		break;
1260 	default:
1261 		ASSERT(0);
1262 	}
1263 	/*
1264 	 * Attribute fork settings for new inode.
1265 	 */
1266 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 	ip->i_d.di_anextents = 0;
1268 
1269 	/*
1270 	 * Log the new values stuffed into the inode.
1271 	 */
1272 	xfs_trans_log_inode(tp, ip, flags);
1273 
1274 	/* now that we have an i_mode we can setup inode ops and unlock */
1275 	xfs_initialize_vnode(tp->t_mountp, vp, ip);
1276 
1277 	*ipp = ip;
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Check to make sure that there are no blocks allocated to the
1283  * file beyond the size of the file.  We don't check this for
1284  * files with fixed size extents or real time extents, but we
1285  * at least do it for regular files.
1286  */
1287 #ifdef DEBUG
1288 void
1289 xfs_isize_check(
1290 	xfs_mount_t	*mp,
1291 	xfs_inode_t	*ip,
1292 	xfs_fsize_t	isize)
1293 {
1294 	xfs_fileoff_t	map_first;
1295 	int		nimaps;
1296 	xfs_bmbt_irec_t	imaps[2];
1297 
1298 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 		return;
1300 
1301 	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1302 		return;
1303 
1304 	nimaps = 2;
1305 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1306 	/*
1307 	 * The filesystem could be shutting down, so bmapi may return
1308 	 * an error.
1309 	 */
1310 	if (xfs_bmapi(NULL, ip, map_first,
1311 			 (XFS_B_TO_FSB(mp,
1312 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1313 			  map_first),
1314 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1315 			 NULL, NULL))
1316 	    return;
1317 	ASSERT(nimaps == 1);
1318 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1319 }
1320 #endif	/* DEBUG */
1321 
1322 /*
1323  * Calculate the last possible buffered byte in a file.  This must
1324  * include data that was buffered beyond the EOF by the write code.
1325  * This also needs to deal with overflowing the xfs_fsize_t type
1326  * which can happen for sizes near the limit.
1327  *
1328  * We also need to take into account any blocks beyond the EOF.  It
1329  * may be the case that they were buffered by a write which failed.
1330  * In that case the pages will still be in memory, but the inode size
1331  * will never have been updated.
1332  */
1333 xfs_fsize_t
1334 xfs_file_last_byte(
1335 	xfs_inode_t	*ip)
1336 {
1337 	xfs_mount_t	*mp;
1338 	xfs_fsize_t	last_byte;
1339 	xfs_fileoff_t	last_block;
1340 	xfs_fileoff_t	size_last_block;
1341 	int		error;
1342 
1343 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1344 
1345 	mp = ip->i_mount;
1346 	/*
1347 	 * Only check for blocks beyond the EOF if the extents have
1348 	 * been read in.  This eliminates the need for the inode lock,
1349 	 * and it also saves us from looking when it really isn't
1350 	 * necessary.
1351 	 */
1352 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1353 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1354 			XFS_DATA_FORK);
1355 		if (error) {
1356 			last_block = 0;
1357 		}
1358 	} else {
1359 		last_block = 0;
1360 	}
1361 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1362 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1363 
1364 	last_byte = XFS_FSB_TO_B(mp, last_block);
1365 	if (last_byte < 0) {
1366 		return XFS_MAXIOFFSET(mp);
1367 	}
1368 	last_byte += (1 << mp->m_writeio_log);
1369 	if (last_byte < 0) {
1370 		return XFS_MAXIOFFSET(mp);
1371 	}
1372 	return last_byte;
1373 }
1374 
1375 #if defined(XFS_RW_TRACE)
1376 STATIC void
1377 xfs_itrunc_trace(
1378 	int		tag,
1379 	xfs_inode_t	*ip,
1380 	int		flag,
1381 	xfs_fsize_t	new_size,
1382 	xfs_off_t	toss_start,
1383 	xfs_off_t	toss_finish)
1384 {
1385 	if (ip->i_rwtrace == NULL) {
1386 		return;
1387 	}
1388 
1389 	ktrace_enter(ip->i_rwtrace,
1390 		     (void*)((long)tag),
1391 		     (void*)ip,
1392 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1393 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1394 		     (void*)((long)flag),
1395 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1396 		     (void*)(unsigned long)(new_size & 0xffffffff),
1397 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1398 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1399 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1400 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1401 		     (void*)(unsigned long)current_cpu(),
1402 		     (void*)(unsigned long)current_pid(),
1403 		     (void*)NULL,
1404 		     (void*)NULL,
1405 		     (void*)NULL);
1406 }
1407 #else
1408 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409 #endif
1410 
1411 /*
1412  * Start the truncation of the file to new_size.  The new size
1413  * must be smaller than the current size.  This routine will
1414  * clear the buffer and page caches of file data in the removed
1415  * range, and xfs_itruncate_finish() will remove the underlying
1416  * disk blocks.
1417  *
1418  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419  * must NOT have the inode lock held at all.  This is because we're
1420  * calling into the buffer/page cache code and we can't hold the
1421  * inode lock when we do so.
1422  *
1423  * We need to wait for any direct I/Os in flight to complete before we
1424  * proceed with the truncate. This is needed to prevent the extents
1425  * being read or written by the direct I/Os from being removed while the
1426  * I/O is in flight as there is no other method of synchronising
1427  * direct I/O with the truncate operation.  Also, because we hold
1428  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429  * started until the truncate completes and drops the lock. Essentially,
1430  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431  * between direct I/Os and the truncate operation.
1432  *
1433  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1435  * in the case that the caller is locking things out of order and
1436  * may not be able to call xfs_itruncate_finish() with the inode lock
1437  * held without dropping the I/O lock.  If the caller must drop the
1438  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439  * must be called again with all the same restrictions as the initial
1440  * call.
1441  */
1442 int
1443 xfs_itruncate_start(
1444 	xfs_inode_t	*ip,
1445 	uint		flags,
1446 	xfs_fsize_t	new_size)
1447 {
1448 	xfs_fsize_t	last_byte;
1449 	xfs_off_t	toss_start;
1450 	xfs_mount_t	*mp;
1451 	bhv_vnode_t	*vp;
1452 	int		error = 0;
1453 
1454 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1455 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1456 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1457 	       (flags == XFS_ITRUNC_MAYBE));
1458 
1459 	mp = ip->i_mount;
1460 	vp = XFS_ITOV(ip);
1461 
1462 	vn_iowait(ip);  /* wait for the completion of any pending DIOs */
1463 
1464 	/*
1465 	 * Call toss_pages or flushinval_pages to get rid of pages
1466 	 * overlapping the region being removed.  We have to use
1467 	 * the less efficient flushinval_pages in the case that the
1468 	 * caller may not be able to finish the truncate without
1469 	 * dropping the inode's I/O lock.  Make sure
1470 	 * to catch any pages brought in by buffers overlapping
1471 	 * the EOF by searching out beyond the isize by our
1472 	 * block size. We round new_size up to a block boundary
1473 	 * so that we don't toss things on the same block as
1474 	 * new_size but before it.
1475 	 *
1476 	 * Before calling toss_page or flushinval_pages, make sure to
1477 	 * call remapf() over the same region if the file is mapped.
1478 	 * This frees up mapped file references to the pages in the
1479 	 * given range and for the flushinval_pages case it ensures
1480 	 * that we get the latest mapped changes flushed out.
1481 	 */
1482 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1483 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1484 	if (toss_start < 0) {
1485 		/*
1486 		 * The place to start tossing is beyond our maximum
1487 		 * file size, so there is no way that the data extended
1488 		 * out there.
1489 		 */
1490 		return 0;
1491 	}
1492 	last_byte = xfs_file_last_byte(ip);
1493 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1494 			 last_byte);
1495 	if (last_byte > toss_start) {
1496 		if (flags & XFS_ITRUNC_DEFINITE) {
1497 			xfs_tosspages(ip, toss_start,
1498 					-1, FI_REMAPF_LOCKED);
1499 		} else {
1500 			error = xfs_flushinval_pages(ip, toss_start,
1501 					-1, FI_REMAPF_LOCKED);
1502 		}
1503 	}
1504 
1505 #ifdef DEBUG
1506 	if (new_size == 0) {
1507 		ASSERT(VN_CACHED(vp) == 0);
1508 	}
1509 #endif
1510 	return error;
1511 }
1512 
1513 /*
1514  * Shrink the file to the given new_size.  The new
1515  * size must be smaller than the current size.
1516  * This will free up the underlying blocks
1517  * in the removed range after a call to xfs_itruncate_start()
1518  * or xfs_atruncate_start().
1519  *
1520  * The transaction passed to this routine must have made
1521  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1522  * This routine may commit the given transaction and
1523  * start new ones, so make sure everything involved in
1524  * the transaction is tidy before calling here.
1525  * Some transaction will be returned to the caller to be
1526  * committed.  The incoming transaction must already include
1527  * the inode, and both inode locks must be held exclusively.
1528  * The inode must also be "held" within the transaction.  On
1529  * return the inode will be "held" within the returned transaction.
1530  * This routine does NOT require any disk space to be reserved
1531  * for it within the transaction.
1532  *
1533  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1534  * and it indicates the fork which is to be truncated.  For the
1535  * attribute fork we only support truncation to size 0.
1536  *
1537  * We use the sync parameter to indicate whether or not the first
1538  * transaction we perform might have to be synchronous.  For the attr fork,
1539  * it needs to be so if the unlink of the inode is not yet known to be
1540  * permanent in the log.  This keeps us from freeing and reusing the
1541  * blocks of the attribute fork before the unlink of the inode becomes
1542  * permanent.
1543  *
1544  * For the data fork, we normally have to run synchronously if we're
1545  * being called out of the inactive path or we're being called
1546  * out of the create path where we're truncating an existing file.
1547  * Either way, the truncate needs to be sync so blocks don't reappear
1548  * in the file with altered data in case of a crash.  wsync filesystems
1549  * can run the first case async because anything that shrinks the inode
1550  * has to run sync so by the time we're called here from inactive, the
1551  * inode size is permanently set to 0.
1552  *
1553  * Calls from the truncate path always need to be sync unless we're
1554  * in a wsync filesystem and the file has already been unlinked.
1555  *
1556  * The caller is responsible for correctly setting the sync parameter.
1557  * It gets too hard for us to guess here which path we're being called
1558  * out of just based on inode state.
1559  */
1560 int
1561 xfs_itruncate_finish(
1562 	xfs_trans_t	**tp,
1563 	xfs_inode_t	*ip,
1564 	xfs_fsize_t	new_size,
1565 	int		fork,
1566 	int		sync)
1567 {
1568 	xfs_fsblock_t	first_block;
1569 	xfs_fileoff_t	first_unmap_block;
1570 	xfs_fileoff_t	last_block;
1571 	xfs_filblks_t	unmap_len=0;
1572 	xfs_mount_t	*mp;
1573 	xfs_trans_t	*ntp;
1574 	int		done;
1575 	int		committed;
1576 	xfs_bmap_free_t	free_list;
1577 	int		error;
1578 
1579 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1580 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1581 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1582 	ASSERT(*tp != NULL);
1583 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1584 	ASSERT(ip->i_transp == *tp);
1585 	ASSERT(ip->i_itemp != NULL);
1586 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1587 
1588 
1589 	ntp = *tp;
1590 	mp = (ntp)->t_mountp;
1591 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1592 
1593 	/*
1594 	 * We only support truncating the entire attribute fork.
1595 	 */
1596 	if (fork == XFS_ATTR_FORK) {
1597 		new_size = 0LL;
1598 	}
1599 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1600 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1601 	/*
1602 	 * The first thing we do is set the size to new_size permanently
1603 	 * on disk.  This way we don't have to worry about anyone ever
1604 	 * being able to look at the data being freed even in the face
1605 	 * of a crash.  What we're getting around here is the case where
1606 	 * we free a block, it is allocated to another file, it is written
1607 	 * to, and then we crash.  If the new data gets written to the
1608 	 * file but the log buffers containing the free and reallocation
1609 	 * don't, then we'd end up with garbage in the blocks being freed.
1610 	 * As long as we make the new_size permanent before actually
1611 	 * freeing any blocks it doesn't matter if they get writtten to.
1612 	 *
1613 	 * The callers must signal into us whether or not the size
1614 	 * setting here must be synchronous.  There are a few cases
1615 	 * where it doesn't have to be synchronous.  Those cases
1616 	 * occur if the file is unlinked and we know the unlink is
1617 	 * permanent or if the blocks being truncated are guaranteed
1618 	 * to be beyond the inode eof (regardless of the link count)
1619 	 * and the eof value is permanent.  Both of these cases occur
1620 	 * only on wsync-mounted filesystems.  In those cases, we're
1621 	 * guaranteed that no user will ever see the data in the blocks
1622 	 * that are being truncated so the truncate can run async.
1623 	 * In the free beyond eof case, the file may wind up with
1624 	 * more blocks allocated to it than it needs if we crash
1625 	 * and that won't get fixed until the next time the file
1626 	 * is re-opened and closed but that's ok as that shouldn't
1627 	 * be too many blocks.
1628 	 *
1629 	 * However, we can't just make all wsync xactions run async
1630 	 * because there's one call out of the create path that needs
1631 	 * to run sync where it's truncating an existing file to size
1632 	 * 0 whose size is > 0.
1633 	 *
1634 	 * It's probably possible to come up with a test in this
1635 	 * routine that would correctly distinguish all the above
1636 	 * cases from the values of the function parameters and the
1637 	 * inode state but for sanity's sake, I've decided to let the
1638 	 * layers above just tell us.  It's simpler to correctly figure
1639 	 * out in the layer above exactly under what conditions we
1640 	 * can run async and I think it's easier for others read and
1641 	 * follow the logic in case something has to be changed.
1642 	 * cscope is your friend -- rcc.
1643 	 *
1644 	 * The attribute fork is much simpler.
1645 	 *
1646 	 * For the attribute fork we allow the caller to tell us whether
1647 	 * the unlink of the inode that led to this call is yet permanent
1648 	 * in the on disk log.  If it is not and we will be freeing extents
1649 	 * in this inode then we make the first transaction synchronous
1650 	 * to make sure that the unlink is permanent by the time we free
1651 	 * the blocks.
1652 	 */
1653 	if (fork == XFS_DATA_FORK) {
1654 		if (ip->i_d.di_nextents > 0) {
1655 			/*
1656 			 * If we are not changing the file size then do
1657 			 * not update the on-disk file size - we may be
1658 			 * called from xfs_inactive_free_eofblocks().  If we
1659 			 * update the on-disk file size and then the system
1660 			 * crashes before the contents of the file are
1661 			 * flushed to disk then the files may be full of
1662 			 * holes (ie NULL files bug).
