1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_dir2.h" 31 #include "xfs_dmapi.h" 32 #include "xfs_mount.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir2_sf.h" 37 #include "xfs_attr_sf.h" 38 #include "xfs_dinode.h" 39 #include "xfs_inode.h" 40 #include "xfs_buf_item.h" 41 #include "xfs_inode_item.h" 42 #include "xfs_btree.h" 43 #include "xfs_btree_trace.h" 44 #include "xfs_alloc.h" 45 #include "xfs_ialloc.h" 46 #include "xfs_bmap.h" 47 #include "xfs_rw.h" 48 #include "xfs_error.h" 49 #include "xfs_utils.h" 50 #include "xfs_dir2_trace.h" 51 #include "xfs_quota.h" 52 #include "xfs_acl.h" 53 #include "xfs_filestream.h" 54 #include "xfs_vnodeops.h" 55 56 kmem_zone_t *xfs_ifork_zone; 57 kmem_zone_t *xfs_inode_zone; 58 59 /* 60 * Used in xfs_itruncate(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 69 70 #ifdef DEBUG 71 /* 72 * Make sure that the extents in the given memory buffer 73 * are valid. 74 */ 75 STATIC void 76 xfs_validate_extents( 77 xfs_ifork_t *ifp, 78 int nrecs, 79 xfs_exntfmt_t fmt) 80 { 81 xfs_bmbt_irec_t irec; 82 xfs_bmbt_rec_host_t rec; 83 int i; 84 85 for (i = 0; i < nrecs; i++) { 86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 87 rec.l0 = get_unaligned(&ep->l0); 88 rec.l1 = get_unaligned(&ep->l1); 89 xfs_bmbt_get_all(&rec, &irec); 90 if (fmt == XFS_EXTFMT_NOSTATE) 91 ASSERT(irec.br_state == XFS_EXT_NORM); 92 } 93 } 94 #else /* DEBUG */ 95 #define xfs_validate_extents(ifp, nrecs, fmt) 96 #endif /* DEBUG */ 97 98 /* 99 * Check that none of the inode's in the buffer have a next 100 * unlinked field of 0. 101 */ 102 #if defined(DEBUG) 103 void 104 xfs_inobp_check( 105 xfs_mount_t *mp, 106 xfs_buf_t *bp) 107 { 108 int i; 109 int j; 110 xfs_dinode_t *dip; 111 112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 113 114 for (i = 0; i < j; i++) { 115 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 116 i * mp->m_sb.sb_inodesize); 117 if (!dip->di_next_unlinked) { 118 xfs_fs_cmn_err(CE_ALERT, mp, 119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 120 bp); 121 ASSERT(dip->di_next_unlinked); 122 } 123 } 124 } 125 #endif 126 127 /* 128 * Find the buffer associated with the given inode map 129 * We do basic validation checks on the buffer once it has been 130 * retrieved from disk. 131 */ 132 STATIC int 133 xfs_imap_to_bp( 134 xfs_mount_t *mp, 135 xfs_trans_t *tp, 136 struct xfs_imap *imap, 137 xfs_buf_t **bpp, 138 uint buf_flags, 139 uint imap_flags) 140 { 141 int error; 142 int i; 143 int ni; 144 xfs_buf_t *bp; 145 146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 147 (int)imap->im_len, buf_flags, &bp); 148 if (error) { 149 if (error != EAGAIN) { 150 cmn_err(CE_WARN, 151 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 152 "an error %d on %s. Returning error.", 153 error, mp->m_fsname); 154 } else { 155 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 156 } 157 return error; 158 } 159 160 /* 161 * Validate the magic number and version of every inode in the buffer 162 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 163 */ 164 #ifdef DEBUG 165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 166 #else /* usual case */ 167 ni = 1; 168 #endif 169 170 for (i = 0; i < ni; i++) { 171 int di_ok; 172 xfs_dinode_t *dip; 173 174 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 175 (i << mp->m_sb.sb_inodelog)); 176 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 177 XFS_DINODE_GOOD_VERSION(dip->di_version); 178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 179 XFS_ERRTAG_ITOBP_INOTOBP, 180 XFS_RANDOM_ITOBP_INOTOBP))) { 181 if (imap_flags & XFS_IMAP_BULKSTAT) { 182 xfs_trans_brelse(tp, bp); 183 return XFS_ERROR(EINVAL); 184 } 185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 186 XFS_ERRLEVEL_HIGH, mp, dip); 187 #ifdef DEBUG 188 cmn_err(CE_PANIC, 189 "Device %s - bad inode magic/vsn " 190 "daddr %lld #%d (magic=%x)", 191 XFS_BUFTARG_NAME(mp->m_ddev_targp), 192 (unsigned long long)imap->im_blkno, i, 193 be16_to_cpu(dip->di_magic)); 194 #endif 195 xfs_trans_brelse(tp, bp); 196 return XFS_ERROR(EFSCORRUPTED); 197 } 198 } 199 200 xfs_inobp_check(mp, bp); 201 202 /* 203 * Mark the buffer as an inode buffer now that it looks good 204 */ 205 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 206 207 *bpp = bp; 208 return 0; 209 } 210 211 /* 212 * This routine is called to map an inode number within a file 213 * system to the buffer containing the on-disk version of the 214 * inode. It returns a pointer to the buffer containing the 215 * on-disk inode in the bpp parameter, and in the dip parameter 216 * it returns a pointer to the on-disk inode within that buffer. 217 * 218 * If a non-zero error is returned, then the contents of bpp and 219 * dipp are undefined. 220 * 221 * Use xfs_imap() to determine the size and location of the 222 * buffer to read from disk. 223 */ 224 int 225 xfs_inotobp( 226 xfs_mount_t *mp, 227 xfs_trans_t *tp, 228 xfs_ino_t ino, 229 xfs_dinode_t **dipp, 230 xfs_buf_t **bpp, 231 int *offset, 232 uint imap_flags) 233 { 234 struct xfs_imap imap; 235 xfs_buf_t *bp; 236 int error; 237 238 imap.im_blkno = 0; 239 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 240 if (error) 241 return error; 242 243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags); 244 if (error) 245 return error; 246 247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 248 *bpp = bp; 249 *offset = imap.im_boffset; 250 return 0; 251 } 252 253 254 /* 255 * This routine is called to map an inode to the buffer containing 256 * the on-disk version of the inode. It returns a pointer to the 257 * buffer containing the on-disk inode in the bpp parameter, and in 258 * the dip parameter it returns a pointer to the on-disk inode within 259 * that buffer. 260 * 261 * If a non-zero error is returned, then the contents of bpp and 262 * dipp are undefined. 263 * 264 * The inode is expected to already been mapped to its buffer and read 265 * in once, thus we can use the mapping information stored in the inode 266 * rather than calling xfs_imap(). This allows us to avoid the overhead 267 * of looking at the inode btree for small block file systems 268 * (see xfs_imap()). 269 */ 270 int 271 xfs_itobp( 272 xfs_mount_t *mp, 273 xfs_trans_t *tp, 274 xfs_inode_t *ip, 275 xfs_dinode_t **dipp, 276 xfs_buf_t **bpp, 277 uint buf_flags) 278 { 279 xfs_buf_t *bp; 280 int error; 281 282 ASSERT(ip->i_imap.im_blkno != 0); 283 284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 285 if (error) 286 return error; 287 288 if (!bp) { 289 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 290 ASSERT(tp == NULL); 291 *bpp = NULL; 292 return EAGAIN; 293 } 294 295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 296 *bpp = bp; 297 return 0; 298 } 299 300 /* 301 * Move inode type and inode format specific information from the 302 * on-disk inode to the in-core inode. For fifos, devs, and sockets 303 * this means set if_rdev to the proper value. For files, directories, 304 * and symlinks this means to bring in the in-line data or extent 305 * pointers. For a file in B-tree format, only the root is immediately 306 * brought in-core. The rest will be in-lined in if_extents when it 307 * is first referenced (see xfs_iread_extents()). 308 */ 309 STATIC int 310 xfs_iformat( 311 xfs_inode_t *ip, 312 xfs_dinode_t *dip) 313 { 314 xfs_attr_shortform_t *atp; 315 int size; 316 int error; 317 xfs_fsize_t di_size; 318 ip->i_df.if_ext_max = 319 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 320 error = 0; 321 322 if (unlikely(be32_to_cpu(dip->di_nextents) + 323 be16_to_cpu(dip->di_anextents) > 324 be64_to_cpu(dip->di_nblocks))) { 325 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 327 (unsigned long long)ip->i_ino, 328 (int)(be32_to_cpu(dip->di_nextents) + 329 be16_to_cpu(dip->di_anextents)), 330 (unsigned long long) 331 be64_to_cpu(dip->di_nblocks)); 332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 333 ip->i_mount, dip); 334 return XFS_ERROR(EFSCORRUPTED); 335 } 336 337 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 338 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 339 "corrupt dinode %Lu, forkoff = 0x%x.", 340 (unsigned long long)ip->i_ino, 341 dip->di_forkoff); 342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 343 ip->i_mount, dip); 344 return XFS_ERROR(EFSCORRUPTED); 345 } 346 347 switch (ip->i_d.di_mode & S_IFMT) { 348 case S_IFIFO: 349 case S_IFCHR: 350 case S_IFBLK: 351 case S_IFSOCK: 352 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 354 ip->i_mount, dip); 355 return XFS_ERROR(EFSCORRUPTED); 356 } 357 ip->i_d.di_size = 0; 358 ip->i_size = 0; 359 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 360 break; 361 362 case S_IFREG: 363 case S_IFLNK: 364 case S_IFDIR: 365 switch (dip->di_format) { 366 case XFS_DINODE_FMT_LOCAL: 367 /* 368 * no local regular files yet 369 */ 370 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 371 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 372 "corrupt inode %Lu " 373 "(local format for regular file).", 374 (unsigned long long) ip->i_ino); 375 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 376 XFS_ERRLEVEL_LOW, 377 ip->i_mount, dip); 378 return XFS_ERROR(EFSCORRUPTED); 379 } 380 381 di_size = be64_to_cpu(dip->di_size); 382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 383 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 384 "corrupt inode %Lu " 385 "(bad size %Ld for local inode).", 386 (unsigned long long) ip->i_ino, 387 (long long) di_size); 388 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 389 XFS_ERRLEVEL_LOW, 390 ip->i_mount, dip); 391 return XFS_ERROR(EFSCORRUPTED); 392 } 393 394 size = (int)di_size; 395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 396 break; 397 case XFS_DINODE_FMT_EXTENTS: 398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 399 break; 400 case XFS_DINODE_FMT_BTREE: 401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 402 break; 403 default: 404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 405 ip->i_mount); 406 return XFS_ERROR(EFSCORRUPTED); 407 } 408 break; 409 410 default: 411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 412 return XFS_ERROR(EFSCORRUPTED); 413 } 414 if (error) { 415 return error; 416 } 417 if (!XFS_DFORK_Q(dip)) 418 return 0; 419 ASSERT(ip->i_afp == NULL); 420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 421 ip->i_afp->if_ext_max = 422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 423 switch (dip->di_aformat) { 424 case XFS_DINODE_FMT_LOCAL: 425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 426 size = be16_to_cpu(atp->hdr.totsize); 427 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 428 break; 429 case XFS_DINODE_FMT_EXTENTS: 430 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 431 break; 432 case XFS_DINODE_FMT_BTREE: 433 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 434 break; 435 default: 436 error = XFS_ERROR(EFSCORRUPTED); 437 break; 438 } 439 if (error) { 440 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 441 ip->i_afp = NULL; 442 xfs_idestroy_fork(ip, XFS_DATA_FORK); 443 } 444 return error; 445 } 446 447 /* 448 * The file is in-lined in the on-disk inode. 449 * If it fits into if_inline_data, then copy 450 * it there, otherwise allocate a buffer for it 451 * and copy the data there. Either way, set 452 * if_data to point at the data. 453 * If we allocate a buffer for the data, make 454 * sure that its size is a multiple of 4 and 455 * record the real size in i_real_bytes. 456 */ 457 STATIC int 458 xfs_iformat_local( 459 xfs_inode_t *ip, 460 xfs_dinode_t *dip, 461 int whichfork, 462 int size) 463 { 464 xfs_ifork_t *ifp; 465 int real_size; 466 467 /* 468 * If the size is unreasonable, then something 469 * is wrong and we just bail out rather than crash in 470 * kmem_alloc() or memcpy() below. 471 */ 472 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 473 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 474 "corrupt inode %Lu " 475 "(bad size %d for local fork, size = %d).", 476 (unsigned long long) ip->i_ino, size, 477 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 479 ip->i_mount, dip); 480 return XFS_ERROR(EFSCORRUPTED); 481 } 482 ifp = XFS_IFORK_PTR(ip, whichfork); 483 real_size = 0; 484 if (size == 0) 485 ifp->if_u1.if_data = NULL; 486 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 488 else { 489 real_size = roundup(size, 4); 490 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 491 } 492 ifp->if_bytes = size; 493 ifp->if_real_bytes = real_size; 494 if (size) 495 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 496 ifp->if_flags &= ~XFS_IFEXTENTS; 497 ifp->if_flags |= XFS_IFINLINE; 498 return 0; 499 } 500 501 /* 502 * The file consists of a set of extents all 503 * of which fit into the on-disk inode. 504 * If there are few enough extents to fit into 505 * the if_inline_ext, then copy them there. 506 * Otherwise allocate a buffer for them and copy 507 * them into it. Either way, set if_extents 508 * to point at the extents. 509 */ 510 STATIC int 511 xfs_iformat_extents( 512 xfs_inode_t *ip, 513 xfs_dinode_t *dip, 514 int whichfork) 515 { 516 xfs_bmbt_rec_t *dp; 517 xfs_ifork_t *ifp; 518 int nex; 519 int size; 520 int i; 521 522 ifp = XFS_IFORK_PTR(ip, whichfork); 523 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 524 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 525 526 /* 527 * If the number of extents is unreasonable, then something 528 * is wrong and we just bail out rather than crash in 529 * kmem_alloc() or memcpy() below. 530 */ 531 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 532 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 533 "corrupt inode %Lu ((a)extents = %d).", 534 (unsigned long long) ip->i_ino, nex); 535 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 536 ip->i_mount, dip); 537 return XFS_ERROR(EFSCORRUPTED); 538 } 539 540 ifp->if_real_bytes = 0; 541 if (nex == 0) 542 ifp->if_u1.if_extents = NULL; 543 else if (nex <= XFS_INLINE_EXTS) 544 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 545 else 546 xfs_iext_add(ifp, 0, nex); 547 548 ifp->if_bytes = size; 549 if (size) { 550 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 551 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 552 for (i = 0; i < nex; i++, dp++) { 553 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 554 ep->l0 = get_unaligned_be64(&dp->l0); 555 ep->l1 = get_unaligned_be64(&dp->l1); 556 } 557 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 558 if (whichfork != XFS_DATA_FORK || 559 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 560 if (unlikely(xfs_check_nostate_extents( 561 ifp, 0, nex))) { 562 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 563 XFS_ERRLEVEL_LOW, 564 ip->i_mount); 565 return XFS_ERROR(EFSCORRUPTED); 566 } 567 } 568 ifp->if_flags |= XFS_IFEXTENTS; 569 return 0; 570 } 571 572 /* 573 * The file has too many extents to fit into 574 * the inode, so they are in B-tree format. 