1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_imap.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_sb.h" 30 #include "xfs_ag.h" 31 #include "xfs_dir2.h" 32 #include "xfs_dmapi.h" 33 #include "xfs_mount.h" 34 #include "xfs_bmap_btree.h" 35 #include "xfs_alloc_btree.h" 36 #include "xfs_ialloc_btree.h" 37 #include "xfs_dir2_sf.h" 38 #include "xfs_attr_sf.h" 39 #include "xfs_dinode.h" 40 #include "xfs_inode.h" 41 #include "xfs_buf_item.h" 42 #include "xfs_inode_item.h" 43 #include "xfs_btree.h" 44 #include "xfs_btree_trace.h" 45 #include "xfs_alloc.h" 46 #include "xfs_ialloc.h" 47 #include "xfs_bmap.h" 48 #include "xfs_rw.h" 49 #include "xfs_error.h" 50 #include "xfs_utils.h" 51 #include "xfs_dir2_trace.h" 52 #include "xfs_quota.h" 53 #include "xfs_acl.h" 54 #include "xfs_filestream.h" 55 #include "xfs_vnodeops.h" 56 57 kmem_zone_t *xfs_ifork_zone; 58 kmem_zone_t *xfs_inode_zone; 59 60 /* 61 * Used in xfs_itruncate(). This is the maximum number of extents 62 * freed from a file in a single transaction. 63 */ 64 #define XFS_ITRUNC_MAX_EXTENTS 2 65 66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 70 71 #ifdef DEBUG 72 /* 73 * Make sure that the extents in the given memory buffer 74 * are valid. 75 */ 76 STATIC void 77 xfs_validate_extents( 78 xfs_ifork_t *ifp, 79 int nrecs, 80 xfs_exntfmt_t fmt) 81 { 82 xfs_bmbt_irec_t irec; 83 xfs_bmbt_rec_host_t rec; 84 int i; 85 86 for (i = 0; i < nrecs; i++) { 87 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 88 rec.l0 = get_unaligned(&ep->l0); 89 rec.l1 = get_unaligned(&ep->l1); 90 xfs_bmbt_get_all(&rec, &irec); 91 if (fmt == XFS_EXTFMT_NOSTATE) 92 ASSERT(irec.br_state == XFS_EXT_NORM); 93 } 94 } 95 #else /* DEBUG */ 96 #define xfs_validate_extents(ifp, nrecs, fmt) 97 #endif /* DEBUG */ 98 99 /* 100 * Check that none of the inode's in the buffer have a next 101 * unlinked field of 0. 102 */ 103 #if defined(DEBUG) 104 void 105 xfs_inobp_check( 106 xfs_mount_t *mp, 107 xfs_buf_t *bp) 108 { 109 int i; 110 int j; 111 xfs_dinode_t *dip; 112 113 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 114 115 for (i = 0; i < j; i++) { 116 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 117 i * mp->m_sb.sb_inodesize); 118 if (!dip->di_next_unlinked) { 119 xfs_fs_cmn_err(CE_ALERT, mp, 120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 121 bp); 122 ASSERT(dip->di_next_unlinked); 123 } 124 } 125 } 126 #endif 127 128 /* 129 * Find the buffer associated with the given inode map 130 * We do basic validation checks on the buffer once it has been 131 * retrieved from disk. 132 */ 133 STATIC int 134 xfs_imap_to_bp( 135 xfs_mount_t *mp, 136 xfs_trans_t *tp, 137 xfs_imap_t *imap, 138 xfs_buf_t **bpp, 139 uint buf_flags, 140 uint imap_flags) 141 { 142 int error; 143 int i; 144 int ni; 145 xfs_buf_t *bp; 146 147 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 148 (int)imap->im_len, buf_flags, &bp); 149 if (error) { 150 if (error != EAGAIN) { 151 cmn_err(CE_WARN, 152 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 153 "an error %d on %s. Returning error.", 154 error, mp->m_fsname); 155 } else { 156 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 157 } 158 return error; 159 } 160 161 /* 162 * Validate the magic number and version of every inode in the buffer 163 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 164 */ 165 #ifdef DEBUG 166 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 167 #else /* usual case */ 168 ni = 1; 169 #endif 170 171 for (i = 0; i < ni; i++) { 172 int di_ok; 173 xfs_dinode_t *dip; 174 175 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 176 (i << mp->m_sb.sb_inodelog)); 177 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 178 XFS_DINODE_GOOD_VERSION(dip->di_version); 179 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 180 XFS_ERRTAG_ITOBP_INOTOBP, 181 XFS_RANDOM_ITOBP_INOTOBP))) { 182 if (imap_flags & XFS_IMAP_BULKSTAT) { 183 xfs_trans_brelse(tp, bp); 184 return XFS_ERROR(EINVAL); 185 } 186 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 187 XFS_ERRLEVEL_HIGH, mp, dip); 188 #ifdef DEBUG 189 cmn_err(CE_PANIC, 190 "Device %s - bad inode magic/vsn " 191 "daddr %lld #%d (magic=%x)", 192 XFS_BUFTARG_NAME(mp->m_ddev_targp), 193 (unsigned long long)imap->im_blkno, i, 194 be16_to_cpu(dip->di_magic)); 195 #endif 196 xfs_trans_brelse(tp, bp); 197 return XFS_ERROR(EFSCORRUPTED); 198 } 199 } 200 201 xfs_inobp_check(mp, bp); 202 203 /* 204 * Mark the buffer as an inode buffer now that it looks good 205 */ 206 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 207 208 *bpp = bp; 209 return 0; 210 } 211 212 /* 213 * This routine is called to map an inode number within a file 214 * system to the buffer containing the on-disk version of the 215 * inode. It returns a pointer to the buffer containing the 216 * on-disk inode in the bpp parameter, and in the dip parameter 217 * it returns a pointer to the on-disk inode within that buffer. 218 * 219 * If a non-zero error is returned, then the contents of bpp and 220 * dipp are undefined. 221 * 222 * Use xfs_imap() to determine the size and location of the 223 * buffer to read from disk. 224 */ 225 int 226 xfs_inotobp( 227 xfs_mount_t *mp, 228 xfs_trans_t *tp, 229 xfs_ino_t ino, 230 xfs_dinode_t **dipp, 231 xfs_buf_t **bpp, 232 int *offset, 233 uint imap_flags) 234 { 235 xfs_imap_t imap; 236 xfs_buf_t *bp; 237 int error; 238 239 imap.im_blkno = 0; 240 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 241 if (error) 242 return error; 243 244 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags); 245 if (error) 246 return error; 247 248 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 249 *bpp = bp; 250 *offset = imap.im_boffset; 251 return 0; 252 } 253 254 255 /* 256 * This routine is called to map an inode to the buffer containing 257 * the on-disk version of the inode. It returns a pointer to the 258 * buffer containing the on-disk inode in the bpp parameter, and in 259 * the dip parameter it returns a pointer to the on-disk inode within 260 * that buffer. 261 * 262 * If a non-zero error is returned, then the contents of bpp and 263 * dipp are undefined. 264 * 265 * The inode is expected to already been mapped to its buffer and read 266 * in once, thus we can use the mapping information stored in the inode 267 * rather than calling xfs_imap(). This allows us to avoid the overhead 268 * of looking at the inode btree for small block file systems 269 * (see xfs_imap()). 270 */ 271 int 272 xfs_itobp( 273 xfs_mount_t *mp, 274 xfs_trans_t *tp, 275 xfs_inode_t *ip, 276 xfs_dinode_t **dipp, 277 xfs_buf_t **bpp, 278 uint buf_flags) 279 { 280 xfs_imap_t imap; 281 xfs_buf_t *bp; 282 int error; 283 284 ASSERT(ip->i_blkno != 0); 285 286 imap.im_blkno = ip->i_blkno; 287 imap.im_len = ip->i_len; 288 imap.im_boffset = ip->i_boffset; 289 290 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, 0); 291 if (error) 292 return error; 293 294 if (!bp) { 295 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 296 ASSERT(tp == NULL); 297 *bpp = NULL; 298 return EAGAIN; 299 } 300 301 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 302 *bpp = bp; 303 return 0; 304 } 305 306 /* 307 * Move inode type and inode format specific information from the 308 * on-disk inode to the in-core inode. For fifos, devs, and sockets 309 * this means set if_rdev to the proper value. For files, directories, 310 * and symlinks this means to bring in the in-line data or extent 311 * pointers. For a file in B-tree format, only the root is immediately 312 * brought in-core. The rest will be in-lined in if_extents when it 313 * is first referenced (see xfs_iread_extents()). 314 */ 315 STATIC int 316 xfs_iformat( 317 xfs_inode_t *ip, 318 xfs_dinode_t *dip) 319 { 320 xfs_attr_shortform_t *atp; 321 int size; 322 int error; 323 xfs_fsize_t di_size; 324 ip->i_df.if_ext_max = 325 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 326 error = 0; 327 328 if (unlikely(be32_to_cpu(dip->di_nextents) + 329 be16_to_cpu(dip->di_anextents) > 330 be64_to_cpu(dip->di_nblocks))) { 331 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 332 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 333 (unsigned long long)ip->i_ino, 334 (int)(be32_to_cpu(dip->di_nextents) + 335 be16_to_cpu(dip->di_anextents)), 336 (unsigned long long) 337 be64_to_cpu(dip->di_nblocks)); 338 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 339 ip->i_mount, dip); 340 return XFS_ERROR(EFSCORRUPTED); 341 } 342 343 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 345 "corrupt dinode %Lu, forkoff = 0x%x.", 346 (unsigned long long)ip->i_ino, 347 dip->di_forkoff); 348 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 349 ip->i_mount, dip); 350 return XFS_ERROR(EFSCORRUPTED); 351 } 352 353 switch (ip->i_d.di_mode & S_IFMT) { 354 case S_IFIFO: 355 case S_IFCHR: 356 case S_IFBLK: 357 case S_IFSOCK: 358 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 359 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 360 ip->i_mount, dip); 361 return XFS_ERROR(EFSCORRUPTED); 362 } 363 ip->i_d.di_size = 0; 364 ip->i_size = 0; 365 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 366 break; 367 368 case S_IFREG: 369 case S_IFLNK: 370 case S_IFDIR: 371 switch (dip->di_format) { 372 case XFS_DINODE_FMT_LOCAL: 373 /* 374 * no local regular files yet 375 */ 376 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 377 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 378 "corrupt inode %Lu " 379 "(local format for regular file).", 380 (unsigned long long) ip->i_ino); 381 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 382 XFS_ERRLEVEL_LOW, 383 ip->i_mount, dip); 384 return XFS_ERROR(EFSCORRUPTED); 385 } 386 387 di_size = be64_to_cpu(dip->di_size); 388 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 389 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 390 "corrupt inode %Lu " 391 "(bad size %Ld for local inode).", 392 (unsigned long long) ip->i_ino, 393 (long long) di_size); 394 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 395 XFS_ERRLEVEL_LOW, 396 ip->i_mount, dip); 397 return XFS_ERROR(EFSCORRUPTED); 398 } 399 400 size = (int)di_size; 401 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 402 break; 403 case XFS_DINODE_FMT_EXTENTS: 404 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 405 break; 406 case XFS_DINODE_FMT_BTREE: 407 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 408 break; 409 default: 410 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 411 ip->i_mount); 412 return XFS_ERROR(EFSCORRUPTED); 413 } 414 break; 415 416 default: 417 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 418 return XFS_ERROR(EFSCORRUPTED); 419 } 420 if (error) { 421 return error; 422 } 423 if (!XFS_DFORK_Q(dip)) 424 return 0; 425 ASSERT(ip->i_afp == NULL); 426 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 427 ip->i_afp->if_ext_max = 428 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 429 switch (dip->di_aformat) { 430 case XFS_DINODE_FMT_LOCAL: 431 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 432 size = be16_to_cpu(atp->hdr.totsize); 433 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 434 break; 435 case XFS_DINODE_FMT_EXTENTS: 436 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 437 break; 438 case XFS_DINODE_FMT_BTREE: 439 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 440 break; 441 default: 442 error = XFS_ERROR(EFSCORRUPTED); 443 break; 444 } 445 if (error) { 446 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 447 ip->i_afp = NULL; 448 xfs_idestroy_fork(ip, XFS_DATA_FORK); 449 } 450 return error; 451 } 452 453 /* 454 * The file is in-lined in the on-disk inode. 455 * If it fits into if_inline_data, then copy 456 * it there, otherwise allocate a buffer for it 457 * and copy the data there. Either way, set 458 * if_data to point at the data. 459 * If we allocate a buffer for the data, make 460 * sure that its size is a multiple of 4 and 461 * record the real size in i_real_bytes. 462 */ 463 STATIC int 464 xfs_iformat_local( 465 xfs_inode_t *ip, 466 xfs_dinode_t *dip, 467 int whichfork, 468 int size) 469 { 470 xfs_ifork_t *ifp; 471 int real_size; 472 473 /* 474 * If the size is unreasonable, then something 475 * is wrong and we just bail out rather than crash in 476 * kmem_alloc() or memcpy() below. 477 */ 478 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 479 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 480 "corrupt inode %Lu " 481 "(bad size %d for local fork, size = %d).", 482 (unsigned long long) ip->i_ino, size, 483 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 484 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 485 ip->i_mount, dip); 486 return XFS_ERROR(EFSCORRUPTED); 487 } 488 ifp = XFS_IFORK_PTR(ip, whichfork); 489 real_size = 0; 490 if (size == 0) 491 ifp->if_u1.if_data = NULL; 492 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 493 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 494 else { 495 real_size = roundup(size, 4); 496 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 497 } 498 ifp->if_bytes = size; 499 ifp->if_real_bytes = real_size; 500 if (size) 501 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 502 ifp->if_flags &= ~XFS_IFEXTENTS; 503 ifp->if_flags |= XFS_IFINLINE; 504 return 0; 505 } 506 507 /* 508 * The file consists of a set of extents all 509 * of which fit into the on-disk inode. 510 * If there are few enough extents to fit into 511 * the if_inline_ext, then copy them there. 512 * Otherwise allocate a buffer for them and copy 513 * them into it. Either way, set if_extents 514 * to point at the extents. 515 */ 516 STATIC int 517 xfs_iformat_extents( 518 xfs_inode_t *ip, 519 xfs_dinode_t *dip, 520 int whichfork) 521 { 522 xfs_bmbt_rec_t *dp; 523 xfs_ifork_t *ifp; 524 int nex; 525 int size; 526 int i; 527 528 ifp = XFS_IFORK_PTR(ip, whichfork); 529 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 530 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 531 532 /* 533 * If the number of extents is unreasonable, then something 534 * is wrong and we just bail out rather than crash in 535 * kmem_alloc() or memcpy() below. 536 */ 537 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 538 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 539 "corrupt inode %Lu ((a)extents = %d).", 540 (unsigned long long) ip->i_ino, nex); 541 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 542 ip->i_mount, dip); 543 return XFS_ERROR(EFSCORRUPTED); 544 } 545 546 ifp->if_real_bytes = 0; 547 if (nex == 0) 548 ifp->if_u1.if_extents = NULL; 549 else if (nex <= XFS_INLINE_EXTS) 550 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 551 else 552 xfs_iext_add(ifp, 0, nex); 553 554 ifp->if_bytes = size; 555 if (size) { 556 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 557 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 558 for (i = 0; i < nex; i++, dp++) { 559 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 560 ep->l0 = get_unaligned_be64(&dp->l0); 561 ep->l1 = get_unaligned_be64(&dp->l1); 562 } 563 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 564 if (whichfork != XFS_DATA_FORK || 565 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 566 if (unlikely(xfs_check_nostate_extents( 567 ifp, 0, nex))) { 568 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 569 XFS_ERRLEVEL_LOW, 570 ip->i_mount); 571 return XFS_ERROR(EFSCORRUPTED); 572 } 573 } 574 ifp->if_flags |= XFS_IFEXTENTS; 575 return 0; 576 } 577 578 /* 579 * The file has too many extents to fit into 580 * the inode, so they are in B-tree format. 581 * Allocate a buffer for the root of the B-tree 582 * and copy the root into it. The i_extents 583 * field will remain NULL until all of the 584 * extents are read in (when they are needed). 585 */ 586 STATIC int 587 xfs_iformat_btree( 588 xfs_inode_t *ip, 589 xfs_dinode_t *dip, 590 int whichfork) 591 { 592 xfs_bmdr_block_t *dfp; 593 xfs_ifork_t *ifp; 594 /* REFERENCED */ 595 int nrecs; 596 int size; 597 598 ifp = XFS_IFORK_PTR(ip, whichfork); 599 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 600 size = XFS_BMAP_BROOT_SPACE(dfp); 601 nrecs = be16_to_cpu(dfp->bb_numrecs); 602 603 /* 604 * blow out if -- fork has less extents than can fit in 605 * fork (fork shouldn't be a btree format), root btree 606 * block has more records than can fit into the fork, 607 * or the number of extents is greater than the number of 608 * blocks. 609 */ 610 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 611 || XFS_BMDR_SPACE_CALC(nrecs) > 612 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 613 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 614 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 615 "corrupt inode %Lu (btree).", 616 (unsigned long long) ip->i_ino); 617 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 618 ip->i_mount); 619 return XFS_ERROR(EFSCORRUPTED); 620 } 621 622 ifp->if_broot_bytes = size; 623 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 624 ASSERT(ifp->if_broot != NULL); 625 /* 626 * Copy and convert from the on-disk structure 627 * to the in-memory structure. 