1663 			 */
1664 			if (ip->i_size != new_size) {
1665 				ip->i_d.di_size = new_size;
1666 				ip->i_size = new_size;
1667 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1668 			}
1669 		}
1670 	} else if (sync) {
1671 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1672 		if (ip->i_d.di_anextents > 0)
1673 			xfs_trans_set_sync(ntp);
1674 	}
1675 	ASSERT(fork == XFS_DATA_FORK ||
1676 		(fork == XFS_ATTR_FORK &&
1677 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1678 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1679 
1680 	/*
1681 	 * Since it is possible for space to become allocated beyond
1682 	 * the end of the file (in a crash where the space is allocated
1683 	 * but the inode size is not yet updated), simply remove any
1684 	 * blocks which show up between the new EOF and the maximum
1685 	 * possible file size.  If the first block to be removed is
1686 	 * beyond the maximum file size (ie it is the same as last_block),
1687 	 * then there is nothing to do.
1688 	 */
1689 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1690 	ASSERT(first_unmap_block <= last_block);
1691 	done = 0;
1692 	if (last_block == first_unmap_block) {
1693 		done = 1;
1694 	} else {
1695 		unmap_len = last_block - first_unmap_block + 1;
1696 	}
1697 	while (!done) {
1698 		/*
1699 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1700 		 * will tell us whether it freed the entire range or
1701 		 * not.  If this is a synchronous mount (wsync),
1702 		 * then we can tell bunmapi to keep all the
1703 		 * transactions asynchronous since the unlink
1704 		 * transaction that made this inode inactive has
1705 		 * already hit the disk.  There's no danger of
1706 		 * the freed blocks being reused, there being a
1707 		 * crash, and the reused blocks suddenly reappearing
1708 		 * in this file with garbage in them once recovery
1709 		 * runs.
1710 		 */
1711 		XFS_BMAP_INIT(&free_list, &first_block);
1712 		error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1713 				    first_unmap_block, unmap_len,
1714 				    XFS_BMAPI_AFLAG(fork) |
1715 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1716 				    XFS_ITRUNC_MAX_EXTENTS,
1717 				    &first_block, &free_list,
1718 				    NULL, &done);
1719 		if (error) {
1720 			/*
1721 			 * If the bunmapi call encounters an error,
1722 			 * return to the caller where the transaction
1723 			 * can be properly aborted.  We just need to
1724 			 * make sure we're not holding any resources
1725 			 * that we were not when we came in.
1726 			 */
1727 			xfs_bmap_cancel(&free_list);
1728 			return error;
1729 		}
1730 
1731 		/*
1732 		 * Duplicate the transaction that has the permanent
1733 		 * reservation and commit the old transaction.
1734 		 */
1735 		error = xfs_bmap_finish(tp, &free_list, &committed);
1736 		ntp = *tp;
1737 		if (error) {
1738 			/*
1739 			 * If the bmap finish call encounters an error,
1740 			 * return to the caller where the transaction
1741 			 * can be properly aborted.  We just need to
1742 			 * make sure we're not holding any resources
1743 			 * that we were not when we came in.
1744 			 *
1745 			 * Aborting from this point might lose some
1746 			 * blocks in the file system, but oh well.
1747 			 */
1748 			xfs_bmap_cancel(&free_list);
1749 			if (committed) {
1750 				/*
1751 				 * If the passed in transaction committed
1752 				 * in xfs_bmap_finish(), then we want to
1753 				 * add the inode to this one before returning.
1754 				 * This keeps things simple for the higher
1755 				 * level code, because it always knows that
1756 				 * the inode is locked and held in the
1757 				 * transaction that returns to it whether
1758 				 * errors occur or not.  We don't mark the
1759 				 * inode dirty so that this transaction can
1760 				 * be easily aborted if possible.
1761 				 */
1762 				xfs_trans_ijoin(ntp, ip,
1763 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1764 				xfs_trans_ihold(ntp, ip);
1765 			}
1766 			return error;
1767 		}
1768 
1769 		if (committed) {
1770 			/*
1771 			 * The first xact was committed,
1772 			 * so add the inode to the new one.
1773 			 * Mark it dirty so it will be logged
1774 			 * and moved forward in the log as
1775 			 * part of every commit.
1776 			 */
1777 			xfs_trans_ijoin(ntp, ip,
1778 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1779 			xfs_trans_ihold(ntp, ip);
1780 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1781 		}
1782 		ntp = xfs_trans_dup(ntp);
1783 		(void) xfs_trans_commit(*tp, 0);
1784 		*tp = ntp;
1785 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1786 					  XFS_TRANS_PERM_LOG_RES,
1787 					  XFS_ITRUNCATE_LOG_COUNT);
1788 		/*
1789 		 * Add the inode being truncated to the next chained
1790 		 * transaction.
1791 		 */
1792 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1793 		xfs_trans_ihold(ntp, ip);
1794 		if (error)
1795 			return (error);
1796 	}
1797 	/*
1798 	 * Only update the size in the case of the data fork, but
1799 	 * always re-log the inode so that our permanent transaction
1800 	 * can keep on rolling it forward in the log.
1801 	 */
1802 	if (fork == XFS_DATA_FORK) {
1803 		xfs_isize_check(mp, ip, new_size);
1804 		/*
1805 		 * If we are not changing the file size then do
1806 		 * not update the on-disk file size - we may be
1807 		 * called from xfs_inactive_free_eofblocks().  If we
1808 		 * update the on-disk file size and then the system
1809 		 * crashes before the contents of the file are
1810 		 * flushed to disk then the files may be full of
1811 		 * holes (ie NULL files bug).
1812 		 */
1813 		if (ip->i_size != new_size) {
1814 			ip->i_d.di_size = new_size;
1815 			ip->i_size = new_size;
1816 		}
1817 	}
1818 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1819 	ASSERT((new_size != 0) ||
1820 	       (fork == XFS_ATTR_FORK) ||
1821 	       (ip->i_delayed_blks == 0));
1822 	ASSERT((new_size != 0) ||
1823 	       (fork == XFS_ATTR_FORK) ||
1824 	       (ip->i_d.di_nextents == 0));
1825 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1826 	return 0;
1827 }
1828 
1829 
1830 /*
1831  * xfs_igrow_start
1832  *
1833  * Do the first part of growing a file: zero any data in the last
1834  * block that is beyond the old EOF.  We need to do this before
1835  * the inode is joined to the transaction to modify the i_size.
1836  * That way we can drop the inode lock and call into the buffer
1837  * cache to get the buffer mapping the EOF.
1838  */
1839 int
1840 xfs_igrow_start(
1841 	xfs_inode_t	*ip,
1842 	xfs_fsize_t	new_size,
1843 	cred_t		*credp)
1844 {
1845 	int		error;
1846 
1847 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1848 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1849 	ASSERT(new_size > ip->i_size);
1850 
1851 	/*
1852 	 * Zero any pages that may have been created by
1853 	 * xfs_write_file() beyond the end of the file
1854 	 * and any blocks between the old and new file sizes.
1855 	 */
1856 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1857 			     ip->i_size);
1858 	return error;
1859 }
1860 
1861 /*
1862  * xfs_igrow_finish
1863  *
1864  * This routine is called to extend the size of a file.
1865  * The inode must have both the iolock and the ilock locked
1866  * for update and it must be a part of the current transaction.
1867  * The xfs_igrow_start() function must have been called previously.
1868  * If the change_flag is not zero, the inode change timestamp will
1869  * be updated.
1870  */
1871 void
1872 xfs_igrow_finish(
1873 	xfs_trans_t	*tp,
1874 	xfs_inode_t	*ip,
1875 	xfs_fsize_t	new_size,
1876 	int		change_flag)
1877 {
1878 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1879 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1880 	ASSERT(ip->i_transp == tp);
1881 	ASSERT(new_size > ip->i_size);
1882 
1883 	/*
1884 	 * Update the file size.  Update the inode change timestamp
1885 	 * if change_flag set.
1886 	 */
1887 	ip->i_d.di_size = new_size;
1888 	ip->i_size = new_size;
1889 	if (change_flag)
1890 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1891 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1892 
1893 }
1894 
1895 
1896 /*
1897  * This is called when the inode's link count goes to 0.
1898  * We place the on-disk inode on a list in the AGI.  It
1899  * will be pulled from this list when the inode is freed.
1900  */
1901 int
1902 xfs_iunlink(
1903 	xfs_trans_t	*tp,
1904 	xfs_inode_t	*ip)
1905 {
1906 	xfs_mount_t	*mp;
1907 	xfs_agi_t	*agi;
1908 	xfs_dinode_t	*dip;
1909 	xfs_buf_t	*agibp;
1910 	xfs_buf_t	*ibp;
1911 	xfs_agnumber_t	agno;
1912 	xfs_daddr_t	agdaddr;
1913 	xfs_agino_t	agino;
1914 	short		bucket_index;
1915 	int		offset;
1916 	int		error;
1917 	int		agi_ok;
1918 
1919 	ASSERT(ip->i_d.di_nlink == 0);
1920 	ASSERT(ip->i_d.di_mode != 0);
1921 	ASSERT(ip->i_transp == tp);
1922 
1923 	mp = tp->t_mountp;
1924 
1925 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1926 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1927 
1928 	/*
1929 	 * Get the agi buffer first.  It ensures lock ordering
1930 	 * on the list.
1931 	 */
1932 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1933 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1934 	if (error)
1935 		return error;
1936 
1937 	/*
1938 	 * Validate the magic number of the agi block.
1939 	 */
1940 	agi = XFS_BUF_TO_AGI(agibp);
1941 	agi_ok =
1942 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1943 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1944 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1945 			XFS_RANDOM_IUNLINK))) {
1946 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1947 		xfs_trans_brelse(tp, agibp);
1948 		return XFS_ERROR(EFSCORRUPTED);
1949 	}
1950 	/*
1951 	 * Get the index into the agi hash table for the
1952 	 * list this inode will go on.
1953 	 */
1954 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955 	ASSERT(agino != 0);
1956 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1957 	ASSERT(agi->agi_unlinked[bucket_index]);
1958 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1959 
1960 	error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1961 	if (error)
1962 		return error;
1963 
1964 	/*
1965 	 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
1966 	 * from picking up this inode when it is reclaimed (its incore state
1967 	 * initialzed but not flushed to disk yet). The in-core di_nlink is
1968 	 * already cleared in xfs_droplink() and a corresponding transaction
1969 	 * logged. The hack here just synchronizes the in-core to on-disk
1970 	 * di_nlink value in advance before the actual inode sync to disk.
1971 	 * This is OK because the inode is already unlinked and would never
1972 	 * change its di_nlink again for this inode generation.
1973 	 * This is a temporary hack that would require a proper fix
1974 	 * in the future.
1975 	 */
1976 	dip->di_core.di_nlink = 0;
1977 
1978 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1979 		/*
1980 		 * There is already another inode in the bucket we need
1981 		 * to add ourselves to.  Add us at the front of the list.
1982 		 * Here we put the head pointer into our next pointer,
1983 		 * and then we fall through to point the head at us.
1984 		 */
1985 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1986 		/* both on-disk, don't endian flip twice */
1987 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1988 		offset = ip->i_boffset +
1989 			offsetof(xfs_dinode_t, di_next_unlinked);
1990 		xfs_trans_inode_buf(tp, ibp);
1991 		xfs_trans_log_buf(tp, ibp, offset,
1992 				  (offset + sizeof(xfs_agino_t) - 1));
1993 		xfs_inobp_check(mp, ibp);
1994 	}
1995 
1996 	/*
1997 	 * Point the bucket head pointer at the inode being inserted.
1998 	 */
1999 	ASSERT(agino != 0);
2000 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2001 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2002 		(sizeof(xfs_agino_t) * bucket_index);
2003 	xfs_trans_log_buf(tp, agibp, offset,
2004 			  (offset + sizeof(xfs_agino_t) - 1));
2005 	return 0;
2006 }
2007 
2008 /*
2009  * Pull the on-disk inode from the AGI unlinked list.
2010  */
2011 STATIC int
2012 xfs_iunlink_remove(
2013 	xfs_trans_t	*tp,
2014 	xfs_inode_t	*ip)
2015 {
2016 	xfs_ino_t	next_ino;
2017 	xfs_mount_t	*mp;
2018 	xfs_agi_t	*agi;
2019 	xfs_dinode_t	*dip;
2020 	xfs_buf_t	*agibp;
2021 	xfs_buf_t	*ibp;
2022 	xfs_agnumber_t	agno;
2023 	xfs_daddr_t	agdaddr;
2024 	xfs_agino_t	agino;
2025 	xfs_agino_t	next_agino;
2026 	xfs_buf_t	*last_ibp;
2027 	xfs_dinode_t	*last_dip = NULL;
2028 	short		bucket_index;
2029 	int		offset, last_offset = 0;
2030 	int		error;
2031 	int		agi_ok;
2032 
2033 	/*
2034 	 * First pull the on-disk inode from the AGI unlinked list.
2035 	 */
2036 	mp = tp->t_mountp;
2037 
2038 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2039 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2040 
2041 	/*
2042 	 * Get the agi buffer first.  It ensures lock ordering
2043 	 * on the list.
2044 	 */
2045 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2046 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2047 	if (error) {
2048 		cmn_err(CE_WARN,
2049 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
2050 			error, mp->m_fsname);
2051 		return error;
2052 	}
2053 	/*
2054 	 * Validate the magic number of the agi block.
2055 	 */
2056 	agi = XFS_BUF_TO_AGI(agibp);
2057 	agi_ok =
2058 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2059 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2060 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2061 			XFS_RANDOM_IUNLINK_REMOVE))) {
2062 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2063 				     mp, agi);
2064 		xfs_trans_brelse(tp, agibp);
2065 		cmn_err(CE_WARN,
2066 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2067 			 mp->m_fsname);
2068 		return XFS_ERROR(EFSCORRUPTED);
2069 	}
2070 	/*
2071 	 * Get the index into the agi hash table for the
2072 	 * list this inode will go on.
2073 	 */
2074 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2075 	ASSERT(agino != 0);
2076 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2077 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2078 	ASSERT(agi->agi_unlinked[bucket_index]);
2079 
2080 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2081 		/*
2082 		 * We're at the head of the list.  Get the inode's
2083 		 * on-disk buffer to see if there is anyone after us
2084 		 * on the list.  Only modify our next pointer if it
2085 		 * is not already NULLAGINO.  This saves us the overhead
2086 		 * of dealing with the buffer when there is no need to
2087 		 * change it.