575 * Allocate a buffer for the root of the B-tree 576 * and copy the root into it. The i_extents 577 * field will remain NULL until all of the 578 * extents are read in (when they are needed). 579 */ 580 STATIC int 581 xfs_iformat_btree( 582 xfs_inode_t *ip, 583 xfs_dinode_t *dip, 584 int whichfork) 585 { 586 xfs_bmdr_block_t *dfp; 587 xfs_ifork_t *ifp; 588 /* REFERENCED */ 589 int nrecs; 590 int size; 591 592 ifp = XFS_IFORK_PTR(ip, whichfork); 593 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 594 size = XFS_BMAP_BROOT_SPACE(dfp); 595 nrecs = be16_to_cpu(dfp->bb_numrecs); 596 597 /* 598 * blow out if -- fork has less extents than can fit in 599 * fork (fork shouldn't be a btree format), root btree 600 * block has more records than can fit into the fork, 601 * or the number of extents is greater than the number of 602 * blocks. 603 */ 604 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 605 || XFS_BMDR_SPACE_CALC(nrecs) > 606 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 607 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 608 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 609 "corrupt inode %Lu (btree).", 610 (unsigned long long) ip->i_ino); 611 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 612 ip->i_mount); 613 return XFS_ERROR(EFSCORRUPTED); 614 } 615 616 ifp->if_broot_bytes = size; 617 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 618 ASSERT(ifp->if_broot != NULL); 619 /* 620 * Copy and convert from the on-disk structure 621 * to the in-memory structure. 622 */ 623 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 625 ifp->if_broot, size); 626 ifp->if_flags &= ~XFS_IFEXTENTS; 627 ifp->if_flags |= XFS_IFBROOT; 628 629 return 0; 630 } 631 632 void 633 xfs_dinode_from_disk( 634 xfs_icdinode_t *to, 635 xfs_dinode_t *from) 636 { 637 to->di_magic = be16_to_cpu(from->di_magic); 638 to->di_mode = be16_to_cpu(from->di_mode); 639 to->di_version = from ->di_version; 640 to->di_format = from->di_format; 641 to->di_onlink = be16_to_cpu(from->di_onlink); 642 to->di_uid = be32_to_cpu(from->di_uid); 643 to->di_gid = be32_to_cpu(from->di_gid); 644 to->di_nlink = be32_to_cpu(from->di_nlink); 645 to->di_projid = be16_to_cpu(from->di_projid); 646 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 647 to->di_flushiter = be16_to_cpu(from->di_flushiter); 648 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 649 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 650 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 651 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 652 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 653 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 654 to->di_size = be64_to_cpu(from->di_size); 655 to->di_nblocks = be64_to_cpu(from->di_nblocks); 656 to->di_extsize = be32_to_cpu(from->di_extsize); 657 to->di_nextents = be32_to_cpu(from->di_nextents); 658 to->di_anextents = be16_to_cpu(from->di_anextents); 659 to->di_forkoff = from->di_forkoff; 660 to->di_aformat = from->di_aformat; 661 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 662 to->di_dmstate = be16_to_cpu(from->di_dmstate); 663 to->di_flags = be16_to_cpu(from->di_flags); 664 to->di_gen = be32_to_cpu(from->di_gen); 665 } 666 667 void 668 xfs_dinode_to_disk( 669 xfs_dinode_t *to, 670 xfs_icdinode_t *from) 671 { 672 to->di_magic = cpu_to_be16(from->di_magic); 673 to->di_mode = cpu_to_be16(from->di_mode); 674 to->di_version = from ->di_version; 675 to->di_format = from->di_format; 676 to->di_onlink = cpu_to_be16(from->di_onlink); 677 to->di_uid = cpu_to_be32(from->di_uid); 678 to->di_gid = cpu_to_be32(from->di_gid); 679 to->di_nlink = cpu_to_be32(from->di_nlink); 680 to->di_projid = cpu_to_be16(from->di_projid); 681 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 682 to->di_flushiter = cpu_to_be16(from->di_flushiter); 683 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 684 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 685 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 686 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 687 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 688 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 689 to->di_size = cpu_to_be64(from->di_size); 690 to->di_nblocks = cpu_to_be64(from->di_nblocks); 691 to->di_extsize = cpu_to_be32(from->di_extsize); 692 to->di_nextents = cpu_to_be32(from->di_nextents); 693 to->di_anextents = cpu_to_be16(from->di_anextents); 694 to->di_forkoff = from->di_forkoff; 695 to->di_aformat = from->di_aformat; 696 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 697 to->di_dmstate = cpu_to_be16(from->di_dmstate); 698 to->di_flags = cpu_to_be16(from->di_flags); 699 to->di_gen = cpu_to_be32(from->di_gen); 700 } 701 702 STATIC uint 703 _xfs_dic2xflags( 704 __uint16_t di_flags) 705 { 706 uint flags = 0; 707 708 if (di_flags & XFS_DIFLAG_ANY) { 709 if (di_flags & XFS_DIFLAG_REALTIME) 710 flags |= XFS_XFLAG_REALTIME; 711 if (di_flags & XFS_DIFLAG_PREALLOC) 712 flags |= XFS_XFLAG_PREALLOC; 713 if (di_flags & XFS_DIFLAG_IMMUTABLE) 714 flags |= XFS_XFLAG_IMMUTABLE; 715 if (di_flags & XFS_DIFLAG_APPEND) 716 flags |= XFS_XFLAG_APPEND; 717 if (di_flags & XFS_DIFLAG_SYNC) 718 flags |= XFS_XFLAG_SYNC; 719 if (di_flags & XFS_DIFLAG_NOATIME) 720 flags |= XFS_XFLAG_NOATIME; 721 if (di_flags & XFS_DIFLAG_NODUMP) 722 flags |= XFS_XFLAG_NODUMP; 723 if (di_flags & XFS_DIFLAG_RTINHERIT) 724 flags |= XFS_XFLAG_RTINHERIT; 725 if (di_flags & XFS_DIFLAG_PROJINHERIT) 726 flags |= XFS_XFLAG_PROJINHERIT; 727 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 728 flags |= XFS_XFLAG_NOSYMLINKS; 729 if (di_flags & XFS_DIFLAG_EXTSIZE) 730 flags |= XFS_XFLAG_EXTSIZE; 731 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 732 flags |= XFS_XFLAG_EXTSZINHERIT; 733 if (di_flags & XFS_DIFLAG_NODEFRAG) 734 flags |= XFS_XFLAG_NODEFRAG; 735 if (di_flags & XFS_DIFLAG_FILESTREAM) 736 flags |= XFS_XFLAG_FILESTREAM; 737 } 738 739 return flags; 740 } 741 742 uint 743 xfs_ip2xflags( 744 xfs_inode_t *ip) 745 { 746 xfs_icdinode_t *dic = &ip->i_d; 747 748 return _xfs_dic2xflags(dic->di_flags) | 749 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 750 } 751 752 uint 753 xfs_dic2xflags( 754 xfs_dinode_t *dip) 755 { 756 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 757 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 758 } 759 760 /* 761 * Allocate and initialise an xfs_inode. 762 */ 763 STATIC struct xfs_inode * 764 xfs_inode_alloc( 765 struct xfs_mount *mp, 766 xfs_ino_t ino) 767 { 768 struct xfs_inode *ip; 769 770 /* 771 * if this didn't occur in transactions, we could use 772 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 773 * code up to do this anyway. 774 */ 775 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 776 if (!ip) 777 return NULL; 778 779 ASSERT(atomic_read(&ip->i_iocount) == 0); 780 ASSERT(atomic_read(&ip->i_pincount) == 0); 781 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 782 ASSERT(completion_done(&ip->i_flush)); 783 784 /* 785 * initialise the VFS inode here to get failures 786 * out of the way early. 787 */ 788 if (!inode_init_always(mp->m_super, VFS_I(ip))) { 789 kmem_zone_free(xfs_inode_zone, ip); 790 return NULL; 791 } 792 793 /* initialise the xfs inode */ 794 ip->i_ino = ino; 795 ip->i_mount = mp; 796 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 797 ip->i_afp = NULL; 798 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 799 ip->i_flags = 0; 800 ip->i_update_core = 0; 801 ip->i_update_size = 0; 802 ip->i_delayed_blks = 0; 803 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 804 ip->i_size = 0; 805 ip->i_new_size = 0; 806 807 /* 808 * Initialize inode's trace buffers. 809 */ 810 #ifdef XFS_INODE_TRACE 811 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS); 812 #endif 813 #ifdef XFS_BMAP_TRACE 814 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS); 815 #endif 816 #ifdef XFS_BTREE_TRACE 817 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS); 818 #endif 819 #ifdef XFS_RW_TRACE 820 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS); 821 #endif 822 #ifdef XFS_ILOCK_TRACE 823 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS); 824 #endif 825 #ifdef XFS_DIR2_TRACE 826 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS); 827 #endif 828 829 return ip; 830 } 831 832 /* 833 * Given a mount structure and an inode number, return a pointer 834 * to a newly allocated in-core inode corresponding to the given 835 * inode number. 836 * 837 * Initialize the inode's attributes and extent pointers if it 838 * already has them (it will not if the inode has no links). 839 */ 840 int 841 xfs_iread( 842 xfs_mount_t *mp, 843 xfs_trans_t *tp, 844 xfs_ino_t ino, 845 xfs_inode_t **ipp, 846 xfs_daddr_t bno, 847 uint imap_flags) 848 { 849 xfs_buf_t *bp; 850 xfs_dinode_t *dip; 851 xfs_inode_t *ip; 852 int error; 853 854 ip = xfs_inode_alloc(mp, ino); 855 if (!ip) 856 return ENOMEM; 857 858 /* 859 * Fill in the location information in the in-core inode. 860 */ 861 ip->i_imap.im_blkno = bno; 862 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, imap_flags); 863 if (error) 864 goto out_destroy_inode; 865 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno); 866 867 /* 868 * Get pointers to the on-disk inode and the buffer containing it. 869 */ 870 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 871 XFS_BUF_LOCK, imap_flags); 872 if (error) 873 goto out_destroy_inode; 874 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 875 876 /* 877 * If we got something that isn't an inode it means someone 878 * (nfs or dmi) has a stale handle. 879 */ 880 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 881 #ifdef DEBUG 882 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 883 "dip->di_magic (0x%x) != " 884 "XFS_DINODE_MAGIC (0x%x)", 885 be16_to_cpu(dip->di_magic), 886 XFS_DINODE_MAGIC); 887 #endif /* DEBUG */ 888 error = XFS_ERROR(EINVAL); 889 goto out_brelse; 890 } 891 892 /* 893 * If the on-disk inode is already linked to a directory 894 * entry, copy all of the inode into the in-core inode. 895 * xfs_iformat() handles copying in the inode format 896 * specific information. 897 * Otherwise, just get the truly permanent information. 898 */ 899 if (dip->di_mode) { 900 xfs_dinode_from_disk(&ip->i_d, dip); 901 error = xfs_iformat(ip, dip); 902 if (error) { 903 #ifdef DEBUG 904 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 905 "xfs_iformat() returned error %d", 906 error); 907 #endif /* DEBUG */ 908 goto out_brelse; 909 } 910 } else { 911 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 912 ip->i_d.di_version = dip->di_version; 913 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 914 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 915 /* 916 * Make sure to pull in the mode here as well in 917 * case the inode is released without being used. 918 * This ensures that xfs_inactive() will see that 919 * the inode is already free and not try to mess 920 * with the uninitialized part of it. 921 */ 922 ip->i_d.di_mode = 0; 923 /* 924 * Initialize the per-fork minima and maxima for a new 925 * inode here. xfs_iformat will do it for old inodes. 926 */ 927 ip->i_df.if_ext_max = 928 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 929 } 930 931 /* 932 * The inode format changed when we moved the link count and 933 * made it 32 bits long. If this is an old format inode, 934 * convert it in memory to look like a new one. If it gets 935 * flushed to disk we will convert back before flushing or 936 * logging it. We zero out the new projid field and the old link 937 * count field. We'll handle clearing the pad field (the remains 938 * of the old uuid field) when we actually convert the inode to 939 * the new format. We don't change the version number so that we 940 * can distinguish this from a real new format inode. 941 */ 942 if (ip->i_d.di_version == 1) { 943 ip->i_d.di_nlink = ip->i_d.di_onlink; 944 ip->i_d.di_onlink = 0; 945 ip->i_d.di_projid = 0; 946 } 947 948 ip->i_delayed_blks = 0; 949 ip->i_size = ip->i_d.di_size; 950 951 /* 952 * Mark the buffer containing the inode as something to keep 953 * around for a while. This helps to keep recently accessed 954 * meta-data in-core longer. 955 */ 956 XFS_BUF_SET_REF(bp, XFS_INO_REF); 957 958 /* 959 * Use xfs_trans_brelse() to release the buffer containing the 960 * on-disk inode, because it was acquired with xfs_trans_read_buf() 961 * in xfs_itobp() above. If tp is NULL, this is just a normal 962 * brelse(). If we're within a transaction, then xfs_trans_brelse() 963 * will only release the buffer if it is not dirty within the 964 * transaction. It will be OK to release the buffer in this case, 965 * because inodes on disk are never destroyed and we will be 966 * locking the new in-core inode before putting it in the hash 967 * table where other processes can find it. Thus we don't have 968 * to worry about the inode being changed just because we released 969 * the buffer. 970 */ 971 xfs_trans_brelse(tp, bp); 972 *ipp = ip; 973 return 0; 974 975 out_brelse: 976 xfs_trans_brelse(tp, bp); 977 out_destroy_inode: 978 xfs_destroy_inode(ip); 979 return error; 980 } 981 982 /* 983 * Read in extents from a btree-format inode. 984 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 985 */ 986 int 987 xfs_iread_extents( 988 xfs_trans_t *tp, 989 xfs_inode_t *ip, 990 int whichfork) 991 { 992 int error; 993 xfs_ifork_t *ifp; 994 xfs_extnum_t nextents; 995 size_t size; 996 997 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 998 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 999 ip->i_mount); 1000 return XFS_ERROR(EFSCORRUPTED); 1001 } 1002 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1003 size = nextents * sizeof(xfs_bmbt_rec_t); 1004 ifp = XFS_IFORK_PTR(ip, whichfork); 1005 1006 /* 1007 * We know that the size is valid (it's checked in iformat_btree) 1008 */ 1009 ifp->if_lastex = NULLEXTNUM; 1010 ifp->if_bytes = ifp->if_real_bytes = 0; 1011 ifp->if_flags |= XFS_IFEXTENTS; 1012 xfs_iext_add(ifp, 0, nextents); 1013 error = xfs_bmap_read_extents(tp, ip, whichfork); 1014 if (error) { 1015 xfs_iext_destroy(ifp); 1016 ifp->if_flags &= ~XFS_IFEXTENTS; 1017 return error; 1018 } 1019 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1020 return 0; 1021 } 1022 1023 /* 1024 * Allocate an inode on disk and return a copy of its in-core version. 