628 */ 629 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 630 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 631 ifp->if_broot, size); 632 ifp->if_flags &= ~XFS_IFEXTENTS; 633 ifp->if_flags |= XFS_IFBROOT; 634 635 return 0; 636 } 637 638 void 639 xfs_dinode_from_disk( 640 xfs_icdinode_t *to, 641 xfs_dinode_t *from) 642 { 643 to->di_magic = be16_to_cpu(from->di_magic); 644 to->di_mode = be16_to_cpu(from->di_mode); 645 to->di_version = from ->di_version; 646 to->di_format = from->di_format; 647 to->di_onlink = be16_to_cpu(from->di_onlink); 648 to->di_uid = be32_to_cpu(from->di_uid); 649 to->di_gid = be32_to_cpu(from->di_gid); 650 to->di_nlink = be32_to_cpu(from->di_nlink); 651 to->di_projid = be16_to_cpu(from->di_projid); 652 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 653 to->di_flushiter = be16_to_cpu(from->di_flushiter); 654 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 655 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 656 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 657 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 658 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 659 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 660 to->di_size = be64_to_cpu(from->di_size); 661 to->di_nblocks = be64_to_cpu(from->di_nblocks); 662 to->di_extsize = be32_to_cpu(from->di_extsize); 663 to->di_nextents = be32_to_cpu(from->di_nextents); 664 to->di_anextents = be16_to_cpu(from->di_anextents); 665 to->di_forkoff = from->di_forkoff; 666 to->di_aformat = from->di_aformat; 667 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 668 to->di_dmstate = be16_to_cpu(from->di_dmstate); 669 to->di_flags = be16_to_cpu(from->di_flags); 670 to->di_gen = be32_to_cpu(from->di_gen); 671 } 672 673 void 674 xfs_dinode_to_disk( 675 xfs_dinode_t *to, 676 xfs_icdinode_t *from) 677 { 678 to->di_magic = cpu_to_be16(from->di_magic); 679 to->di_mode = cpu_to_be16(from->di_mode); 680 to->di_version = from ->di_version; 681 to->di_format = from->di_format; 682 to->di_onlink = cpu_to_be16(from->di_onlink); 683 to->di_uid = cpu_to_be32(from->di_uid); 684 to->di_gid = cpu_to_be32(from->di_gid); 685 to->di_nlink = cpu_to_be32(from->di_nlink); 686 to->di_projid = cpu_to_be16(from->di_projid); 687 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 688 to->di_flushiter = cpu_to_be16(from->di_flushiter); 689 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 690 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 691 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 692 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 693 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 694 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 695 to->di_size = cpu_to_be64(from->di_size); 696 to->di_nblocks = cpu_to_be64(from->di_nblocks); 697 to->di_extsize = cpu_to_be32(from->di_extsize); 698 to->di_nextents = cpu_to_be32(from->di_nextents); 699 to->di_anextents = cpu_to_be16(from->di_anextents); 700 to->di_forkoff = from->di_forkoff; 701 to->di_aformat = from->di_aformat; 702 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 703 to->di_dmstate = cpu_to_be16(from->di_dmstate); 704 to->di_flags = cpu_to_be16(from->di_flags); 705 to->di_gen = cpu_to_be32(from->di_gen); 706 } 707 708 STATIC uint 709 _xfs_dic2xflags( 710 __uint16_t di_flags) 711 { 712 uint flags = 0; 713 714 if (di_flags & XFS_DIFLAG_ANY) { 715 if (di_flags & XFS_DIFLAG_REALTIME) 716 flags |= XFS_XFLAG_REALTIME; 717 if (di_flags & XFS_DIFLAG_PREALLOC) 718 flags |= XFS_XFLAG_PREALLOC; 719 if (di_flags & XFS_DIFLAG_IMMUTABLE) 720 flags |= XFS_XFLAG_IMMUTABLE; 721 if (di_flags & XFS_DIFLAG_APPEND) 722 flags |= XFS_XFLAG_APPEND; 723 if (di_flags & XFS_DIFLAG_SYNC) 724 flags |= XFS_XFLAG_SYNC; 725 if (di_flags & XFS_DIFLAG_NOATIME) 726 flags |= XFS_XFLAG_NOATIME; 727 if (di_flags & XFS_DIFLAG_NODUMP) 728 flags |= XFS_XFLAG_NODUMP; 729 if (di_flags & XFS_DIFLAG_RTINHERIT) 730 flags |= XFS_XFLAG_RTINHERIT; 731 if (di_flags & XFS_DIFLAG_PROJINHERIT) 732 flags |= XFS_XFLAG_PROJINHERIT; 733 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 734 flags |= XFS_XFLAG_NOSYMLINKS; 735 if (di_flags & XFS_DIFLAG_EXTSIZE) 736 flags |= XFS_XFLAG_EXTSIZE; 737 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 738 flags |= XFS_XFLAG_EXTSZINHERIT; 739 if (di_flags & XFS_DIFLAG_NODEFRAG) 740 flags |= XFS_XFLAG_NODEFRAG; 741 if (di_flags & XFS_DIFLAG_FILESTREAM) 742 flags |= XFS_XFLAG_FILESTREAM; 743 } 744 745 return flags; 746 } 747 748 uint 749 xfs_ip2xflags( 750 xfs_inode_t *ip) 751 { 752 xfs_icdinode_t *dic = &ip->i_d; 753 754 return _xfs_dic2xflags(dic->di_flags) | 755 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 756 } 757 758 uint 759 xfs_dic2xflags( 760 xfs_dinode_t *dip) 761 { 762 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 763 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 764 } 765 766 /* 767 * Allocate and initialise an xfs_inode. 768 */ 769 STATIC struct xfs_inode * 770 xfs_inode_alloc( 771 struct xfs_mount *mp, 772 xfs_ino_t ino) 773 { 774 struct xfs_inode *ip; 775 776 /* 777 * if this didn't occur in transactions, we could use 778 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 779 * code up to do this anyway. 780 */ 781 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 782 if (!ip) 783 return NULL; 784 785 ASSERT(atomic_read(&ip->i_iocount) == 0); 786 ASSERT(atomic_read(&ip->i_pincount) == 0); 787 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 788 ASSERT(completion_done(&ip->i_flush)); 789 790 /* 791 * initialise the VFS inode here to get failures 792 * out of the way early. 793 */ 794 if (!inode_init_always(mp->m_super, VFS_I(ip))) { 795 kmem_zone_free(xfs_inode_zone, ip); 796 return NULL; 797 } 798 799 /* initialise the xfs inode */ 800 ip->i_ino = ino; 801 ip->i_mount = mp; 802 ip->i_blkno = 0; 803 ip->i_len = 0; 804 ip->i_boffset =0; 805 ip->i_afp = NULL; 806 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 807 ip->i_flags = 0; 808 ip->i_update_core = 0; 809 ip->i_update_size = 0; 810 ip->i_delayed_blks = 0; 811 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 812 ip->i_size = 0; 813 ip->i_new_size = 0; 814 815 /* 816 * Initialize inode's trace buffers. 817 */ 818 #ifdef XFS_INODE_TRACE 819 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS); 820 #endif 821 #ifdef XFS_BMAP_TRACE 822 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS); 823 #endif 824 #ifdef XFS_BTREE_TRACE 825 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS); 826 #endif 827 #ifdef XFS_RW_TRACE 828 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS); 829 #endif 830 #ifdef XFS_ILOCK_TRACE 831 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS); 832 #endif 833 #ifdef XFS_DIR2_TRACE 834 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS); 835 #endif 836 837 return ip; 838 } 839 840 /* 841 * Given a mount structure and an inode number, return a pointer 842 * to a newly allocated in-core inode corresponding to the given 843 * inode number. 844 * 845 * Initialize the inode's attributes and extent pointers if it 846 * already has them (it will not if the inode has no links). 847 */ 848 int 849 xfs_iread( 850 xfs_mount_t *mp, 851 xfs_trans_t *tp, 852 xfs_ino_t ino, 853 xfs_inode_t **ipp, 854 xfs_daddr_t bno, 855 uint imap_flags) 856 { 857 xfs_buf_t *bp; 858 xfs_dinode_t *dip; 859 xfs_inode_t *ip; 860 xfs_imap_t imap; 861 int error; 862 863 ip = xfs_inode_alloc(mp, ino); 864 if (!ip) 865 return ENOMEM; 866 867 /* 868 * Get pointers to the on-disk inode and the buffer containing it. 869 */ 870 imap.im_blkno = bno; 871 error = xfs_imap(mp, tp, ip->i_ino, &imap, imap_flags); 872 if (error) 873 goto out_destroy_inode; 874 875 /* 876 * Fill in the fields in the inode that will be used to 877 * map the inode to its buffer from now on. 878 */ 879 ip->i_blkno = imap.im_blkno; 880 ip->i_len = imap.im_len; 881 ip->i_boffset = imap.im_boffset; 882 ASSERT(bno == 0 || bno == imap.im_blkno); 883 884 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags); 885 if (error) 886 goto out_destroy_inode; 887 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 888 889 /* 890 * If we got something that isn't an inode it means someone 891 * (nfs or dmi) has a stale handle. 892 */ 893 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 894 #ifdef DEBUG 895 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 896 "dip->di_magic (0x%x) != " 897 "XFS_DINODE_MAGIC (0x%x)", 898 be16_to_cpu(dip->di_magic), 899 XFS_DINODE_MAGIC); 900 #endif /* DEBUG */ 901 error = XFS_ERROR(EINVAL); 902 goto out_brelse; 903 } 904 905 /* 906 * If the on-disk inode is already linked to a directory 907 * entry, copy all of the inode into the in-core inode. 908 * xfs_iformat() handles copying in the inode format 909 * specific information. 910 * Otherwise, just get the truly permanent information. 911 */ 912 if (dip->di_mode) { 913 xfs_dinode_from_disk(&ip->i_d, dip); 914 error = xfs_iformat(ip, dip); 915 if (error) { 916 #ifdef DEBUG 917 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 918 "xfs_iformat() returned error %d", 919 error); 920 #endif /* DEBUG */ 921 goto out_brelse; 922 } 923 } else { 924 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 925 ip->i_d.di_version = dip->di_version; 926 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 927 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 928 /* 929 * Make sure to pull in the mode here as well in 930 * case the inode is released without being used. 931 * This ensures that xfs_inactive() will see that 932 * the inode is already free and not try to mess 933 * with the uninitialized part of it. 934 */ 935 ip->i_d.di_mode = 0; 936 /* 937 * Initialize the per-fork minima and maxima for a new 938 * inode here. xfs_iformat will do it for old inodes. 939 */ 940 ip->i_df.if_ext_max = 941 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 942 } 943 944 /* 945 * The inode format changed when we moved the link count and 946 * made it 32 bits long. If this is an old format inode, 947 * convert it in memory to look like a new one. If it gets 948 * flushed to disk we will convert back before flushing or 949 * logging it. We zero out the new projid field and the old link 950 * count field. We'll handle clearing the pad field (the remains 951 * of the old uuid field) when we actually convert the inode to 952 * the new format. We don't change the version number so that we 953 * can distinguish this from a real new format inode. 954 */ 955 if (ip->i_d.di_version == 1) { 956 ip->i_d.di_nlink = ip->i_d.di_onlink; 957 ip->i_d.di_onlink = 0; 958 ip->i_d.di_projid = 0; 959 } 960 961 ip->i_delayed_blks = 0; 962 ip->i_size = ip->i_d.di_size; 963 964 /* 965 * Mark the buffer containing the inode as something to keep 966 * around for a while. This helps to keep recently accessed 967 * meta-data in-core longer. 968 */ 969 XFS_BUF_SET_REF(bp, XFS_INO_REF); 970 971 /* 972 * Use xfs_trans_brelse() to release the buffer containing the 973 * on-disk inode, because it was acquired with xfs_trans_read_buf() 974 * in xfs_itobp() above. If tp is NULL, this is just a normal 975 * brelse(). If we're within a transaction, then xfs_trans_brelse() 976 * will only release the buffer if it is not dirty within the 977 * transaction. It will be OK to release the buffer in this case, 978 * because inodes on disk are never destroyed and we will be 979 * locking the new in-core inode before putting it in the hash 980 * table where other processes can find it. Thus we don't have 981 * to worry about the inode being changed just because we released 982 * the buffer. 983 */ 984 xfs_trans_brelse(tp, bp); 985 *ipp = ip; 986 return 0; 987 988 out_brelse: 989 xfs_trans_brelse(tp, bp); 990 out_destroy_inode: 991 xfs_destroy_inode(ip); 992 return error; 993 } 994 995 /* 996 * Read in extents from a btree-format inode. 997 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 998 */ 999 int 1000 xfs_iread_extents( 1001 xfs_trans_t *tp, 1002 xfs_inode_t *ip, 1003 int whichfork) 1004 { 1005 int error; 1006 xfs_ifork_t *ifp; 1007 xfs_extnum_t nextents; 1008 size_t size; 1009 1010 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1011 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1012 ip->i_mount); 1013 return XFS_ERROR(EFSCORRUPTED); 1014 } 1015 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1016 size = nextents * sizeof(xfs_bmbt_rec_t); 1017 ifp = XFS_IFORK_PTR(ip, whichfork); 1018 1019 /* 1020 * We know that the size is valid (it's checked in iformat_btree) 1021 */ 1022 ifp->if_lastex = NULLEXTNUM; 1023 ifp->if_bytes = ifp->if_real_bytes = 0; 1024 ifp->if_flags |= XFS_IFEXTENTS; 1025 xfs_iext_add(ifp, 0, nextents); 1026 error = xfs_bmap_read_extents(tp, ip, whichfork); 1027 if (error) { 1028 xfs_iext_destroy(ifp); 1029 ifp->if_flags &= ~XFS_IFEXTENTS; 1030 return error; 1031 } 1032 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1033 return 0; 1034 } 1035 1036 /* 1037 * Allocate an inode on disk and return a copy of its in-core version. 1038 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1039 * appropriately within the inode. The uid and gid for the inode are 1040 * set according to the contents of the given cred structure. 1041 * 1042 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1043 * has a free inode available, call xfs_iget() 1044 * to obtain the in-core version of the allocated inode. Finally, 1045 * fill in the inode and log its initial contents. In this case, 1046 * ialloc_context would be set to NULL and call_again set to false. 1047 * 1048 * If xfs_dialloc() does not have an available inode, 1049 * it will replenish its supply by doing an allocation. Since we can 1050 * only do one allocation within a transaction without deadlocks, we 1051 * must commit the current transaction before returning the inode itself. 1052 * In this case, therefore, we will set call_again to true and return. 1053 * The caller should then commit the current transaction, start a new 1054 * transaction, and call xfs_ialloc() again to actually get the inode. 1055 * 1056 * To ensure that some other process does not grab the inode that 1057 * was allocated during the first call to xfs_ialloc(), this routine 1058 * also returns the [locked] bp pointing to the head of the freelist 1059 * as ialloc_context. The caller should hold this buffer across 1060 * the commit and pass it back into this routine on the second call. 1061 * 1062 * If we are allocating quota inodes, we do not have a parent inode 1063 * to attach to or associate with (i.e. pip == NULL) because they 1064 * are not linked into the directory structure - they are attached 1065 * directly to the superblock - and so have no parent. 1066 */ 1067 int 1068 xfs_ialloc( 1069 xfs_trans_t *tp, 1070 xfs_inode_t *pip, 1071 mode_t mode, 1072 xfs_nlink_t nlink, 1073 xfs_dev_t rdev, 1074 cred_t *cr, 1075 xfs_prid_t prid, 1076 int okalloc, 1077 xfs_buf_t **ialloc_context, 1078 boolean_t *call_again, 1079 xfs_inode_t **ipp) 1080 { 1081 xfs_ino_t ino; 1082 xfs_inode_t *ip; 1083 uint flags; 1084 int error; 1085 timespec_t tv; 1086 int filestreams = 0; 1087 1088 /* 1089 * Call the space management code to pick 1090 * the on-disk inode to be allocated. 1091 */ 1092 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1093 ialloc_context, call_again, &ino); 1094 if (error) 1095 return error; 1096 if (*call_again || ino == NULLFSINO) { 1097 *ipp = NULL; 1098 return 0; 1099 } 1100 ASSERT(*ialloc_context == NULL); 1101 1102 /* 1103 * Get the in-core inode with the lock held exclusively. 1104 * This is because we're setting fields here we need 1105 * to prevent others from looking at until we're done. 1106 */ 1107 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1108 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1109 if (error) 1110 return error; 1111 ASSERT(ip != NULL); 1112 1113 ip->i_d.di_mode = (__uint16_t)mode; 1114 ip->i_d.di_onlink = 0; 1115 ip->i_d.di_nlink = nlink; 1116 ASSERT(ip->i_d.di_nlink == nlink); 1117 ip->i_d.di_uid = current_fsuid(); 1118 ip->i_d.di_gid = current_fsgid(); 1119 ip->i_d.di_projid = prid; 1120 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1121 1122 /* 1123 * If the superblock version is up to where we support new format 1124 * inodes and this is currently an old format inode, then change 1125 * the inode version number now. This way we only do the conversion 1126 * here rather than here and in the flush/logging code. 1127 */ 1128 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1129 ip->i_d.di_version == 1) { 1130 ip->i_d.di_version = 2; 1131 /* 1132 * We've already zeroed the old link count, the projid field, 1133 * and the pad field. 1134 */ 1135 } 1136 1137 /* 1138 * Project ids won't be stored on disk if we are using a version 1 inode. 1139 */ 1140 if ((prid != 0) && (ip->i_d.di_version == 1)) 1141 xfs_bump_ino_vers2(tp, ip); 1142 1143 if (pip && XFS_INHERIT_GID(pip)) { 1144 ip->i_d.di_gid = pip->i_d.di_gid; 1145 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1146 ip->i_d.di_mode |= S_ISGID; 1147 } 1148 } 1149 1150 /* 1151 * If the group ID of the new file does not match the effective group 1152 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1153 * (and only if the irix_sgid_inherit compatibility variable is set). 1154 */ 1155 if ((irix_sgid_inherit) && 1156 (ip->i_d.di_mode & S_ISGID) && 1157 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1158 ip->i_d.di_mode &= ~S_ISGID; 1159 } 1160 1161 ip->i_d.di_size = 0; 1162 ip->i_size = 0; 1163 ip->i_d.di_nextents = 0; 1164 ASSERT(ip->i_d.di_nblocks == 0); 1165 1166 nanotime(&tv); 1167 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1168 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1169 ip->i_d.di_atime = ip->i_d.di_mtime; 1170 ip->i_d.di_ctime = ip->i_d.di_mtime; 1171 1172 /* 1173 * di_gen will have been taken care of in xfs_iread. 1174 */ 1175 ip->i_d.di_extsize = 0; 1176 ip->i_d.di_dmevmask = 0; 1177 ip->i_d.di_dmstate = 0; 1178 ip->i_d.di_flags = 0; 1179 flags = XFS_ILOG_CORE; 1180 switch (mode & S_IFMT) { 1181 case S_IFIFO: 1182 case S_IFCHR: 1183 case S_IFBLK: 1184 case S_IFSOCK: 1185 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1186 ip->i_df.if_u2.if_rdev = rdev; 1187 ip->i_df.if_flags = 0; 1188 flags |= XFS_ILOG_DEV; 1189 break; 1190 case S_IFREG: 1191 /* 1192 * we can't set up filestreams until after the VFS inode 1193 * is set up properly. 