2088 		 */
2089 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2090 		if (error) {
2091 			cmn_err(CE_WARN,
2092 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2093 				error, mp->m_fsname);
2094 			return error;
2095 		}
2096 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2097 		ASSERT(next_agino != 0);
2098 		if (next_agino != NULLAGINO) {
2099 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2100 			offset = ip->i_boffset +
2101 				offsetof(xfs_dinode_t, di_next_unlinked);
2102 			xfs_trans_inode_buf(tp, ibp);
2103 			xfs_trans_log_buf(tp, ibp, offset,
2104 					  (offset + sizeof(xfs_agino_t) - 1));
2105 			xfs_inobp_check(mp, ibp);
2106 		} else {
2107 			xfs_trans_brelse(tp, ibp);
2108 		}
2109 		/*
2110 		 * Point the bucket head pointer at the next inode.
2111 		 */
2112 		ASSERT(next_agino != 0);
2113 		ASSERT(next_agino != agino);
2114 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2115 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2116 			(sizeof(xfs_agino_t) * bucket_index);
2117 		xfs_trans_log_buf(tp, agibp, offset,
2118 				  (offset + sizeof(xfs_agino_t) - 1));
2119 	} else {
2120 		/*
2121 		 * We need to search the list for the inode being freed.
2122 		 */
2123 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2124 		last_ibp = NULL;
2125 		while (next_agino != agino) {
2126 			/*
2127 			 * If the last inode wasn't the one pointing to
2128 			 * us, then release its buffer since we're not
2129 			 * going to do anything with it.
2130 			 */
2131 			if (last_ibp != NULL) {
2132 				xfs_trans_brelse(tp, last_ibp);
2133 			}
2134 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2135 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2136 					    &last_ibp, &last_offset);
2137 			if (error) {
2138 				cmn_err(CE_WARN,
2139 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2140 					error, mp->m_fsname);
2141 				return error;
2142 			}
2143 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2144 			ASSERT(next_agino != NULLAGINO);
2145 			ASSERT(next_agino != 0);
2146 		}
2147 		/*
2148 		 * Now last_ibp points to the buffer previous to us on
2149 		 * the unlinked list.  Pull us from the list.
2150 		 */
2151 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2152 		if (error) {
2153 			cmn_err(CE_WARN,
2154 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2155 				error, mp->m_fsname);
2156 			return error;
2157 		}
2158 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2159 		ASSERT(next_agino != 0);
2160 		ASSERT(next_agino != agino);
2161 		if (next_agino != NULLAGINO) {
2162 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2163 			offset = ip->i_boffset +
2164 				offsetof(xfs_dinode_t, di_next_unlinked);
2165 			xfs_trans_inode_buf(tp, ibp);
2166 			xfs_trans_log_buf(tp, ibp, offset,
2167 					  (offset + sizeof(xfs_agino_t) - 1));
2168 			xfs_inobp_check(mp, ibp);
2169 		} else {
2170 			xfs_trans_brelse(tp, ibp);
2171 		}
2172 		/*
2173 		 * Point the previous inode on the list to the next inode.
2174 		 */
2175 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2176 		ASSERT(next_agino != 0);
2177 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2178 		xfs_trans_inode_buf(tp, last_ibp);
2179 		xfs_trans_log_buf(tp, last_ibp, offset,
2180 				  (offset + sizeof(xfs_agino_t) - 1));
2181 		xfs_inobp_check(mp, last_ibp);
2182 	}
2183 	return 0;
2184 }
2185 
2186 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2187 {
2188 	return (((ip->i_itemp == NULL) ||
2189 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2190 		(ip->i_update_core == 0));
2191 }
2192 
2193 STATIC void
2194 xfs_ifree_cluster(
2195 	xfs_inode_t	*free_ip,
2196 	xfs_trans_t	*tp,
2197 	xfs_ino_t	inum)
2198 {
2199 	xfs_mount_t		*mp = free_ip->i_mount;
2200 	int			blks_per_cluster;
2201 	int			nbufs;
2202 	int			ninodes;
2203 	int			i, j, found, pre_flushed;
2204 	xfs_daddr_t		blkno;
2205 	xfs_buf_t		*bp;
2206 	xfs_inode_t		*ip, **ip_found;
2207 	xfs_inode_log_item_t	*iip;
2208 	xfs_log_item_t		*lip;
2209 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
2210 	SPLDECL(s);
2211 
2212 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2213 		blks_per_cluster = 1;
2214 		ninodes = mp->m_sb.sb_inopblock;
2215 		nbufs = XFS_IALLOC_BLOCKS(mp);
2216 	} else {
2217 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2218 					mp->m_sb.sb_blocksize;
2219 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2220 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2221 	}
2222 
2223 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2224 
2225 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2226 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2227 					 XFS_INO_TO_AGBNO(mp, inum));
2228 
2229 
2230 		/*
2231 		 * Look for each inode in memory and attempt to lock it,
2232 		 * we can be racing with flush and tail pushing here.
2233 		 * any inode we get the locks on, add to an array of
2234 		 * inode items to process later.
2235 		 *
2236 		 * The get the buffer lock, we could beat a flush
2237 		 * or tail pushing thread to the lock here, in which
2238 		 * case they will go looking for the inode buffer
2239 		 * and fail, we need some other form of interlock
2240 		 * here.
2241 		 */
2242 		found = 0;
2243 		for (i = 0; i < ninodes; i++) {
2244 			read_lock(&pag->pag_ici_lock);
2245 			ip = radix_tree_lookup(&pag->pag_ici_root,
2246 					XFS_INO_TO_AGINO(mp, (inum + i)));
2247 
2248 			/* Inode not in memory or we found it already,
2249 			 * nothing to do
2250 			 */
2251 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2252 				read_unlock(&pag->pag_ici_lock);
2253 				continue;
2254 			}
2255 
2256 			if (xfs_inode_clean(ip)) {
2257 				read_unlock(&pag->pag_ici_lock);
2258 				continue;
2259 			}
2260 
2261 			/* If we can get the locks then add it to the
2262 			 * list, otherwise by the time we get the bp lock
2263 			 * below it will already be attached to the
2264 			 * inode buffer.
2265 			 */
2266 
2267 			/* This inode will already be locked - by us, lets
2268 			 * keep it that way.
2269 			 */
2270 
2271 			if (ip == free_ip) {
2272 				if (xfs_iflock_nowait(ip)) {
2273 					xfs_iflags_set(ip, XFS_ISTALE);
2274 					if (xfs_inode_clean(ip)) {
2275 						xfs_ifunlock(ip);
2276 					} else {
2277 						ip_found[found++] = ip;
2278 					}
2279 				}
2280 				read_unlock(&pag->pag_ici_lock);
2281 				continue;
2282 			}
2283 
2284 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2285 				if (xfs_iflock_nowait(ip)) {
2286 					xfs_iflags_set(ip, XFS_ISTALE);
2287 
2288 					if (xfs_inode_clean(ip)) {
2289 						xfs_ifunlock(ip);
2290 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2291 					} else {
2292 						ip_found[found++] = ip;
2293 					}
2294 				} else {
2295 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2296 				}
2297 			}
2298 			read_unlock(&pag->pag_ici_lock);
2299 		}
2300 
2301 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2302 					mp->m_bsize * blks_per_cluster,
2303 					XFS_BUF_LOCK);
2304 
2305 		pre_flushed = 0;
2306 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2307 		while (lip) {
2308 			if (lip->li_type == XFS_LI_INODE) {
2309 				iip = (xfs_inode_log_item_t *)lip;
2310 				ASSERT(iip->ili_logged == 1);
2311 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2312 				AIL_LOCK(mp,s);
2313 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2314 				AIL_UNLOCK(mp, s);
2315 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2316 				pre_flushed++;
2317 			}
2318 			lip = lip->li_bio_list;
2319 		}
2320 
2321 		for (i = 0; i < found; i++) {
2322 			ip = ip_found[i];
2323 			iip = ip->i_itemp;
2324 
2325 			if (!iip) {
2326 				ip->i_update_core = 0;
2327 				xfs_ifunlock(ip);
2328 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2329 				continue;
2330 			}
2331 
2332 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2333 			iip->ili_format.ilf_fields = 0;
2334 			iip->ili_logged = 1;
2335 			AIL_LOCK(mp,s);
2336 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2337 			AIL_UNLOCK(mp, s);
2338 
2339 			xfs_buf_attach_iodone(bp,
2340 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2341 				xfs_istale_done, (xfs_log_item_t *)iip);
2342 			if (ip != free_ip) {
2343 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2344 			}
2345 		}
2346 
2347 		if (found || pre_flushed)
2348 			xfs_trans_stale_inode_buf(tp, bp);
2349 		xfs_trans_binval(tp, bp);
2350 	}
2351 
2352 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2353 	xfs_put_perag(mp, pag);
2354 }
2355 
2356 /*
2357  * This is called to return an inode to the inode free list.
2358  * The inode should already be truncated to 0 length and have
2359  * no pages associated with it.  This routine also assumes that
2360  * the inode is already a part of the transaction.
2361  *
2362  * The on-disk copy of the inode will have been added to the list
2363  * of unlinked inodes in the AGI. We need to remove the inode from
2364  * that list atomically with respect to freeing it here.
2365  */
2366 int
2367 xfs_ifree(
2368 	xfs_trans_t	*tp,
2369 	xfs_inode_t	*ip,
2370 	xfs_bmap_free_t	*flist)
2371 {
2372 	int			error;
2373 	int			delete;
2374 	xfs_ino_t		first_ino;
2375 
2376 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2377 	ASSERT(ip->i_transp == tp);
2378 	ASSERT(ip->i_d.di_nlink == 0);
2379 	ASSERT(ip->i_d.di_nextents == 0);
2380 	ASSERT(ip->i_d.di_anextents == 0);
2381 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2382 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2383 	ASSERT(ip->i_d.di_nblocks == 0);
2384 
2385 	/*
2386 	 * Pull the on-disk inode from the AGI unlinked list.
2387 	 */
2388 	error = xfs_iunlink_remove(tp, ip);
2389 	if (error != 0) {
2390 		return error;
2391 	}
2392 
2393 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2394 	if (error != 0) {
2395 		return error;
2396 	}
2397 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2398 	ip->i_d.di_flags = 0;
2399 	ip->i_d.di_dmevmask = 0;
2400 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2401 	ip->i_df.if_ext_max =
2402 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2403 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2404 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2405 	/*
2406 	 * Bump the generation count so no one will be confused
2407 	 * by reincarnations of this inode.
2408 	 */
2409 	ip->i_d.di_gen++;
2410 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2411 
2412 	if (delete) {
2413 		xfs_ifree_cluster(ip, tp, first_ino);
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Reallocate the space for if_broot based on the number of records
2421  * being added or deleted as indicated in rec_diff.  Move the records
2422  * and pointers in if_broot to fit the new size.  When shrinking this
2423  * will eliminate holes between the records and pointers created by
2424  * the caller.  When growing this will create holes to be filled in
2425  * by the caller.
2426  *
2427  * The caller must not request to add more records than would fit in
2428  * the on-disk inode root.  If the if_broot is currently NULL, then
2429  * if we adding records one will be allocated.  The caller must also
2430  * not request that the number of records go below zero, although
2431  * it can go to zero.
2432  *
2433  * ip -- the inode whose if_broot area is changing
2434  * ext_diff -- the change in the number of records, positive or negative,
2435  *	 requested for the if_broot array.
2436  */
2437 void
2438 xfs_iroot_realloc(
2439 	xfs_inode_t		*ip,
2440 	int			rec_diff,
2441 	int			whichfork)
2442 {
2443 	int			cur_max;
2444 	xfs_ifork_t		*ifp;
2445 	xfs_bmbt_block_t	*new_broot;
2446 	int			new_max;
2447 	size_t			new_size;
2448 	char			*np;
2449 	char			*op;
2450 
2451 	/*
2452 	 * Handle the degenerate case quietly.
2453 	 */
2454 	if (rec_diff == 0) {
2455 		return;
2456 	}
2457 
2458 	ifp = XFS_IFORK_PTR(ip, whichfork);
2459 	if (rec_diff > 0) {
2460 		/*
2461 		 * If there wasn't any memory allocated before, just
2462 		 * allocate it now and get out.
2463 		 */
2464 		if (ifp->if_broot_bytes == 0) {
2465 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2466 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2467 								     KM_SLEEP);
2468 			ifp->if_broot_bytes = (int)new_size;
2469 			return;
2470 		}
2471 
2472 		/*
2473 		 * If there is already an existing if_broot, then we need
2474 		 * to realloc() it and shift the pointers to their new
2475 		 * location.  The records don't change location because
2476 		 * they are kept butted up against the btree block header.
2477 		 */
2478 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2479 		new_max = cur_max + rec_diff;
2480 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2481 		ifp->if_broot = (xfs_bmbt_block_t *)
2482 		  kmem_realloc(ifp->if_broot,
2483 				new_size,
2484 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2485 				KM_SLEEP);
2486 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2487 						      ifp->if_broot_bytes);
2488 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2489 						      (int)new_size);
2490 		ifp->if_broot_bytes = (int)new_size;
2491 		ASSERT(ifp->if_broot_bytes <=
2492 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2493 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2494 		return;
2495 	}
2496 
2497 	/*
2498 	 * rec_diff is less than 0.  In this case, we are shrinking the
2499 	 * if_broot buffer.  It must already exist.  If we go to zero
2500 	 * records, just get rid of the root and clear the status bit.
2501 	 */
2502 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2503 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2504 	new_max = cur_max + rec_diff;
2505 	ASSERT(new_max >= 0);
2506 	if (new_max > 0)
2507 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2508 	else
2509 		new_size = 0;
2510 	if (new_size > 0) {
2511 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2512 		/*
2513 		 * First copy over the btree block header.
2514 		 */
2515 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2516 	} else {
2517 		new_broot = NULL;
2518 		ifp->if_flags &= ~XFS_IFBROOT;
2519 	}
2520 
2521 	/*
2522 	 * Only copy the records and pointers if there are any.
2523 	 */
2524 	if (new_max > 0) {
2525 		/*
2526 		 * First copy the records.
2527 		 */
2528 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2529 						     ifp->if_broot_bytes);
2530 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2531 						     (int)new_size);
2532 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2533 
2534 		/*
2535 		 * Then copy the pointers.