1025 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1026 * appropriately within the inode. The uid and gid for the inode are 1027 * set according to the contents of the given cred structure. 1028 * 1029 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1030 * has a free inode available, call xfs_iget() 1031 * to obtain the in-core version of the allocated inode. Finally, 1032 * fill in the inode and log its initial contents. In this case, 1033 * ialloc_context would be set to NULL and call_again set to false. 1034 * 1035 * If xfs_dialloc() does not have an available inode, 1036 * it will replenish its supply by doing an allocation. Since we can 1037 * only do one allocation within a transaction without deadlocks, we 1038 * must commit the current transaction before returning the inode itself. 1039 * In this case, therefore, we will set call_again to true and return. 1040 * The caller should then commit the current transaction, start a new 1041 * transaction, and call xfs_ialloc() again to actually get the inode. 1042 * 1043 * To ensure that some other process does not grab the inode that 1044 * was allocated during the first call to xfs_ialloc(), this routine 1045 * also returns the [locked] bp pointing to the head of the freelist 1046 * as ialloc_context. The caller should hold this buffer across 1047 * the commit and pass it back into this routine on the second call. 1048 * 1049 * If we are allocating quota inodes, we do not have a parent inode 1050 * to attach to or associate with (i.e. pip == NULL) because they 1051 * are not linked into the directory structure - they are attached 1052 * directly to the superblock - and so have no parent. 1053 */ 1054 int 1055 xfs_ialloc( 1056 xfs_trans_t *tp, 1057 xfs_inode_t *pip, 1058 mode_t mode, 1059 xfs_nlink_t nlink, 1060 xfs_dev_t rdev, 1061 cred_t *cr, 1062 xfs_prid_t prid, 1063 int okalloc, 1064 xfs_buf_t **ialloc_context, 1065 boolean_t *call_again, 1066 xfs_inode_t **ipp) 1067 { 1068 xfs_ino_t ino; 1069 xfs_inode_t *ip; 1070 uint flags; 1071 int error; 1072 timespec_t tv; 1073 int filestreams = 0; 1074 1075 /* 1076 * Call the space management code to pick 1077 * the on-disk inode to be allocated. 1078 */ 1079 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1080 ialloc_context, call_again, &ino); 1081 if (error) 1082 return error; 1083 if (*call_again || ino == NULLFSINO) { 1084 *ipp = NULL; 1085 return 0; 1086 } 1087 ASSERT(*ialloc_context == NULL); 1088 1089 /* 1090 * Get the in-core inode with the lock held exclusively. 1091 * This is because we're setting fields here we need 1092 * to prevent others from looking at until we're done. 1093 */ 1094 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1095 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1096 if (error) 1097 return error; 1098 ASSERT(ip != NULL); 1099 1100 ip->i_d.di_mode = (__uint16_t)mode; 1101 ip->i_d.di_onlink = 0; 1102 ip->i_d.di_nlink = nlink; 1103 ASSERT(ip->i_d.di_nlink == nlink); 1104 ip->i_d.di_uid = current_fsuid(); 1105 ip->i_d.di_gid = current_fsgid(); 1106 ip->i_d.di_projid = prid; 1107 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1108 1109 /* 1110 * If the superblock version is up to where we support new format 1111 * inodes and this is currently an old format inode, then change 1112 * the inode version number now. This way we only do the conversion 1113 * here rather than here and in the flush/logging code. 1114 */ 1115 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1116 ip->i_d.di_version == 1) { 1117 ip->i_d.di_version = 2; 1118 /* 1119 * We've already zeroed the old link count, the projid field, 1120 * and the pad field. 1121 */ 1122 } 1123 1124 /* 1125 * Project ids won't be stored on disk if we are using a version 1 inode. 1126 */ 1127 if ((prid != 0) && (ip->i_d.di_version == 1)) 1128 xfs_bump_ino_vers2(tp, ip); 1129 1130 if (pip && XFS_INHERIT_GID(pip)) { 1131 ip->i_d.di_gid = pip->i_d.di_gid; 1132 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1133 ip->i_d.di_mode |= S_ISGID; 1134 } 1135 } 1136 1137 /* 1138 * If the group ID of the new file does not match the effective group 1139 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1140 * (and only if the irix_sgid_inherit compatibility variable is set). 1141 */ 1142 if ((irix_sgid_inherit) && 1143 (ip->i_d.di_mode & S_ISGID) && 1144 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1145 ip->i_d.di_mode &= ~S_ISGID; 1146 } 1147 1148 ip->i_d.di_size = 0; 1149 ip->i_size = 0; 1150 ip->i_d.di_nextents = 0; 1151 ASSERT(ip->i_d.di_nblocks == 0); 1152 1153 nanotime(&tv); 1154 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1155 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1156 ip->i_d.di_atime = ip->i_d.di_mtime; 1157 ip->i_d.di_ctime = ip->i_d.di_mtime; 1158 1159 /* 1160 * di_gen will have been taken care of in xfs_iread. 1161 */ 1162 ip->i_d.di_extsize = 0; 1163 ip->i_d.di_dmevmask = 0; 1164 ip->i_d.di_dmstate = 0; 1165 ip->i_d.di_flags = 0; 1166 flags = XFS_ILOG_CORE; 1167 switch (mode & S_IFMT) { 1168 case S_IFIFO: 1169 case S_IFCHR: 1170 case S_IFBLK: 1171 case S_IFSOCK: 1172 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1173 ip->i_df.if_u2.if_rdev = rdev; 1174 ip->i_df.if_flags = 0; 1175 flags |= XFS_ILOG_DEV; 1176 break; 1177 case S_IFREG: 1178 /* 1179 * we can't set up filestreams until after the VFS inode 1180 * is set up properly. 1181 */ 1182 if (pip && xfs_inode_is_filestream(pip)) 1183 filestreams = 1; 1184 /* fall through */ 1185 case S_IFDIR: 1186 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1187 uint di_flags = 0; 1188 1189 if ((mode & S_IFMT) == S_IFDIR) { 1190 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1191 di_flags |= XFS_DIFLAG_RTINHERIT; 1192 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1193 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1194 ip->i_d.di_extsize = pip->i_d.di_extsize; 1195 } 1196 } else if ((mode & S_IFMT) == S_IFREG) { 1197 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1198 di_flags |= XFS_DIFLAG_REALTIME; 1199 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1200 di_flags |= XFS_DIFLAG_EXTSIZE; 1201 ip->i_d.di_extsize = pip->i_d.di_extsize; 1202 } 1203 } 1204 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1205 xfs_inherit_noatime) 1206 di_flags |= XFS_DIFLAG_NOATIME; 1207 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1208 xfs_inherit_nodump) 1209 di_flags |= XFS_DIFLAG_NODUMP; 1210 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1211 xfs_inherit_sync) 1212 di_flags |= XFS_DIFLAG_SYNC; 1213 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1214 xfs_inherit_nosymlinks) 1215 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1216 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1217 di_flags |= XFS_DIFLAG_PROJINHERIT; 1218 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1219 xfs_inherit_nodefrag) 1220 di_flags |= XFS_DIFLAG_NODEFRAG; 1221 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1222 di_flags |= XFS_DIFLAG_FILESTREAM; 1223 ip->i_d.di_flags |= di_flags; 1224 } 1225 /* FALLTHROUGH */ 1226 case S_IFLNK: 1227 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1228 ip->i_df.if_flags = XFS_IFEXTENTS; 1229 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1230 ip->i_df.if_u1.if_extents = NULL; 1231 break; 1232 default: 1233 ASSERT(0); 1234 } 1235 /* 1236 * Attribute fork settings for new inode. 1237 */ 1238 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1239 ip->i_d.di_anextents = 0; 1240 1241 /* 1242 * Log the new values stuffed into the inode. 1243 */ 1244 xfs_trans_log_inode(tp, ip, flags); 1245 1246 /* now that we have an i_mode we can setup inode ops and unlock */ 1247 xfs_setup_inode(ip); 1248 1249 /* now we have set up the vfs inode we can associate the filestream */ 1250 if (filestreams) { 1251 error = xfs_filestream_associate(pip, ip); 1252 if (error < 0) 1253 return -error; 1254 if (!error) 1255 xfs_iflags_set(ip, XFS_IFILESTREAM); 1256 } 1257 1258 *ipp = ip; 1259 return 0; 1260 } 1261 1262 /* 1263 * Check to make sure that there are no blocks allocated to the 1264 * file beyond the size of the file. We don't check this for 1265 * files with fixed size extents or real time extents, but we 1266 * at least do it for regular files. 1267 */ 1268 #ifdef DEBUG 1269 void 1270 xfs_isize_check( 1271 xfs_mount_t *mp, 1272 xfs_inode_t *ip, 1273 xfs_fsize_t isize) 1274 { 1275 xfs_fileoff_t map_first; 1276 int nimaps; 1277 xfs_bmbt_irec_t imaps[2]; 1278 1279 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1280 return; 1281 1282 if (XFS_IS_REALTIME_INODE(ip)) 1283 return; 1284 1285 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1286 return; 1287 1288 nimaps = 2; 1289 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1290 /* 1291 * The filesystem could be shutting down, so bmapi may return 1292 * an error. 1293 */ 1294 if (xfs_bmapi(NULL, ip, map_first, 1295 (XFS_B_TO_FSB(mp, 1296 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1297 map_first), 1298 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1299 NULL, NULL)) 1300 return; 1301 ASSERT(nimaps == 1); 1302 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1303 } 1304 #endif /* DEBUG */ 1305 1306 /* 1307 * Calculate the last possible buffered byte in a file. This must 1308 * include data that was buffered beyond the EOF by the write code. 1309 * This also needs to deal with overflowing the xfs_fsize_t type 1310 * which can happen for sizes near the limit. 1311 * 1312 * We also need to take into account any blocks beyond the EOF. It 1313 * may be the case that they were buffered by a write which failed. 1314 * In that case the pages will still be in memory, but the inode size 1315 * will never have been updated. 1316 */ 1317 xfs_fsize_t 1318 xfs_file_last_byte( 1319 xfs_inode_t *ip) 1320 { 1321 xfs_mount_t *mp; 1322 xfs_fsize_t last_byte; 1323 xfs_fileoff_t last_block; 1324 xfs_fileoff_t size_last_block; 1325 int error; 1326 1327 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1328 1329 mp = ip->i_mount; 1330 /* 1331 * Only check for blocks beyond the EOF if the extents have 1332 * been read in. This eliminates the need for the inode lock, 1333 * and it also saves us from looking when it really isn't 1334 * necessary. 1335 */ 1336 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1337 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1338 XFS_DATA_FORK); 1339 if (error) { 1340 last_block = 0; 1341 } 1342 } else { 1343 last_block = 0; 1344 } 1345 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1346 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1347 1348 last_byte = XFS_FSB_TO_B(mp, last_block); 1349 if (last_byte < 0) { 1350 return XFS_MAXIOFFSET(mp); 1351 } 1352 last_byte += (1 << mp->m_writeio_log); 1353 if (last_byte < 0) { 1354 return XFS_MAXIOFFSET(mp); 1355 } 1356 return last_byte; 1357 } 1358 1359 #if defined(XFS_RW_TRACE) 1360 STATIC void 1361 xfs_itrunc_trace( 1362 int tag, 1363 xfs_inode_t *ip, 1364 int flag, 1365 xfs_fsize_t new_size, 1366 xfs_off_t toss_start, 1367 xfs_off_t toss_finish) 1368 { 1369 if (ip->i_rwtrace == NULL) { 1370 return; 1371 } 1372 1373 ktrace_enter(ip->i_rwtrace, 1374 (void*)((long)tag), 1375 (void*)ip, 1376 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1377 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1378 (void*)((long)flag), 1379 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1380 (void*)(unsigned long)(new_size & 0xffffffff), 1381 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1382 (void*)(unsigned long)(toss_start & 0xffffffff), 1383 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1384 (void*)(unsigned long)(toss_finish & 0xffffffff), 1385 (void*)(unsigned long)current_cpu(), 1386 (void*)(unsigned long)current_pid(), 1387 (void*)NULL, 1388 (void*)NULL, 1389 (void*)NULL); 1390 } 1391 #else 1392 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1393 #endif 1394 1395 /* 1396 * Start the truncation of the file to new_size. The new size 1397 * must be smaller than the current size. This routine will 1398 * clear the buffer and page caches of file data in the removed 1399 * range, and xfs_itruncate_finish() will remove the underlying 1400 * disk blocks. 1401 * 1402 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1403 * must NOT have the inode lock held at all. This is because we're 1404 * calling into the buffer/page cache code and we can't hold the 1405 * inode lock when we do so. 1406 * 1407 * We need to wait for any direct I/Os in flight to complete before we 1408 * proceed with the truncate. This is needed to prevent the extents 1409 * being read or written by the direct I/Os from being removed while the 1410 * I/O is in flight as there is no other method of synchronising 1411 * direct I/O with the truncate operation. Also, because we hold 1412 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1413 * started until the truncate completes and drops the lock. Essentially, 1414 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1415 * between direct I/Os and the truncate operation. 1416 * 1417 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1418 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1419 * in the case that the caller is locking things out of order and 1420 * may not be able to call xfs_itruncate_finish() with the inode lock 1421 * held without dropping the I/O lock. If the caller must drop the 1422 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1423 * must be called again with all the same restrictions as the initial 1424 * call. 1425 */ 1426 int 1427 xfs_itruncate_start( 1428 xfs_inode_t *ip, 1429 uint flags, 1430 xfs_fsize_t new_size) 1431 { 1432 xfs_fsize_t last_byte; 1433 xfs_off_t toss_start; 1434 xfs_mount_t *mp; 1435 int error = 0; 1436 1437 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1438 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1439 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1440 (flags == XFS_ITRUNC_MAYBE)); 1441 1442 mp = ip->i_mount; 1443 1444 /* wait for the completion of any pending DIOs */ 1445 if (new_size == 0 || new_size < ip->i_size) 1446 vn_iowait(ip); 1447 1448 /* 1449 * Call toss_pages or flushinval_pages to get rid of pages 1450 * overlapping the region being removed. We have to use 1451 * the less efficient flushinval_pages in the case that the 1452 * caller may not be able to finish the truncate without 1453 * dropping the inode's I/O lock. Make sure 1454 * to catch any pages brought in by buffers overlapping 1455 * the EOF by searching out beyond the isize by our 1456 * block size. We round new_size up to a block boundary 1457 * so that we don't toss things on the same block as 1458 * new_size but before it. 1459 * 1460 * Before calling toss_page or flushinval_pages, make sure to 1461 * call remapf() over the same region if the file is mapped. 