1194 */ 1195 if (pip && xfs_inode_is_filestream(pip)) 1196 filestreams = 1; 1197 /* fall through */ 1198 case S_IFDIR: 1199 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1200 uint di_flags = 0; 1201 1202 if ((mode & S_IFMT) == S_IFDIR) { 1203 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1204 di_flags |= XFS_DIFLAG_RTINHERIT; 1205 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1206 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1207 ip->i_d.di_extsize = pip->i_d.di_extsize; 1208 } 1209 } else if ((mode & S_IFMT) == S_IFREG) { 1210 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1211 di_flags |= XFS_DIFLAG_REALTIME; 1212 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1213 di_flags |= XFS_DIFLAG_EXTSIZE; 1214 ip->i_d.di_extsize = pip->i_d.di_extsize; 1215 } 1216 } 1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1218 xfs_inherit_noatime) 1219 di_flags |= XFS_DIFLAG_NOATIME; 1220 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1221 xfs_inherit_nodump) 1222 di_flags |= XFS_DIFLAG_NODUMP; 1223 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1224 xfs_inherit_sync) 1225 di_flags |= XFS_DIFLAG_SYNC; 1226 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1227 xfs_inherit_nosymlinks) 1228 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1229 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1230 di_flags |= XFS_DIFLAG_PROJINHERIT; 1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1232 xfs_inherit_nodefrag) 1233 di_flags |= XFS_DIFLAG_NODEFRAG; 1234 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1235 di_flags |= XFS_DIFLAG_FILESTREAM; 1236 ip->i_d.di_flags |= di_flags; 1237 } 1238 /* FALLTHROUGH */ 1239 case S_IFLNK: 1240 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1241 ip->i_df.if_flags = XFS_IFEXTENTS; 1242 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1243 ip->i_df.if_u1.if_extents = NULL; 1244 break; 1245 default: 1246 ASSERT(0); 1247 } 1248 /* 1249 * Attribute fork settings for new inode. 1250 */ 1251 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1252 ip->i_d.di_anextents = 0; 1253 1254 /* 1255 * Log the new values stuffed into the inode. 1256 */ 1257 xfs_trans_log_inode(tp, ip, flags); 1258 1259 /* now that we have an i_mode we can setup inode ops and unlock */ 1260 xfs_setup_inode(ip); 1261 1262 /* now we have set up the vfs inode we can associate the filestream */ 1263 if (filestreams) { 1264 error = xfs_filestream_associate(pip, ip); 1265 if (error < 0) 1266 return -error; 1267 if (!error) 1268 xfs_iflags_set(ip, XFS_IFILESTREAM); 1269 } 1270 1271 *ipp = ip; 1272 return 0; 1273 } 1274 1275 /* 1276 * Check to make sure that there are no blocks allocated to the 1277 * file beyond the size of the file. We don't check this for 1278 * files with fixed size extents or real time extents, but we 1279 * at least do it for regular files. 1280 */ 1281 #ifdef DEBUG 1282 void 1283 xfs_isize_check( 1284 xfs_mount_t *mp, 1285 xfs_inode_t *ip, 1286 xfs_fsize_t isize) 1287 { 1288 xfs_fileoff_t map_first; 1289 int nimaps; 1290 xfs_bmbt_irec_t imaps[2]; 1291 1292 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1293 return; 1294 1295 if (XFS_IS_REALTIME_INODE(ip)) 1296 return; 1297 1298 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1299 return; 1300 1301 nimaps = 2; 1302 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1303 /* 1304 * The filesystem could be shutting down, so bmapi may return 1305 * an error. 1306 */ 1307 if (xfs_bmapi(NULL, ip, map_first, 1308 (XFS_B_TO_FSB(mp, 1309 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1310 map_first), 1311 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1312 NULL, NULL)) 1313 return; 1314 ASSERT(nimaps == 1); 1315 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1316 } 1317 #endif /* DEBUG */ 1318 1319 /* 1320 * Calculate the last possible buffered byte in a file. This must 1321 * include data that was buffered beyond the EOF by the write code. 1322 * This also needs to deal with overflowing the xfs_fsize_t type 1323 * which can happen for sizes near the limit. 1324 * 1325 * We also need to take into account any blocks beyond the EOF. It 1326 * may be the case that they were buffered by a write which failed. 1327 * In that case the pages will still be in memory, but the inode size 1328 * will never have been updated. 1329 */ 1330 xfs_fsize_t 1331 xfs_file_last_byte( 1332 xfs_inode_t *ip) 1333 { 1334 xfs_mount_t *mp; 1335 xfs_fsize_t last_byte; 1336 xfs_fileoff_t last_block; 1337 xfs_fileoff_t size_last_block; 1338 int error; 1339 1340 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1341 1342 mp = ip->i_mount; 1343 /* 1344 * Only check for blocks beyond the EOF if the extents have 1345 * been read in. This eliminates the need for the inode lock, 1346 * and it also saves us from looking when it really isn't 1347 * necessary. 1348 */ 1349 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1350 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1351 XFS_DATA_FORK); 1352 if (error) { 1353 last_block = 0; 1354 } 1355 } else { 1356 last_block = 0; 1357 } 1358 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1359 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1360 1361 last_byte = XFS_FSB_TO_B(mp, last_block); 1362 if (last_byte < 0) { 1363 return XFS_MAXIOFFSET(mp); 1364 } 1365 last_byte += (1 << mp->m_writeio_log); 1366 if (last_byte < 0) { 1367 return XFS_MAXIOFFSET(mp); 1368 } 1369 return last_byte; 1370 } 1371 1372 #if defined(XFS_RW_TRACE) 1373 STATIC void 1374 xfs_itrunc_trace( 1375 int tag, 1376 xfs_inode_t *ip, 1377 int flag, 1378 xfs_fsize_t new_size, 1379 xfs_off_t toss_start, 1380 xfs_off_t toss_finish) 1381 { 1382 if (ip->i_rwtrace == NULL) { 1383 return; 1384 } 1385 1386 ktrace_enter(ip->i_rwtrace, 1387 (void*)((long)tag), 1388 (void*)ip, 1389 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1390 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1391 (void*)((long)flag), 1392 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1393 (void*)(unsigned long)(new_size & 0xffffffff), 1394 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1395 (void*)(unsigned long)(toss_start & 0xffffffff), 1396 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1397 (void*)(unsigned long)(toss_finish & 0xffffffff), 1398 (void*)(unsigned long)current_cpu(), 1399 (void*)(unsigned long)current_pid(), 1400 (void*)NULL, 1401 (void*)NULL, 1402 (void*)NULL); 1403 } 1404 #else 1405 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1406 #endif 1407 1408 /* 1409 * Start the truncation of the file to new_size. The new size 1410 * must be smaller than the current size. This routine will 1411 * clear the buffer and page caches of file data in the removed 1412 * range, and xfs_itruncate_finish() will remove the underlying 1413 * disk blocks. 1414 * 1415 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1416 * must NOT have the inode lock held at all. This is because we're 1417 * calling into the buffer/page cache code and we can't hold the 1418 * inode lock when we do so. 1419 * 1420 * We need to wait for any direct I/Os in flight to complete before we 1421 * proceed with the truncate. This is needed to prevent the extents 1422 * being read or written by the direct I/Os from being removed while the 1423 * I/O is in flight as there is no other method of synchronising 1424 * direct I/O with the truncate operation. Also, because we hold 1425 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1426 * started until the truncate completes and drops the lock. Essentially, 1427 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1428 * between direct I/Os and the truncate operation. 1429 * 1430 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1431 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1432 * in the case that the caller is locking things out of order and 1433 * may not be able to call xfs_itruncate_finish() with the inode lock 1434 * held without dropping the I/O lock. If the caller must drop the 1435 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1436 * must be called again with all the same restrictions as the initial 1437 * call. 1438 */ 1439 int 1440 xfs_itruncate_start( 1441 xfs_inode_t *ip, 1442 uint flags, 1443 xfs_fsize_t new_size) 1444 { 1445 xfs_fsize_t last_byte; 1446 xfs_off_t toss_start; 1447 xfs_mount_t *mp; 1448 int error = 0; 1449 1450 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1451 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1452 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1453 (flags == XFS_ITRUNC_MAYBE)); 1454 1455 mp = ip->i_mount; 1456 1457 /* wait for the completion of any pending DIOs */ 1458 if (new_size == 0 || new_size < ip->i_size) 1459 vn_iowait(ip); 1460 1461 /* 1462 * Call toss_pages or flushinval_pages to get rid of pages 1463 * overlapping the region being removed. We have to use 1464 * the less efficient flushinval_pages in the case that the 1465 * caller may not be able to finish the truncate without 1466 * dropping the inode's I/O lock. Make sure 1467 * to catch any pages brought in by buffers overlapping 1468 * the EOF by searching out beyond the isize by our 1469 * block size. We round new_size up to a block boundary 1470 * so that we don't toss things on the same block as 1471 * new_size but before it. 1472 * 1473 * Before calling toss_page or flushinval_pages, make sure to 1474 * call remapf() over the same region if the file is mapped. 1475 * This frees up mapped file references to the pages in the 1476 * given range and for the flushinval_pages case it ensures 1477 * that we get the latest mapped changes flushed out. 1478 */ 1479 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1480 toss_start = XFS_FSB_TO_B(mp, toss_start); 1481 if (toss_start < 0) { 1482 /* 1483 * The place to start tossing is beyond our maximum 1484 * file size, so there is no way that the data extended 1485 * out there. 1486 */ 1487 return 0; 1488 } 1489 last_byte = xfs_file_last_byte(ip); 1490 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1491 last_byte); 1492 if (last_byte > toss_start) { 1493 if (flags & XFS_ITRUNC_DEFINITE) { 1494 xfs_tosspages(ip, toss_start, 1495 -1, FI_REMAPF_LOCKED); 1496 } else { 1497 error = xfs_flushinval_pages(ip, toss_start, 1498 -1, FI_REMAPF_LOCKED); 1499 } 1500 } 1501 1502 #ifdef DEBUG 1503 if (new_size == 0) { 1504 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1505 } 1506 #endif 1507 return error; 1508 } 1509 1510 /* 1511 * Shrink the file to the given new_size. The new size must be smaller than 1512 * the current size. This will free up the underlying blocks in the removed 1513 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1514 * 1515 * The transaction passed to this routine must have made a permanent log 1516 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1517 * given transaction and start new ones, so make sure everything involved in 1518 * the transaction is tidy before calling here. Some transaction will be 1519 * returned to the caller to be committed. The incoming transaction must 1520 * already include the inode, and both inode locks must be held exclusively. 1521 * The inode must also be "held" within the transaction. On return the inode 1522 * will be "held" within the returned transaction. This routine does NOT 1523 * require any disk space to be reserved for it within the transaction. 1524 * 1525 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1526 * indicates the fork which is to be truncated. For the attribute fork we only 1527 * support truncation to size 0. 1528 * 1529 * We use the sync parameter to indicate whether or not the first transaction 1530 * we perform might have to be synchronous. For the attr fork, it needs to be 1531 * so if the unlink of the inode is not yet known to be permanent in the log. 1532 * This keeps us from freeing and reusing the blocks of the attribute fork 1533 * before the unlink of the inode becomes permanent. 1534 * 1535 * For the data fork, we normally have to run synchronously if we're being 1536 * called out of the inactive path or we're being called out of the create path 1537 * where we're truncating an existing file. Either way, the truncate needs to 1538 * be sync so blocks don't reappear in the file with altered data in case of a 1539 * crash. wsync filesystems can run the first case async because anything that 1540 * shrinks the inode has to run sync so by the time we're called here from 1541 * inactive, the inode size is permanently set to 0. 1542 * 1543 * Calls from the truncate path always need to be sync unless we're in a wsync 1544 * filesystem and the file has already been unlinked. 1545 * 1546 * The caller is responsible for correctly setting the sync parameter. It gets 1547 * too hard for us to guess here which path we're being called out of just 1548 * based on inode state. 1549 * 1550 * If we get an error, we must return with the inode locked and linked into the 1551 * current transaction. This keeps things simple for the higher level code, 1552 * because it always knows that the inode is locked and held in the transaction 1553 * that returns to it whether errors occur or not. We don't mark the inode 1554 * dirty on error so that transactions can be easily aborted if possible. 1555 */ 1556 int 1557 xfs_itruncate_finish( 1558 xfs_trans_t **tp, 1559 xfs_inode_t *ip, 1560 xfs_fsize_t new_size, 1561 int fork, 1562 int sync) 1563 { 1564 xfs_fsblock_t first_block; 1565 xfs_fileoff_t first_unmap_block; 1566 xfs_fileoff_t last_block; 1567 xfs_filblks_t unmap_len=0; 1568 xfs_mount_t *mp; 1569 xfs_trans_t *ntp; 1570 int done; 1571 int committed; 1572 xfs_bmap_free_t free_list; 1573 int error; 1574 1575 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1576 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1577 ASSERT(*tp != NULL); 1578 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1579 ASSERT(ip->i_transp == *tp); 1580 ASSERT(ip->i_itemp != NULL); 1581 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1582 1583 1584 ntp = *tp; 1585 mp = (ntp)->t_mountp; 1586 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1587 1588 /* 1589 * We only support truncating the entire attribute fork. 1590 */ 1591 if (fork == XFS_ATTR_FORK) { 1592 new_size = 0LL; 1593 } 1594 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1595 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1596 /* 1597 * The first thing we do is set the size to new_size permanently 1598 * on disk. This way we don't have to worry about anyone ever 1599 * being able to look at the data being freed even in the face 1600 * of a crash. What we're getting around here is the case where 1601 * we free a block, it is allocated to another file, it is written 1602 * to, and then we crash. If the new data gets written to the 1603 * file but the log buffers containing the free and reallocation 1604 * don't, then we'd end up with garbage in the blocks being freed. 1605 * As long as we make the new_size permanent before actually 1606 * freeing any blocks it doesn't matter if they get writtten to. 1607 * 1608 * The callers must signal into us whether or not the size 1609 * setting here must be synchronous. There are a few cases 1610 * where it doesn't have to be synchronous. Those cases 1611 * occur if the file is unlinked and we know the unlink is 1612 * permanent or if the blocks being truncated are guaranteed 1613 * to be beyond the inode eof (regardless of the link count) 1614 * and the eof value is permanent. Both of these cases occur 1615 * only on wsync-mounted filesystems. In those cases, we're 1616 * guaranteed that no user will ever see the data in the blocks 1617 * that are being truncated so the truncate can run async. 1618 * In the free beyond eof case, the file may wind up with 1619 * more blocks allocated to it than it needs if we crash 1620 * and that won't get fixed until the next time the file 1621 * is re-opened and closed but that's ok as that shouldn't 1622 * be too many blocks. 1623 * 1624 * However, we can't just make all wsync xactions run async 1625 * because there's one call out of the create path that needs 1626 * to run sync where it's truncating an existing file to size 1627 * 0 whose size is > 0. 1628 * 1629 * It's probably possible to come up with a test in this 1630 * routine that would correctly distinguish all the above 1631 * cases from the values of the function parameters and the 1632 * inode state but for sanity's sake, I've decided to let the 1633 * layers above just tell us. It's simpler to correctly figure 1634 * out in the layer above exactly under what conditions we 1635 * can run async and I think it's easier for others read and 1636 * follow the logic in case something has to be changed. 1637 * cscope is your friend -- rcc. 1638 * 1639 * The attribute fork is much simpler. 1640 * 1641 * For the attribute fork we allow the caller to tell us whether 1642 * the unlink of the inode that led to this call is yet permanent 1643 * in the on disk log. If it is not and we will be freeing extents 1644 * in this inode then we make the first transaction synchronous 1645 * to make sure that the unlink is permanent by the time we free 1646 * the blocks. 1647 */ 1648 if (fork == XFS_DATA_FORK) { 1649 if (ip->i_d.di_nextents > 0) { 1650 /* 1651 * If we are not changing the file size then do 1652 * not update the on-disk file size - we may be 1653 * called from xfs_inactive_free_eofblocks(). If we 1654 * update the on-disk file size and then the system 1655 * crashes before the contents of the file are 1656 * flushed to disk then the files may be full of 1657 * holes (ie NULL files bug). 