2536 		 */
2537 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2538 						     ifp->if_broot_bytes);
2539 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2540 						     (int)new_size);
2541 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2542 	}
2543 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2544 	ifp->if_broot = new_broot;
2545 	ifp->if_broot_bytes = (int)new_size;
2546 	ASSERT(ifp->if_broot_bytes <=
2547 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2548 	return;
2549 }
2550 
2551 
2552 /*
2553  * This is called when the amount of space needed for if_data
2554  * is increased or decreased.  The change in size is indicated by
2555  * the number of bytes that need to be added or deleted in the
2556  * byte_diff parameter.
2557  *
2558  * If the amount of space needed has decreased below the size of the
2559  * inline buffer, then switch to using the inline buffer.  Otherwise,
2560  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2561  * to what is needed.
2562  *
2563  * ip -- the inode whose if_data area is changing
2564  * byte_diff -- the change in the number of bytes, positive or negative,
2565  *	 requested for the if_data array.
2566  */
2567 void
2568 xfs_idata_realloc(
2569 	xfs_inode_t	*ip,
2570 	int		byte_diff,
2571 	int		whichfork)
2572 {
2573 	xfs_ifork_t	*ifp;
2574 	int		new_size;
2575 	int		real_size;
2576 
2577 	if (byte_diff == 0) {
2578 		return;
2579 	}
2580 
2581 	ifp = XFS_IFORK_PTR(ip, whichfork);
2582 	new_size = (int)ifp->if_bytes + byte_diff;
2583 	ASSERT(new_size >= 0);
2584 
2585 	if (new_size == 0) {
2586 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2587 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2588 		}
2589 		ifp->if_u1.if_data = NULL;
2590 		real_size = 0;
2591 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2592 		/*
2593 		 * If the valid extents/data can fit in if_inline_ext/data,
2594 		 * copy them from the malloc'd vector and free it.
2595 		 */
2596 		if (ifp->if_u1.if_data == NULL) {
2597 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2598 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2599 			ASSERT(ifp->if_real_bytes != 0);
2600 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2601 			      new_size);
2602 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2603 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2604 		}
2605 		real_size = 0;
2606 	} else {
2607 		/*
2608 		 * Stuck with malloc/realloc.
2609 		 * For inline data, the underlying buffer must be
2610 		 * a multiple of 4 bytes in size so that it can be
2611 		 * logged and stay on word boundaries.  We enforce
2612 		 * that here.
2613 		 */
2614 		real_size = roundup(new_size, 4);
2615 		if (ifp->if_u1.if_data == NULL) {
2616 			ASSERT(ifp->if_real_bytes == 0);
2617 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2618 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2619 			/*
2620 			 * Only do the realloc if the underlying size
2621 			 * is really changing.
2622 			 */
2623 			if (ifp->if_real_bytes != real_size) {
2624 				ifp->if_u1.if_data =
2625 					kmem_realloc(ifp->if_u1.if_data,
2626 							real_size,
2627 							ifp->if_real_bytes,
2628 							KM_SLEEP);
2629 			}
2630 		} else {
2631 			ASSERT(ifp->if_real_bytes == 0);
2632 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2633 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2634 				ifp->if_bytes);
2635 		}
2636 	}
2637 	ifp->if_real_bytes = real_size;
2638 	ifp->if_bytes = new_size;
2639 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2640 }
2641 
2642 
2643 
2644 
2645 /*
2646  * Map inode to disk block and offset.
2647  *
2648  * mp -- the mount point structure for the current file system
2649  * tp -- the current transaction
2650  * ino -- the inode number of the inode to be located
2651  * imap -- this structure is filled in with the information necessary
2652  *	 to retrieve the given inode from disk
2653  * flags -- flags to pass to xfs_dilocate indicating whether or not
2654  *	 lookups in the inode btree were OK or not
2655  */
2656 int
2657 xfs_imap(
2658 	xfs_mount_t	*mp,
2659 	xfs_trans_t	*tp,
2660 	xfs_ino_t	ino,
2661 	xfs_imap_t	*imap,
2662 	uint		flags)
2663 {
2664 	xfs_fsblock_t	fsbno;
2665 	int		len;
2666 	int		off;
2667 	int		error;
2668 
2669 	fsbno = imap->im_blkno ?
2670 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2671 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2672 	if (error != 0) {
2673 		return error;
2674 	}
2675 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2676 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2677 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2678 	imap->im_ioffset = (ushort)off;
2679 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2680 	return 0;
2681 }
2682 
2683 void
2684 xfs_idestroy_fork(
2685 	xfs_inode_t	*ip,
2686 	int		whichfork)
2687 {
2688 	xfs_ifork_t	*ifp;
2689 
2690 	ifp = XFS_IFORK_PTR(ip, whichfork);
2691 	if (ifp->if_broot != NULL) {
2692 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2693 		ifp->if_broot = NULL;
2694 	}
2695 
2696 	/*
2697 	 * If the format is local, then we can't have an extents
2698 	 * array so just look for an inline data array.  If we're
2699 	 * not local then we may or may not have an extents list,
2700 	 * so check and free it up if we do.
2701 	 */
2702 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2703 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2704 		    (ifp->if_u1.if_data != NULL)) {
2705 			ASSERT(ifp->if_real_bytes != 0);
2706 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2707 			ifp->if_u1.if_data = NULL;
2708 			ifp->if_real_bytes = 0;
2709 		}
2710 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2711 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2712 		    ((ifp->if_u1.if_extents != NULL) &&
2713 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2714 		ASSERT(ifp->if_real_bytes != 0);
2715 		xfs_iext_destroy(ifp);
2716 	}
2717 	ASSERT(ifp->if_u1.if_extents == NULL ||
2718 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2719 	ASSERT(ifp->if_real_bytes == 0);
2720 	if (whichfork == XFS_ATTR_FORK) {
2721 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2722 		ip->i_afp = NULL;
2723 	}
2724 }
2725 
2726 /*
2727  * This is called free all the memory associated with an inode.
2728  * It must free the inode itself and any buffers allocated for
2729  * if_extents/if_data and if_broot.  It must also free the lock
2730  * associated with the inode.
2731  */
2732 void
2733 xfs_idestroy(
2734 	xfs_inode_t	*ip)
2735 {
2736 
2737 	switch (ip->i_d.di_mode & S_IFMT) {
2738 	case S_IFREG:
2739 	case S_IFDIR:
2740 	case S_IFLNK:
2741 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2742 		break;
2743 	}
2744 	if (ip->i_afp)
2745 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2746 	mrfree(&ip->i_lock);
2747 	mrfree(&ip->i_iolock);
2748 	freesema(&ip->i_flock);
2749 
2750 #ifdef XFS_VNODE_TRACE
2751 	ktrace_free(ip->i_trace);
2752 #endif
2753 #ifdef XFS_BMAP_TRACE
2754 	ktrace_free(ip->i_xtrace);
2755 #endif
2756 #ifdef XFS_BMBT_TRACE
2757 	ktrace_free(ip->i_btrace);
2758 #endif
2759 #ifdef XFS_RW_TRACE
2760 	ktrace_free(ip->i_rwtrace);
2761 #endif
2762 #ifdef XFS_ILOCK_TRACE
2763 	ktrace_free(ip->i_lock_trace);
2764 #endif
2765 #ifdef XFS_DIR2_TRACE
2766 	ktrace_free(ip->i_dir_trace);
2767 #endif
2768 	if (ip->i_itemp) {
2769 		/*
2770 		 * Only if we are shutting down the fs will we see an
2771 		 * inode still in the AIL. If it is there, we should remove
2772 		 * it to prevent a use-after-free from occurring.
2773 		 */
2774 		xfs_mount_t	*mp = ip->i_mount;
2775 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2776 		int		s;
2777 
2778 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2779 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2780 		if (lip->li_flags & XFS_LI_IN_AIL) {
2781 			AIL_LOCK(mp, s);
2782 			if (lip->li_flags & XFS_LI_IN_AIL)
2783 				xfs_trans_delete_ail(mp, lip, s);
2784 			else
2785 				AIL_UNLOCK(mp, s);
2786 		}
2787 		xfs_inode_item_destroy(ip);
2788 	}
2789 	kmem_zone_free(xfs_inode_zone, ip);
2790 }
2791 
2792 
2793 /*
2794  * Increment the pin count of the given buffer.
2795  * This value is protected by ipinlock spinlock in the mount structure.
2796  */
2797 void
2798 xfs_ipin(
2799 	xfs_inode_t	*ip)
2800 {
2801 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2802 
2803 	atomic_inc(&ip->i_pincount);
2804 }
2805 
2806 /*
2807  * Decrement the pin count of the given inode, and wake up
2808  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2809  * inode must have been previously pinned with a call to xfs_ipin().
2810  */
2811 void
2812 xfs_iunpin(
2813 	xfs_inode_t	*ip)
2814 {
2815 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2816 
2817 	if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2818 
2819 		/*
2820 		 * If the inode is currently being reclaimed, the link between
2821 		 * the bhv_vnode and the xfs_inode will be broken after the
2822 		 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2823 		 * set, then we can move forward and mark the linux inode dirty
2824 		 * knowing that it is still valid as it won't freed until after
2825 		 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2826 		 * i_flags_lock is used to synchronise the setting of the
2827 		 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2828 		 * can execute atomically w.r.t to reclaim by holding this lock
2829 		 * here.
2830 		 *
2831 		 * However, we still need to issue the unpin wakeup call as the
2832 		 * inode reclaim may be blocked waiting for the inode to become
2833 		 * unpinned.
2834 		 */
2835 
2836 		if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2837 			bhv_vnode_t	*vp = XFS_ITOV_NULL(ip);
2838 			struct inode *inode = NULL;
2839 
2840 			BUG_ON(vp == NULL);
2841 			inode = vn_to_inode(vp);
2842 			BUG_ON(inode->i_state & I_CLEAR);
2843 
2844 			/* make sync come back and flush this inode */
2845 			if (!(inode->i_state & (I_NEW|I_FREEING)))
2846 				mark_inode_dirty_sync(inode);
2847 		}
2848 		spin_unlock(&ip->i_flags_lock);
2849 		wake_up(&ip->i_ipin_wait);
2850 	}
2851 }
2852 
2853 /*
2854  * This is called to wait for the given inode to be unpinned.
2855  * It will sleep until this happens.  The caller must have the
2856  * inode locked in at least shared mode so that the buffer cannot
2857  * be subsequently pinned once someone is waiting for it to be
2858  * unpinned.
2859  */
2860 STATIC void
2861 xfs_iunpin_wait(
2862 	xfs_inode_t	*ip)
2863 {
2864 	xfs_inode_log_item_t	*iip;
2865 	xfs_lsn_t	lsn;
2866 
2867 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2868 
2869 	if (atomic_read(&ip->i_pincount) == 0) {
2870 		return;
2871 	}
2872 
2873 	iip = ip->i_itemp;
2874 	if (iip && iip->ili_last_lsn) {
2875 		lsn = iip->ili_last_lsn;
2876 	} else {
2877 		lsn = (xfs_lsn_t)0;
2878 	}
2879 
2880 	/*
2881 	 * Give the log a push so we don't wait here too long.
2882 	 */
2883 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2884 
2885 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2886 }
2887 
2888 
2889 /*
2890  * xfs_iextents_copy()
2891  *
2892  * This is called to copy the REAL extents (as opposed to the delayed
2893  * allocation extents) from the inode into the given buffer.  It
2894  * returns the number of bytes copied into the buffer.
2895  *
2896  * If there are no delayed allocation extents, then we can just
2897  * memcpy() the extents into the buffer.  Otherwise, we need to
2898  * examine each extent in turn and skip those which are delayed.
2899  */
2900 int
2901 xfs_iextents_copy(
2902 	xfs_inode_t		*ip,
2903 	xfs_bmbt_rec_t		*dp,
2904 	int			whichfork)
2905 {
2906 	int			copied;
2907 	int			i;
2908 	xfs_ifork_t		*ifp;
2909 	int			nrecs;
2910 	xfs_fsblock_t		start_block;
2911 
2912 	ifp = XFS_IFORK_PTR(ip, whichfork);
2913 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2914 	ASSERT(ifp->if_bytes > 0);
2915 
2916 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2917 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2918 	ASSERT(nrecs > 0);
2919 
2920 	/*
2921 	 * There are some delayed allocation extents in the
2922 	 * inode, so copy the extents one at a time and skip
2923 	 * the delayed ones.  There must be at least one
2924 	 * non-delayed extent.
2925 	 */
2926 	copied = 0;
2927 	for (i = 0; i < nrecs; i++) {
2928 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2929 		start_block = xfs_bmbt_get_startblock(ep);
2930 		if (ISNULLSTARTBLOCK(start_block)) {
2931 			/*
2932 			 * It's a delayed allocation extent, so skip it.
2933 			 */
2934 			continue;
2935 		}
2936 
2937 		/* Translate to on disk format */
2938 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2939 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2940 		dp++;
2941 		copied++;
2942 	}
2943 	ASSERT(copied != 0);
2944 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2945 
2946 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2947 }
2948 
2949 /*
2950  * Each of the following cases stores data into the same region
2951  * of the on-disk inode, so only one of them can be valid at
2952  * any given time. While it is possible to have conflicting formats
2953  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2954  * in EXTENTS format, this can only happen when the fork has
2955  * changed formats after being modified but before being flushed.
2956  * In these cases, the format always takes precedence, because the
2957  * format indicates the current state of the fork.
2958  */
2959 /*ARGSUSED*/
2960 STATIC int
2961 xfs_iflush_fork(
2962 	xfs_inode_t		*ip,
2963 	xfs_dinode_t		*dip,
2964 	xfs_inode_log_item_t	*iip,
2965 	int			whichfork,
2966 	xfs_buf_t		*bp)
2967 {
2968 	char			*cp;
2969 	xfs_ifork_t		*ifp;
2970 	xfs_mount_t		*mp;
2971 #ifdef XFS_TRANS_DEBUG
2972 	int			first;
2973 #endif
2974 	static const short	brootflag[2] =
2975 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2976 	static const short	dataflag[2] =
2977 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2978 	static const short	extflag[2] =
2979 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2980 
2981 	if (iip == NULL)
2982 		return 0;
2983 	ifp = XFS_IFORK_PTR(ip, whichfork);
2984 	/*
2985 	 * This can happen if we gave up in iformat in an error path,
2986 	 * for the attribute fork.