1462 * This frees up mapped file references to the pages in the 1463 * given range and for the flushinval_pages case it ensures 1464 * that we get the latest mapped changes flushed out. 1465 */ 1466 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1467 toss_start = XFS_FSB_TO_B(mp, toss_start); 1468 if (toss_start < 0) { 1469 /* 1470 * The place to start tossing is beyond our maximum 1471 * file size, so there is no way that the data extended 1472 * out there. 1473 */ 1474 return 0; 1475 } 1476 last_byte = xfs_file_last_byte(ip); 1477 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1478 last_byte); 1479 if (last_byte > toss_start) { 1480 if (flags & XFS_ITRUNC_DEFINITE) { 1481 xfs_tosspages(ip, toss_start, 1482 -1, FI_REMAPF_LOCKED); 1483 } else { 1484 error = xfs_flushinval_pages(ip, toss_start, 1485 -1, FI_REMAPF_LOCKED); 1486 } 1487 } 1488 1489 #ifdef DEBUG 1490 if (new_size == 0) { 1491 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1492 } 1493 #endif 1494 return error; 1495 } 1496 1497 /* 1498 * Shrink the file to the given new_size. The new size must be smaller than 1499 * the current size. This will free up the underlying blocks in the removed 1500 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1501 * 1502 * The transaction passed to this routine must have made a permanent log 1503 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1504 * given transaction and start new ones, so make sure everything involved in 1505 * the transaction is tidy before calling here. Some transaction will be 1506 * returned to the caller to be committed. The incoming transaction must 1507 * already include the inode, and both inode locks must be held exclusively. 1508 * The inode must also be "held" within the transaction. On return the inode 1509 * will be "held" within the returned transaction. This routine does NOT 1510 * require any disk space to be reserved for it within the transaction. 1511 * 1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1513 * indicates the fork which is to be truncated. For the attribute fork we only 1514 * support truncation to size 0. 1515 * 1516 * We use the sync parameter to indicate whether or not the first transaction 1517 * we perform might have to be synchronous. For the attr fork, it needs to be 1518 * so if the unlink of the inode is not yet known to be permanent in the log. 1519 * This keeps us from freeing and reusing the blocks of the attribute fork 1520 * before the unlink of the inode becomes permanent. 1521 * 1522 * For the data fork, we normally have to run synchronously if we're being 1523 * called out of the inactive path or we're being called out of the create path 1524 * where we're truncating an existing file. Either way, the truncate needs to 1525 * be sync so blocks don't reappear in the file with altered data in case of a 1526 * crash. wsync filesystems can run the first case async because anything that 1527 * shrinks the inode has to run sync so by the time we're called here from 1528 * inactive, the inode size is permanently set to 0. 1529 * 1530 * Calls from the truncate path always need to be sync unless we're in a wsync 1531 * filesystem and the file has already been unlinked. 1532 * 1533 * The caller is responsible for correctly setting the sync parameter. It gets 1534 * too hard for us to guess here which path we're being called out of just 1535 * based on inode state. 1536 * 1537 * If we get an error, we must return with the inode locked and linked into the 1538 * current transaction. This keeps things simple for the higher level code, 1539 * because it always knows that the inode is locked and held in the transaction 1540 * that returns to it whether errors occur or not. We don't mark the inode 1541 * dirty on error so that transactions can be easily aborted if possible. 1542 */ 1543 int 1544 xfs_itruncate_finish( 1545 xfs_trans_t **tp, 1546 xfs_inode_t *ip, 1547 xfs_fsize_t new_size, 1548 int fork, 1549 int sync) 1550 { 1551 xfs_fsblock_t first_block; 1552 xfs_fileoff_t first_unmap_block; 1553 xfs_fileoff_t last_block; 1554 xfs_filblks_t unmap_len=0; 1555 xfs_mount_t *mp; 1556 xfs_trans_t *ntp; 1557 int done; 1558 int committed; 1559 xfs_bmap_free_t free_list; 1560 int error; 1561 1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1563 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1564 ASSERT(*tp != NULL); 1565 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1566 ASSERT(ip->i_transp == *tp); 1567 ASSERT(ip->i_itemp != NULL); 1568 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1569 1570 1571 ntp = *tp; 1572 mp = (ntp)->t_mountp; 1573 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1574 1575 /* 1576 * We only support truncating the entire attribute fork. 1577 */ 1578 if (fork == XFS_ATTR_FORK) { 1579 new_size = 0LL; 1580 } 1581 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1582 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1583 /* 1584 * The first thing we do is set the size to new_size permanently 1585 * on disk. This way we don't have to worry about anyone ever 1586 * being able to look at the data being freed even in the face 1587 * of a crash. What we're getting around here is the case where 1588 * we free a block, it is allocated to another file, it is written 1589 * to, and then we crash. If the new data gets written to the 1590 * file but the log buffers containing the free and reallocation 1591 * don't, then we'd end up with garbage in the blocks being freed. 1592 * As long as we make the new_size permanent before actually 1593 * freeing any blocks it doesn't matter if they get writtten to. 1594 * 1595 * The callers must signal into us whether or not the size 1596 * setting here must be synchronous. There are a few cases 1597 * where it doesn't have to be synchronous. Those cases 1598 * occur if the file is unlinked and we know the unlink is 1599 * permanent or if the blocks being truncated are guaranteed 1600 * to be beyond the inode eof (regardless of the link count) 1601 * and the eof value is permanent. Both of these cases occur 1602 * only on wsync-mounted filesystems. In those cases, we're 1603 * guaranteed that no user will ever see the data in the blocks 1604 * that are being truncated so the truncate can run async. 1605 * In the free beyond eof case, the file may wind up with 1606 * more blocks allocated to it than it needs if we crash 1607 * and that won't get fixed until the next time the file 1608 * is re-opened and closed but that's ok as that shouldn't 1609 * be too many blocks. 1610 * 1611 * However, we can't just make all wsync xactions run async 1612 * because there's one call out of the create path that needs 1613 * to run sync where it's truncating an existing file to size 1614 * 0 whose size is > 0. 1615 * 1616 * It's probably possible to come up with a test in this 1617 * routine that would correctly distinguish all the above 1618 * cases from the values of the function parameters and the 1619 * inode state but for sanity's sake, I've decided to let the 1620 * layers above just tell us. It's simpler to correctly figure 1621 * out in the layer above exactly under what conditions we 1622 * can run async and I think it's easier for others read and 1623 * follow the logic in case something has to be changed. 1624 * cscope is your friend -- rcc. 1625 * 1626 * The attribute fork is much simpler. 1627 * 1628 * For the attribute fork we allow the caller to tell us whether 1629 * the unlink of the inode that led to this call is yet permanent 1630 * in the on disk log. If it is not and we will be freeing extents 1631 * in this inode then we make the first transaction synchronous 1632 * to make sure that the unlink is permanent by the time we free 1633 * the blocks. 1634 */ 1635 if (fork == XFS_DATA_FORK) { 1636 if (ip->i_d.di_nextents > 0) { 1637 /* 1638 * If we are not changing the file size then do 1639 * not update the on-disk file size - we may be 1640 * called from xfs_inactive_free_eofblocks(). If we 1641 * update the on-disk file size and then the system 1642 * crashes before the contents of the file are 1643 * flushed to disk then the files may be full of 1644 * holes (ie NULL files bug). 1645 */ 1646 if (ip->i_size != new_size) { 1647 ip->i_d.di_size = new_size; 1648 ip->i_size = new_size; 1649 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1650 } 1651 } 1652 } else if (sync) { 1653 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1654 if (ip->i_d.di_anextents > 0) 1655 xfs_trans_set_sync(ntp); 1656 } 1657 ASSERT(fork == XFS_DATA_FORK || 1658 (fork == XFS_ATTR_FORK && 1659 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1660 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1661 1662 /* 1663 * Since it is possible for space to become allocated beyond 1664 * the end of the file (in a crash where the space is allocated 1665 * but the inode size is not yet updated), simply remove any 1666 * blocks which show up between the new EOF and the maximum 1667 * possible file size. If the first block to be removed is 1668 * beyond the maximum file size (ie it is the same as last_block), 1669 * then there is nothing to do. 1670 */ 1671 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1672 ASSERT(first_unmap_block <= last_block); 1673 done = 0; 1674 if (last_block == first_unmap_block) { 1675 done = 1; 1676 } else { 1677 unmap_len = last_block - first_unmap_block + 1; 1678 } 1679 while (!done) { 1680 /* 1681 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1682 * will tell us whether it freed the entire range or 1683 * not. If this is a synchronous mount (wsync), 1684 * then we can tell bunmapi to keep all the 1685 * transactions asynchronous since the unlink 1686 * transaction that made this inode inactive has 1687 * already hit the disk. There's no danger of 1688 * the freed blocks being reused, there being a 1689 * crash, and the reused blocks suddenly reappearing 1690 * in this file with garbage in them once recovery 1691 * runs. 1692 */ 1693 XFS_BMAP_INIT(&free_list, &first_block); 1694 error = xfs_bunmapi(ntp, ip, 1695 first_unmap_block, unmap_len, 1696 XFS_BMAPI_AFLAG(fork) | 1697 (sync ? 0 : XFS_BMAPI_ASYNC), 1698 XFS_ITRUNC_MAX_EXTENTS, 1699 &first_block, &free_list, 1700 NULL, &done); 1701 if (error) { 1702 /* 1703 * If the bunmapi call encounters an error, 1704 * return to the caller where the transaction 1705 * can be properly aborted. We just need to 1706 * make sure we're not holding any resources 1707 * that we were not when we came in. 1708 */ 1709 xfs_bmap_cancel(&free_list); 1710 return error; 1711 } 1712 1713 /* 1714 * Duplicate the transaction that has the permanent 1715 * reservation and commit the old transaction. 1716 */ 1717 error = xfs_bmap_finish(tp, &free_list, &committed); 1718 ntp = *tp; 1719 if (committed) { 1720 /* link the inode into the next xact in the chain */ 1721 xfs_trans_ijoin(ntp, ip, 1722 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1723 xfs_trans_ihold(ntp, ip); 1724 } 1725 1726 if (error) { 1727 /* 1728 * If the bmap finish call encounters an error, return 1729 * to the caller where the transaction can be properly 1730 * aborted. We just need to make sure we're not 1731 * holding any resources that we were not when we came 1732 * in. 1733 * 1734 * Aborting from this point might lose some blocks in 1735 * the file system, but oh well. 1736 */ 1737 xfs_bmap_cancel(&free_list); 1738 return error; 1739 } 1740 1741 if (committed) { 1742 /* 1743 * Mark the inode dirty so it will be logged and 1744 * moved forward in the log as part of every commit. 1745 */ 1746 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1747 } 1748 1749 ntp = xfs_trans_dup(ntp); 1750 error = xfs_trans_commit(*tp, 0); 1751 *tp = ntp; 1752 1753 /* link the inode into the next transaction in the chain */ 1754 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1755 xfs_trans_ihold(ntp, ip); 1756 1757 if (error) 1758 return error; 1759 /* 1760 * transaction commit worked ok so we can drop the extra ticket 1761 * reference that we gained in xfs_trans_dup() 1762 */ 1763 xfs_log_ticket_put(ntp->t_ticket); 1764 error = xfs_trans_reserve(ntp, 0, 1765 XFS_ITRUNCATE_LOG_RES(mp), 0, 1766 XFS_TRANS_PERM_LOG_RES, 1767 XFS_ITRUNCATE_LOG_COUNT); 1768 if (error) 1769 return error; 1770 } 1771 /* 1772 * Only update the size in the case of the data fork, but 1773 * always re-log the inode so that our permanent transaction 1774 * can keep on rolling it forward in the log. 1775 */ 1776 if (fork == XFS_DATA_FORK) { 1777 xfs_isize_check(mp, ip, new_size); 1778 /* 1779 * If we are not changing the file size then do 1780 * not update the on-disk file size - we may be 1781 * called from xfs_inactive_free_eofblocks(). If we 1782 * update the on-disk file size and then the system 1783 * crashes before the contents of the file are 1784 * flushed to disk then the files may be full of 1785 * holes (ie NULL files bug). 1786 */ 1787 if (ip->i_size != new_size) { 1788 ip->i_d.di_size = new_size; 1789 ip->i_size = new_size; 1790 } 1791 } 1792 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1793 ASSERT((new_size != 0) || 1794 (fork == XFS_ATTR_FORK) || 1795 (ip->i_delayed_blks == 0)); 1796 ASSERT((new_size != 0) || 1797 (fork == XFS_ATTR_FORK) || 1798 (ip->i_d.di_nextents == 0)); 1799 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1800 return 0; 1801 } 1802 1803 /* 1804 * This is called when the inode's link count goes to 0. 1805 * We place the on-disk inode on a list in the AGI. It 1806 * will be pulled from this list when the inode is freed. 