1658 */ 1659 if (ip->i_size != new_size) { 1660 ip->i_d.di_size = new_size; 1661 ip->i_size = new_size; 1662 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1663 } 1664 } 1665 } else if (sync) { 1666 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1667 if (ip->i_d.di_anextents > 0) 1668 xfs_trans_set_sync(ntp); 1669 } 1670 ASSERT(fork == XFS_DATA_FORK || 1671 (fork == XFS_ATTR_FORK && 1672 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1673 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1674 1675 /* 1676 * Since it is possible for space to become allocated beyond 1677 * the end of the file (in a crash where the space is allocated 1678 * but the inode size is not yet updated), simply remove any 1679 * blocks which show up between the new EOF and the maximum 1680 * possible file size. If the first block to be removed is 1681 * beyond the maximum file size (ie it is the same as last_block), 1682 * then there is nothing to do. 1683 */ 1684 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1685 ASSERT(first_unmap_block <= last_block); 1686 done = 0; 1687 if (last_block == first_unmap_block) { 1688 done = 1; 1689 } else { 1690 unmap_len = last_block - first_unmap_block + 1; 1691 } 1692 while (!done) { 1693 /* 1694 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1695 * will tell us whether it freed the entire range or 1696 * not. If this is a synchronous mount (wsync), 1697 * then we can tell bunmapi to keep all the 1698 * transactions asynchronous since the unlink 1699 * transaction that made this inode inactive has 1700 * already hit the disk. There's no danger of 1701 * the freed blocks being reused, there being a 1702 * crash, and the reused blocks suddenly reappearing 1703 * in this file with garbage in them once recovery 1704 * runs. 1705 */ 1706 XFS_BMAP_INIT(&free_list, &first_block); 1707 error = xfs_bunmapi(ntp, ip, 1708 first_unmap_block, unmap_len, 1709 XFS_BMAPI_AFLAG(fork) | 1710 (sync ? 0 : XFS_BMAPI_ASYNC), 1711 XFS_ITRUNC_MAX_EXTENTS, 1712 &first_block, &free_list, 1713 NULL, &done); 1714 if (error) { 1715 /* 1716 * If the bunmapi call encounters an error, 1717 * return to the caller where the transaction 1718 * can be properly aborted. We just need to 1719 * make sure we're not holding any resources 1720 * that we were not when we came in. 1721 */ 1722 xfs_bmap_cancel(&free_list); 1723 return error; 1724 } 1725 1726 /* 1727 * Duplicate the transaction that has the permanent 1728 * reservation and commit the old transaction. 1729 */ 1730 error = xfs_bmap_finish(tp, &free_list, &committed); 1731 ntp = *tp; 1732 if (committed) { 1733 /* link the inode into the next xact in the chain */ 1734 xfs_trans_ijoin(ntp, ip, 1735 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1736 xfs_trans_ihold(ntp, ip); 1737 } 1738 1739 if (error) { 1740 /* 1741 * If the bmap finish call encounters an error, return 1742 * to the caller where the transaction can be properly 1743 * aborted. We just need to make sure we're not 1744 * holding any resources that we were not when we came 1745 * in. 1746 * 1747 * Aborting from this point might lose some blocks in 1748 * the file system, but oh well. 1749 */ 1750 xfs_bmap_cancel(&free_list); 1751 return error; 1752 } 1753 1754 if (committed) { 1755 /* 1756 * Mark the inode dirty so it will be logged and 1757 * moved forward in the log as part of every commit. 1758 */ 1759 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1760 } 1761 1762 ntp = xfs_trans_dup(ntp); 1763 error = xfs_trans_commit(*tp, 0); 1764 *tp = ntp; 1765 1766 /* link the inode into the next transaction in the chain */ 1767 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1768 xfs_trans_ihold(ntp, ip); 1769 1770 if (error) 1771 return error; 1772 /* 1773 * transaction commit worked ok so we can drop the extra ticket 1774 * reference that we gained in xfs_trans_dup() 1775 */ 1776 xfs_log_ticket_put(ntp->t_ticket); 1777 error = xfs_trans_reserve(ntp, 0, 1778 XFS_ITRUNCATE_LOG_RES(mp), 0, 1779 XFS_TRANS_PERM_LOG_RES, 1780 XFS_ITRUNCATE_LOG_COUNT); 1781 if (error) 1782 return error; 1783 } 1784 /* 1785 * Only update the size in the case of the data fork, but 1786 * always re-log the inode so that our permanent transaction 1787 * can keep on rolling it forward in the log. 1788 */ 1789 if (fork == XFS_DATA_FORK) { 1790 xfs_isize_check(mp, ip, new_size); 1791 /* 1792 * If we are not changing the file size then do 1793 * not update the on-disk file size - we may be 1794 * called from xfs_inactive_free_eofblocks(). If we 1795 * update the on-disk file size and then the system 1796 * crashes before the contents of the file are 1797 * flushed to disk then the files may be full of 1798 * holes (ie NULL files bug). 1799 */ 1800 if (ip->i_size != new_size) { 1801 ip->i_d.di_size = new_size; 1802 ip->i_size = new_size; 1803 } 1804 } 1805 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1806 ASSERT((new_size != 0) || 1807 (fork == XFS_ATTR_FORK) || 1808 (ip->i_delayed_blks == 0)); 1809 ASSERT((new_size != 0) || 1810 (fork == XFS_ATTR_FORK) || 1811 (ip->i_d.di_nextents == 0)); 1812 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1813 return 0; 1814 } 1815 1816 /* 1817 * This is called when the inode's link count goes to 0. 1818 * We place the on-disk inode on a list in the AGI. It 1819 * will be pulled from this list when the inode is freed. 1820 */ 1821 int 1822 xfs_iunlink( 1823 xfs_trans_t *tp, 1824 xfs_inode_t *ip) 1825 { 1826 xfs_mount_t *mp; 1827 xfs_agi_t *agi; 1828 xfs_dinode_t *dip; 1829 xfs_buf_t *agibp; 1830 xfs_buf_t *ibp; 1831 xfs_agino_t agino; 1832 short bucket_index; 1833 int offset; 1834 int error; 1835 1836 ASSERT(ip->i_d.di_nlink == 0); 1837 ASSERT(ip->i_d.di_mode != 0); 1838 ASSERT(ip->i_transp == tp); 1839 1840 mp = tp->t_mountp; 1841 1842 /* 1843 * Get the agi buffer first. It ensures lock ordering 1844 * on the list. 1845 */ 1846 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1847 if (error) 1848 return error; 1849 agi = XFS_BUF_TO_AGI(agibp); 1850 1851 /* 1852 * Get the index into the agi hash table for the 1853 * list this inode will go on. 1854 */ 1855 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1856 ASSERT(agino != 0); 1857 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1858 ASSERT(agi->agi_unlinked[bucket_index]); 1859 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1860 1861 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1862 /* 1863 * There is already another inode in the bucket we need 1864 * to add ourselves to. Add us at the front of the list. 1865 * Here we put the head pointer into our next pointer, 1866 * and then we fall through to point the head at us. 1867 */ 1868 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1869 if (error) 1870 return error; 1871 1872 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1873 /* both on-disk, don't endian flip twice */ 1874 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1875 offset = ip->i_boffset + 1876 offsetof(xfs_dinode_t, di_next_unlinked); 1877 xfs_trans_inode_buf(tp, ibp); 1878 xfs_trans_log_buf(tp, ibp, offset, 1879 (offset + sizeof(xfs_agino_t) - 1)); 1880 xfs_inobp_check(mp, ibp); 1881 } 1882 1883 /* 1884 * Point the bucket head pointer at the inode being inserted. 1885 */ 1886 ASSERT(agino != 0); 1887 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1888 offset = offsetof(xfs_agi_t, agi_unlinked) + 1889 (sizeof(xfs_agino_t) * bucket_index); 1890 xfs_trans_log_buf(tp, agibp, offset, 1891 (offset + sizeof(xfs_agino_t) - 1)); 1892 return 0; 1893 } 1894 1895 /* 1896 * Pull the on-disk inode from the AGI unlinked list. 1897 */ 1898 STATIC int 1899 xfs_iunlink_remove( 1900 xfs_trans_t *tp, 1901 xfs_inode_t *ip) 1902 { 1903 xfs_ino_t next_ino; 1904 xfs_mount_t *mp; 1905 xfs_agi_t *agi; 1906 xfs_dinode_t *dip; 1907 xfs_buf_t *agibp; 1908 xfs_buf_t *ibp; 1909 xfs_agnumber_t agno; 1910 xfs_agino_t agino; 1911 xfs_agino_t next_agino; 1912 xfs_buf_t *last_ibp; 1913 xfs_dinode_t *last_dip = NULL; 1914 short bucket_index; 1915 int offset, last_offset = 0; 1916 int error; 1917 1918 mp = tp->t_mountp; 1919 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1920 1921 /* 1922 * Get the agi buffer first. It ensures lock ordering 1923 * on the list. 1924 */ 1925 error = xfs_read_agi(mp, tp, agno, &agibp); 1926 if (error) 1927 return error; 1928 1929 agi = XFS_BUF_TO_AGI(agibp); 1930 1931 /* 1932 * Get the index into the agi hash table for the 1933 * list this inode will go on. 1934 */ 1935 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1936 ASSERT(agino != 0); 1937 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1938 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1939 ASSERT(agi->agi_unlinked[bucket_index]); 1940 1941 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1942 /* 1943 * We're at the head of the list. Get the inode's 1944 * on-disk buffer to see if there is anyone after us 1945 * on the list. Only modify our next pointer if it 1946 * is not already NULLAGINO. This saves us the overhead 1947 * of dealing with the buffer when there is no need to 1948 * change it. 1949 */ 1950 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1951 if (error) { 1952 cmn_err(CE_WARN, 1953 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1954 error, mp->m_fsname); 1955 return error; 1956 } 1957 next_agino = be32_to_cpu(dip->di_next_unlinked); 1958 ASSERT(next_agino != 0); 1959 if (next_agino != NULLAGINO) { 1960 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1961 offset = ip->i_boffset + 1962 offsetof(xfs_dinode_t, di_next_unlinked); 1963 xfs_trans_inode_buf(tp, ibp); 1964 xfs_trans_log_buf(tp, ibp, offset, 1965 (offset + sizeof(xfs_agino_t) - 1)); 1966 xfs_inobp_check(mp, ibp); 1967 } else { 1968 xfs_trans_brelse(tp, ibp); 1969 } 1970 /* 1971 * Point the bucket head pointer at the next inode. 1972 */ 1973 ASSERT(next_agino != 0); 1974 ASSERT(next_agino != agino); 1975 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1976 offset = offsetof(xfs_agi_t, agi_unlinked) + 1977 (sizeof(xfs_agino_t) * bucket_index); 1978 xfs_trans_log_buf(tp, agibp, offset, 1979 (offset + sizeof(xfs_agino_t) - 1)); 1980 } else { 1981 /* 1982 * We need to search the list for the inode being freed. 1983 */ 1984 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1985 last_ibp = NULL; 1986 while (next_agino != agino) { 1987 /* 1988 * If the last inode wasn't the one pointing to 1989 * us, then release its buffer since we're not 1990 * going to do anything with it. 1991 */ 1992 if (last_ibp != NULL) { 1993 xfs_trans_brelse(tp, last_ibp); 1994 } 1995 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1996 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1997 &last_ibp, &last_offset, 0); 1998 if (error) { 1999 cmn_err(CE_WARN, 2000 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2001 error, mp->m_fsname); 2002 return error; 2003 } 2004 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2005 ASSERT(next_agino != NULLAGINO); 2006 ASSERT(next_agino != 0); 2007 } 2008 /* 2009 * Now last_ibp points to the buffer previous to us on 2010 * the unlinked list. Pull us from the list. 2011 */ 2012 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2013 if (error) { 2014 cmn_err(CE_WARN, 2015 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2016 error, mp->m_fsname); 2017 return error; 2018 } 2019 next_agino = be32_to_cpu(dip->di_next_unlinked); 2020 ASSERT(next_agino != 0); 2021 ASSERT(next_agino != agino); 2022 if (next_agino != NULLAGINO) { 2023 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2024 offset = ip->i_boffset + 2025 offsetof(xfs_dinode_t, di_next_unlinked); 2026 xfs_trans_inode_buf(tp, ibp); 2027 xfs_trans_log_buf(tp, ibp, offset, 2028 (offset + sizeof(xfs_agino_t) - 1)); 2029 xfs_inobp_check(mp, ibp); 2030 } else { 2031 xfs_trans_brelse(tp, ibp); 2032 } 2033 /* 2034 * Point the previous inode on the list to the next inode. 2035 */ 2036 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2037 ASSERT(next_agino != 0); 2038 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2039 xfs_trans_inode_buf(tp, last_ibp); 2040 xfs_trans_log_buf(tp, last_ibp, offset, 2041 (offset + sizeof(xfs_agino_t) - 1)); 2042 xfs_inobp_check(mp, last_ibp); 2043 } 2044 return 0; 2045 } 2046 2047 STATIC void 2048 xfs_ifree_cluster( 2049 xfs_inode_t *free_ip, 2050 xfs_trans_t *tp, 2051 xfs_ino_t inum) 2052 { 2053 xfs_mount_t *mp = free_ip->i_mount; 2054 int blks_per_cluster; 2055 int nbufs; 2056 int ninodes; 2057 int i, j, found, pre_flushed; 2058 xfs_daddr_t blkno; 2059 xfs_buf_t *bp; 2060 xfs_inode_t *ip, **ip_found; 2061 xfs_inode_log_item_t *iip; 2062 xfs_log_item_t *lip; 2063 xfs_perag_t *pag = xfs_get_perag(mp, inum); 2064 2065 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2066 blks_per_cluster = 1; 2067 ninodes = mp->m_sb.sb_inopblock; 2068 nbufs = XFS_IALLOC_BLOCKS(mp); 2069 } else { 2070 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2071 mp->m_sb.sb_blocksize; 2072 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2073 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2074 } 2075 2076 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2077 2078 for (j = 0; j < nbufs; j++, inum += ninodes) { 2079 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2080 XFS_INO_TO_AGBNO(mp, inum)); 2081 2082 2083 /* 2084 * Look for each inode in memory and attempt to lock it, 2085 * we can be racing with flush and tail pushing here. 2086 * any inode we get the locks on, add to an array of 2087 * inode items to process later. 2088 * 2089 * The get the buffer lock, we could beat a flush 2090 * or tail pushing thread to the lock here, in which 2091 * case they will go looking for the inode buffer 2092 * and fail, we need some other form of interlock 2093 * here. 2094 */ 2095 found = 0; 2096 for (i = 0; i < ninodes; i++) { 2097 read_lock(&pag->pag_ici_lock); 2098 ip = radix_tree_lookup(&pag->pag_ici_root, 2099 XFS_INO_TO_AGINO(mp, (inum + i))); 2100 2101 /* Inode not in memory or we found it already, 2102 * nothing to do 2103 */ 2104 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2105 read_unlock(&pag->pag_ici_lock); 2106 continue; 2107 } 2108 2109 if (xfs_inode_clean(ip)) { 2110 read_unlock(&pag->pag_ici_lock); 2111 continue; 2112 } 2113 2114 /* If we can get the locks then add it to the 2115 * list, otherwise by the time we get the bp lock 2116 * below it will already be attached to the 2117 * inode buffer. 2118 */ 2119 2120 /* This inode will already be locked - by us, lets 2121 * keep it that way. 2122 */ 2123 2124 if (ip == free_ip) { 2125 if (xfs_iflock_nowait(ip)) { 2126 xfs_iflags_set(ip, XFS_ISTALE); 2127 if (xfs_inode_clean(ip)) { 2128 xfs_ifunlock(ip); 2129 } else { 2130 ip_found[found++] = ip; 2131 } 2132 } 2133 read_unlock(&pag->pag_ici_lock); 2134 continue; 2135 } 2136 2137 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2138 if (xfs_iflock_nowait(ip)) { 2139 xfs_iflags_set(ip, XFS_ISTALE); 2140 2141 if (xfs_inode_clean(ip)) { 2142 xfs_ifunlock(ip); 2143 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2144 } else { 2145 ip_found[found++] = ip; 2146 } 2147 } else { 2148 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2149 } 2150 } 2151 read_unlock(&pag->pag_ici_lock); 2152 } 2153 2154 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2155 mp->m_bsize * blks_per_cluster, 2156 XFS_BUF_LOCK); 2157 2158 pre_flushed = 0; 2159 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2160 while (lip) { 2161 if (lip->li_type == XFS_LI_INODE) { 2162 iip = (xfs_inode_log_item_t *)lip; 2163 ASSERT(iip->ili_logged == 1); 2164 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2165 xfs_trans_ail_copy_lsn(mp->m_ail, 2166 &iip->ili_flush_lsn, 2167 &iip->ili_item.li_lsn); 2168 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2169 pre_flushed++; 2170 } 2171 lip = lip->li_bio_list; 2172 } 2173 2174 for (i = 0; i < found; i++) { 2175 ip = ip_found[i]; 2176 iip = ip->i_itemp; 2177 2178 if (!iip) { 2179 ip->i_update_core = 0; 2180 xfs_ifunlock(ip); 2181 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2182 continue; 2183 } 2184 2185 iip->ili_last_fields = iip->ili_format.ilf_fields; 2186 iip->ili_format.ilf_fields = 0; 2187 iip->ili_logged = 1; 2188 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2189 &iip->ili_item.li_lsn); 2190 2191 xfs_buf_attach_iodone(bp, 2192 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2193 xfs_istale_done, (xfs_log_item_t *)iip); 2194 if (ip != free_ip) { 2195 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2196 } 2197 } 2198 2199 if (found || pre_flushed) 2200 xfs_trans_stale_inode_buf(tp, bp); 2201 xfs_trans_binval(tp, bp); 2202 } 2203 2204 kmem_free(ip_found); 2205 xfs_put_perag(mp, pag); 2206 } 2207 2208 /* 2209 * This is called to return an inode to the inode free list. 2210 * The inode should already be truncated to 0 length and have 2211 * no pages associated with it. This routine also assumes that 2212 * the inode is already a part of the transaction. 2213 * 2214 * The on-disk copy of the inode will have been added to the list 2215 * of unlinked inodes in the AGI. We need to remove the inode from 2216 * that list atomically with respect to freeing it here. 2217 */ 2218 int 2219 xfs_ifree( 2220 xfs_trans_t *tp, 2221 xfs_inode_t *ip, 2222 xfs_bmap_free_t *flist) 2223 { 2224 int error; 2225 int delete; 2226 xfs_ino_t first_ino; 2227 xfs_dinode_t *dip; 2228 xfs_buf_t *ibp; 2229 2230 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2231 ASSERT(ip->i_transp == tp); 2232 ASSERT(ip->i_d.di_nlink == 0); 2233 ASSERT(ip->i_d.di_nextents == 0); 2234 ASSERT(ip->i_d.di_anextents == 0); 2235 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2236 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2237 ASSERT(ip->i_d.di_nblocks == 0); 2238 2239 /* 2240 * Pull the on-disk inode from the AGI unlinked list. 2241 */ 2242 error = xfs_iunlink_remove(tp, ip); 2243 if (error != 0) { 2244 return error; 2245 } 2246 2247 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2248 if (error != 0) { 2249 return error; 2250 } 2251 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2252 ip->i_d.di_flags = 0; 2253 ip->i_d.di_dmevmask = 0; 2254 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2255 ip->i_df.if_ext_max = 2256 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2257 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2258 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2259 /* 2260 * Bump the generation count so no one will be confused 2261 * by reincarnations of this inode. 