2987 	 */
2988 	if (ifp == NULL) {
2989 		ASSERT(whichfork == XFS_ATTR_FORK);
2990 		return 0;
2991 	}
2992 	cp = XFS_DFORK_PTR(dip, whichfork);
2993 	mp = ip->i_mount;
2994 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2995 	case XFS_DINODE_FMT_LOCAL:
2996 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2997 		    (ifp->if_bytes > 0)) {
2998 			ASSERT(ifp->if_u1.if_data != NULL);
2999 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3000 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3001 		}
3002 		break;
3003 
3004 	case XFS_DINODE_FMT_EXTENTS:
3005 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3006 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
3007 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3008 			(ifp->if_bytes == 0));
3009 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3010 			(ifp->if_bytes > 0));
3011 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3012 		    (ifp->if_bytes > 0)) {
3013 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3014 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3015 				whichfork);
3016 		}
3017 		break;
3018 
3019 	case XFS_DINODE_FMT_BTREE:
3020 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3021 		    (ifp->if_broot_bytes > 0)) {
3022 			ASSERT(ifp->if_broot != NULL);
3023 			ASSERT(ifp->if_broot_bytes <=
3024 			       (XFS_IFORK_SIZE(ip, whichfork) +
3025 				XFS_BROOT_SIZE_ADJ));
3026 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3027 				(xfs_bmdr_block_t *)cp,
3028 				XFS_DFORK_SIZE(dip, mp, whichfork));
3029 		}
3030 		break;
3031 
3032 	case XFS_DINODE_FMT_DEV:
3033 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3034 			ASSERT(whichfork == XFS_DATA_FORK);
3035 			dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3036 		}
3037 		break;
3038 
3039 	case XFS_DINODE_FMT_UUID:
3040 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3041 			ASSERT(whichfork == XFS_DATA_FORK);
3042 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3043 				sizeof(uuid_t));
3044 		}
3045 		break;
3046 
3047 	default:
3048 		ASSERT(0);
3049 		break;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 /*
3056  * xfs_iflush() will write a modified inode's changes out to the
3057  * inode's on disk home.  The caller must have the inode lock held
3058  * in at least shared mode and the inode flush semaphore must be
3059  * held as well.  The inode lock will still be held upon return from
3060  * the call and the caller is free to unlock it.
3061  * The inode flush lock will be unlocked when the inode reaches the disk.
3062  * The flags indicate how the inode's buffer should be written out.
3063  */
3064 int
3065 xfs_iflush(
3066 	xfs_inode_t		*ip,
3067 	uint			flags)
3068 {
3069 	xfs_inode_log_item_t	*iip;
3070 	xfs_buf_t		*bp;
3071 	xfs_dinode_t		*dip;
3072 	xfs_mount_t		*mp;
3073 	int			error;
3074 	/* REFERENCED */
3075 	xfs_inode_t		*iq;
3076 	int			clcount;	/* count of inodes clustered */
3077 	int			bufwasdelwri;
3078 	struct hlist_node	*entry;
3079 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3080 
3081 	XFS_STATS_INC(xs_iflush_count);
3082 
3083 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3084 	ASSERT(issemalocked(&(ip->i_flock)));
3085 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3086 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3087 
3088 	iip = ip->i_itemp;
3089 	mp = ip->i_mount;
3090 
3091 	/*
3092 	 * If the inode isn't dirty, then just release the inode
3093 	 * flush lock and do nothing.
3094 	 */
3095 	if ((ip->i_update_core == 0) &&
3096 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3097 		ASSERT((iip != NULL) ?
3098 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3099 		xfs_ifunlock(ip);
3100 		return 0;
3101 	}
3102 
3103 	/*
3104 	 * We can't flush the inode until it is unpinned, so
3105 	 * wait for it.  We know noone new can pin it, because
3106 	 * we are holding the inode lock shared and you need
3107 	 * to hold it exclusively to pin the inode.
3108 	 */
3109 	xfs_iunpin_wait(ip);
3110 
3111 	/*
3112 	 * This may have been unpinned because the filesystem is shutting
3113 	 * down forcibly. If that's the case we must not write this inode
3114 	 * to disk, because the log record didn't make it to disk!
3115 	 */
3116 	if (XFS_FORCED_SHUTDOWN(mp)) {
3117 		ip->i_update_core = 0;
3118 		if (iip)
3119 			iip->ili_format.ilf_fields = 0;
3120 		xfs_ifunlock(ip);
3121 		return XFS_ERROR(EIO);
3122 	}
3123 
3124 	/*
3125 	 * Get the buffer containing the on-disk inode.
3126 	 */
3127 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3128 	if (error) {
3129 		xfs_ifunlock(ip);
3130 		return error;
3131 	}
3132 
3133 	/*
3134 	 * Decide how buffer will be flushed out.  This is done before
3135 	 * the call to xfs_iflush_int because this field is zeroed by it.
3136 	 */
3137 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3138 		/*
3139 		 * Flush out the inode buffer according to the directions
3140 		 * of the caller.  In the cases where the caller has given
3141 		 * us a choice choose the non-delwri case.  This is because
3142 		 * the inode is in the AIL and we need to get it out soon.
3143 		 */
3144 		switch (flags) {
3145 		case XFS_IFLUSH_SYNC:
3146 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3147 			flags = 0;
3148 			break;
3149 		case XFS_IFLUSH_ASYNC:
3150 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3151 			flags = INT_ASYNC;
3152 			break;
3153 		case XFS_IFLUSH_DELWRI:
3154 			flags = INT_DELWRI;
3155 			break;
3156 		default:
3157 			ASSERT(0);
3158 			flags = 0;
3159 			break;
3160 		}
3161 	} else {
3162 		switch (flags) {
3163 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3164 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3165 		case XFS_IFLUSH_DELWRI:
3166 			flags = INT_DELWRI;
3167 			break;
3168 		case XFS_IFLUSH_ASYNC:
3169 			flags = INT_ASYNC;
3170 			break;
3171 		case XFS_IFLUSH_SYNC:
3172 			flags = 0;
3173 			break;
3174 		default:
3175 			ASSERT(0);
3176 			flags = 0;
3177 			break;
3178 		}
3179 	}
3180 
3181 	/*
3182 	 * First flush out the inode that xfs_iflush was called with.
3183 	 */
3184 	error = xfs_iflush_int(ip, bp);
3185 	if (error) {
3186 		goto corrupt_out;
3187 	}
3188 
3189 	/*
3190 	 * inode clustering:
3191 	 * see if other inodes can be gathered into this write
3192 	 */
3193 	spin_lock(&ip->i_cluster->icl_lock);
3194 	ip->i_cluster->icl_buf = bp;
3195 
3196 	clcount = 0;
3197 	hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3198 		if (iq == ip)
3199 			continue;
3200 
3201 		/*
3202 		 * Do an un-protected check to see if the inode is dirty and
3203 		 * is a candidate for flushing.  These checks will be repeated
3204 		 * later after the appropriate locks are acquired.
3205 		 */
3206 		iip = iq->i_itemp;
3207 		if ((iq->i_update_core == 0) &&
3208 		    ((iip == NULL) ||
3209 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3210 		      xfs_ipincount(iq) == 0) {
3211 			continue;
3212 		}
3213 
3214 		/*
3215 		 * Try to get locks.  If any are unavailable,
3216 		 * then this inode cannot be flushed and is skipped.
3217 		 */
3218 
3219 		/* get inode locks (just i_lock) */
3220 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3221 			/* get inode flush lock */
3222 			if (xfs_iflock_nowait(iq)) {
3223 				/* check if pinned */
3224 				if (xfs_ipincount(iq) == 0) {
3225 					/* arriving here means that
3226 					 * this inode can be flushed.
3227 					 * first re-check that it's
3228 					 * dirty
3229 					 */
3230 					iip = iq->i_itemp;
3231 					if ((iq->i_update_core != 0)||
3232 					    ((iip != NULL) &&
3233 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3234 						clcount++;
3235 						error = xfs_iflush_int(iq, bp);
3236 						if (error) {
3237 							xfs_iunlock(iq,
3238 								    XFS_ILOCK_SHARED);
3239 							goto cluster_corrupt_out;
3240 						}
3241 					} else {
3242 						xfs_ifunlock(iq);
3243 					}
3244 				} else {
3245 					xfs_ifunlock(iq);
3246 				}
3247 			}
3248 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3249 		}
3250 	}
3251 	spin_unlock(&ip->i_cluster->icl_lock);
3252 
3253 	if (clcount) {
3254 		XFS_STATS_INC(xs_icluster_flushcnt);
3255 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3256 	}
3257 
3258 	/*
3259 	 * If the buffer is pinned then push on the log so we won't
3260 	 * get stuck waiting in the write for too long.
3261 	 */
3262 	if (XFS_BUF_ISPINNED(bp)){
3263 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3264 	}
3265 
3266 	if (flags & INT_DELWRI) {
3267 		xfs_bdwrite(mp, bp);
3268 	} else if (flags & INT_ASYNC) {
3269 		xfs_bawrite(mp, bp);
3270 	} else {
3271 		error = xfs_bwrite(mp, bp);
3272 	}
3273 	return error;
3274 
3275 corrupt_out:
3276 	xfs_buf_relse(bp);
3277 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3278 	xfs_iflush_abort(ip);
3279 	/*
3280 	 * Unlocks the flush lock
3281 	 */
3282 	return XFS_ERROR(EFSCORRUPTED);
3283 
3284 cluster_corrupt_out:
3285 	/* Corruption detected in the clustering loop.  Invalidate the
3286 	 * inode buffer and shut down the filesystem.
3287 	 */
3288 	spin_unlock(&ip->i_cluster->icl_lock);
3289 
3290 	/*
3291 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3292 	 * brelse can handle it with no problems.  If not, shut down the
3293 	 * filesystem before releasing the buffer.
3294 	 */
3295 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3296 		xfs_buf_relse(bp);
3297 	}
3298 
3299 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3300 
3301 	if(!bufwasdelwri)  {
3302 		/*
3303 		 * Just like incore_relse: if we have b_iodone functions,
3304 		 * mark the buffer as an error and call them.  Otherwise
3305 		 * mark it as stale and brelse.
3306 		 */
3307 		if (XFS_BUF_IODONE_FUNC(bp)) {
3308 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3309 			XFS_BUF_UNDONE(bp);
3310 			XFS_BUF_STALE(bp);
3311 			XFS_BUF_SHUT(bp);
3312 			XFS_BUF_ERROR(bp,EIO);
3313 			xfs_biodone(bp);
3314 		} else {
3315 			XFS_BUF_STALE(bp);
3316 			xfs_buf_relse(bp);
3317 		}
3318 	}
3319 
3320 	xfs_iflush_abort(iq);
3321 	/*
3322 	 * Unlocks the flush lock
3323 	 */
3324 	return XFS_ERROR(EFSCORRUPTED);
3325 }
3326 
3327 
3328 STATIC int
3329 xfs_iflush_int(
3330 	xfs_inode_t		*ip,
3331 	xfs_buf_t		*bp)
3332 {
3333 	xfs_inode_log_item_t	*iip;
3334 	xfs_dinode_t		*dip;
3335 	xfs_mount_t		*mp;
3336 #ifdef XFS_TRANS_DEBUG
3337 	int			first;
3338 #endif
3339 	SPLDECL(s);
3340 
3341 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3342 	ASSERT(issemalocked(&(ip->i_flock)));
3343 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3344 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3345 
3346 	iip = ip->i_itemp;
3347 	mp = ip->i_mount;
3348 
3349 
3350 	/*
3351 	 * If the inode isn't dirty, then just release the inode
3352 	 * flush lock and do nothing.
3353 	 */
3354 	if ((ip->i_update_core == 0) &&
3355 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3356 		xfs_ifunlock(ip);
3357 		return 0;
3358 	}
3359 
3360 	/* set *dip = inode's place in the buffer */
3361 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3362 
3363 	/*
3364 	 * Clear i_update_core before copying out the data.
3365 	 * This is for coordination with our timestamp updates
3366 	 * that don't hold the inode lock. They will always
3367 	 * update the timestamps BEFORE setting i_update_core,
3368 	 * so if we clear i_update_core after they set it we
3369 	 * are guaranteed to see their updates to the timestamps.
3370 	 * I believe that this depends on strongly ordered memory
3371 	 * semantics, but we have that.  We use the SYNCHRONIZE
3372 	 * macro to make sure that the compiler does not reorder
3373 	 * the i_update_core access below the data copy below.
3374 	 */
3375 	ip->i_update_core = 0;
3376 	SYNCHRONIZE();
3377 
3378 	/*
3379 	 * Make sure to get the latest atime from the Linux inode.
3380 	 */
3381 	xfs_synchronize_atime(ip);
3382 
3383 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3384 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3385 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3386 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3387 			ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3388 		goto corrupt_out;
3389 	}
3390 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3391 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3392 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3394 			ip->i_ino, ip, ip->i_d.di_magic);
3395 		goto corrupt_out;
3396 	}
3397 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3398 		if (XFS_TEST_ERROR(
3399 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3400 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3401 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3402 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3404 				ip->i_ino, ip);
3405 			goto corrupt_out;
3406 		}
3407 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3408 		if (XFS_TEST_ERROR(
3409 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3410 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3411 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3412 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3413 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3414 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3415 				ip->i_ino, ip);
3416 			goto corrupt_out;
3417 		}
3418 	}
3419 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3420 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3421 				XFS_RANDOM_IFLUSH_5)) {
3422 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3423 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3424 			ip->i_ino,
3425 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3426 			ip->i_d.di_nblocks,
3427 			ip);
3428 		goto corrupt_out;
3429 	}
3430 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3431 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3432 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3433 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3434 			ip->i_ino, ip->i_d.di_forkoff, ip);
3435 		goto corrupt_out;
3436 	}
3437 	/*
3438 	 * bump the flush iteration count, used to detect flushes which
3439 	 * postdate a log record during recovery.
3440 	 */
3441 
3442 	ip->i_d.di_flushiter++;
3443 
3444 	/*
3445 	 * Copy the dirty parts of the inode into the on-disk
3446 	 * inode.  We always copy out the core of the inode,
3447 	 * because if the inode is dirty at all the core must
3448 	 * be.
3449 	 */
3450 	xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3451 
3452 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3453 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3454 		ip->i_d.di_flushiter = 0;
3455 
3456 	/*
3457 	 * If this is really an old format inode and the superblock version
3458 	 * has not been updated to support only new format inodes, then
3459 	 * convert back to the old inode format.  If the superblock version
3460 	 * has been updated, then make the conversion permanent.