1807 */ 1808 int 1809 xfs_iunlink( 1810 xfs_trans_t *tp, 1811 xfs_inode_t *ip) 1812 { 1813 xfs_mount_t *mp; 1814 xfs_agi_t *agi; 1815 xfs_dinode_t *dip; 1816 xfs_buf_t *agibp; 1817 xfs_buf_t *ibp; 1818 xfs_agino_t agino; 1819 short bucket_index; 1820 int offset; 1821 int error; 1822 1823 ASSERT(ip->i_d.di_nlink == 0); 1824 ASSERT(ip->i_d.di_mode != 0); 1825 ASSERT(ip->i_transp == tp); 1826 1827 mp = tp->t_mountp; 1828 1829 /* 1830 * Get the agi buffer first. It ensures lock ordering 1831 * on the list. 1832 */ 1833 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1834 if (error) 1835 return error; 1836 agi = XFS_BUF_TO_AGI(agibp); 1837 1838 /* 1839 * Get the index into the agi hash table for the 1840 * list this inode will go on. 1841 */ 1842 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1843 ASSERT(agino != 0); 1844 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1845 ASSERT(agi->agi_unlinked[bucket_index]); 1846 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1847 1848 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1849 /* 1850 * There is already another inode in the bucket we need 1851 * to add ourselves to. Add us at the front of the list. 1852 * Here we put the head pointer into our next pointer, 1853 * and then we fall through to point the head at us. 1854 */ 1855 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1856 if (error) 1857 return error; 1858 1859 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1860 /* both on-disk, don't endian flip twice */ 1861 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1862 offset = ip->i_imap.im_boffset + 1863 offsetof(xfs_dinode_t, di_next_unlinked); 1864 xfs_trans_inode_buf(tp, ibp); 1865 xfs_trans_log_buf(tp, ibp, offset, 1866 (offset + sizeof(xfs_agino_t) - 1)); 1867 xfs_inobp_check(mp, ibp); 1868 } 1869 1870 /* 1871 * Point the bucket head pointer at the inode being inserted. 1872 */ 1873 ASSERT(agino != 0); 1874 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1875 offset = offsetof(xfs_agi_t, agi_unlinked) + 1876 (sizeof(xfs_agino_t) * bucket_index); 1877 xfs_trans_log_buf(tp, agibp, offset, 1878 (offset + sizeof(xfs_agino_t) - 1)); 1879 return 0; 1880 } 1881 1882 /* 1883 * Pull the on-disk inode from the AGI unlinked list. 1884 */ 1885 STATIC int 1886 xfs_iunlink_remove( 1887 xfs_trans_t *tp, 1888 xfs_inode_t *ip) 1889 { 1890 xfs_ino_t next_ino; 1891 xfs_mount_t *mp; 1892 xfs_agi_t *agi; 1893 xfs_dinode_t *dip; 1894 xfs_buf_t *agibp; 1895 xfs_buf_t *ibp; 1896 xfs_agnumber_t agno; 1897 xfs_agino_t agino; 1898 xfs_agino_t next_agino; 1899 xfs_buf_t *last_ibp; 1900 xfs_dinode_t *last_dip = NULL; 1901 short bucket_index; 1902 int offset, last_offset = 0; 1903 int error; 1904 1905 mp = tp->t_mountp; 1906 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1907 1908 /* 1909 * Get the agi buffer first. It ensures lock ordering 1910 * on the list. 1911 */ 1912 error = xfs_read_agi(mp, tp, agno, &agibp); 1913 if (error) 1914 return error; 1915 1916 agi = XFS_BUF_TO_AGI(agibp); 1917 1918 /* 1919 * Get the index into the agi hash table for the 1920 * list this inode will go on. 1921 */ 1922 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1923 ASSERT(agino != 0); 1924 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1925 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1926 ASSERT(agi->agi_unlinked[bucket_index]); 1927 1928 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1929 /* 1930 * We're at the head of the list. Get the inode's 1931 * on-disk buffer to see if there is anyone after us 1932 * on the list. Only modify our next pointer if it 1933 * is not already NULLAGINO. This saves us the overhead 1934 * of dealing with the buffer when there is no need to 1935 * change it. 1936 */ 1937 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1938 if (error) { 1939 cmn_err(CE_WARN, 1940 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1941 error, mp->m_fsname); 1942 return error; 1943 } 1944 next_agino = be32_to_cpu(dip->di_next_unlinked); 1945 ASSERT(next_agino != 0); 1946 if (next_agino != NULLAGINO) { 1947 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1948 offset = ip->i_imap.im_boffset + 1949 offsetof(xfs_dinode_t, di_next_unlinked); 1950 xfs_trans_inode_buf(tp, ibp); 1951 xfs_trans_log_buf(tp, ibp, offset, 1952 (offset + sizeof(xfs_agino_t) - 1)); 1953 xfs_inobp_check(mp, ibp); 1954 } else { 1955 xfs_trans_brelse(tp, ibp); 1956 } 1957 /* 1958 * Point the bucket head pointer at the next inode. 1959 */ 1960 ASSERT(next_agino != 0); 1961 ASSERT(next_agino != agino); 1962 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1963 offset = offsetof(xfs_agi_t, agi_unlinked) + 1964 (sizeof(xfs_agino_t) * bucket_index); 1965 xfs_trans_log_buf(tp, agibp, offset, 1966 (offset + sizeof(xfs_agino_t) - 1)); 1967 } else { 1968 /* 1969 * We need to search the list for the inode being freed. 1970 */ 1971 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1972 last_ibp = NULL; 1973 while (next_agino != agino) { 1974 /* 1975 * If the last inode wasn't the one pointing to 1976 * us, then release its buffer since we're not 1977 * going to do anything with it. 1978 */ 1979 if (last_ibp != NULL) { 1980 xfs_trans_brelse(tp, last_ibp); 1981 } 1982 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1983 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1984 &last_ibp, &last_offset, 0); 1985 if (error) { 1986 cmn_err(CE_WARN, 1987 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1988 error, mp->m_fsname); 1989 return error; 1990 } 1991 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1992 ASSERT(next_agino != NULLAGINO); 1993 ASSERT(next_agino != 0); 1994 } 1995 /* 1996 * Now last_ibp points to the buffer previous to us on 1997 * the unlinked list. Pull us from the list. 1998 */ 1999 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2000 if (error) { 2001 cmn_err(CE_WARN, 2002 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2003 error, mp->m_fsname); 2004 return error; 2005 } 2006 next_agino = be32_to_cpu(dip->di_next_unlinked); 2007 ASSERT(next_agino != 0); 2008 ASSERT(next_agino != agino); 2009 if (next_agino != NULLAGINO) { 2010 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2011 offset = ip->i_imap.im_boffset + 2012 offsetof(xfs_dinode_t, di_next_unlinked); 2013 xfs_trans_inode_buf(tp, ibp); 2014 xfs_trans_log_buf(tp, ibp, offset, 2015 (offset + sizeof(xfs_agino_t) - 1)); 2016 xfs_inobp_check(mp, ibp); 2017 } else { 2018 xfs_trans_brelse(tp, ibp); 2019 } 2020 /* 2021 * Point the previous inode on the list to the next inode. 2022 */ 2023 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2024 ASSERT(next_agino != 0); 2025 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2026 xfs_trans_inode_buf(tp, last_ibp); 2027 xfs_trans_log_buf(tp, last_ibp, offset, 2028 (offset + sizeof(xfs_agino_t) - 1)); 2029 xfs_inobp_check(mp, last_ibp); 2030 } 2031 return 0; 2032 } 2033 2034 STATIC void 2035 xfs_ifree_cluster( 2036 xfs_inode_t *free_ip, 2037 xfs_trans_t *tp, 2038 xfs_ino_t inum) 2039 { 2040 xfs_mount_t *mp = free_ip->i_mount; 2041 int blks_per_cluster; 2042 int nbufs; 2043 int ninodes; 2044 int i, j, found, pre_flushed; 2045 xfs_daddr_t blkno; 2046 xfs_buf_t *bp; 2047 xfs_inode_t *ip, **ip_found; 2048 xfs_inode_log_item_t *iip; 2049 xfs_log_item_t *lip; 2050 xfs_perag_t *pag = xfs_get_perag(mp, inum); 2051 2052 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2053 blks_per_cluster = 1; 2054 ninodes = mp->m_sb.sb_inopblock; 2055 nbufs = XFS_IALLOC_BLOCKS(mp); 2056 } else { 2057 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2058 mp->m_sb.sb_blocksize; 2059 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2060 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2061 } 2062 2063 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2064 2065 for (j = 0; j < nbufs; j++, inum += ninodes) { 2066 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2067 XFS_INO_TO_AGBNO(mp, inum)); 2068 2069 2070 /* 2071 * Look for each inode in memory and attempt to lock it, 2072 * we can be racing with flush and tail pushing here. 2073 * any inode we get the locks on, add to an array of 2074 * inode items to process later. 2075 * 2076 * The get the buffer lock, we could beat a flush 2077 * or tail pushing thread to the lock here, in which 2078 * case they will go looking for the inode buffer 2079 * and fail, we need some other form of interlock 2080 * here. 2081 */ 2082 found = 0; 2083 for (i = 0; i < ninodes; i++) { 2084 read_lock(&pag->pag_ici_lock); 2085 ip = radix_tree_lookup(&pag->pag_ici_root, 2086 XFS_INO_TO_AGINO(mp, (inum + i))); 2087 2088 /* Inode not in memory or we found it already, 2089 * nothing to do 2090 */ 2091 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2092 read_unlock(&pag->pag_ici_lock); 2093 continue; 2094 } 2095 2096 if (xfs_inode_clean(ip)) { 2097 read_unlock(&pag->pag_ici_lock); 2098 continue; 2099 } 2100 2101 /* If we can get the locks then add it to the 2102 * list, otherwise by the time we get the bp lock 2103 * below it will already be attached to the 2104 * inode buffer. 2105 */ 2106 2107 /* This inode will already be locked - by us, lets 2108 * keep it that way. 2109 */ 2110 2111 if (ip == free_ip) { 2112 if (xfs_iflock_nowait(ip)) { 2113 xfs_iflags_set(ip, XFS_ISTALE); 2114 if (xfs_inode_clean(ip)) { 2115 xfs_ifunlock(ip); 2116 } else { 2117 ip_found[found++] = ip; 2118 } 2119 } 2120 read_unlock(&pag->pag_ici_lock); 2121 continue; 2122 } 2123 2124 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2125 if (xfs_iflock_nowait(ip)) { 2126 xfs_iflags_set(ip, XFS_ISTALE); 2127 2128 if (xfs_inode_clean(ip)) { 2129 xfs_ifunlock(ip); 2130 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2131 } else { 2132 ip_found[found++] = ip; 2133 } 2134 } else { 2135 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2136 } 2137 } 2138 read_unlock(&pag->pag_ici_lock); 2139 } 2140 2141 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2142 mp->m_bsize * blks_per_cluster, 2143 XFS_BUF_LOCK); 2144 2145 pre_flushed = 0; 2146 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2147 while (lip) { 2148 if (lip->li_type == XFS_LI_INODE) { 2149 iip = (xfs_inode_log_item_t *)lip; 2150 ASSERT(iip->ili_logged == 1); 2151 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2152 xfs_trans_ail_copy_lsn(mp->m_ail, 2153 &iip->ili_flush_lsn, 2154 &iip->ili_item.li_lsn); 2155 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2156 pre_flushed++; 2157 } 2158 lip = lip->li_bio_list; 2159 } 2160 2161 for (i = 0; i < found; i++) { 2162 ip = ip_found[i]; 2163 iip = ip->i_itemp; 2164 2165 if (!iip) { 2166 ip->i_update_core = 0; 2167 xfs_ifunlock(ip); 2168 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2169 continue; 2170 } 2171 2172 iip->ili_last_fields = iip->ili_format.ilf_fields; 2173 iip->ili_format.ilf_fields = 0; 2174 iip->ili_logged = 1; 2175 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2176 &iip->ili_item.li_lsn); 2177 2178 xfs_buf_attach_iodone(bp, 2179 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2180 xfs_istale_done, (xfs_log_item_t *)iip); 2181 if (ip != free_ip) { 2182 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2183 } 2184 } 2185 2186 if (found || pre_flushed) 2187 xfs_trans_stale_inode_buf(tp, bp); 2188 xfs_trans_binval(tp, bp); 2189 } 2190 2191 kmem_free(ip_found); 2192 xfs_put_perag(mp, pag); 2193 } 2194 2195 /* 2196 * This is called to return an inode to the inode free list. 2197 * The inode should already be truncated to 0 length and have 2198 * no pages associated with it. This routine also assumes that 2199 * the inode is already a part of the transaction. 2200 * 2201 * The on-disk copy of the inode will have been added to the list 2202 * of unlinked inodes in the AGI. We need to remove the inode from 2203 * that list atomically with respect to freeing it here. 2204 */ 2205 int 2206 xfs_ifree( 2207 xfs_trans_t *tp, 2208 xfs_inode_t *ip, 2209 xfs_bmap_free_t *flist) 2210 { 2211 int error; 2212 int delete; 2213 xfs_ino_t first_ino; 2214 xfs_dinode_t *dip; 2215 xfs_buf_t *ibp; 2216 2217 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2218 ASSERT(ip->i_transp == tp); 2219 ASSERT(ip->i_d.di_nlink == 0); 2220 ASSERT(ip->i_d.di_nextents == 0); 2221 ASSERT(ip->i_d.di_anextents == 0); 2222 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2223 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2224 ASSERT(ip->i_d.di_nblocks == 0); 2225 2226 /* 2227 * Pull the on-disk inode from the AGI unlinked list. 2228 */ 2229 error = xfs_iunlink_remove(tp, ip); 2230 if (error != 0) { 2231 return error; 2232 } 2233 2234 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2235 if (error != 0) { 2236 return error; 2237 } 2238 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2239 ip->i_d.di_flags = 0; 2240 ip->i_d.di_dmevmask = 0; 2241 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2242 ip->i_df.if_ext_max = 2243 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2244 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2245 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2246 /* 2247 * Bump the generation count so no one will be confused 2248 * by reincarnations of this inode. 2249 */ 2250 ip->i_d.di_gen++; 2251 2252 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2253 2254 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2255 if (error) 2256 return error; 2257 2258 /* 2259 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2260 * from picking up this inode when it is reclaimed (its incore state 2261 * initialzed but not flushed to disk yet). The in-core di_mode is 2262 * already cleared and a corresponding transaction logged. 2263 * The hack here just synchronizes the in-core to on-disk 2264 * di_mode value in advance before the actual inode sync to disk. 2265 * This is OK because the inode is already unlinked and would never 2266 * change its di_mode again for this inode generation. 2267 * This is a temporary hack that would require a proper fix 2268 * in the future. 2269 */ 2270 dip->di_mode = 0; 2271 2272 if (delete) { 2273 xfs_ifree_cluster(ip, tp, first_ino); 2274 } 2275 2276 return 0; 2277 } 2278 2279 /* 2280 * Reallocate the space for if_broot based on the number of records 2281 * being added or deleted as indicated in rec_diff. Move the records 2282 * and pointers in if_broot to fit the new size. When shrinking this 2283 * will eliminate holes between the records and pointers created by 2284 * the caller. When growing this will create holes to be filled in 2285 * by the caller. 2286 * 2287 * The caller must not request to add more records than would fit in 2288 * the on-disk inode root. If the if_broot is currently NULL, then 2289 * if we adding records one will be allocated. The caller must also 2290 * not request that the number of records go below zero, although 2291 * it can go to zero. 2292 * 2293 * ip -- the inode whose if_broot area is changing 2294 * ext_diff -- the change in the number of records, positive or negative, 2295 * requested for the if_broot array. 2296 */ 2297 void 2298 xfs_iroot_realloc( 2299 xfs_inode_t *ip, 2300 int rec_diff, 2301 int whichfork) 2302 { 2303 struct xfs_mount *mp = ip->i_mount; 2304 int cur_max; 2305 xfs_ifork_t *ifp; 2306 struct xfs_btree_block *new_broot; 2307 int new_max; 2308 size_t new_size; 2309 char *np; 2310 char *op; 2311 2312 /* 2313 * Handle the degenerate case quietly. 