2262 */ 2263 ip->i_d.di_gen++; 2264 2265 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2266 2267 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2268 if (error) 2269 return error; 2270 2271 /* 2272 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2273 * from picking up this inode when it is reclaimed (its incore state 2274 * initialzed but not flushed to disk yet). The in-core di_mode is 2275 * already cleared and a corresponding transaction logged. 2276 * The hack here just synchronizes the in-core to on-disk 2277 * di_mode value in advance before the actual inode sync to disk. 2278 * This is OK because the inode is already unlinked and would never 2279 * change its di_mode again for this inode generation. 2280 * This is a temporary hack that would require a proper fix 2281 * in the future. 2282 */ 2283 dip->di_mode = 0; 2284 2285 if (delete) { 2286 xfs_ifree_cluster(ip, tp, first_ino); 2287 } 2288 2289 return 0; 2290 } 2291 2292 /* 2293 * Reallocate the space for if_broot based on the number of records 2294 * being added or deleted as indicated in rec_diff. Move the records 2295 * and pointers in if_broot to fit the new size. When shrinking this 2296 * will eliminate holes between the records and pointers created by 2297 * the caller. When growing this will create holes to be filled in 2298 * by the caller. 2299 * 2300 * The caller must not request to add more records than would fit in 2301 * the on-disk inode root. If the if_broot is currently NULL, then 2302 * if we adding records one will be allocated. The caller must also 2303 * not request that the number of records go below zero, although 2304 * it can go to zero. 2305 * 2306 * ip -- the inode whose if_broot area is changing 2307 * ext_diff -- the change in the number of records, positive or negative, 2308 * requested for the if_broot array. 2309 */ 2310 void 2311 xfs_iroot_realloc( 2312 xfs_inode_t *ip, 2313 int rec_diff, 2314 int whichfork) 2315 { 2316 struct xfs_mount *mp = ip->i_mount; 2317 int cur_max; 2318 xfs_ifork_t *ifp; 2319 struct xfs_btree_block *new_broot; 2320 int new_max; 2321 size_t new_size; 2322 char *np; 2323 char *op; 2324 2325 /* 2326 * Handle the degenerate case quietly. 2327 */ 2328 if (rec_diff == 0) { 2329 return; 2330 } 2331 2332 ifp = XFS_IFORK_PTR(ip, whichfork); 2333 if (rec_diff > 0) { 2334 /* 2335 * If there wasn't any memory allocated before, just 2336 * allocate it now and get out. 2337 */ 2338 if (ifp->if_broot_bytes == 0) { 2339 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2340 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP); 2341 ifp->if_broot_bytes = (int)new_size; 2342 return; 2343 } 2344 2345 /* 2346 * If there is already an existing if_broot, then we need 2347 * to realloc() it and shift the pointers to their new 2348 * location. The records don't change location because 2349 * they are kept butted up against the btree block header. 2350 */ 2351 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2352 new_max = cur_max + rec_diff; 2353 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2354 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2355 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2356 KM_SLEEP); 2357 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2358 ifp->if_broot_bytes); 2359 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2360 (int)new_size); 2361 ifp->if_broot_bytes = (int)new_size; 2362 ASSERT(ifp->if_broot_bytes <= 2363 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2364 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2365 return; 2366 } 2367 2368 /* 2369 * rec_diff is less than 0. In this case, we are shrinking the 2370 * if_broot buffer. It must already exist. If we go to zero 2371 * records, just get rid of the root and clear the status bit. 2372 */ 2373 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2374 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2375 new_max = cur_max + rec_diff; 2376 ASSERT(new_max >= 0); 2377 if (new_max > 0) 2378 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2379 else 2380 new_size = 0; 2381 if (new_size > 0) { 2382 new_broot = kmem_alloc(new_size, KM_SLEEP); 2383 /* 2384 * First copy over the btree block header. 2385 */ 2386 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2387 } else { 2388 new_broot = NULL; 2389 ifp->if_flags &= ~XFS_IFBROOT; 2390 } 2391 2392 /* 2393 * Only copy the records and pointers if there are any. 2394 */ 2395 if (new_max > 0) { 2396 /* 2397 * First copy the records. 2398 */ 2399 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2400 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2401 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2402 2403 /* 2404 * Then copy the pointers. 2405 */ 2406 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2407 ifp->if_broot_bytes); 2408 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2409 (int)new_size); 2410 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2411 } 2412 kmem_free(ifp->if_broot); 2413 ifp->if_broot = new_broot; 2414 ifp->if_broot_bytes = (int)new_size; 2415 ASSERT(ifp->if_broot_bytes <= 2416 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2417 return; 2418 } 2419 2420 2421 /* 2422 * This is called when the amount of space needed for if_data 2423 * is increased or decreased. The change in size is indicated by 2424 * the number of bytes that need to be added or deleted in the 2425 * byte_diff parameter. 2426 * 2427 * If the amount of space needed has decreased below the size of the 2428 * inline buffer, then switch to using the inline buffer. Otherwise, 2429 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2430 * to what is needed. 2431 * 2432 * ip -- the inode whose if_data area is changing 2433 * byte_diff -- the change in the number of bytes, positive or negative, 2434 * requested for the if_data array. 2435 */ 2436 void 2437 xfs_idata_realloc( 2438 xfs_inode_t *ip, 2439 int byte_diff, 2440 int whichfork) 2441 { 2442 xfs_ifork_t *ifp; 2443 int new_size; 2444 int real_size; 2445 2446 if (byte_diff == 0) { 2447 return; 2448 } 2449 2450 ifp = XFS_IFORK_PTR(ip, whichfork); 2451 new_size = (int)ifp->if_bytes + byte_diff; 2452 ASSERT(new_size >= 0); 2453 2454 if (new_size == 0) { 2455 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2456 kmem_free(ifp->if_u1.if_data); 2457 } 2458 ifp->if_u1.if_data = NULL; 2459 real_size = 0; 2460 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2461 /* 2462 * If the valid extents/data can fit in if_inline_ext/data, 2463 * copy them from the malloc'd vector and free it. 2464 */ 2465 if (ifp->if_u1.if_data == NULL) { 2466 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2467 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2468 ASSERT(ifp->if_real_bytes != 0); 2469 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2470 new_size); 2471 kmem_free(ifp->if_u1.if_data); 2472 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2473 } 2474 real_size = 0; 2475 } else { 2476 /* 2477 * Stuck with malloc/realloc. 2478 * For inline data, the underlying buffer must be 2479 * a multiple of 4 bytes in size so that it can be 2480 * logged and stay on word boundaries. We enforce 2481 * that here. 2482 */ 2483 real_size = roundup(new_size, 4); 2484 if (ifp->if_u1.if_data == NULL) { 2485 ASSERT(ifp->if_real_bytes == 0); 2486 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2487 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2488 /* 2489 * Only do the realloc if the underlying size 2490 * is really changing. 2491 */ 2492 if (ifp->if_real_bytes != real_size) { 2493 ifp->if_u1.if_data = 2494 kmem_realloc(ifp->if_u1.if_data, 2495 real_size, 2496 ifp->if_real_bytes, 2497 KM_SLEEP); 2498 } 2499 } else { 2500 ASSERT(ifp->if_real_bytes == 0); 2501 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2502 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2503 ifp->if_bytes); 2504 } 2505 } 2506 ifp->if_real_bytes = real_size; 2507 ifp->if_bytes = new_size; 2508 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2509 } 2510 2511 void 2512 xfs_idestroy_fork( 2513 xfs_inode_t *ip, 2514 int whichfork) 2515 { 2516 xfs_ifork_t *ifp; 2517 2518 ifp = XFS_IFORK_PTR(ip, whichfork); 2519 if (ifp->if_broot != NULL) { 2520 kmem_free(ifp->if_broot); 2521 ifp->if_broot = NULL; 2522 } 2523 2524 /* 2525 * If the format is local, then we can't have an extents 2526 * array so just look for an inline data array. If we're 2527 * not local then we may or may not have an extents list, 2528 * so check and free it up if we do. 2529 */ 2530 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2531 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2532 (ifp->if_u1.if_data != NULL)) { 2533 ASSERT(ifp->if_real_bytes != 0); 2534 kmem_free(ifp->if_u1.if_data); 2535 ifp->if_u1.if_data = NULL; 2536 ifp->if_real_bytes = 0; 2537 } 2538 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2539 ((ifp->if_flags & XFS_IFEXTIREC) || 2540 ((ifp->if_u1.if_extents != NULL) && 2541 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2542 ASSERT(ifp->if_real_bytes != 0); 2543 xfs_iext_destroy(ifp); 2544 } 2545 ASSERT(ifp->if_u1.if_extents == NULL || 2546 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2547 ASSERT(ifp->if_real_bytes == 0); 2548 if (whichfork == XFS_ATTR_FORK) { 2549 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2550 ip->i_afp = NULL; 2551 } 2552 } 2553 2554 /* 2555 * This is called free all the memory associated with an inode. 2556 * It must free the inode itself and any buffers allocated for 2557 * if_extents/if_data and if_broot. It must also free the lock 2558 * associated with the inode. 2559 * 2560 * Note: because we don't initialise everything on reallocation out 2561 * of the zone, we must ensure we nullify everything correctly before 2562 * freeing the structure. 2563 */ 2564 void 2565 xfs_idestroy( 2566 xfs_inode_t *ip) 2567 { 2568 switch (ip->i_d.di_mode & S_IFMT) { 2569 case S_IFREG: 2570 case S_IFDIR: 2571 case S_IFLNK: 2572 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2573 break; 2574 } 2575 if (ip->i_afp) 2576 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2577 2578 #ifdef XFS_INODE_TRACE 2579 ktrace_free(ip->i_trace); 2580 #endif 2581 #ifdef XFS_BMAP_TRACE 2582 ktrace_free(ip->i_xtrace); 2583 #endif 2584 #ifdef XFS_BTREE_TRACE 2585 ktrace_free(ip->i_btrace); 2586 #endif 2587 #ifdef XFS_RW_TRACE 2588 ktrace_free(ip->i_rwtrace); 2589 #endif 2590 #ifdef XFS_ILOCK_TRACE 2591 ktrace_free(ip->i_lock_trace); 2592 #endif 2593 #ifdef XFS_DIR2_TRACE 2594 ktrace_free(ip->i_dir_trace); 2595 #endif 2596 if (ip->i_itemp) { 2597 /* 2598 * Only if we are shutting down the fs will we see an 2599 * inode still in the AIL. If it is there, we should remove 2600 * it to prevent a use-after-free from occurring. 2601 */ 2602 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2603 struct xfs_ail *ailp = lip->li_ailp; 2604 2605 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2606 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2607 if (lip->li_flags & XFS_LI_IN_AIL) { 2608 spin_lock(&ailp->xa_lock); 2609 if (lip->li_flags & XFS_LI_IN_AIL) 2610 xfs_trans_ail_delete(ailp, lip); 2611 else 2612 spin_unlock(&ailp->xa_lock); 2613 } 2614 xfs_inode_item_destroy(ip); 2615 ip->i_itemp = NULL; 2616 } 2617 /* asserts to verify all state is correct here */ 2618 ASSERT(atomic_read(&ip->i_iocount) == 0); 2619 ASSERT(atomic_read(&ip->i_pincount) == 0); 2620 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 2621 ASSERT(completion_done(&ip->i_flush)); 2622 kmem_zone_free(xfs_inode_zone, ip); 2623 } 2624 2625 2626 /* 2627 * Increment the pin count of the given buffer. 2628 * This value is protected by ipinlock spinlock in the mount structure. 2629 */ 2630 void 2631 xfs_ipin( 2632 xfs_inode_t *ip) 2633 { 2634 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2635 2636 atomic_inc(&ip->i_pincount); 2637 } 2638 2639 /* 2640 * Decrement the pin count of the given inode, and wake up 2641 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2642 * inode must have been previously pinned with a call to xfs_ipin(). 2643 */ 2644 void 2645 xfs_iunpin( 2646 xfs_inode_t *ip) 2647 { 2648 ASSERT(atomic_read(&ip->i_pincount) > 0); 2649 2650 if (atomic_dec_and_test(&ip->i_pincount)) 2651 wake_up(&ip->i_ipin_wait); 2652 } 2653 2654 /* 2655 * This is called to unpin an inode. It can be directed to wait or to return 2656 * immediately without waiting for the inode to be unpinned. The caller must 2657 * have the inode locked in at least shared mode so that the buffer cannot be 2658 * subsequently pinned once someone is waiting for it to be unpinned. 2659 */ 2660 STATIC void 2661 __xfs_iunpin_wait( 2662 xfs_inode_t *ip, 2663 int wait) 2664 { 2665 xfs_inode_log_item_t *iip = ip->i_itemp; 2666 2667 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2668 if (atomic_read(&ip->i_pincount) == 0) 2669 return; 2670 2671 /* Give the log a push to start the unpinning I/O */ 2672 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? 2673 iip->ili_last_lsn : 0, XFS_LOG_FORCE); 2674 if (wait) 2675 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2676 } 2677 2678 static inline void 2679 xfs_iunpin_wait( 2680 xfs_inode_t *ip) 2681 { 2682 __xfs_iunpin_wait(ip, 1); 2683 } 2684 2685 static inline void 2686 xfs_iunpin_nowait( 2687 xfs_inode_t *ip) 2688 { 2689 __xfs_iunpin_wait(ip, 0); 2690 } 2691 2692 2693 /* 2694 * xfs_iextents_copy() 2695 * 2696 * This is called to copy the REAL extents (as opposed to the delayed 2697 * allocation extents) from the inode into the given buffer. It 2698 * returns the number of bytes copied into the buffer. 2699 * 2700 * If there are no delayed allocation extents, then we can just 2701 * memcpy() the extents into the buffer. Otherwise, we need to 2702 * examine each extent in turn and skip those which are delayed. 2703 */ 2704 int 2705 xfs_iextents_copy( 2706 xfs_inode_t *ip, 2707 xfs_bmbt_rec_t *dp, 2708 int whichfork) 2709 { 2710 int copied; 2711 int i; 2712 xfs_ifork_t *ifp; 2713 int nrecs; 2714 xfs_fsblock_t start_block; 2715 2716 ifp = XFS_IFORK_PTR(ip, whichfork); 2717 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2718 ASSERT(ifp->if_bytes > 0); 2719 2720 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2721 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2722 ASSERT(nrecs > 0); 2723 2724 /* 2725 * There are some delayed allocation extents in the 2726 * inode, so copy the extents one at a time and skip 2727 * the delayed ones. There must be at least one 2728 * non-delayed extent. 2729 */ 2730 copied = 0; 2731 for (i = 0; i < nrecs; i++) { 2732 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2733 start_block = xfs_bmbt_get_startblock(ep); 2734 if (ISNULLSTARTBLOCK(start_block)) { 2735 /* 2736 * It's a delayed allocation extent, so skip it. 2737 */ 2738 continue; 2739 } 2740 2741 /* Translate to on disk format */ 2742 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2743 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2744 dp++; 2745 copied++; 2746 } 2747 ASSERT(copied != 0); 2748 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2749 2750 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2751 } 2752 2753 /* 2754 * Each of the following cases stores data into the same region 2755 * of the on-disk inode, so only one of them can be valid at 2756 * any given time. While it is possible to have conflicting formats 2757 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2758 * in EXTENTS format, this can only happen when the fork has 2759 * changed formats after being modified but before being flushed. 2760 * In these cases, the format always takes precedence, because the 2761 * format indicates the current state of the fork. 2762 */ 2763 /*ARGSUSED*/ 2764 STATIC void 2765 xfs_iflush_fork( 2766 xfs_inode_t *ip, 2767 xfs_dinode_t *dip, 2768 xfs_inode_log_item_t *iip, 2769 int whichfork, 2770 xfs_buf_t *bp) 2771 { 2772 char *cp; 2773 xfs_ifork_t *ifp; 2774 xfs_mount_t *mp; 2775 #ifdef XFS_TRANS_DEBUG 2776 int first; 2777 #endif 2778 static const short brootflag[2] = 2779 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2780 static const short dataflag[2] = 2781 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2782 static const short extflag[2] = 2783 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2784 2785 if (!iip) 2786 return; 2787 ifp = XFS_IFORK_PTR(ip, whichfork); 2788 /* 2789 * This can happen if we gave up in iformat in an error path, 2790 * for the attribute fork. 2791 */ 2792 if (!ifp) { 2793 ASSERT(whichfork == XFS_ATTR_FORK); 2794 return; 2795 } 2796 cp = XFS_DFORK_PTR(dip, whichfork); 2797 mp = ip->i_mount; 2798 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2799 case XFS_DINODE_FMT_LOCAL: 2800 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2801 (ifp->if_bytes > 0)) { 2802 ASSERT(ifp->if_u1.if_data != NULL); 2803 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2804 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2805 } 2806 break; 2807 2808 case XFS_DINODE_FMT_EXTENTS: 2809 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2810 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2811 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2812 (ifp->if_bytes == 0)); 2813 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2814 (ifp->if_bytes > 0)); 2815 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2816 (ifp->if_bytes > 0)) { 2817 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2818 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2819 whichfork); 2820 } 2821 break; 2822 2823 case XFS_DINODE_FMT_BTREE: 2824 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2825 (ifp->if_broot_bytes > 0)) { 2826 ASSERT(ifp->if_broot != NULL); 2827 ASSERT(ifp->if_broot_bytes <= 2828 (XFS_IFORK_SIZE(ip, whichfork) + 2829 XFS_BROOT_SIZE_ADJ)); 2830 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2831 (xfs_bmdr_block_t *)cp, 2832 XFS_DFORK_SIZE(dip, mp, whichfork)); 2833 } 2834 break; 2835 2836 case XFS_DINODE_FMT_DEV: 2837 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2838 ASSERT(whichfork == XFS_DATA_FORK); 2839 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2840 } 2841 break; 2842 2843 case XFS_DINODE_FMT_UUID: 2844 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2845 ASSERT(whichfork == XFS_DATA_FORK); 2846 memcpy(XFS_DFORK_DPTR(dip), 2847 &ip->i_df.if_u2.if_uuid, 2848 sizeof(uuid_t)); 2849 } 2850 break; 2851 2852 default: 2853 ASSERT(0); 2854 break; 2855 } 2856 } 2857 2858 STATIC int 2859 xfs_iflush_cluster( 2860 xfs_inode_t *ip, 2861 xfs_buf_t *bp) 2862 { 2863 xfs_mount_t *mp = ip->i_mount; 2864 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); 2865 unsigned long first_index, mask; 2866 unsigned long inodes_per_cluster; 2867 int ilist_size; 2868 xfs_inode_t **ilist; 2869 xfs_inode_t *iq; 2870 int nr_found; 2871 int clcount = 0; 2872 int bufwasdelwri; 2873 int i; 2874 2875 ASSERT(pag->pagi_inodeok); 2876 ASSERT(pag->pag_ici_init); 2877 2878 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2879 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2880 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2881 if (!ilist) 2882 return 0; 2883 2884 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2885 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2886 read_lock(&pag->pag_ici_lock); 2887 /* really need a gang lookup range call here */ 2888 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2889 first_index, inodes_per_cluster); 2890 if (nr_found == 0) 2891 goto out_free; 2892 2893 for (i = 0; i < nr_found; i++) { 2894 iq = ilist[i]; 2895 if (iq == ip) 2896 continue; 2897 /* if the inode lies outside this cluster, we're done. */ 2898 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2899 break; 2900 /* 2901 * Do an un-protected check to see if the inode is dirty and 2902 * is a candidate for flushing. These checks will be repeated 2903 * later after the appropriate locks are acquired. 