3461 	 */
3462 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3463 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3464 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3465 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3466 			/*
3467 			 * Convert it back.
3468 			 */
3469 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3470 			dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3471 		} else {
3472 			/*
3473 			 * The superblock version has already been bumped,
3474 			 * so just make the conversion to the new inode
3475 			 * format permanent.
3476 			 */
3477 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3478 			dip->di_core.di_version =  XFS_DINODE_VERSION_2;
3479 			ip->i_d.di_onlink = 0;
3480 			dip->di_core.di_onlink = 0;
3481 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3482 			memset(&(dip->di_core.di_pad[0]), 0,
3483 			      sizeof(dip->di_core.di_pad));
3484 			ASSERT(ip->i_d.di_projid == 0);
3485 		}
3486 	}
3487 
3488 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3489 		goto corrupt_out;
3490 	}
3491 
3492 	if (XFS_IFORK_Q(ip)) {
3493 		/*
3494 		 * The only error from xfs_iflush_fork is on the data fork.
3495 		 */
3496 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3497 	}
3498 	xfs_inobp_check(mp, bp);
3499 
3500 	/*
3501 	 * We've recorded everything logged in the inode, so we'd
3502 	 * like to clear the ilf_fields bits so we don't log and
3503 	 * flush things unnecessarily.  However, we can't stop
3504 	 * logging all this information until the data we've copied
3505 	 * into the disk buffer is written to disk.  If we did we might
3506 	 * overwrite the copy of the inode in the log with all the
3507 	 * data after re-logging only part of it, and in the face of
3508 	 * a crash we wouldn't have all the data we need to recover.
3509 	 *
3510 	 * What we do is move the bits to the ili_last_fields field.
3511 	 * When logging the inode, these bits are moved back to the
3512 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3513 	 * clear ili_last_fields, since we know that the information
3514 	 * those bits represent is permanently on disk.  As long as
3515 	 * the flush completes before the inode is logged again, then
3516 	 * both ilf_fields and ili_last_fields will be cleared.
3517 	 *
3518 	 * We can play with the ilf_fields bits here, because the inode
3519 	 * lock must be held exclusively in order to set bits there
3520 	 * and the flush lock protects the ili_last_fields bits.
3521 	 * Set ili_logged so the flush done
3522 	 * routine can tell whether or not to look in the AIL.
3523 	 * Also, store the current LSN of the inode so that we can tell
3524 	 * whether the item has moved in the AIL from xfs_iflush_done().
3525 	 * In order to read the lsn we need the AIL lock, because
3526 	 * it is a 64 bit value that cannot be read atomically.
3527 	 */
3528 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3529 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3530 		iip->ili_format.ilf_fields = 0;
3531 		iip->ili_logged = 1;
3532 
3533 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3534 		AIL_LOCK(mp,s);
3535 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3536 		AIL_UNLOCK(mp, s);
3537 
3538 		/*
3539 		 * Attach the function xfs_iflush_done to the inode's
3540 		 * buffer.  This will remove the inode from the AIL
3541 		 * and unlock the inode's flush lock when the inode is
3542 		 * completely written to disk.
3543 		 */
3544 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3545 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3546 
3547 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3548 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3549 	} else {
3550 		/*
3551 		 * We're flushing an inode which is not in the AIL and has
3552 		 * not been logged but has i_update_core set.  For this
3553 		 * case we can use a B_DELWRI flush and immediately drop
3554 		 * the inode flush lock because we can avoid the whole
3555 		 * AIL state thing.  It's OK to drop the flush lock now,
3556 		 * because we've already locked the buffer and to do anything
3557 		 * you really need both.
3558 		 */
3559 		if (iip != NULL) {
3560 			ASSERT(iip->ili_logged == 0);
3561 			ASSERT(iip->ili_last_fields == 0);
3562 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3563 		}
3564 		xfs_ifunlock(ip);
3565 	}
3566 
3567 	return 0;
3568 
3569 corrupt_out:
3570 	return XFS_ERROR(EFSCORRUPTED);
3571 }
3572 
3573 
3574 /*
3575  * Flush all inactive inodes in mp.
3576  */
3577 void
3578 xfs_iflush_all(
3579 	xfs_mount_t	*mp)
3580 {
3581 	xfs_inode_t	*ip;
3582 	bhv_vnode_t	*vp;
3583 
3584  again:
3585 	XFS_MOUNT_ILOCK(mp);
3586 	ip = mp->m_inodes;
3587 	if (ip == NULL)
3588 		goto out;
3589 
3590 	do {
3591 		/* Make sure we skip markers inserted by sync */
3592 		if (ip->i_mount == NULL) {
3593 			ip = ip->i_mnext;
3594 			continue;
3595 		}
3596 
3597 		vp = XFS_ITOV_NULL(ip);
3598 		if (!vp) {
3599 			XFS_MOUNT_IUNLOCK(mp);
3600 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3601 			goto again;
3602 		}
3603 
3604 		ASSERT(vn_count(vp) == 0);
3605 
3606 		ip = ip->i_mnext;
3607 	} while (ip != mp->m_inodes);
3608  out:
3609 	XFS_MOUNT_IUNLOCK(mp);
3610 }
3611 
3612 /*
3613  * xfs_iaccess: check accessibility of inode for mode.
3614  */
3615 int
3616 xfs_iaccess(
3617 	xfs_inode_t	*ip,
3618 	mode_t		mode,
3619 	cred_t		*cr)
3620 {
3621 	int		error;
3622 	mode_t		orgmode = mode;
3623 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
3624 
3625 	if (mode & S_IWUSR) {
3626 		umode_t		imode = inode->i_mode;
3627 
3628 		if (IS_RDONLY(inode) &&
3629 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3630 			return XFS_ERROR(EROFS);
3631 
3632 		if (IS_IMMUTABLE(inode))
3633 			return XFS_ERROR(EACCES);
3634 	}
3635 
3636 	/*
3637 	 * If there's an Access Control List it's used instead of
3638 	 * the mode bits.
3639 	 */
3640 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3641 		return error ? XFS_ERROR(error) : 0;
3642 
3643 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3644 		mode >>= 3;
3645 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3646 			mode >>= 3;
3647 	}
3648 
3649 	/*
3650 	 * If the DACs are ok we don't need any capability check.
3651 	 */
3652 	if ((ip->i_d.di_mode & mode) == mode)
3653 		return 0;
3654 	/*
3655 	 * Read/write DACs are always overridable.
3656 	 * Executable DACs are overridable if at least one exec bit is set.
3657 	 */
3658 	if (!(orgmode & S_IXUSR) ||
3659 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3660 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3661 			return 0;
3662 
3663 	if ((orgmode == S_IRUSR) ||
3664 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3665 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3666 			return 0;
3667 #ifdef	NOISE
3668 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3669 #endif	/* NOISE */
3670 		return XFS_ERROR(EACCES);
3671 	}
3672 	return XFS_ERROR(EACCES);
3673 }
3674 
3675 /*
3676  * xfs_iroundup: round up argument to next power of two
3677  */
3678 uint
3679 xfs_iroundup(
3680 	uint	v)
3681 {
3682 	int i;
3683 	uint m;
3684 
3685 	if ((v & (v - 1)) == 0)
3686 		return v;
3687 	ASSERT((v & 0x80000000) == 0);
3688 	if ((v & (v + 1)) == 0)
3689 		return v + 1;
3690 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3691 		if (v & m)
3692 			continue;
3693 		v |= m;
3694 		if ((v & (v + 1)) == 0)
3695 			return v + 1;
3696 	}
3697 	ASSERT(0);
3698 	return( 0 );
3699 }
3700 
3701 #ifdef XFS_ILOCK_TRACE
3702 ktrace_t	*xfs_ilock_trace_buf;
3703 
3704 void
3705 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3706 {
3707 	ktrace_enter(ip->i_lock_trace,
3708 		     (void *)ip,
3709 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3710 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3711 		     (void *)ra,		/* caller of ilock */
3712 		     (void *)(unsigned long)current_cpu(),
3713 		     (void *)(unsigned long)current_pid(),
3714 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3715 }
3716 #endif
3717 
3718 /*
3719  * Return a pointer to the extent record at file index idx.
3720  */
3721 xfs_bmbt_rec_host_t *
3722 xfs_iext_get_ext(
3723 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3724 	xfs_extnum_t	idx)		/* index of target extent */
3725 {
3726 	ASSERT(idx >= 0);
3727 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3728 		return ifp->if_u1.if_ext_irec->er_extbuf;
3729 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3730 		xfs_ext_irec_t	*erp;		/* irec pointer */
3731 		int		erp_idx = 0;	/* irec index */
3732 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3733 
3734 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3735 		return &erp->er_extbuf[page_idx];
3736 	} else if (ifp->if_bytes) {
3737 		return &ifp->if_u1.if_extents[idx];
3738 	} else {
3739 		return NULL;
3740 	}
3741 }
3742 
3743 /*
3744  * Insert new item(s) into the extent records for incore inode
3745  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3746  */
3747 void
3748 xfs_iext_insert(
3749 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3750 	xfs_extnum_t	idx,		/* starting index of new items */
3751 	xfs_extnum_t	count,		/* number of inserted items */
3752 	xfs_bmbt_irec_t	*new)		/* items to insert */
3753 {
3754 	xfs_extnum_t	i;		/* extent record index */
3755 
3756 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3757 	xfs_iext_add(ifp, idx, count);
3758 	for (i = idx; i < idx + count; i++, new++)
3759 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3760 }
3761 
3762 /*
3763  * This is called when the amount of space required for incore file
3764  * extents needs to be increased. The ext_diff parameter stores the
3765  * number of new extents being added and the idx parameter contains
3766  * the extent index where the new extents will be added. If the new
3767  * extents are being appended, then we just need to (re)allocate and
3768  * initialize the space. Otherwise, if the new extents are being
3769  * inserted into the middle of the existing entries, a bit more work
3770  * is required to make room for the new extents to be inserted. The
3771  * caller is responsible for filling in the new extent entries upon
3772  * return.
3773  */
3774 void
3775 xfs_iext_add(
3776 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3777 	xfs_extnum_t	idx,		/* index to begin adding exts */
3778 	int		ext_diff)	/* number of extents to add */
3779 {
3780 	int		byte_diff;	/* new bytes being added */
3781 	int		new_size;	/* size of extents after adding */
3782 	xfs_extnum_t	nextents;	/* number of extents in file */
3783 
3784 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3785 	ASSERT((idx >= 0) && (idx <= nextents));
3786 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3787 	new_size = ifp->if_bytes + byte_diff;
3788 	/*
3789 	 * If the new number of extents (nextents + ext_diff)
3790 	 * fits inside the inode, then continue to use the inline
3791 	 * extent buffer.
3792 	 */
3793 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3794 		if (idx < nextents) {
3795 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3796 				&ifp->if_u2.if_inline_ext[idx],
3797 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3798 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3799 		}
3800 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3801 		ifp->if_real_bytes = 0;
3802 		ifp->if_lastex = nextents + ext_diff;
3803 	}
3804 	/*
3805 	 * Otherwise use a linear (direct) extent list.
3806 	 * If the extents are currently inside the inode,
3807 	 * xfs_iext_realloc_direct will switch us from
3808 	 * inline to direct extent allocation mode.
3809 	 */
3810 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3811 		xfs_iext_realloc_direct(ifp, new_size);
3812 		if (idx < nextents) {
3813 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3814 				&ifp->if_u1.if_extents[idx],
3815 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3816 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3817 		}
3818 	}
3819 	/* Indirection array */
3820 	else {
3821 		xfs_ext_irec_t	*erp;
3822 		int		erp_idx = 0;
3823 		int		page_idx = idx;
3824 
3825 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3826 		if (ifp->if_flags & XFS_IFEXTIREC) {
3827 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3828 		} else {
3829 			xfs_iext_irec_init(ifp);
3830 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3831 			erp = ifp->if_u1.if_ext_irec;
3832 		}
3833 		/* Extents fit in target extent page */
3834 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3835 			if (page_idx < erp->er_extcount) {
3836 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3837 					&erp->er_extbuf[page_idx],
3838 					(erp->er_extcount - page_idx) *
3839 					sizeof(xfs_bmbt_rec_t));
3840 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3841 			}
3842 			erp->er_extcount += ext_diff;
3843 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3844 		}
3845 		/* Insert a new extent page */
3846 		else if (erp) {
3847 			xfs_iext_add_indirect_multi(ifp,
3848 				erp_idx, page_idx, ext_diff);
3849 		}
3850 		/*
3851 		 * If extent(s) are being appended to the last page in
3852 		 * the indirection array and the new extent(s) don't fit
3853 		 * in the page, then erp is NULL and erp_idx is set to
3854 		 * the next index needed in the indirection array.
3855 		 */
3856 		else {
3857 			int	count = ext_diff;
3858 
3859 			while (count) {
3860 				erp = xfs_iext_irec_new(ifp, erp_idx);
3861 				erp->er_extcount = count;
3862 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3863 				if (count) {
3864 					erp_idx++;
3865 				}
3866 			}
3867 		}
3868 	}
3869 	ifp->if_bytes = new_size;
3870 }
3871 
3872 /*
3873  * This is called when incore extents are being added to the indirection
3874  * array and the new extents do not fit in the target extent list. The
3875  * erp_idx parameter contains the irec index for the target extent list
3876  * in the indirection array, and the idx parameter contains the extent
3877  * index within the list. The number of extents being added is stored
3878  * in the count parameter.
3879  *
3880  *    |-------|   |-------|
3881  *    |       |   |       |    idx - number of extents before idx
3882  *    |  idx  |   | count |
3883  *    |       |   |       |    count - number of extents being inserted at idx
3884  *    |-------|   |-------|
3885  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3886  *    |-------|   |-------|
3887  */
3888 void
3889 xfs_iext_add_indirect_multi(
3890 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3891 	int		erp_idx,		/* target extent irec index */
3892 	xfs_extnum_t	idx,			/* index within target list */
3893 	int		count)			/* new extents being added */
3894 {
3895 	int		byte_diff;		/* new bytes being added */
3896 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3897 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3898 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3899 	xfs_extnum_t	nex2;			/* extents after idx + count */
3900 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3901 	int		nlists;			/* number of irec's (lists) */
3902 
3903 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3904 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3905 	nex2 = erp->er_extcount - idx;
3906 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3907 
3908 	/*
3909 	 * Save second part of target extent list
3910 	 * (all extents past */
3911 	if (nex2) {
3912 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3913 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3914 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3915 		erp->er_extcount -= nex2;
3916 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3917 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3918 	}
3919 
3920 	/*
3921 	 * Add the new extents to the end of the target
3922 	 * list, then allocate new irec record(s) and
3923 	 * extent buffer(s) as needed to store the rest
3924 	 * of the new extents.