2314 */ 2315 if (rec_diff == 0) { 2316 return; 2317 } 2318 2319 ifp = XFS_IFORK_PTR(ip, whichfork); 2320 if (rec_diff > 0) { 2321 /* 2322 * If there wasn't any memory allocated before, just 2323 * allocate it now and get out. 2324 */ 2325 if (ifp->if_broot_bytes == 0) { 2326 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2327 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP); 2328 ifp->if_broot_bytes = (int)new_size; 2329 return; 2330 } 2331 2332 /* 2333 * If there is already an existing if_broot, then we need 2334 * to realloc() it and shift the pointers to their new 2335 * location. The records don't change location because 2336 * they are kept butted up against the btree block header. 2337 */ 2338 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2339 new_max = cur_max + rec_diff; 2340 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2341 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2342 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2343 KM_SLEEP); 2344 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2345 ifp->if_broot_bytes); 2346 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2347 (int)new_size); 2348 ifp->if_broot_bytes = (int)new_size; 2349 ASSERT(ifp->if_broot_bytes <= 2350 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2351 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2352 return; 2353 } 2354 2355 /* 2356 * rec_diff is less than 0. In this case, we are shrinking the 2357 * if_broot buffer. It must already exist. If we go to zero 2358 * records, just get rid of the root and clear the status bit. 2359 */ 2360 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2361 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2362 new_max = cur_max + rec_diff; 2363 ASSERT(new_max >= 0); 2364 if (new_max > 0) 2365 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2366 else 2367 new_size = 0; 2368 if (new_size > 0) { 2369 new_broot = kmem_alloc(new_size, KM_SLEEP); 2370 /* 2371 * First copy over the btree block header. 2372 */ 2373 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2374 } else { 2375 new_broot = NULL; 2376 ifp->if_flags &= ~XFS_IFBROOT; 2377 } 2378 2379 /* 2380 * Only copy the records and pointers if there are any. 2381 */ 2382 if (new_max > 0) { 2383 /* 2384 * First copy the records. 2385 */ 2386 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2387 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2388 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2389 2390 /* 2391 * Then copy the pointers. 2392 */ 2393 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2394 ifp->if_broot_bytes); 2395 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2396 (int)new_size); 2397 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2398 } 2399 kmem_free(ifp->if_broot); 2400 ifp->if_broot = new_broot; 2401 ifp->if_broot_bytes = (int)new_size; 2402 ASSERT(ifp->if_broot_bytes <= 2403 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2404 return; 2405 } 2406 2407 2408 /* 2409 * This is called when the amount of space needed for if_data 2410 * is increased or decreased. The change in size is indicated by 2411 * the number of bytes that need to be added or deleted in the 2412 * byte_diff parameter. 2413 * 2414 * If the amount of space needed has decreased below the size of the 2415 * inline buffer, then switch to using the inline buffer. Otherwise, 2416 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2417 * to what is needed. 2418 * 2419 * ip -- the inode whose if_data area is changing 2420 * byte_diff -- the change in the number of bytes, positive or negative, 2421 * requested for the if_data array. 2422 */ 2423 void 2424 xfs_idata_realloc( 2425 xfs_inode_t *ip, 2426 int byte_diff, 2427 int whichfork) 2428 { 2429 xfs_ifork_t *ifp; 2430 int new_size; 2431 int real_size; 2432 2433 if (byte_diff == 0) { 2434 return; 2435 } 2436 2437 ifp = XFS_IFORK_PTR(ip, whichfork); 2438 new_size = (int)ifp->if_bytes + byte_diff; 2439 ASSERT(new_size >= 0); 2440 2441 if (new_size == 0) { 2442 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2443 kmem_free(ifp->if_u1.if_data); 2444 } 2445 ifp->if_u1.if_data = NULL; 2446 real_size = 0; 2447 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2448 /* 2449 * If the valid extents/data can fit in if_inline_ext/data, 2450 * copy them from the malloc'd vector and free it. 2451 */ 2452 if (ifp->if_u1.if_data == NULL) { 2453 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2454 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2455 ASSERT(ifp->if_real_bytes != 0); 2456 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2457 new_size); 2458 kmem_free(ifp->if_u1.if_data); 2459 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2460 } 2461 real_size = 0; 2462 } else { 2463 /* 2464 * Stuck with malloc/realloc. 2465 * For inline data, the underlying buffer must be 2466 * a multiple of 4 bytes in size so that it can be 2467 * logged and stay on word boundaries. We enforce 2468 * that here. 2469 */ 2470 real_size = roundup(new_size, 4); 2471 if (ifp->if_u1.if_data == NULL) { 2472 ASSERT(ifp->if_real_bytes == 0); 2473 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2474 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2475 /* 2476 * Only do the realloc if the underlying size 2477 * is really changing. 2478 */ 2479 if (ifp->if_real_bytes != real_size) { 2480 ifp->if_u1.if_data = 2481 kmem_realloc(ifp->if_u1.if_data, 2482 real_size, 2483 ifp->if_real_bytes, 2484 KM_SLEEP); 2485 } 2486 } else { 2487 ASSERT(ifp->if_real_bytes == 0); 2488 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2489 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2490 ifp->if_bytes); 2491 } 2492 } 2493 ifp->if_real_bytes = real_size; 2494 ifp->if_bytes = new_size; 2495 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2496 } 2497 2498 void 2499 xfs_idestroy_fork( 2500 xfs_inode_t *ip, 2501 int whichfork) 2502 { 2503 xfs_ifork_t *ifp; 2504 2505 ifp = XFS_IFORK_PTR(ip, whichfork); 2506 if (ifp->if_broot != NULL) { 2507 kmem_free(ifp->if_broot); 2508 ifp->if_broot = NULL; 2509 } 2510 2511 /* 2512 * If the format is local, then we can't have an extents 2513 * array so just look for an inline data array. If we're 2514 * not local then we may or may not have an extents list, 2515 * so check and free it up if we do. 2516 */ 2517 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2518 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2519 (ifp->if_u1.if_data != NULL)) { 2520 ASSERT(ifp->if_real_bytes != 0); 2521 kmem_free(ifp->if_u1.if_data); 2522 ifp->if_u1.if_data = NULL; 2523 ifp->if_real_bytes = 0; 2524 } 2525 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2526 ((ifp->if_flags & XFS_IFEXTIREC) || 2527 ((ifp->if_u1.if_extents != NULL) && 2528 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2529 ASSERT(ifp->if_real_bytes != 0); 2530 xfs_iext_destroy(ifp); 2531 } 2532 ASSERT(ifp->if_u1.if_extents == NULL || 2533 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2534 ASSERT(ifp->if_real_bytes == 0); 2535 if (whichfork == XFS_ATTR_FORK) { 2536 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2537 ip->i_afp = NULL; 2538 } 2539 } 2540 2541 /* 2542 * This is called free all the memory associated with an inode. 2543 * It must free the inode itself and any buffers allocated for 2544 * if_extents/if_data and if_broot. It must also free the lock 2545 * associated with the inode. 2546 * 2547 * Note: because we don't initialise everything on reallocation out 2548 * of the zone, we must ensure we nullify everything correctly before 2549 * freeing the structure. 2550 */ 2551 void 2552 xfs_idestroy( 2553 xfs_inode_t *ip) 2554 { 2555 switch (ip->i_d.di_mode & S_IFMT) { 2556 case S_IFREG: 2557 case S_IFDIR: 2558 case S_IFLNK: 2559 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2560 break; 2561 } 2562 if (ip->i_afp) 2563 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2564 2565 #ifdef XFS_INODE_TRACE 2566 ktrace_free(ip->i_trace); 2567 #endif 2568 #ifdef XFS_BMAP_TRACE 2569 ktrace_free(ip->i_xtrace); 2570 #endif 2571 #ifdef XFS_BTREE_TRACE 2572 ktrace_free(ip->i_btrace); 2573 #endif 2574 #ifdef XFS_RW_TRACE 2575 ktrace_free(ip->i_rwtrace); 2576 #endif 2577 #ifdef XFS_ILOCK_TRACE 2578 ktrace_free(ip->i_lock_trace); 2579 #endif 2580 #ifdef XFS_DIR2_TRACE 2581 ktrace_free(ip->i_dir_trace); 2582 #endif 2583 if (ip->i_itemp) { 2584 /* 2585 * Only if we are shutting down the fs will we see an 2586 * inode still in the AIL. If it is there, we should remove 2587 * it to prevent a use-after-free from occurring. 2588 */ 2589 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2590 struct xfs_ail *ailp = lip->li_ailp; 2591 2592 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2593 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2594 if (lip->li_flags & XFS_LI_IN_AIL) { 2595 spin_lock(&ailp->xa_lock); 2596 if (lip->li_flags & XFS_LI_IN_AIL) 2597 xfs_trans_ail_delete(ailp, lip); 2598 else 2599 spin_unlock(&ailp->xa_lock); 2600 } 2601 xfs_inode_item_destroy(ip); 2602 ip->i_itemp = NULL; 2603 } 2604 /* asserts to verify all state is correct here */ 2605 ASSERT(atomic_read(&ip->i_iocount) == 0); 2606 ASSERT(atomic_read(&ip->i_pincount) == 0); 2607 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 2608 ASSERT(completion_done(&ip->i_flush)); 2609 kmem_zone_free(xfs_inode_zone, ip); 2610 } 2611 2612 2613 /* 2614 * Increment the pin count of the given buffer. 2615 * This value is protected by ipinlock spinlock in the mount structure. 2616 */ 2617 void 2618 xfs_ipin( 2619 xfs_inode_t *ip) 2620 { 2621 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2622 2623 atomic_inc(&ip->i_pincount); 2624 } 2625 2626 /* 2627 * Decrement the pin count of the given inode, and wake up 2628 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2629 * inode must have been previously pinned with a call to xfs_ipin(). 2630 */ 2631 void 2632 xfs_iunpin( 2633 xfs_inode_t *ip) 2634 { 2635 ASSERT(atomic_read(&ip->i_pincount) > 0); 2636 2637 if (atomic_dec_and_test(&ip->i_pincount)) 2638 wake_up(&ip->i_ipin_wait); 2639 } 2640 2641 /* 2642 * This is called to unpin an inode. It can be directed to wait or to return 2643 * immediately without waiting for the inode to be unpinned. The caller must 2644 * have the inode locked in at least shared mode so that the buffer cannot be 2645 * subsequently pinned once someone is waiting for it to be unpinned. 2646 */ 2647 STATIC void 2648 __xfs_iunpin_wait( 2649 xfs_inode_t *ip, 2650 int wait) 2651 { 2652 xfs_inode_log_item_t *iip = ip->i_itemp; 2653 2654 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2655 if (atomic_read(&ip->i_pincount) == 0) 2656 return; 2657 2658 /* Give the log a push to start the unpinning I/O */ 2659 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? 2660 iip->ili_last_lsn : 0, XFS_LOG_FORCE); 2661 if (wait) 2662 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2663 } 2664 2665 static inline void 2666 xfs_iunpin_wait( 2667 xfs_inode_t *ip) 2668 { 2669 __xfs_iunpin_wait(ip, 1); 2670 } 2671 2672 static inline void 2673 xfs_iunpin_nowait( 2674 xfs_inode_t *ip) 2675 { 2676 __xfs_iunpin_wait(ip, 0); 2677 } 2678 2679 2680 /* 2681 * xfs_iextents_copy() 2682 * 2683 * This is called to copy the REAL extents (as opposed to the delayed 2684 * allocation extents) from the inode into the given buffer. It 2685 * returns the number of bytes copied into the buffer. 2686 * 2687 * If there are no delayed allocation extents, then we can just 2688 * memcpy() the extents into the buffer. Otherwise, we need to 2689 * examine each extent in turn and skip those which are delayed. 2690 */ 2691 int 2692 xfs_iextents_copy( 2693 xfs_inode_t *ip, 2694 xfs_bmbt_rec_t *dp, 2695 int whichfork) 2696 { 2697 int copied; 2698 int i; 2699 xfs_ifork_t *ifp; 2700 int nrecs; 2701 xfs_fsblock_t start_block; 2702 2703 ifp = XFS_IFORK_PTR(ip, whichfork); 2704 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2705 ASSERT(ifp->if_bytes > 0); 2706 2707 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2708 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2709 ASSERT(nrecs > 0); 2710 2711 /* 2712 * There are some delayed allocation extents in the 2713 * inode, so copy the extents one at a time and skip 2714 * the delayed ones. There must be at least one 2715 * non-delayed extent. 2716 */ 2717 copied = 0; 2718 for (i = 0; i < nrecs; i++) { 2719 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2720 start_block = xfs_bmbt_get_startblock(ep); 2721 if (ISNULLSTARTBLOCK(start_block)) { 2722 /* 2723 * It's a delayed allocation extent, so skip it. 2724 */ 2725 continue; 2726 } 2727 2728 /* Translate to on disk format */ 2729 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2730 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2731 dp++; 2732 copied++; 2733 } 2734 ASSERT(copied != 0); 2735 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2736 2737 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2738 } 2739 2740 /* 2741 * Each of the following cases stores data into the same region 2742 * of the on-disk inode, so only one of them can be valid at 2743 * any given time. While it is possible to have conflicting formats 2744 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2745 * in EXTENTS format, this can only happen when the fork has 2746 * changed formats after being modified but before being flushed. 