2904 */ 2905 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2906 continue; 2907 2908 /* 2909 * Try to get locks. If any are unavailable or it is pinned, 2910 * then this inode cannot be flushed and is skipped. 2911 */ 2912 2913 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2914 continue; 2915 if (!xfs_iflock_nowait(iq)) { 2916 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2917 continue; 2918 } 2919 if (xfs_ipincount(iq)) { 2920 xfs_ifunlock(iq); 2921 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2922 continue; 2923 } 2924 2925 /* 2926 * arriving here means that this inode can be flushed. First 2927 * re-check that it's dirty before flushing. 2928 */ 2929 if (!xfs_inode_clean(iq)) { 2930 int error; 2931 error = xfs_iflush_int(iq, bp); 2932 if (error) { 2933 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2934 goto cluster_corrupt_out; 2935 } 2936 clcount++; 2937 } else { 2938 xfs_ifunlock(iq); 2939 } 2940 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2941 } 2942 2943 if (clcount) { 2944 XFS_STATS_INC(xs_icluster_flushcnt); 2945 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2946 } 2947 2948 out_free: 2949 read_unlock(&pag->pag_ici_lock); 2950 kmem_free(ilist); 2951 return 0; 2952 2953 2954 cluster_corrupt_out: 2955 /* 2956 * Corruption detected in the clustering loop. Invalidate the 2957 * inode buffer and shut down the filesystem. 2958 */ 2959 read_unlock(&pag->pag_ici_lock); 2960 /* 2961 * Clean up the buffer. If it was B_DELWRI, just release it -- 2962 * brelse can handle it with no problems. If not, shut down the 2963 * filesystem before releasing the buffer. 2964 */ 2965 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2966 if (bufwasdelwri) 2967 xfs_buf_relse(bp); 2968 2969 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2970 2971 if (!bufwasdelwri) { 2972 /* 2973 * Just like incore_relse: if we have b_iodone functions, 2974 * mark the buffer as an error and call them. Otherwise 2975 * mark it as stale and brelse. 2976 */ 2977 if (XFS_BUF_IODONE_FUNC(bp)) { 2978 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 2979 XFS_BUF_UNDONE(bp); 2980 XFS_BUF_STALE(bp); 2981 XFS_BUF_SHUT(bp); 2982 XFS_BUF_ERROR(bp,EIO); 2983 xfs_biodone(bp); 2984 } else { 2985 XFS_BUF_STALE(bp); 2986 xfs_buf_relse(bp); 2987 } 2988 } 2989 2990 /* 2991 * Unlocks the flush lock 2992 */ 2993 xfs_iflush_abort(iq); 2994 kmem_free(ilist); 2995 return XFS_ERROR(EFSCORRUPTED); 2996 } 2997 2998 /* 2999 * xfs_iflush() will write a modified inode's changes out to the 3000 * inode's on disk home. The caller must have the inode lock held 3001 * in at least shared mode and the inode flush completion must be 3002 * active as well. The inode lock will still be held upon return from 3003 * the call and the caller is free to unlock it. 3004 * The inode flush will be completed when the inode reaches the disk. 3005 * The flags indicate how the inode's buffer should be written out. 3006 */ 3007 int 3008 xfs_iflush( 3009 xfs_inode_t *ip, 3010 uint flags) 3011 { 3012 xfs_inode_log_item_t *iip; 3013 xfs_buf_t *bp; 3014 xfs_dinode_t *dip; 3015 xfs_mount_t *mp; 3016 int error; 3017 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); 3018 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3019 3020 XFS_STATS_INC(xs_iflush_count); 3021 3022 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3023 ASSERT(!completion_done(&ip->i_flush)); 3024 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3025 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3026 3027 iip = ip->i_itemp; 3028 mp = ip->i_mount; 3029 3030 /* 3031 * If the inode isn't dirty, then just release the inode 3032 * flush lock and do nothing. 3033 */ 3034 if (xfs_inode_clean(ip)) { 3035 xfs_ifunlock(ip); 3036 return 0; 3037 } 3038 3039 /* 3040 * We can't flush the inode until it is unpinned, so wait for it if we 3041 * are allowed to block. We know noone new can pin it, because we are 3042 * holding the inode lock shared and you need to hold it exclusively to 3043 * pin the inode. 3044 * 3045 * If we are not allowed to block, force the log out asynchronously so 3046 * that when we come back the inode will be unpinned. If other inodes 3047 * in the same cluster are dirty, they will probably write the inode 3048 * out for us if they occur after the log force completes. 3049 */ 3050 if (noblock && xfs_ipincount(ip)) { 3051 xfs_iunpin_nowait(ip); 3052 xfs_ifunlock(ip); 3053 return EAGAIN; 3054 } 3055 xfs_iunpin_wait(ip); 3056 3057 /* 3058 * This may have been unpinned because the filesystem is shutting 3059 * down forcibly. If that's the case we must not write this inode 3060 * to disk, because the log record didn't make it to disk! 3061 */ 3062 if (XFS_FORCED_SHUTDOWN(mp)) { 3063 ip->i_update_core = 0; 3064 if (iip) 3065 iip->ili_format.ilf_fields = 0; 3066 xfs_ifunlock(ip); 3067 return XFS_ERROR(EIO); 3068 } 3069 3070 /* 3071 * Decide how buffer will be flushed out. This is done before 3072 * the call to xfs_iflush_int because this field is zeroed by it. 3073 */ 3074 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3075 /* 3076 * Flush out the inode buffer according to the directions 3077 * of the caller. In the cases where the caller has given 3078 * us a choice choose the non-delwri case. This is because 3079 * the inode is in the AIL and we need to get it out soon. 3080 */ 3081 switch (flags) { 3082 case XFS_IFLUSH_SYNC: 3083 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3084 flags = 0; 3085 break; 3086 case XFS_IFLUSH_ASYNC_NOBLOCK: 3087 case XFS_IFLUSH_ASYNC: 3088 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3089 flags = INT_ASYNC; 3090 break; 3091 case XFS_IFLUSH_DELWRI: 3092 flags = INT_DELWRI; 3093 break; 3094 default: 3095 ASSERT(0); 3096 flags = 0; 3097 break; 3098 } 3099 } else { 3100 switch (flags) { 3101 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3102 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3103 case XFS_IFLUSH_DELWRI: 3104 flags = INT_DELWRI; 3105 break; 3106 case XFS_IFLUSH_ASYNC_NOBLOCK: 3107 case XFS_IFLUSH_ASYNC: 3108 flags = INT_ASYNC; 3109 break; 3110 case XFS_IFLUSH_SYNC: 3111 flags = 0; 3112 break; 3113 default: 3114 ASSERT(0); 3115 flags = 0; 3116 break; 3117 } 3118 } 3119 3120 /* 3121 * Get the buffer containing the on-disk inode. 3122 */ 3123 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 3124 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); 3125 if (error || !bp) { 3126 xfs_ifunlock(ip); 3127 return error; 3128 } 3129 3130 /* 3131 * First flush out the inode that xfs_iflush was called with. 3132 */ 3133 error = xfs_iflush_int(ip, bp); 3134 if (error) 3135 goto corrupt_out; 3136 3137 /* 3138 * If the buffer is pinned then push on the log now so we won't 3139 * get stuck waiting in the write for too long. 3140 */ 3141 if (XFS_BUF_ISPINNED(bp)) 3142 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3143 3144 /* 3145 * inode clustering: 3146 * see if other inodes can be gathered into this write 3147 */ 3148 error = xfs_iflush_cluster(ip, bp); 3149 if (error) 3150 goto cluster_corrupt_out; 3151 3152 if (flags & INT_DELWRI) { 3153 xfs_bdwrite(mp, bp); 3154 } else if (flags & INT_ASYNC) { 3155 error = xfs_bawrite(mp, bp); 3156 } else { 3157 error = xfs_bwrite(mp, bp); 3158 } 3159 return error; 3160 3161 corrupt_out: 3162 xfs_buf_relse(bp); 3163 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3164 cluster_corrupt_out: 3165 /* 3166 * Unlocks the flush lock 3167 */ 3168 xfs_iflush_abort(ip); 3169 return XFS_ERROR(EFSCORRUPTED); 3170 } 3171 3172 3173 STATIC int 3174 xfs_iflush_int( 3175 xfs_inode_t *ip, 3176 xfs_buf_t *bp) 3177 { 3178 xfs_inode_log_item_t *iip; 3179 xfs_dinode_t *dip; 3180 xfs_mount_t *mp; 3181 #ifdef XFS_TRANS_DEBUG 3182 int first; 3183 #endif 3184 3185 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3186 ASSERT(!completion_done(&ip->i_flush)); 3187 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3188 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3189 3190 iip = ip->i_itemp; 3191 mp = ip->i_mount; 3192 3193 3194 /* 3195 * If the inode isn't dirty, then just release the inode 3196 * flush lock and do nothing. 3197 */ 3198 if (xfs_inode_clean(ip)) { 3199 xfs_ifunlock(ip); 3200 return 0; 3201 } 3202 3203 /* set *dip = inode's place in the buffer */ 3204 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3205 3206 /* 3207 * Clear i_update_core before copying out the data. 3208 * This is for coordination with our timestamp updates 3209 * that don't hold the inode lock. They will always 3210 * update the timestamps BEFORE setting i_update_core, 3211 * so if we clear i_update_core after they set it we 3212 * are guaranteed to see their updates to the timestamps. 3213 * I believe that this depends on strongly ordered memory 3214 * semantics, but we have that. We use the SYNCHRONIZE 3215 * macro to make sure that the compiler does not reorder 3216 * the i_update_core access below the data copy below. 3217 */ 3218 ip->i_update_core = 0; 3219 SYNCHRONIZE(); 3220 3221 /* 3222 * Make sure to get the latest atime from the Linux inode. 3223 */ 3224 xfs_synchronize_atime(ip); 3225 3226 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 3227 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3228 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3229 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3230 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3231 goto corrupt_out; 3232 } 3233 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3234 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3235 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3236 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3237 ip->i_ino, ip, ip->i_d.di_magic); 3238 goto corrupt_out; 3239 } 3240 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3241 if (XFS_TEST_ERROR( 3242 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3243 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3244 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3245 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3246 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3247 ip->i_ino, ip); 3248 goto corrupt_out; 3249 } 3250 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3251 if (XFS_TEST_ERROR( 3252 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3253 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3254 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3255 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3256 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3257 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3258 ip->i_ino, ip); 3259 goto corrupt_out; 3260 } 3261 } 3262 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3263 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3264 XFS_RANDOM_IFLUSH_5)) { 3265 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3266 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3267 ip->i_ino, 3268 ip->i_d.di_nextents + ip->i_d.di_anextents, 3269 ip->i_d.di_nblocks, 3270 ip); 3271 goto corrupt_out; 3272 } 3273 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3274 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3275 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3276 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3277 ip->i_ino, ip->i_d.di_forkoff, ip); 3278 goto corrupt_out; 3279 } 3280 /* 3281 * bump the flush iteration count, used to detect flushes which 3282 * postdate a log record during recovery. 3283 */ 3284 3285 ip->i_d.di_flushiter++; 3286 3287 /* 3288 * Copy the dirty parts of the inode into the on-disk 3289 * inode. We always copy out the core of the inode, 3290 * because if the inode is dirty at all the core must 3291 * be. 3292 */ 3293 xfs_dinode_to_disk(dip, &ip->i_d); 3294 3295 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3296 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3297 ip->i_d.di_flushiter = 0; 3298 3299 /* 3300 * If this is really an old format inode and the superblock version 3301 * has not been updated to support only new format inodes, then 3302 * convert back to the old inode format. If the superblock version 3303 * has been updated, then make the conversion permanent. 3304 */ 3305 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3306 if (ip->i_d.di_version == 1) { 3307 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3308 /* 3309 * Convert it back. 3310 */ 3311 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3312 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3313 } else { 3314 /* 3315 * The superblock version has already been bumped, 3316 * so just make the conversion to the new inode 3317 * format permanent. 3318 */ 3319 ip->i_d.di_version = 2; 3320 dip->di_version = 2; 3321 ip->i_d.di_onlink = 0; 3322 dip->di_onlink = 0; 3323 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3324 memset(&(dip->di_pad[0]), 0, 3325 sizeof(dip->di_pad)); 3326 ASSERT(ip->i_d.di_projid == 0); 3327 } 3328 } 3329 3330 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3331 if (XFS_IFORK_Q(ip)) 3332 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3333 xfs_inobp_check(mp, bp); 3334 3335 /* 3336 * We've recorded everything logged in the inode, so we'd 3337 * like to clear the ilf_fields bits so we don't log and 3338 * flush things unnecessarily. However, we can't stop 3339 * logging all this information until the data we've copied 3340 * into the disk buffer is written to disk. If we did we might 3341 * overwrite the copy of the inode in the log with all the 3342 * data after re-logging only part of it, and in the face of 3343 * a crash we wouldn't have all the data we need to recover. 3344 * 3345 * What we do is move the bits to the ili_last_fields field. 3346 * When logging the inode, these bits are moved back to the 3347 * ilf_fields field. In the xfs_iflush_done() routine we 3348 * clear ili_last_fields, since we know that the information 3349 * those bits represent is permanently on disk. As long as 3350 * the flush completes before the inode is logged again, then 3351 * both ilf_fields and ili_last_fields will be cleared. 3352 * 3353 * We can play with the ilf_fields bits here, because the inode 3354 * lock must be held exclusively in order to set bits there 3355 * and the flush lock protects the ili_last_fields bits. 3356 * Set ili_logged so the flush done 3357 * routine can tell whether or not to look in the AIL. 3358 * Also, store the current LSN of the inode so that we can tell 3359 * whether the item has moved in the AIL from xfs_iflush_done(). 3360 * In order to read the lsn we need the AIL lock, because 3361 * it is a 64 bit value that cannot be read atomically. 