3925 	 */
3926 	ext_cnt = count;
3927 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3928 	if (ext_diff) {
3929 		erp->er_extcount += ext_diff;
3930 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3931 		ext_cnt -= ext_diff;
3932 	}
3933 	while (ext_cnt) {
3934 		erp_idx++;
3935 		erp = xfs_iext_irec_new(ifp, erp_idx);
3936 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3937 		erp->er_extcount = ext_diff;
3938 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3939 		ext_cnt -= ext_diff;
3940 	}
3941 
3942 	/* Add nex2 extents back to indirection array */
3943 	if (nex2) {
3944 		xfs_extnum_t	ext_avail;
3945 		int		i;
3946 
3947 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3948 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3949 		i = 0;
3950 		/*
3951 		 * If nex2 extents fit in the current page, append
3952 		 * nex2_ep after the new extents.
3953 		 */
3954 		if (nex2 <= ext_avail) {
3955 			i = erp->er_extcount;
3956 		}
3957 		/*
3958 		 * Otherwise, check if space is available in the
3959 		 * next page.
3960 		 */
3961 		else if ((erp_idx < nlists - 1) &&
3962 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3963 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3964 			erp_idx++;
3965 			erp++;
3966 			/* Create a hole for nex2 extents */
3967 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3968 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3969 		}
3970 		/*
3971 		 * Final choice, create a new extent page for
3972 		 * nex2 extents.
3973 		 */
3974 		else {
3975 			erp_idx++;
3976 			erp = xfs_iext_irec_new(ifp, erp_idx);
3977 		}
3978 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3979 		kmem_free(nex2_ep, byte_diff);
3980 		erp->er_extcount += nex2;
3981 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3982 	}
3983 }
3984 
3985 /*
3986  * This is called when the amount of space required for incore file
3987  * extents needs to be decreased. The ext_diff parameter stores the
3988  * number of extents to be removed and the idx parameter contains
3989  * the extent index where the extents will be removed from.
3990  *
3991  * If the amount of space needed has decreased below the linear
3992  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3993  * extent array.  Otherwise, use kmem_realloc() to adjust the
3994  * size to what is needed.
3995  */
3996 void
3997 xfs_iext_remove(
3998 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3999 	xfs_extnum_t	idx,		/* index to begin removing exts */
4000 	int		ext_diff)	/* number of extents to remove */
4001 {
4002 	xfs_extnum_t	nextents;	/* number of extents in file */
4003 	int		new_size;	/* size of extents after removal */
4004 
4005 	ASSERT(ext_diff > 0);
4006 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4007 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4008 
4009 	if (new_size == 0) {
4010 		xfs_iext_destroy(ifp);
4011 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
4012 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
4013 	} else if (ifp->if_real_bytes) {
4014 		xfs_iext_remove_direct(ifp, idx, ext_diff);
4015 	} else {
4016 		xfs_iext_remove_inline(ifp, idx, ext_diff);
4017 	}
4018 	ifp->if_bytes = new_size;
4019 }
4020 
4021 /*
4022  * This removes ext_diff extents from the inline buffer, beginning
4023  * at extent index idx.
4024  */
4025 void
4026 xfs_iext_remove_inline(
4027 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4028 	xfs_extnum_t	idx,		/* index to begin removing exts */
4029 	int		ext_diff)	/* number of extents to remove */
4030 {
4031 	int		nextents;	/* number of extents in file */
4032 
4033 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4034 	ASSERT(idx < XFS_INLINE_EXTS);
4035 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4036 	ASSERT(((nextents - ext_diff) > 0) &&
4037 		(nextents - ext_diff) < XFS_INLINE_EXTS);
4038 
4039 	if (idx + ext_diff < nextents) {
4040 		memmove(&ifp->if_u2.if_inline_ext[idx],
4041 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
4042 			(nextents - (idx + ext_diff)) *
4043 			 sizeof(xfs_bmbt_rec_t));
4044 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4045 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
4046 	} else {
4047 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
4048 			ext_diff * sizeof(xfs_bmbt_rec_t));
4049 	}
4050 }
4051 
4052 /*
4053  * This removes ext_diff extents from a linear (direct) extent list,
4054  * beginning at extent index idx. If the extents are being removed
4055  * from the end of the list (ie. truncate) then we just need to re-
4056  * allocate the list to remove the extra space. Otherwise, if the
4057  * extents are being removed from the middle of the existing extent
4058  * entries, then we first need to move the extent records beginning
4059  * at idx + ext_diff up in the list to overwrite the records being
4060  * removed, then remove the extra space via kmem_realloc.
4061  */
4062 void
4063 xfs_iext_remove_direct(
4064 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4065 	xfs_extnum_t	idx,		/* index to begin removing exts */
4066 	int		ext_diff)	/* number of extents to remove */
4067 {
4068 	xfs_extnum_t	nextents;	/* number of extents in file */
4069 	int		new_size;	/* size of extents after removal */
4070 
4071 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4072 	new_size = ifp->if_bytes -
4073 		(ext_diff * sizeof(xfs_bmbt_rec_t));
4074 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4075 
4076 	if (new_size == 0) {
4077 		xfs_iext_destroy(ifp);
4078 		return;
4079 	}
4080 	/* Move extents up in the list (if needed) */
4081 	if (idx + ext_diff < nextents) {
4082 		memmove(&ifp->if_u1.if_extents[idx],
4083 			&ifp->if_u1.if_extents[idx + ext_diff],
4084 			(nextents - (idx + ext_diff)) *
4085 			 sizeof(xfs_bmbt_rec_t));
4086 	}
4087 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4088 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
4089 	/*
4090 	 * Reallocate the direct extent list. If the extents
4091 	 * will fit inside the inode then xfs_iext_realloc_direct
4092 	 * will switch from direct to inline extent allocation
4093 	 * mode for us.
4094 	 */
4095 	xfs_iext_realloc_direct(ifp, new_size);
4096 	ifp->if_bytes = new_size;
4097 }
4098 
4099 /*
4100  * This is called when incore extents are being removed from the
4101  * indirection array and the extents being removed span multiple extent
4102  * buffers. The idx parameter contains the file extent index where we
4103  * want to begin removing extents, and the count parameter contains
4104  * how many extents need to be removed.
4105  *
4106  *    |-------|   |-------|
4107  *    | nex1  |   |       |    nex1 - number of extents before idx
4108  *    |-------|   | count |
4109  *    |       |   |       |    count - number of extents being removed at idx
4110  *    | count |   |-------|
4111  *    |       |   | nex2  |    nex2 - number of extents after idx + count
4112  *    |-------|   |-------|
4113  */
4114 void
4115 xfs_iext_remove_indirect(
4116 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4117 	xfs_extnum_t	idx,		/* index to begin removing extents */
4118 	int		count)		/* number of extents to remove */
4119 {
4120 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4121 	int		erp_idx = 0;	/* indirection array index */
4122 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
4123 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
4124 	xfs_extnum_t	nex1;		/* number of extents before idx */
4125 	xfs_extnum_t	nex2;		/* extents after idx + count */
4126 	int		nlists;		/* entries in indirection array */
4127 	int		page_idx = idx;	/* index in target extent list */
4128 
4129 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4130 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
4131 	ASSERT(erp != NULL);
4132 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4133 	nex1 = page_idx;
4134 	ext_cnt = count;
4135 	while (ext_cnt) {
4136 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4137 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4138 		/*
4139 		 * Check for deletion of entire list;
4140 		 * xfs_iext_irec_remove() updates extent offsets.
4141 		 */
4142 		if (ext_diff == erp->er_extcount) {
4143 			xfs_iext_irec_remove(ifp, erp_idx);
4144 			ext_cnt -= ext_diff;
4145 			nex1 = 0;
4146 			if (ext_cnt) {
4147 				ASSERT(erp_idx < ifp->if_real_bytes /
4148 					XFS_IEXT_BUFSZ);
4149 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4150 				nex1 = 0;
4151 				continue;
4152 			} else {
4153 				break;
4154 			}
4155 		}
4156 		/* Move extents up (if needed) */
4157 		if (nex2) {
4158 			memmove(&erp->er_extbuf[nex1],
4159 				&erp->er_extbuf[nex1 + ext_diff],
4160 				nex2 * sizeof(xfs_bmbt_rec_t));
4161 		}
4162 		/* Zero out rest of page */
4163 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4164 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4165 		/* Update remaining counters */
4166 		erp->er_extcount -= ext_diff;
4167 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4168 		ext_cnt -= ext_diff;
4169 		nex1 = 0;
4170 		erp_idx++;
4171 		erp++;
4172 	}
4173 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4174 	xfs_iext_irec_compact(ifp);
4175 }
4176 
4177 /*
4178  * Create, destroy, or resize a linear (direct) block of extents.
4179  */
4180 void
4181 xfs_iext_realloc_direct(
4182 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4183 	int		new_size)	/* new size of extents */
4184 {
4185 	int		rnew_size;	/* real new size of extents */
4186 
4187 	rnew_size = new_size;
4188 
4189 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4190 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4191 		 (new_size != ifp->if_real_bytes)));
4192 
4193 	/* Free extent records */
4194 	if (new_size == 0) {
4195 		xfs_iext_destroy(ifp);
4196 	}
4197 	/* Resize direct extent list and zero any new bytes */
4198 	else if (ifp->if_real_bytes) {
4199 		/* Check if extents will fit inside the inode */
4200 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4201 			xfs_iext_direct_to_inline(ifp, new_size /
4202 				(uint)sizeof(xfs_bmbt_rec_t));
4203 			ifp->if_bytes = new_size;
4204 			return;
4205 		}
4206 		if (!is_power_of_2(new_size)){
4207 			rnew_size = xfs_iroundup(new_size);
4208 		}
4209 		if (rnew_size != ifp->if_real_bytes) {
4210 			ifp->if_u1.if_extents =
4211 				kmem_realloc(ifp->if_u1.if_extents,
4212 						rnew_size,
4213 						ifp->if_real_bytes,
4214 						KM_SLEEP);
4215 		}
4216 		if (rnew_size > ifp->if_real_bytes) {
4217 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4218 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4219 				rnew_size - ifp->if_real_bytes);
4220 		}
4221 	}
4222 	/*
4223 	 * Switch from the inline extent buffer to a direct
4224 	 * extent list. Be sure to include the inline extent
4225 	 * bytes in new_size.
4226 	 */
4227 	else {
4228 		new_size += ifp->if_bytes;
4229 		if (!is_power_of_2(new_size)) {
4230 			rnew_size = xfs_iroundup(new_size);
4231 		}
4232 		xfs_iext_inline_to_direct(ifp, rnew_size);
4233 	}
4234 	ifp->if_real_bytes = rnew_size;
4235 	ifp->if_bytes = new_size;
4236 }
4237 
4238 /*
4239  * Switch from linear (direct) extent records to inline buffer.
4240  */
4241 void
4242 xfs_iext_direct_to_inline(
4243 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4244 	xfs_extnum_t	nextents)	/* number of extents in file */
4245 {
4246 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4247 	ASSERT(nextents <= XFS_INLINE_EXTS);
4248 	/*
4249 	 * The inline buffer was zeroed when we switched
4250 	 * from inline to direct extent allocation mode,
4251 	 * so we don't need to clear it here.
4252 	 */
4253 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4254 		nextents * sizeof(xfs_bmbt_rec_t));
4255 	kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4256 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4257 	ifp->if_real_bytes = 0;
4258 }
4259 
4260 /*
4261  * Switch from inline buffer to linear (direct) extent records.
4262  * new_size should already be rounded up to the next power of 2
4263  * by the caller (when appropriate), so use new_size as it is.
4264  * However, since new_size may be rounded up, we can't update
4265  * if_bytes here. It is the caller's responsibility to update
4266  * if_bytes upon return.
4267  */
4268 void
4269 xfs_iext_inline_to_direct(
4270 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4271 	int		new_size)	/* number of extents in file */
4272 {
4273 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4274 	memset(ifp->if_u1.if_extents, 0, new_size);
4275 	if (ifp->if_bytes) {
4276 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4277 			ifp->if_bytes);
4278 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4279 			sizeof(xfs_bmbt_rec_t));
4280 	}
4281 	ifp->if_real_bytes = new_size;
4282 }
4283 
4284 /*
4285  * Resize an extent indirection array to new_size bytes.
4286  */
4287 void
4288 xfs_iext_realloc_indirect(
4289 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4290 	int		new_size)	/* new indirection array size */
4291 {
4292 	int		nlists;		/* number of irec's (ex lists) */
4293 	int		size;		/* current indirection array size */
4294 
4295 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4296 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4297 	size = nlists * sizeof(xfs_ext_irec_t);
4298 	ASSERT(ifp->if_real_bytes);
4299 	ASSERT((new_size >= 0) && (new_size != size));
4300 	if (new_size == 0) {
4301 		xfs_iext_destroy(ifp);
4302 	} else {
4303 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4304 			kmem_realloc(ifp->if_u1.if_ext_irec,
4305 				new_size, size, KM_SLEEP);
4306 	}
4307 }
4308 
4309 /*
4310  * Switch from indirection array to linear (direct) extent allocations.
4311  */
4312 void
4313 xfs_iext_indirect_to_direct(
4314 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4315 {
4316 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
4317 	xfs_extnum_t	nextents;	/* number of extents in file */
4318 	int		size;		/* size of file extents */
4319 
4320 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4321 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4322 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4323 	size = nextents * sizeof(xfs_bmbt_rec_t);
4324 
4325 	xfs_iext_irec_compact_full(ifp);
4326 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4327 
4328 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4329 	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4330 	ifp->if_flags &= ~XFS_IFEXTIREC;
4331 	ifp->if_u1.if_extents = ep;
4332 	ifp->if_bytes = size;
4333 	if (nextents < XFS_LINEAR_EXTS) {
4334 		xfs_iext_realloc_direct(ifp, size);
4335 	}
4336 }
4337 
4338 /*
4339  * Free incore file extents.