2747 * In these cases, the format always takes precedence, because the 2748 * format indicates the current state of the fork. 2749 */ 2750 /*ARGSUSED*/ 2751 STATIC void 2752 xfs_iflush_fork( 2753 xfs_inode_t *ip, 2754 xfs_dinode_t *dip, 2755 xfs_inode_log_item_t *iip, 2756 int whichfork, 2757 xfs_buf_t *bp) 2758 { 2759 char *cp; 2760 xfs_ifork_t *ifp; 2761 xfs_mount_t *mp; 2762 #ifdef XFS_TRANS_DEBUG 2763 int first; 2764 #endif 2765 static const short brootflag[2] = 2766 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2767 static const short dataflag[2] = 2768 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2769 static const short extflag[2] = 2770 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2771 2772 if (!iip) 2773 return; 2774 ifp = XFS_IFORK_PTR(ip, whichfork); 2775 /* 2776 * This can happen if we gave up in iformat in an error path, 2777 * for the attribute fork. 2778 */ 2779 if (!ifp) { 2780 ASSERT(whichfork == XFS_ATTR_FORK); 2781 return; 2782 } 2783 cp = XFS_DFORK_PTR(dip, whichfork); 2784 mp = ip->i_mount; 2785 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2786 case XFS_DINODE_FMT_LOCAL: 2787 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2788 (ifp->if_bytes > 0)) { 2789 ASSERT(ifp->if_u1.if_data != NULL); 2790 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2791 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2792 } 2793 break; 2794 2795 case XFS_DINODE_FMT_EXTENTS: 2796 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2797 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2798 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2799 (ifp->if_bytes == 0)); 2800 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2801 (ifp->if_bytes > 0)); 2802 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2803 (ifp->if_bytes > 0)) { 2804 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2805 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2806 whichfork); 2807 } 2808 break; 2809 2810 case XFS_DINODE_FMT_BTREE: 2811 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2812 (ifp->if_broot_bytes > 0)) { 2813 ASSERT(ifp->if_broot != NULL); 2814 ASSERT(ifp->if_broot_bytes <= 2815 (XFS_IFORK_SIZE(ip, whichfork) + 2816 XFS_BROOT_SIZE_ADJ)); 2817 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2818 (xfs_bmdr_block_t *)cp, 2819 XFS_DFORK_SIZE(dip, mp, whichfork)); 2820 } 2821 break; 2822 2823 case XFS_DINODE_FMT_DEV: 2824 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2825 ASSERT(whichfork == XFS_DATA_FORK); 2826 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2827 } 2828 break; 2829 2830 case XFS_DINODE_FMT_UUID: 2831 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2832 ASSERT(whichfork == XFS_DATA_FORK); 2833 memcpy(XFS_DFORK_DPTR(dip), 2834 &ip->i_df.if_u2.if_uuid, 2835 sizeof(uuid_t)); 2836 } 2837 break; 2838 2839 default: 2840 ASSERT(0); 2841 break; 2842 } 2843 } 2844 2845 STATIC int 2846 xfs_iflush_cluster( 2847 xfs_inode_t *ip, 2848 xfs_buf_t *bp) 2849 { 2850 xfs_mount_t *mp = ip->i_mount; 2851 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); 2852 unsigned long first_index, mask; 2853 unsigned long inodes_per_cluster; 2854 int ilist_size; 2855 xfs_inode_t **ilist; 2856 xfs_inode_t *iq; 2857 int nr_found; 2858 int clcount = 0; 2859 int bufwasdelwri; 2860 int i; 2861 2862 ASSERT(pag->pagi_inodeok); 2863 ASSERT(pag->pag_ici_init); 2864 2865 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2866 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2867 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2868 if (!ilist) 2869 return 0; 2870 2871 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2872 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2873 read_lock(&pag->pag_ici_lock); 2874 /* really need a gang lookup range call here */ 2875 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2876 first_index, inodes_per_cluster); 2877 if (nr_found == 0) 2878 goto out_free; 2879 2880 for (i = 0; i < nr_found; i++) { 2881 iq = ilist[i]; 2882 if (iq == ip) 2883 continue; 2884 /* if the inode lies outside this cluster, we're done. */ 2885 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2886 break; 2887 /* 2888 * Do an un-protected check to see if the inode is dirty and 2889 * is a candidate for flushing. These checks will be repeated 2890 * later after the appropriate locks are acquired. 2891 */ 2892 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2893 continue; 2894 2895 /* 2896 * Try to get locks. If any are unavailable or it is pinned, 2897 * then this inode cannot be flushed and is skipped. 2898 */ 2899 2900 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2901 continue; 2902 if (!xfs_iflock_nowait(iq)) { 2903 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2904 continue; 2905 } 2906 if (xfs_ipincount(iq)) { 2907 xfs_ifunlock(iq); 2908 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2909 continue; 2910 } 2911 2912 /* 2913 * arriving here means that this inode can be flushed. First 2914 * re-check that it's dirty before flushing. 2915 */ 2916 if (!xfs_inode_clean(iq)) { 2917 int error; 2918 error = xfs_iflush_int(iq, bp); 2919 if (error) { 2920 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2921 goto cluster_corrupt_out; 2922 } 2923 clcount++; 2924 } else { 2925 xfs_ifunlock(iq); 2926 } 2927 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2928 } 2929 2930 if (clcount) { 2931 XFS_STATS_INC(xs_icluster_flushcnt); 2932 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2933 } 2934 2935 out_free: 2936 read_unlock(&pag->pag_ici_lock); 2937 kmem_free(ilist); 2938 return 0; 2939 2940 2941 cluster_corrupt_out: 2942 /* 2943 * Corruption detected in the clustering loop. Invalidate the 2944 * inode buffer and shut down the filesystem. 2945 */ 2946 read_unlock(&pag->pag_ici_lock); 2947 /* 2948 * Clean up the buffer. If it was B_DELWRI, just release it -- 2949 * brelse can handle it with no problems. If not, shut down the 2950 * filesystem before releasing the buffer. 2951 */ 2952 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2953 if (bufwasdelwri) 2954 xfs_buf_relse(bp); 2955 2956 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2957 2958 if (!bufwasdelwri) { 2959 /* 2960 * Just like incore_relse: if we have b_iodone functions, 2961 * mark the buffer as an error and call them. Otherwise 2962 * mark it as stale and brelse. 2963 */ 2964 if (XFS_BUF_IODONE_FUNC(bp)) { 2965 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 2966 XFS_BUF_UNDONE(bp); 2967 XFS_BUF_STALE(bp); 2968 XFS_BUF_SHUT(bp); 2969 XFS_BUF_ERROR(bp,EIO); 2970 xfs_biodone(bp); 2971 } else { 2972 XFS_BUF_STALE(bp); 2973 xfs_buf_relse(bp); 2974 } 2975 } 2976 2977 /* 2978 * Unlocks the flush lock 2979 */ 2980 xfs_iflush_abort(iq); 2981 kmem_free(ilist); 2982 return XFS_ERROR(EFSCORRUPTED); 2983 } 2984 2985 /* 2986 * xfs_iflush() will write a modified inode's changes out to the 2987 * inode's on disk home. The caller must have the inode lock held 2988 * in at least shared mode and the inode flush completion must be 2989 * active as well. The inode lock will still be held upon return from 2990 * the call and the caller is free to unlock it. 2991 * The inode flush will be completed when the inode reaches the disk. 2992 * The flags indicate how the inode's buffer should be written out. 2993 */ 2994 int 2995 xfs_iflush( 2996 xfs_inode_t *ip, 2997 uint flags) 2998 { 2999 xfs_inode_log_item_t *iip; 3000 xfs_buf_t *bp; 3001 xfs_dinode_t *dip; 3002 xfs_mount_t *mp; 3003 int error; 3004 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); 3005 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3006 3007 XFS_STATS_INC(xs_iflush_count); 3008 3009 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3010 ASSERT(!completion_done(&ip->i_flush)); 3011 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3012 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3013 3014 iip = ip->i_itemp; 3015 mp = ip->i_mount; 3016 3017 /* 3018 * If the inode isn't dirty, then just release the inode 3019 * flush lock and do nothing. 3020 */ 3021 if (xfs_inode_clean(ip)) { 3022 xfs_ifunlock(ip); 3023 return 0; 3024 } 3025 3026 /* 3027 * We can't flush the inode until it is unpinned, so wait for it if we 3028 * are allowed to block. We know noone new can pin it, because we are 3029 * holding the inode lock shared and you need to hold it exclusively to 3030 * pin the inode. 3031 * 3032 * If we are not allowed to block, force the log out asynchronously so 3033 * that when we come back the inode will be unpinned. If other inodes 3034 * in the same cluster are dirty, they will probably write the inode 3035 * out for us if they occur after the log force completes. 3036 */ 3037 if (noblock && xfs_ipincount(ip)) { 3038 xfs_iunpin_nowait(ip); 3039 xfs_ifunlock(ip); 3040 return EAGAIN; 3041 } 3042 xfs_iunpin_wait(ip); 3043 3044 /* 3045 * This may have been unpinned because the filesystem is shutting 3046 * down forcibly. If that's the case we must not write this inode 3047 * to disk, because the log record didn't make it to disk! 3048 */ 3049 if (XFS_FORCED_SHUTDOWN(mp)) { 3050 ip->i_update_core = 0; 3051 if (iip) 3052 iip->ili_format.ilf_fields = 0; 3053 xfs_ifunlock(ip); 3054 return XFS_ERROR(EIO); 3055 } 3056 3057 /* 3058 * Decide how buffer will be flushed out. This is done before 3059 * the call to xfs_iflush_int because this field is zeroed by it. 3060 */ 3061 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3062 /* 3063 * Flush out the inode buffer according to the directions 3064 * of the caller. In the cases where the caller has given 3065 * us a choice choose the non-delwri case. This is because 3066 * the inode is in the AIL and we need to get it out soon. 3067 */ 3068 switch (flags) { 3069 case XFS_IFLUSH_SYNC: 3070 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3071 flags = 0; 3072 break; 3073 case XFS_IFLUSH_ASYNC_NOBLOCK: 3074 case XFS_IFLUSH_ASYNC: 3075 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3076 flags = INT_ASYNC; 3077 break; 3078 case XFS_IFLUSH_DELWRI: 3079 flags = INT_DELWRI; 3080 break; 3081 default: 3082 ASSERT(0); 3083 flags = 0; 3084 break; 3085 } 3086 } else { 3087 switch (flags) { 3088 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3089 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3090 case XFS_IFLUSH_DELWRI: 3091 flags = INT_DELWRI; 3092 break; 3093 case XFS_IFLUSH_ASYNC_NOBLOCK: 3094 case XFS_IFLUSH_ASYNC: 3095 flags = INT_ASYNC; 3096 break; 3097 case XFS_IFLUSH_SYNC: 3098 flags = 0; 3099 break; 3100 default: 3101 ASSERT(0); 3102 flags = 0; 3103 break; 3104 } 3105 } 3106 3107 /* 3108 * Get the buffer containing the on-disk inode. 3109 */ 3110 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 3111 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); 3112 if (error || !bp) { 3113 xfs_ifunlock(ip); 3114 return error; 3115 } 3116 3117 /* 3118 * First flush out the inode that xfs_iflush was called with. 3119 */ 3120 error = xfs_iflush_int(ip, bp); 3121 if (error) 3122 goto corrupt_out; 3123 3124 /* 3125 * If the buffer is pinned then push on the log now so we won't 3126 * get stuck waiting in the write for too long. 3127 */ 3128 if (XFS_BUF_ISPINNED(bp)) 3129 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3130 3131 /* 3132 * inode clustering: 3133 * see if other inodes can be gathered into this write 3134 */ 3135 error = xfs_iflush_cluster(ip, bp); 3136 if (error) 3137 goto cluster_corrupt_out; 3138 3139 if (flags & INT_DELWRI) { 3140 xfs_bdwrite(mp, bp); 3141 } else if (flags & INT_ASYNC) { 3142 error = xfs_bawrite(mp, bp); 3143 } else { 3144 error = xfs_bwrite(mp, bp); 3145 } 3146 return error; 3147 3148 corrupt_out: 3149 xfs_buf_relse(bp); 3150 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3151 cluster_corrupt_out: 3152 /* 3153 * Unlocks the flush lock 3154 */ 3155 xfs_iflush_abort(ip); 3156 return XFS_ERROR(EFSCORRUPTED); 3157 } 3158 3159 3160 STATIC int 3161 xfs_iflush_int( 3162 xfs_inode_t *ip, 3163 xfs_buf_t *bp) 3164 { 3165 xfs_inode_log_item_t *iip; 3166 xfs_dinode_t *dip; 3167 xfs_mount_t *mp; 3168 #ifdef XFS_TRANS_DEBUG 3169 int first; 3170 #endif 3171 3172 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3173 ASSERT(!completion_done(&ip->i_flush)); 3174 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3175 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3176 3177 iip = ip->i_itemp; 3178 mp = ip->i_mount; 3179 3180 3181 /* 3182 * If the inode isn't dirty, then just release the inode 3183 * flush lock and do nothing. 3184 */ 3185 if (xfs_inode_clean(ip)) { 3186 xfs_ifunlock(ip); 3187 return 0; 3188 } 3189 3190 /* set *dip = inode's place in the buffer */ 3191 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3192 3193 /* 3194 * Clear i_update_core before copying out the data. 3195 * This is for coordination with our timestamp updates 3196 * that don't hold the inode lock. They will always 3197 * update the timestamps BEFORE setting i_update_core, 3198 * so if we clear i_update_core after they set it we 3199 * are guaranteed to see their updates to the timestamps. 3200 * I believe that this depends on strongly ordered memory 3201 * semantics, but we have that. We use the SYNCHRONIZE 3202 * macro to make sure that the compiler does not reorder 3203 * the i_update_core access below the data copy below. 3204 */ 3205 ip->i_update_core = 0; 3206 SYNCHRONIZE(); 3207 3208 /* 3209 * Make sure to get the latest atime from the Linux inode. 3210 */ 3211 xfs_synchronize_atime(ip); 3212 3213 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 3214 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3215 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3216 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3217 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3218 goto corrupt_out; 3219 } 3220 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3221 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3222 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3223 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3224 ip->i_ino, ip, ip->i_d.di_magic); 3225 goto corrupt_out; 3226 } 3227 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3228 if (XFS_TEST_ERROR( 3229 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3230 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3231 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3232 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3233 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3234 ip->i_ino, ip); 3235 goto corrupt_out; 3236 } 3237 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3238 if (XFS_TEST_ERROR( 3239 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3240 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3241 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3242 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3243 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3244 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3245 ip->i_ino, ip); 3246 goto corrupt_out; 3247 } 3248 } 3249 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3250 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3251 XFS_RANDOM_IFLUSH_5)) { 3252 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3253 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3254 ip->i_ino, 3255 ip->i_d.di_nextents + ip->i_d.di_anextents, 3256 ip->i_d.di_nblocks, 3257 ip); 3258 goto corrupt_out; 3259 } 3260 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3261 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3262 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3263 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3264 ip->i_ino, ip->i_d.di_forkoff, ip); 3265 goto corrupt_out; 3266 } 3267 /* 3268 * bump the flush iteration count, used to detect flushes which 3269 * postdate a log record during recovery. 