3362 */ 3363 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3364 iip->ili_last_fields = iip->ili_format.ilf_fields; 3365 iip->ili_format.ilf_fields = 0; 3366 iip->ili_logged = 1; 3367 3368 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3369 &iip->ili_item.li_lsn); 3370 3371 /* 3372 * Attach the function xfs_iflush_done to the inode's 3373 * buffer. This will remove the inode from the AIL 3374 * and unlock the inode's flush lock when the inode is 3375 * completely written to disk. 3376 */ 3377 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3378 xfs_iflush_done, (xfs_log_item_t *)iip); 3379 3380 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3381 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3382 } else { 3383 /* 3384 * We're flushing an inode which is not in the AIL and has 3385 * not been logged but has i_update_core set. For this 3386 * case we can use a B_DELWRI flush and immediately drop 3387 * the inode flush lock because we can avoid the whole 3388 * AIL state thing. It's OK to drop the flush lock now, 3389 * because we've already locked the buffer and to do anything 3390 * you really need both. 3391 */ 3392 if (iip != NULL) { 3393 ASSERT(iip->ili_logged == 0); 3394 ASSERT(iip->ili_last_fields == 0); 3395 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3396 } 3397 xfs_ifunlock(ip); 3398 } 3399 3400 return 0; 3401 3402 corrupt_out: 3403 return XFS_ERROR(EFSCORRUPTED); 3404 } 3405 3406 3407 3408 #ifdef XFS_ILOCK_TRACE 3409 ktrace_t *xfs_ilock_trace_buf; 3410 3411 void 3412 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3413 { 3414 ktrace_enter(ip->i_lock_trace, 3415 (void *)ip, 3416 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3417 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3418 (void *)ra, /* caller of ilock */ 3419 (void *)(unsigned long)current_cpu(), 3420 (void *)(unsigned long)current_pid(), 3421 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3422 } 3423 #endif 3424 3425 /* 3426 * Return a pointer to the extent record at file index idx. 3427 */ 3428 xfs_bmbt_rec_host_t * 3429 xfs_iext_get_ext( 3430 xfs_ifork_t *ifp, /* inode fork pointer */ 3431 xfs_extnum_t idx) /* index of target extent */ 3432 { 3433 ASSERT(idx >= 0); 3434 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3435 return ifp->if_u1.if_ext_irec->er_extbuf; 3436 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3437 xfs_ext_irec_t *erp; /* irec pointer */ 3438 int erp_idx = 0; /* irec index */ 3439 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3440 3441 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3442 return &erp->er_extbuf[page_idx]; 3443 } else if (ifp->if_bytes) { 3444 return &ifp->if_u1.if_extents[idx]; 3445 } else { 3446 return NULL; 3447 } 3448 } 3449 3450 /* 3451 * Insert new item(s) into the extent records for incore inode 3452 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3453 */ 3454 void 3455 xfs_iext_insert( 3456 xfs_ifork_t *ifp, /* inode fork pointer */ 3457 xfs_extnum_t idx, /* starting index of new items */ 3458 xfs_extnum_t count, /* number of inserted items */ 3459 xfs_bmbt_irec_t *new) /* items to insert */ 3460 { 3461 xfs_extnum_t i; /* extent record index */ 3462 3463 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3464 xfs_iext_add(ifp, idx, count); 3465 for (i = idx; i < idx + count; i++, new++) 3466 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3467 } 3468 3469 /* 3470 * This is called when the amount of space required for incore file 3471 * extents needs to be increased. The ext_diff parameter stores the 3472 * number of new extents being added and the idx parameter contains 3473 * the extent index where the new extents will be added. If the new 3474 * extents are being appended, then we just need to (re)allocate and 3475 * initialize the space. Otherwise, if the new extents are being 3476 * inserted into the middle of the existing entries, a bit more work 3477 * is required to make room for the new extents to be inserted. The 3478 * caller is responsible for filling in the new extent entries upon 3479 * return. 3480 */ 3481 void 3482 xfs_iext_add( 3483 xfs_ifork_t *ifp, /* inode fork pointer */ 3484 xfs_extnum_t idx, /* index to begin adding exts */ 3485 int ext_diff) /* number of extents to add */ 3486 { 3487 int byte_diff; /* new bytes being added */ 3488 int new_size; /* size of extents after adding */ 3489 xfs_extnum_t nextents; /* number of extents in file */ 3490 3491 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3492 ASSERT((idx >= 0) && (idx <= nextents)); 3493 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3494 new_size = ifp->if_bytes + byte_diff; 3495 /* 3496 * If the new number of extents (nextents + ext_diff) 3497 * fits inside the inode, then continue to use the inline 3498 * extent buffer. 3499 */ 3500 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3501 if (idx < nextents) { 3502 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3503 &ifp->if_u2.if_inline_ext[idx], 3504 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3505 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3506 } 3507 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3508 ifp->if_real_bytes = 0; 3509 ifp->if_lastex = nextents + ext_diff; 3510 } 3511 /* 3512 * Otherwise use a linear (direct) extent list. 3513 * If the extents are currently inside the inode, 3514 * xfs_iext_realloc_direct will switch us from 3515 * inline to direct extent allocation mode. 3516 */ 3517 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3518 xfs_iext_realloc_direct(ifp, new_size); 3519 if (idx < nextents) { 3520 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3521 &ifp->if_u1.if_extents[idx], 3522 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3523 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3524 } 3525 } 3526 /* Indirection array */ 3527 else { 3528 xfs_ext_irec_t *erp; 3529 int erp_idx = 0; 3530 int page_idx = idx; 3531 3532 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3533 if (ifp->if_flags & XFS_IFEXTIREC) { 3534 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3535 } else { 3536 xfs_iext_irec_init(ifp); 3537 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3538 erp = ifp->if_u1.if_ext_irec; 3539 } 3540 /* Extents fit in target extent page */ 3541 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3542 if (page_idx < erp->er_extcount) { 3543 memmove(&erp->er_extbuf[page_idx + ext_diff], 3544 &erp->er_extbuf[page_idx], 3545 (erp->er_extcount - page_idx) * 3546 sizeof(xfs_bmbt_rec_t)); 3547 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3548 } 3549 erp->er_extcount += ext_diff; 3550 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3551 } 3552 /* Insert a new extent page */ 3553 else if (erp) { 3554 xfs_iext_add_indirect_multi(ifp, 3555 erp_idx, page_idx, ext_diff); 3556 } 3557 /* 3558 * If extent(s) are being appended to the last page in 3559 * the indirection array and the new extent(s) don't fit 3560 * in the page, then erp is NULL and erp_idx is set to 3561 * the next index needed in the indirection array. 3562 */ 3563 else { 3564 int count = ext_diff; 3565 3566 while (count) { 3567 erp = xfs_iext_irec_new(ifp, erp_idx); 3568 erp->er_extcount = count; 3569 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3570 if (count) { 3571 erp_idx++; 3572 } 3573 } 3574 } 3575 } 3576 ifp->if_bytes = new_size; 3577 } 3578 3579 /* 3580 * This is called when incore extents are being added to the indirection 3581 * array and the new extents do not fit in the target extent list. The 3582 * erp_idx parameter contains the irec index for the target extent list 3583 * in the indirection array, and the idx parameter contains the extent 3584 * index within the list. The number of extents being added is stored 3585 * in the count parameter. 3586 * 3587 * |-------| |-------| 3588 * | | | | idx - number of extents before idx 3589 * | idx | | count | 3590 * | | | | count - number of extents being inserted at idx 3591 * |-------| |-------| 3592 * | count | | nex2 | nex2 - number of extents after idx + count 3593 * |-------| |-------| 3594 */ 3595 void 3596 xfs_iext_add_indirect_multi( 3597 xfs_ifork_t *ifp, /* inode fork pointer */ 3598 int erp_idx, /* target extent irec index */ 3599 xfs_extnum_t idx, /* index within target list */ 3600 int count) /* new extents being added */ 3601 { 3602 int byte_diff; /* new bytes being added */ 3603 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3604 xfs_extnum_t ext_diff; /* number of extents to add */ 3605 xfs_extnum_t ext_cnt; /* new extents still needed */ 3606 xfs_extnum_t nex2; /* extents after idx + count */ 3607 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3608 int nlists; /* number of irec's (lists) */ 3609 3610 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3611 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3612 nex2 = erp->er_extcount - idx; 3613 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3614 3615 /* 3616 * Save second part of target extent list 3617 * (all extents past */ 3618 if (nex2) { 3619 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3620 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3621 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3622 erp->er_extcount -= nex2; 3623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3624 memset(&erp->er_extbuf[idx], 0, byte_diff); 3625 } 3626 3627 /* 3628 * Add the new extents to the end of the target 3629 * list, then allocate new irec record(s) and 3630 * extent buffer(s) as needed to store the rest 3631 * of the new extents. 3632 */ 3633 ext_cnt = count; 3634 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3635 if (ext_diff) { 3636 erp->er_extcount += ext_diff; 3637 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3638 ext_cnt -= ext_diff; 3639 } 3640 while (ext_cnt) { 3641 erp_idx++; 3642 erp = xfs_iext_irec_new(ifp, erp_idx); 3643 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3644 erp->er_extcount = ext_diff; 3645 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3646 ext_cnt -= ext_diff; 3647 } 3648 3649 /* Add nex2 extents back to indirection array */ 3650 if (nex2) { 3651 xfs_extnum_t ext_avail; 3652 int i; 3653 3654 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3655 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3656 i = 0; 3657 /* 3658 * If nex2 extents fit in the current page, append 3659 * nex2_ep after the new extents. 3660 */ 3661 if (nex2 <= ext_avail) { 3662 i = erp->er_extcount; 3663 } 3664 /* 3665 * Otherwise, check if space is available in the 3666 * next page. 3667 */ 3668 else if ((erp_idx < nlists - 1) && 3669 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3670 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3671 erp_idx++; 3672 erp++; 3673 /* Create a hole for nex2 extents */ 3674 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3675 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3676 } 3677 /* 3678 * Final choice, create a new extent page for 3679 * nex2 extents. 3680 */ 3681 else { 3682 erp_idx++; 3683 erp = xfs_iext_irec_new(ifp, erp_idx); 3684 } 3685 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3686 kmem_free(nex2_ep); 3687 erp->er_extcount += nex2; 3688 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3689 } 3690 } 3691 3692 /* 3693 * This is called when the amount of space required for incore file 3694 * extents needs to be decreased. The ext_diff parameter stores the 3695 * number of extents to be removed and the idx parameter contains 3696 * the extent index where the extents will be removed from. 3697 * 3698 * If the amount of space needed has decreased below the linear 3699 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3700 * extent array. Otherwise, use kmem_realloc() to adjust the 3701 * size to what is needed. 3702 */ 3703 void 3704 xfs_iext_remove( 3705 xfs_ifork_t *ifp, /* inode fork pointer */ 3706 xfs_extnum_t idx, /* index to begin removing exts */ 3707 int ext_diff) /* number of extents to remove */ 3708 { 3709 xfs_extnum_t nextents; /* number of extents in file */ 3710 int new_size; /* size of extents after removal */ 3711 3712 ASSERT(ext_diff > 0); 3713 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3714 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3715 3716 if (new_size == 0) { 3717 xfs_iext_destroy(ifp); 3718 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3719 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3720 } else if (ifp->if_real_bytes) { 3721 xfs_iext_remove_direct(ifp, idx, ext_diff); 3722 } else { 3723 xfs_iext_remove_inline(ifp, idx, ext_diff); 3724 } 3725 ifp->if_bytes = new_size; 3726 } 3727 3728 /* 3729 * This removes ext_diff extents from the inline buffer, beginning 3730 * at extent index idx. 3731 */ 3732 void 3733 xfs_iext_remove_inline( 3734 xfs_ifork_t *ifp, /* inode fork pointer */ 3735 xfs_extnum_t idx, /* index to begin removing exts */ 3736 int ext_diff) /* number of extents to remove */ 3737 { 3738 int nextents; /* number of extents in file */ 3739 3740 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3741 ASSERT(idx < XFS_INLINE_EXTS); 3742 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3743 ASSERT(((nextents - ext_diff) > 0) && 3744 (nextents - ext_diff) < XFS_INLINE_EXTS); 3745 3746 if (idx + ext_diff < nextents) { 3747 memmove(&ifp->if_u2.if_inline_ext[idx], 3748 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3749 (nextents - (idx + ext_diff)) * 3750 sizeof(xfs_bmbt_rec_t)); 3751 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3752 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3753 } else { 3754 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3755 ext_diff * sizeof(xfs_bmbt_rec_t)); 3756 } 3757 } 3758 3759 /* 3760 * This removes ext_diff extents from a linear (direct) extent list, 3761 * beginning at extent index idx. If the extents are being removed 3762 * from the end of the list (ie. truncate) then we just need to re- 3763 * allocate the list to remove the extra space. Otherwise, if the 3764 * extents are being removed from the middle of the existing extent 3765 * entries, then we first need to move the extent records beginning 3766 * at idx + ext_diff up in the list to overwrite the records being 3767 * removed, then remove the extra space via kmem_realloc. 3768 */ 3769 void 3770 xfs_iext_remove_direct( 3771 xfs_ifork_t *ifp, /* inode fork pointer */ 3772 xfs_extnum_t idx, /* index to begin removing exts */ 3773 int ext_diff) /* number of extents to remove */ 3774 { 3775 xfs_extnum_t nextents; /* number of extents in file */ 3776 int new_size; /* size of extents after removal */ 3777 3778 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3779 new_size = ifp->if_bytes - 3780 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3781 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3782 3783 if (new_size == 0) { 3784 xfs_iext_destroy(ifp); 3785 return; 3786 } 3787 /* Move extents up in the list (if needed) */ 3788 if (idx + ext_diff < nextents) { 3789 memmove(&ifp->if_u1.if_extents[idx], 3790 &ifp->if_u1.if_extents[idx + ext_diff], 3791 (nextents - (idx + ext_diff)) * 3792 sizeof(xfs_bmbt_rec_t)); 3793 } 3794 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3795 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3796 /* 3797 * Reallocate the direct extent list. If the extents 3798 * will fit inside the inode then xfs_iext_realloc_direct 3799 * will switch from direct to inline extent allocation 3800 * mode for us. 3801 */ 3802 xfs_iext_realloc_direct(ifp, new_size); 3803 ifp->if_bytes = new_size; 3804 } 3805 3806 /* 3807 * This is called when incore extents are being removed from the 3808 * indirection array and the extents being removed span multiple extent 3809 * buffers. The idx parameter contains the file extent index where we 3810 * want to begin removing extents, and the count parameter contains 3811 * how many extents need to be removed. 3812 * 3813 * |-------| |-------| 3814 * | nex1 | | | nex1 - number of extents before idx 3815 * |-------| | count | 3816 * | | | | count - number of extents being removed at idx 3817 * | count | |-------| 3818 * | | | nex2 | nex2 - number of extents after idx + count 3819 * |-------| |-------| 3820 */ 3821 void 3822 xfs_iext_remove_indirect( 3823 xfs_ifork_t *ifp, /* inode fork pointer */ 3824 xfs_extnum_t idx, /* index to begin removing extents */ 3825 int count) /* number of extents to remove */ 3826 { 3827 xfs_ext_irec_t *erp; /* indirection array pointer */ 3828 int erp_idx = 0; /* indirection array index */ 3829 xfs_extnum_t ext_cnt; /* extents left to remove */ 3830 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3831 xfs_extnum_t nex1; /* number of extents before idx */ 3832 xfs_extnum_t nex2; /* extents after idx + count */ 3833 int nlists; /* entries in indirection array */ 3834 int page_idx = idx; /* index in target extent list */ 3835 3836 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3837 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3838 ASSERT(erp != NULL); 3839 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3840 nex1 = page_idx; 3841 ext_cnt = count; 3842 while (ext_cnt) { 3843 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3844 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3845 /* 3846 * Check for deletion of entire list; 3847 * xfs_iext_irec_remove() updates extent offsets. 3848 */ 3849 if (ext_diff == erp->er_extcount) { 3850 xfs_iext_irec_remove(ifp, erp_idx); 3851 ext_cnt -= ext_diff; 3852 nex1 = 0; 3853 if (ext_cnt) { 3854 ASSERT(erp_idx < ifp->if_real_bytes / 3855 XFS_IEXT_BUFSZ); 3856 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3857 nex1 = 0; 3858 continue; 3859 } else { 3860 break; 3861 } 3862 } 3863 /* Move extents up (if needed) */ 3864 if (nex2) { 3865 memmove(&erp->er_extbuf[nex1], 3866 &erp->er_extbuf[nex1 + ext_diff], 3867 nex2 * sizeof(xfs_bmbt_rec_t)); 3868 } 3869 /* Zero out rest of page */ 3870 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3871 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3872 /* Update remaining counters */ 3873 erp->er_extcount -= ext_diff; 3874 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3875 ext_cnt -= ext_diff; 3876 nex1 = 0; 3877 erp_idx++; 3878 erp++; 3879 } 3880 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3881 xfs_iext_irec_compact(ifp); 3882 } 3883 3884 /* 3885 * Create, destroy, or resize a linear (direct) block of extents. 