4340  */
4341 void
4342 xfs_iext_destroy(
4343 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4344 {
4345 	if (ifp->if_flags & XFS_IFEXTIREC) {
4346 		int	erp_idx;
4347 		int	nlists;
4348 
4349 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4350 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4351 			xfs_iext_irec_remove(ifp, erp_idx);
4352 		}
4353 		ifp->if_flags &= ~XFS_IFEXTIREC;
4354 	} else if (ifp->if_real_bytes) {
4355 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4356 	} else if (ifp->if_bytes) {
4357 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4358 			sizeof(xfs_bmbt_rec_t));
4359 	}
4360 	ifp->if_u1.if_extents = NULL;
4361 	ifp->if_real_bytes = 0;
4362 	ifp->if_bytes = 0;
4363 }
4364 
4365 /*
4366  * Return a pointer to the extent record for file system block bno.
4367  */
4368 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
4369 xfs_iext_bno_to_ext(
4370 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4371 	xfs_fileoff_t	bno,		/* block number to search for */
4372 	xfs_extnum_t	*idxp)		/* index of target extent */
4373 {
4374 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
4375 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4376 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
4377 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4378 	int		high;		/* upper boundary in search */
4379 	xfs_extnum_t	idx = 0;	/* index of target extent */
4380 	int		low;		/* lower boundary in search */
4381 	xfs_extnum_t	nextents;	/* number of file extents */
4382 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4383 
4384 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4385 	if (nextents == 0) {
4386 		*idxp = 0;
4387 		return NULL;
4388 	}
4389 	low = 0;
4390 	if (ifp->if_flags & XFS_IFEXTIREC) {
4391 		/* Find target extent list */
4392 		int	erp_idx = 0;
4393 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4394 		base = erp->er_extbuf;
4395 		high = erp->er_extcount - 1;
4396 	} else {
4397 		base = ifp->if_u1.if_extents;
4398 		high = nextents - 1;
4399 	}
4400 	/* Binary search extent records */
4401 	while (low <= high) {
4402 		idx = (low + high) >> 1;
4403 		ep = base + idx;
4404 		startoff = xfs_bmbt_get_startoff(ep);
4405 		blockcount = xfs_bmbt_get_blockcount(ep);
4406 		if (bno < startoff) {
4407 			high = idx - 1;
4408 		} else if (bno >= startoff + blockcount) {
4409 			low = idx + 1;
4410 		} else {
4411 			/* Convert back to file-based extent index */
4412 			if (ifp->if_flags & XFS_IFEXTIREC) {
4413 				idx += erp->er_extoff;
4414 			}
4415 			*idxp = idx;
4416 			return ep;
4417 		}
4418 	}
4419 	/* Convert back to file-based extent index */
4420 	if (ifp->if_flags & XFS_IFEXTIREC) {
4421 		idx += erp->er_extoff;
4422 	}
4423 	if (bno >= startoff + blockcount) {
4424 		if (++idx == nextents) {
4425 			ep = NULL;
4426 		} else {
4427 			ep = xfs_iext_get_ext(ifp, idx);
4428 		}
4429 	}
4430 	*idxp = idx;
4431 	return ep;
4432 }
4433 
4434 /*
4435  * Return a pointer to the indirection array entry containing the
4436  * extent record for filesystem block bno. Store the index of the
4437  * target irec in *erp_idxp.
4438  */
4439 xfs_ext_irec_t *			/* pointer to found extent record */
4440 xfs_iext_bno_to_irec(
4441 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4442 	xfs_fileoff_t	bno,		/* block number to search for */
4443 	int		*erp_idxp)	/* irec index of target ext list */
4444 {
4445 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4446 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4447 	int		erp_idx;	/* indirection array index */
4448 	int		nlists;		/* number of extent irec's (lists) */
4449 	int		high;		/* binary search upper limit */
4450 	int		low;		/* binary search lower limit */
4451 
4452 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4453 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4454 	erp_idx = 0;
4455 	low = 0;
4456 	high = nlists - 1;
4457 	while (low <= high) {
4458 		erp_idx = (low + high) >> 1;
4459 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4460 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4461 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4462 			high = erp_idx - 1;
4463 		} else if (erp_next && bno >=
4464 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4465 			low = erp_idx + 1;
4466 		} else {
4467 			break;
4468 		}
4469 	}
4470 	*erp_idxp = erp_idx;
4471 	return erp;
4472 }
4473 
4474 /*
4475  * Return a pointer to the indirection array entry containing the
4476  * extent record at file extent index *idxp. Store the index of the
4477  * target irec in *erp_idxp and store the page index of the target
4478  * extent record in *idxp.
4479  */
4480 xfs_ext_irec_t *
4481 xfs_iext_idx_to_irec(
4482 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4483 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4484 	int		*erp_idxp,	/* pointer to target irec */
4485 	int		realloc)	/* new bytes were just added */
4486 {
4487 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4488 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4489 	int		erp_idx;	/* indirection array index */
4490 	int		nlists;		/* number of irec's (ex lists) */
4491 	int		high;		/* binary search upper limit */
4492 	int		low;		/* binary search lower limit */
4493 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4494 
4495 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4496 	ASSERT(page_idx >= 0 && page_idx <=
4497 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4498 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4499 	erp_idx = 0;
4500 	low = 0;
4501 	high = nlists - 1;
4502 
4503 	/* Binary search extent irec's */
4504 	while (low <= high) {
4505 		erp_idx = (low + high) >> 1;
4506 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4507 		prev = erp_idx > 0 ? erp - 1 : NULL;
4508 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4509 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4510 			high = erp_idx - 1;
4511 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4512 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4513 			    !realloc)) {
4514 			low = erp_idx + 1;
4515 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4516 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4517 			ASSERT(realloc);
4518 			page_idx = 0;
4519 			erp_idx++;
4520 			erp = erp_idx < nlists ? erp + 1 : NULL;
4521 			break;
4522 		} else {
4523 			page_idx -= erp->er_extoff;
4524 			break;
4525 		}
4526 	}
4527 	*idxp = page_idx;
4528 	*erp_idxp = erp_idx;
4529 	return(erp);
4530 }
4531 
4532 /*
4533  * Allocate and initialize an indirection array once the space needed
4534  * for incore extents increases above XFS_IEXT_BUFSZ.
4535  */
4536 void
4537 xfs_iext_irec_init(
4538 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4539 {
4540 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4541 	xfs_extnum_t	nextents;	/* number of extents in file */
4542 
4543 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4544 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4545 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4546 
4547 	erp = (xfs_ext_irec_t *)
4548 		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4549 
4550 	if (nextents == 0) {
4551 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4552 	} else if (!ifp->if_real_bytes) {
4553 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4554 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4555 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4556 	}
4557 	erp->er_extbuf = ifp->if_u1.if_extents;
4558 	erp->er_extcount = nextents;
4559 	erp->er_extoff = 0;
4560 
4561 	ifp->if_flags |= XFS_IFEXTIREC;
4562 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4563 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4564 	ifp->if_u1.if_ext_irec = erp;
4565 
4566 	return;
4567 }
4568 
4569 /*
4570  * Allocate and initialize a new entry in the indirection array.
4571  */
4572 xfs_ext_irec_t *
4573 xfs_iext_irec_new(
4574 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4575 	int		erp_idx)	/* index for new irec */
4576 {
4577 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4578 	int		i;		/* loop counter */
4579 	int		nlists;		/* number of irec's (ex lists) */
4580 
4581 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4582 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4583 
4584 	/* Resize indirection array */
4585 	xfs_iext_realloc_indirect(ifp, ++nlists *
4586 				  sizeof(xfs_ext_irec_t));
4587 	/*
4588 	 * Move records down in the array so the
4589 	 * new page can use erp_idx.
4590 	 */
4591 	erp = ifp->if_u1.if_ext_irec;
4592 	for (i = nlists - 1; i > erp_idx; i--) {
4593 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4594 	}
4595 	ASSERT(i == erp_idx);
4596 
4597 	/* Initialize new extent record */
4598 	erp = ifp->if_u1.if_ext_irec;
4599 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4600 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4601 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4602 	erp[erp_idx].er_extcount = 0;
4603 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4604 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4605 	return (&erp[erp_idx]);
4606 }
4607 
4608 /*
4609  * Remove a record from the indirection array.
4610  */
4611 void
4612 xfs_iext_irec_remove(
4613 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4614 	int		erp_idx)	/* irec index to remove */
4615 {
4616 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4617 	int		i;		/* loop counter */
4618 	int		nlists;		/* number of irec's (ex lists) */
4619 
4620 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4621 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4622 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4623 	if (erp->er_extbuf) {
4624 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4625 			-erp->er_extcount);
4626 		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4627 	}
4628 	/* Compact extent records */
4629 	erp = ifp->if_u1.if_ext_irec;
4630 	for (i = erp_idx; i < nlists - 1; i++) {
4631 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4632 	}
4633 	/*
4634 	 * Manually free the last extent record from the indirection
4635 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4636 	 * of zero would result in a call to xfs_iext_destroy() which
4637 	 * would in turn call this function again, creating a nasty
4638 	 * infinite loop.
4639 	 */
4640 	if (--nlists) {
4641 		xfs_iext_realloc_indirect(ifp,
4642 			nlists * sizeof(xfs_ext_irec_t));
4643 	} else {
4644 		kmem_free(ifp->if_u1.if_ext_irec,
4645 			sizeof(xfs_ext_irec_t));
4646 	}
4647 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4648 }
4649 
4650 /*
4651  * This is called to clean up large amounts of unused memory allocated
4652  * by the indirection array.  Before compacting anything though, verify
4653  * that the indirection array is still needed and switch back to the
4654  * linear extent list (or even the inline buffer) if possible.  The
4655  * compaction policy is as follows:
4656  *
4657  *    Full Compaction: Extents fit into a single page (or inline buffer)
4658  *    Full Compaction: Extents occupy less than 10% of allocated space
4659  * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4660  *      No Compaction: Extents occupy at least 50% of allocated space
4661  */
4662 void
4663 xfs_iext_irec_compact(
4664 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4665 {
4666 	xfs_extnum_t	nextents;	/* number of extents in file */
4667 	int		nlists;		/* number of irec's (ex lists) */
4668 
4669 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4670 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4671 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4672 
4673 	if (nextents == 0) {
4674 		xfs_iext_destroy(ifp);
4675 	} else if (nextents <= XFS_INLINE_EXTS) {
4676 		xfs_iext_indirect_to_direct(ifp);
4677 		xfs_iext_direct_to_inline(ifp, nextents);
4678 	} else if (nextents <= XFS_LINEAR_EXTS) {
4679 		xfs_iext_indirect_to_direct(ifp);
4680 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4681 		xfs_iext_irec_compact_full(ifp);
4682 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4683 		xfs_iext_irec_compact_pages(ifp);
4684 	}
4685 }
4686 
4687 /*
4688  * Combine extents from neighboring extent pages.
4689  */
4690 void
4691 xfs_iext_irec_compact_pages(
4692 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4693 {
4694 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4695 	int		erp_idx = 0;	/* indirection array index */
4696 	int		nlists;		/* number of irec's (ex lists) */
4697 
4698 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4699 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4700 	while (erp_idx < nlists - 1) {
4701 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4702 		erp_next = erp + 1;
4703 		if (erp_next->er_extcount <=
4704 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4705 			memmove(&erp->er_extbuf[erp->er_extcount],
4706 				erp_next->er_extbuf, erp_next->er_extcount *
4707 				sizeof(xfs_bmbt_rec_t));
4708 			erp->er_extcount += erp_next->er_extcount;
4709 			/*
4710 			 * Free page before removing extent record
4711 			 * so er_extoffs don't get modified in
4712 			 * xfs_iext_irec_remove.
4713 			 */
4714 			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4715 			erp_next->er_extbuf = NULL;
4716 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4717 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4718 		} else {
4719 			erp_idx++;
4720 		}
4721 	}
4722 }
4723 
4724 /*
4725  * Fully compact the extent records managed by the indirection array.
4726  */
4727 void
4728 xfs_iext_irec_compact_full(
4729 	xfs_ifork_t	*ifp)			/* inode fork pointer */
4730 {
4731 	xfs_bmbt_rec_host_t *ep, *ep_next;	/* extent record pointers */
4732 	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4733 	int		erp_idx = 0;		/* extent irec index */
4734 	int		ext_avail;		/* empty entries in ex list */
4735 	int		ext_diff;		/* number of exts to add */
4736 	int		nlists;			/* number of irec's (ex lists) */
4737 
4738 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4739 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4740 	erp = ifp->if_u1.if_ext_irec;
4741 	ep = &erp->er_extbuf[erp->er_extcount];
4742 	erp_next = erp + 1;
4743 	ep_next = erp_next->er_extbuf;
4744 	while (erp_idx < nlists - 1) {
4745 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4746 		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4747 		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4748 		erp->er_extcount += ext_diff;
4749 		erp_next->er_extcount -= ext_diff;
4750 		/* Remove next page */
4751 		if (erp_next->er_extcount == 0) {
4752 			/*
4753 			 * Free page before removing extent record
4754 			 * so er_extoffs don't get modified in
4755 			 * xfs_iext_irec_remove.
4756 			 */
4757 			kmem_free(erp_next->er_extbuf,
4758 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4759 			erp_next->er_extbuf = NULL;
4760 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4761 			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4762 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4763 		/* Update next page */
4764 		} else {
4765 			/* Move rest of page up to become next new page */
4766 			memmove(erp_next->er_extbuf, ep_next,
4767 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4768 			ep_next = erp_next->er_extbuf;
4769 			memset(&ep_next[erp_next->er_extcount], 0,
4770 				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4771 				sizeof(xfs_bmbt_rec_t));
4772 		}
4773 		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4774 			erp_idx++;
4775 			if (erp_idx < nlists)
4776 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4777 			else
4778 				break;
4779 		}
4780 		ep = &erp->er_extbuf[erp->er_extcount];
4781 		erp_next = erp + 1;
4782 		ep_next = erp_next->er_extbuf;
4783 	}
4784 }
4785 
4786 /*
4787  * This is called to update the er_extoff field in the indirection
4788  * array when extents have been added or removed from one of the
4789  * extent lists. erp_idx contains the irec index to begin updating
4790  * at and ext_diff contains the number of extents that were added
4791  * or removed.
4792  */
4793 void
4794 xfs_iext_irec_update_extoffs(
4795 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4796 	int		erp_idx,	/* irec index to update */
4797 	int		ext_diff)	/* number of new extents */
4798 {
4799 	int		i;		/* loop counter */
4800 	int		nlists;		/* number of irec's (ex lists */
4801 
4802 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4803 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4804 	for (i = erp_idx; i < nlists; i++) {
4805 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4806 	}
4807 }
4808