3886 */ 3887 void 3888 xfs_iext_realloc_direct( 3889 xfs_ifork_t *ifp, /* inode fork pointer */ 3890 int new_size) /* new size of extents */ 3891 { 3892 int rnew_size; /* real new size of extents */ 3893 3894 rnew_size = new_size; 3895 3896 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3897 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3898 (new_size != ifp->if_real_bytes))); 3899 3900 /* Free extent records */ 3901 if (new_size == 0) { 3902 xfs_iext_destroy(ifp); 3903 } 3904 /* Resize direct extent list and zero any new bytes */ 3905 else if (ifp->if_real_bytes) { 3906 /* Check if extents will fit inside the inode */ 3907 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3908 xfs_iext_direct_to_inline(ifp, new_size / 3909 (uint)sizeof(xfs_bmbt_rec_t)); 3910 ifp->if_bytes = new_size; 3911 return; 3912 } 3913 if (!is_power_of_2(new_size)){ 3914 rnew_size = roundup_pow_of_two(new_size); 3915 } 3916 if (rnew_size != ifp->if_real_bytes) { 3917 ifp->if_u1.if_extents = 3918 kmem_realloc(ifp->if_u1.if_extents, 3919 rnew_size, 3920 ifp->if_real_bytes, KM_NOFS); 3921 } 3922 if (rnew_size > ifp->if_real_bytes) { 3923 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3924 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3925 rnew_size - ifp->if_real_bytes); 3926 } 3927 } 3928 /* 3929 * Switch from the inline extent buffer to a direct 3930 * extent list. Be sure to include the inline extent 3931 * bytes in new_size. 3932 */ 3933 else { 3934 new_size += ifp->if_bytes; 3935 if (!is_power_of_2(new_size)) { 3936 rnew_size = roundup_pow_of_two(new_size); 3937 } 3938 xfs_iext_inline_to_direct(ifp, rnew_size); 3939 } 3940 ifp->if_real_bytes = rnew_size; 3941 ifp->if_bytes = new_size; 3942 } 3943 3944 /* 3945 * Switch from linear (direct) extent records to inline buffer. 3946 */ 3947 void 3948 xfs_iext_direct_to_inline( 3949 xfs_ifork_t *ifp, /* inode fork pointer */ 3950 xfs_extnum_t nextents) /* number of extents in file */ 3951 { 3952 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3953 ASSERT(nextents <= XFS_INLINE_EXTS); 3954 /* 3955 * The inline buffer was zeroed when we switched 3956 * from inline to direct extent allocation mode, 3957 * so we don't need to clear it here. 3958 */ 3959 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3960 nextents * sizeof(xfs_bmbt_rec_t)); 3961 kmem_free(ifp->if_u1.if_extents); 3962 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3963 ifp->if_real_bytes = 0; 3964 } 3965 3966 /* 3967 * Switch from inline buffer to linear (direct) extent records. 3968 * new_size should already be rounded up to the next power of 2 3969 * by the caller (when appropriate), so use new_size as it is. 3970 * However, since new_size may be rounded up, we can't update 3971 * if_bytes here. It is the caller's responsibility to update 3972 * if_bytes upon return. 3973 */ 3974 void 3975 xfs_iext_inline_to_direct( 3976 xfs_ifork_t *ifp, /* inode fork pointer */ 3977 int new_size) /* number of extents in file */ 3978 { 3979 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3980 memset(ifp->if_u1.if_extents, 0, new_size); 3981 if (ifp->if_bytes) { 3982 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3983 ifp->if_bytes); 3984 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3985 sizeof(xfs_bmbt_rec_t)); 3986 } 3987 ifp->if_real_bytes = new_size; 3988 } 3989 3990 /* 3991 * Resize an extent indirection array to new_size bytes. 3992 */ 3993 void 3994 xfs_iext_realloc_indirect( 3995 xfs_ifork_t *ifp, /* inode fork pointer */ 3996 int new_size) /* new indirection array size */ 3997 { 3998 int nlists; /* number of irec's (ex lists) */ 3999 int size; /* current indirection array size */ 4000 4001 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4002 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4003 size = nlists * sizeof(xfs_ext_irec_t); 4004 ASSERT(ifp->if_real_bytes); 4005 ASSERT((new_size >= 0) && (new_size != size)); 4006 if (new_size == 0) { 4007 xfs_iext_destroy(ifp); 4008 } else { 4009 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4010 kmem_realloc(ifp->if_u1.if_ext_irec, 4011 new_size, size, KM_NOFS); 4012 } 4013 } 4014 4015 /* 4016 * Switch from indirection array to linear (direct) extent allocations. 4017 */ 4018 void 4019 xfs_iext_indirect_to_direct( 4020 xfs_ifork_t *ifp) /* inode fork pointer */ 4021 { 4022 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 4023 xfs_extnum_t nextents; /* number of extents in file */ 4024 int size; /* size of file extents */ 4025 4026 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4027 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4028 ASSERT(nextents <= XFS_LINEAR_EXTS); 4029 size = nextents * sizeof(xfs_bmbt_rec_t); 4030 4031 xfs_iext_irec_compact_pages(ifp); 4032 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4033 4034 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4035 kmem_free(ifp->if_u1.if_ext_irec); 4036 ifp->if_flags &= ~XFS_IFEXTIREC; 4037 ifp->if_u1.if_extents = ep; 4038 ifp->if_bytes = size; 4039 if (nextents < XFS_LINEAR_EXTS) { 4040 xfs_iext_realloc_direct(ifp, size); 4041 } 4042 } 4043 4044 /* 4045 * Free incore file extents. 4046 */ 4047 void 4048 xfs_iext_destroy( 4049 xfs_ifork_t *ifp) /* inode fork pointer */ 4050 { 4051 if (ifp->if_flags & XFS_IFEXTIREC) { 4052 int erp_idx; 4053 int nlists; 4054 4055 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4056 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4057 xfs_iext_irec_remove(ifp, erp_idx); 4058 } 4059 ifp->if_flags &= ~XFS_IFEXTIREC; 4060 } else if (ifp->if_real_bytes) { 4061 kmem_free(ifp->if_u1.if_extents); 4062 } else if (ifp->if_bytes) { 4063 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4064 sizeof(xfs_bmbt_rec_t)); 4065 } 4066 ifp->if_u1.if_extents = NULL; 4067 ifp->if_real_bytes = 0; 4068 ifp->if_bytes = 0; 4069 } 4070 4071 /* 4072 * Return a pointer to the extent record for file system block bno. 4073 */ 4074 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 4075 xfs_iext_bno_to_ext( 4076 xfs_ifork_t *ifp, /* inode fork pointer */ 4077 xfs_fileoff_t bno, /* block number to search for */ 4078 xfs_extnum_t *idxp) /* index of target extent */ 4079 { 4080 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 4081 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4082 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 4083 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4084 int high; /* upper boundary in search */ 4085 xfs_extnum_t idx = 0; /* index of target extent */ 4086 int low; /* lower boundary in search */ 4087 xfs_extnum_t nextents; /* number of file extents */ 4088 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4089 4090 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4091 if (nextents == 0) { 4092 *idxp = 0; 4093 return NULL; 4094 } 4095 low = 0; 4096 if (ifp->if_flags & XFS_IFEXTIREC) { 4097 /* Find target extent list */ 4098 int erp_idx = 0; 4099 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4100 base = erp->er_extbuf; 4101 high = erp->er_extcount - 1; 4102 } else { 4103 base = ifp->if_u1.if_extents; 4104 high = nextents - 1; 4105 } 4106 /* Binary search extent records */ 4107 while (low <= high) { 4108 idx = (low + high) >> 1; 4109 ep = base + idx; 4110 startoff = xfs_bmbt_get_startoff(ep); 4111 blockcount = xfs_bmbt_get_blockcount(ep); 4112 if (bno < startoff) { 4113 high = idx - 1; 4114 } else if (bno >= startoff + blockcount) { 4115 low = idx + 1; 4116 } else { 4117 /* Convert back to file-based extent index */ 4118 if (ifp->if_flags & XFS_IFEXTIREC) { 4119 idx += erp->er_extoff; 4120 } 4121 *idxp = idx; 4122 return ep; 4123 } 4124 } 4125 /* Convert back to file-based extent index */ 4126 if (ifp->if_flags & XFS_IFEXTIREC) { 4127 idx += erp->er_extoff; 4128 } 4129 if (bno >= startoff + blockcount) { 4130 if (++idx == nextents) { 4131 ep = NULL; 4132 } else { 4133 ep = xfs_iext_get_ext(ifp, idx); 4134 } 4135 } 4136 *idxp = idx; 4137 return ep; 4138 } 4139 4140 /* 4141 * Return a pointer to the indirection array entry containing the 4142 * extent record for filesystem block bno. Store the index of the 4143 * target irec in *erp_idxp. 4144 */ 4145 xfs_ext_irec_t * /* pointer to found extent record */ 4146 xfs_iext_bno_to_irec( 4147 xfs_ifork_t *ifp, /* inode fork pointer */ 4148 xfs_fileoff_t bno, /* block number to search for */ 4149 int *erp_idxp) /* irec index of target ext list */ 4150 { 4151 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4152 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4153 int erp_idx; /* indirection array index */ 4154 int nlists; /* number of extent irec's (lists) */ 4155 int high; /* binary search upper limit */ 4156 int low; /* binary search lower limit */ 4157 4158 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4159 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4160 erp_idx = 0; 4161 low = 0; 4162 high = nlists - 1; 4163 while (low <= high) { 4164 erp_idx = (low + high) >> 1; 4165 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4166 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4167 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4168 high = erp_idx - 1; 4169 } else if (erp_next && bno >= 4170 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4171 low = erp_idx + 1; 4172 } else { 4173 break; 4174 } 4175 } 4176 *erp_idxp = erp_idx; 4177 return erp; 4178 } 4179 4180 /* 4181 * Return a pointer to the indirection array entry containing the 4182 * extent record at file extent index *idxp. Store the index of the 4183 * target irec in *erp_idxp and store the page index of the target 4184 * extent record in *idxp. 4185 */ 4186 xfs_ext_irec_t * 4187 xfs_iext_idx_to_irec( 4188 xfs_ifork_t *ifp, /* inode fork pointer */ 4189 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4190 int *erp_idxp, /* pointer to target irec */ 4191 int realloc) /* new bytes were just added */ 4192 { 4193 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4194 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4195 int erp_idx; /* indirection array index */ 4196 int nlists; /* number of irec's (ex lists) */ 4197 int high; /* binary search upper limit */ 4198 int low; /* binary search lower limit */ 4199 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4200 4201 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4202 ASSERT(page_idx >= 0 && page_idx <= 4203 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4204 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4205 erp_idx = 0; 4206 low = 0; 4207 high = nlists - 1; 4208 4209 /* Binary search extent irec's */ 4210 while (low <= high) { 4211 erp_idx = (low + high) >> 1; 4212 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4213 prev = erp_idx > 0 ? erp - 1 : NULL; 4214 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4215 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4216 high = erp_idx - 1; 4217 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4218 (page_idx == erp->er_extoff + erp->er_extcount && 4219 !realloc)) { 4220 low = erp_idx + 1; 4221 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4222 erp->er_extcount == XFS_LINEAR_EXTS) { 4223 ASSERT(realloc); 4224 page_idx = 0; 4225 erp_idx++; 4226 erp = erp_idx < nlists ? erp + 1 : NULL; 4227 break; 4228 } else { 4229 page_idx -= erp->er_extoff; 4230 break; 4231 } 4232 } 4233 *idxp = page_idx; 4234 *erp_idxp = erp_idx; 4235 return(erp); 4236 } 4237 4238 /* 4239 * Allocate and initialize an indirection array once the space needed 4240 * for incore extents increases above XFS_IEXT_BUFSZ. 4241 */ 4242 void 4243 xfs_iext_irec_init( 4244 xfs_ifork_t *ifp) /* inode fork pointer */ 4245 { 4246 xfs_ext_irec_t *erp; /* indirection array pointer */ 4247 xfs_extnum_t nextents; /* number of extents in file */ 4248 4249 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4250 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4251 ASSERT(nextents <= XFS_LINEAR_EXTS); 4252 4253 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 4254 4255 if (nextents == 0) { 4256 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4257 } else if (!ifp->if_real_bytes) { 4258 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4259 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4260 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4261 } 4262 erp->er_extbuf = ifp->if_u1.if_extents; 4263 erp->er_extcount = nextents; 4264 erp->er_extoff = 0; 4265 4266 ifp->if_flags |= XFS_IFEXTIREC; 4267 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4268 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4269 ifp->if_u1.if_ext_irec = erp; 4270 4271 return; 4272 } 4273 4274 /* 4275 * Allocate and initialize a new entry in the indirection array. 4276 */ 4277 xfs_ext_irec_t * 4278 xfs_iext_irec_new( 4279 xfs_ifork_t *ifp, /* inode fork pointer */ 4280 int erp_idx) /* index for new irec */ 4281 { 4282 xfs_ext_irec_t *erp; /* indirection array pointer */ 4283 int i; /* loop counter */ 4284 int nlists; /* number of irec's (ex lists) */ 4285 4286 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4287 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4288 4289 /* Resize indirection array */ 4290 xfs_iext_realloc_indirect(ifp, ++nlists * 4291 sizeof(xfs_ext_irec_t)); 4292 /* 4293 * Move records down in the array so the 4294 * new page can use erp_idx. 4295 */ 4296 erp = ifp->if_u1.if_ext_irec; 4297 for (i = nlists - 1; i > erp_idx; i--) { 4298 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4299 } 4300 ASSERT(i == erp_idx); 4301 4302 /* Initialize new extent record */ 4303 erp = ifp->if_u1.if_ext_irec; 4304 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4305 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4306 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4307 erp[erp_idx].er_extcount = 0; 4308 erp[erp_idx].er_extoff = erp_idx > 0 ? 4309 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4310 return (&erp[erp_idx]); 4311 } 4312 4313 /* 4314 * Remove a record from the indirection array. 4315 */ 4316 void 4317 xfs_iext_irec_remove( 4318 xfs_ifork_t *ifp, /* inode fork pointer */ 4319 int erp_idx) /* irec index to remove */ 4320 { 4321 xfs_ext_irec_t *erp; /* indirection array pointer */ 4322 int i; /* loop counter */ 4323 int nlists; /* number of irec's (ex lists) */ 4324 4325 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4326 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4327 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4328 if (erp->er_extbuf) { 4329 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4330 -erp->er_extcount); 4331 kmem_free(erp->er_extbuf); 4332 } 4333 /* Compact extent records */ 4334 erp = ifp->if_u1.if_ext_irec; 4335 for (i = erp_idx; i < nlists - 1; i++) { 4336 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4337 } 4338 /* 4339 * Manually free the last extent record from the indirection 4340 * array. A call to xfs_iext_realloc_indirect() with a size 4341 * of zero would result in a call to xfs_iext_destroy() which 4342 * would in turn call this function again, creating a nasty 4343 * infinite loop. 4344 */ 4345 if (--nlists) { 4346 xfs_iext_realloc_indirect(ifp, 4347 nlists * sizeof(xfs_ext_irec_t)); 4348 } else { 4349 kmem_free(ifp->if_u1.if_ext_irec); 4350 } 4351 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4352 } 4353 4354 /* 4355 * This is called to clean up large amounts of unused memory allocated 4356 * by the indirection array. Before compacting anything though, verify 4357 * that the indirection array is still needed and switch back to the 4358 * linear extent list (or even the inline buffer) if possible. The 4359 * compaction policy is as follows: 4360 * 4361 * Full Compaction: Extents fit into a single page (or inline buffer) 4362 * Partial Compaction: Extents occupy less than 50% of allocated space 4363 * No Compaction: Extents occupy at least 50% of allocated space 4364 */ 4365 void 4366 xfs_iext_irec_compact( 4367 xfs_ifork_t *ifp) /* inode fork pointer */ 4368 { 4369 xfs_extnum_t nextents; /* number of extents in file */ 4370 int nlists; /* number of irec's (ex lists) */ 4371 4372 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4373 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4374 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4375 4376 if (nextents == 0) { 4377 xfs_iext_destroy(ifp); 4378 } else if (nextents <= XFS_INLINE_EXTS) { 4379 xfs_iext_indirect_to_direct(ifp); 4380 xfs_iext_direct_to_inline(ifp, nextents); 4381 } else if (nextents <= XFS_LINEAR_EXTS) { 4382 xfs_iext_indirect_to_direct(ifp); 4383 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4384 xfs_iext_irec_compact_pages(ifp); 4385 } 4386 } 4387 4388 /* 4389 * Combine extents from neighboring extent pages. 4390 */ 4391 void 4392 xfs_iext_irec_compact_pages( 4393 xfs_ifork_t *ifp) /* inode fork pointer */ 4394 { 4395 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4396 int erp_idx = 0; /* indirection array index */ 4397 int nlists; /* number of irec's (ex lists) */ 4398 4399 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4400 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4401 while (erp_idx < nlists - 1) { 4402 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4403 erp_next = erp + 1; 4404 if (erp_next->er_extcount <= 4405 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4406 memcpy(&erp->er_extbuf[erp->er_extcount], 4407 erp_next->er_extbuf, erp_next->er_extcount * 4408 sizeof(xfs_bmbt_rec_t)); 4409 erp->er_extcount += erp_next->er_extcount; 4410 /* 4411 * Free page before removing extent record 4412 * so er_extoffs don't get modified in 4413 * xfs_iext_irec_remove. 4414 */ 4415 kmem_free(erp_next->er_extbuf); 4416 erp_next->er_extbuf = NULL; 4417 xfs_iext_irec_remove(ifp, erp_idx + 1); 4418 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4419 } else { 4420 erp_idx++; 4421 } 4422 } 4423 } 4424 4425 /* 4426 * This is called to update the er_extoff field in the indirection 4427 * array when extents have been added or removed from one of the 4428 * extent lists. erp_idx contains the irec index to begin updating 4429 * at and ext_diff contains the number of extents that were added 4430 * or removed. 4431 */ 4432 void 4433 xfs_iext_irec_update_extoffs( 4434 xfs_ifork_t *ifp, /* inode fork pointer */ 4435 int erp_idx, /* irec index to update */ 4436 int ext_diff) /* number of new extents */ 4437 { 4438 int i; /* loop counter */ 4439 int nlists; /* number of irec's (ex lists */ 4440 4441 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4442 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4443 for (i = erp_idx; i < nlists; i++) { 4444 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4445 } 4446 } 4447