3270 */ 3271 3272 ip->i_d.di_flushiter++; 3273 3274 /* 3275 * Copy the dirty parts of the inode into the on-disk 3276 * inode. We always copy out the core of the inode, 3277 * because if the inode is dirty at all the core must 3278 * be. 3279 */ 3280 xfs_dinode_to_disk(dip, &ip->i_d); 3281 3282 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3283 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3284 ip->i_d.di_flushiter = 0; 3285 3286 /* 3287 * If this is really an old format inode and the superblock version 3288 * has not been updated to support only new format inodes, then 3289 * convert back to the old inode format. If the superblock version 3290 * has been updated, then make the conversion permanent. 3291 */ 3292 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3293 if (ip->i_d.di_version == 1) { 3294 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3295 /* 3296 * Convert it back. 3297 */ 3298 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3299 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3300 } else { 3301 /* 3302 * The superblock version has already been bumped, 3303 * so just make the conversion to the new inode 3304 * format permanent. 3305 */ 3306 ip->i_d.di_version = 2; 3307 dip->di_version = 2; 3308 ip->i_d.di_onlink = 0; 3309 dip->di_onlink = 0; 3310 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3311 memset(&(dip->di_pad[0]), 0, 3312 sizeof(dip->di_pad)); 3313 ASSERT(ip->i_d.di_projid == 0); 3314 } 3315 } 3316 3317 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3318 if (XFS_IFORK_Q(ip)) 3319 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3320 xfs_inobp_check(mp, bp); 3321 3322 /* 3323 * We've recorded everything logged in the inode, so we'd 3324 * like to clear the ilf_fields bits so we don't log and 3325 * flush things unnecessarily. However, we can't stop 3326 * logging all this information until the data we've copied 3327 * into the disk buffer is written to disk. If we did we might 3328 * overwrite the copy of the inode in the log with all the 3329 * data after re-logging only part of it, and in the face of 3330 * a crash we wouldn't have all the data we need to recover. 3331 * 3332 * What we do is move the bits to the ili_last_fields field. 3333 * When logging the inode, these bits are moved back to the 3334 * ilf_fields field. In the xfs_iflush_done() routine we 3335 * clear ili_last_fields, since we know that the information 3336 * those bits represent is permanently on disk. As long as 3337 * the flush completes before the inode is logged again, then 3338 * both ilf_fields and ili_last_fields will be cleared. 3339 * 3340 * We can play with the ilf_fields bits here, because the inode 3341 * lock must be held exclusively in order to set bits there 3342 * and the flush lock protects the ili_last_fields bits. 3343 * Set ili_logged so the flush done 3344 * routine can tell whether or not to look in the AIL. 3345 * Also, store the current LSN of the inode so that we can tell 3346 * whether the item has moved in the AIL from xfs_iflush_done(). 3347 * In order to read the lsn we need the AIL lock, because 3348 * it is a 64 bit value that cannot be read atomically. 3349 */ 3350 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3351 iip->ili_last_fields = iip->ili_format.ilf_fields; 3352 iip->ili_format.ilf_fields = 0; 3353 iip->ili_logged = 1; 3354 3355 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3356 &iip->ili_item.li_lsn); 3357 3358 /* 3359 * Attach the function xfs_iflush_done to the inode's 3360 * buffer. This will remove the inode from the AIL 3361 * and unlock the inode's flush lock when the inode is 3362 * completely written to disk. 3363 */ 3364 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3365 xfs_iflush_done, (xfs_log_item_t *)iip); 3366 3367 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3368 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3369 } else { 3370 /* 3371 * We're flushing an inode which is not in the AIL and has 3372 * not been logged but has i_update_core set. For this 3373 * case we can use a B_DELWRI flush and immediately drop 3374 * the inode flush lock because we can avoid the whole 3375 * AIL state thing. It's OK to drop the flush lock now, 3376 * because we've already locked the buffer and to do anything 3377 * you really need both. 3378 */ 3379 if (iip != NULL) { 3380 ASSERT(iip->ili_logged == 0); 3381 ASSERT(iip->ili_last_fields == 0); 3382 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3383 } 3384 xfs_ifunlock(ip); 3385 } 3386 3387 return 0; 3388 3389 corrupt_out: 3390 return XFS_ERROR(EFSCORRUPTED); 3391 } 3392 3393 3394 3395 #ifdef XFS_ILOCK_TRACE 3396 ktrace_t *xfs_ilock_trace_buf; 3397 3398 void 3399 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3400 { 3401 ktrace_enter(ip->i_lock_trace, 3402 (void *)ip, 3403 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3404 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3405 (void *)ra, /* caller of ilock */ 3406 (void *)(unsigned long)current_cpu(), 3407 (void *)(unsigned long)current_pid(), 3408 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3409 } 3410 #endif 3411 3412 /* 3413 * Return a pointer to the extent record at file index idx. 3414 */ 3415 xfs_bmbt_rec_host_t * 3416 xfs_iext_get_ext( 3417 xfs_ifork_t *ifp, /* inode fork pointer */ 3418 xfs_extnum_t idx) /* index of target extent */ 3419 { 3420 ASSERT(idx >= 0); 3421 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3422 return ifp->if_u1.if_ext_irec->er_extbuf; 3423 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3424 xfs_ext_irec_t *erp; /* irec pointer */ 3425 int erp_idx = 0; /* irec index */ 3426 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3427 3428 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3429 return &erp->er_extbuf[page_idx]; 3430 } else if (ifp->if_bytes) { 3431 return &ifp->if_u1.if_extents[idx]; 3432 } else { 3433 return NULL; 3434 } 3435 } 3436 3437 /* 3438 * Insert new item(s) into the extent records for incore inode 3439 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3440 */ 3441 void 3442 xfs_iext_insert( 3443 xfs_ifork_t *ifp, /* inode fork pointer */ 3444 xfs_extnum_t idx, /* starting index of new items */ 3445 xfs_extnum_t count, /* number of inserted items */ 3446 xfs_bmbt_irec_t *new) /* items to insert */ 3447 { 3448 xfs_extnum_t i; /* extent record index */ 3449 3450 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3451 xfs_iext_add(ifp, idx, count); 3452 for (i = idx; i < idx + count; i++, new++) 3453 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3454 } 3455 3456 /* 3457 * This is called when the amount of space required for incore file 3458 * extents needs to be increased. The ext_diff parameter stores the 3459 * number of new extents being added and the idx parameter contains 3460 * the extent index where the new extents will be added. If the new 3461 * extents are being appended, then we just need to (re)allocate and 3462 * initialize the space. Otherwise, if the new extents are being 3463 * inserted into the middle of the existing entries, a bit more work 3464 * is required to make room for the new extents to be inserted. The 3465 * caller is responsible for filling in the new extent entries upon 3466 * return. 3467 */ 3468 void 3469 xfs_iext_add( 3470 xfs_ifork_t *ifp, /* inode fork pointer */ 3471 xfs_extnum_t idx, /* index to begin adding exts */ 3472 int ext_diff) /* number of extents to add */ 3473 { 3474 int byte_diff; /* new bytes being added */ 3475 int new_size; /* size of extents after adding */ 3476 xfs_extnum_t nextents; /* number of extents in file */ 3477 3478 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3479 ASSERT((idx >= 0) && (idx <= nextents)); 3480 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3481 new_size = ifp->if_bytes + byte_diff; 3482 /* 3483 * If the new number of extents (nextents + ext_diff) 3484 * fits inside the inode, then continue to use the inline 3485 * extent buffer. 3486 */ 3487 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3488 if (idx < nextents) { 3489 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3490 &ifp->if_u2.if_inline_ext[idx], 3491 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3492 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3493 } 3494 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3495 ifp->if_real_bytes = 0; 3496 ifp->if_lastex = nextents + ext_diff; 3497 } 3498 /* 3499 * Otherwise use a linear (direct) extent list. 3500 * If the extents are currently inside the inode, 3501 * xfs_iext_realloc_direct will switch us from 3502 * inline to direct extent allocation mode. 3503 */ 3504 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3505 xfs_iext_realloc_direct(ifp, new_size); 3506 if (idx < nextents) { 3507 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3508 &ifp->if_u1.if_extents[idx], 3509 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3510 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3511 } 3512 } 3513 /* Indirection array */ 3514 else { 3515 xfs_ext_irec_t *erp; 3516 int erp_idx = 0; 3517 int page_idx = idx; 3518 3519 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3520 if (ifp->if_flags & XFS_IFEXTIREC) { 3521 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3522 } else { 3523 xfs_iext_irec_init(ifp); 3524 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3525 erp = ifp->if_u1.if_ext_irec; 3526 } 3527 /* Extents fit in target extent page */ 3528 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3529 if (page_idx < erp->er_extcount) { 3530 memmove(&erp->er_extbuf[page_idx + ext_diff], 3531 &erp->er_extbuf[page_idx], 3532 (erp->er_extcount - page_idx) * 3533 sizeof(xfs_bmbt_rec_t)); 3534 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3535 } 3536 erp->er_extcount += ext_diff; 3537 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3538 } 3539 /* Insert a new extent page */ 3540 else if (erp) { 3541 xfs_iext_add_indirect_multi(ifp, 3542 erp_idx, page_idx, ext_diff); 3543 } 3544 /* 3545 * If extent(s) are being appended to the last page in 3546 * the indirection array and the new extent(s) don't fit 3547 * in the page, then erp is NULL and erp_idx is set to 3548 * the next index needed in the indirection array. 3549 */ 3550 else { 3551 int count = ext_diff; 3552 3553 while (count) { 3554 erp = xfs_iext_irec_new(ifp, erp_idx); 3555 erp->er_extcount = count; 3556 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3557 if (count) { 3558 erp_idx++; 3559 } 3560 } 3561 } 3562 } 3563 ifp->if_bytes = new_size; 3564 } 3565 3566 /* 3567 * This is called when incore extents are being added to the indirection 3568 * array and the new extents do not fit in the target extent list. The 3569 * erp_idx parameter contains the irec index for the target extent list 3570 * in the indirection array, and the idx parameter contains the extent 3571 * index within the list. The number of extents being added is stored 3572 * in the count parameter. 3573 * 3574 * |-------| |-------| 3575 * | | | | idx - number of extents before idx 3576 * | idx | | count | 3577 * | | | | count - number of extents being inserted at idx 3578 * |-------| |-------| 3579 * | count | | nex2 | nex2 - number of extents after idx + count 3580 * |-------| |-------| 3581 */ 3582 void 3583 xfs_iext_add_indirect_multi( 3584 xfs_ifork_t *ifp, /* inode fork pointer */ 3585 int erp_idx, /* target extent irec index */ 3586 xfs_extnum_t idx, /* index within target list */ 3587 int count) /* new extents being added */ 3588 { 3589 int byte_diff; /* new bytes being added */ 3590 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3591 xfs_extnum_t ext_diff; /* number of extents to add */ 3592 xfs_extnum_t ext_cnt; /* new extents still needed */ 3593 xfs_extnum_t nex2; /* extents after idx + count */ 3594 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3595 int nlists; /* number of irec's (lists) */ 3596 3597 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3598 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3599 nex2 = erp->er_extcount - idx; 3600 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3601 3602 /* 3603 * Save second part of target extent list 3604 * (all extents past */ 3605 if (nex2) { 3606 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3607 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3608 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3609 erp->er_extcount -= nex2; 3610 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3611 memset(&erp->er_extbuf[idx], 0, byte_diff); 3612 } 3613 3614 /* 3615 * Add the new extents to the end of the target 3616 * list, then allocate new irec record(s) and 3617 * extent buffer(s) as needed to store the rest 3618 * of the new extents. 3619 */ 3620 ext_cnt = count; 3621 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3622 if (ext_diff) { 3623 erp->er_extcount += ext_diff; 3624 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3625 ext_cnt -= ext_diff; 3626 } 3627 while (ext_cnt) { 3628 erp_idx++; 3629 erp = xfs_iext_irec_new(ifp, erp_idx); 3630 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3631 erp->er_extcount = ext_diff; 3632 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3633 ext_cnt -= ext_diff; 3634 } 3635 3636 /* Add nex2 extents back to indirection array */ 3637 if (nex2) { 3638 xfs_extnum_t ext_avail; 3639 int i; 3640 3641 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3642 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3643 i = 0; 3644 /* 3645 * If nex2 extents fit in the current page, append 3646 * nex2_ep after the new extents. 3647 */ 3648 if (nex2 <= ext_avail) { 3649 i = erp->er_extcount; 3650 } 3651 /* 3652 * Otherwise, check if space is available in the 3653 * next page. 3654 */ 3655 else if ((erp_idx < nlists - 1) && 3656 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3657 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3658 erp_idx++; 3659 erp++; 3660 /* Create a hole for nex2 extents */ 3661 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3662 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3663 } 3664 /* 3665 * Final choice, create a new extent page for 3666 * nex2 extents. 3667 */ 3668 else { 3669 erp_idx++; 3670 erp = xfs_iext_irec_new(ifp, erp_idx); 3671 } 3672 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3673 kmem_free(nex2_ep); 3674 erp->er_extcount += nex2; 3675 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3676 } 3677 } 3678 3679 /* 3680 * This is called when the amount of space required for incore file 3681 * extents needs to be decreased. The ext_diff parameter stores the 3682 * number of extents to be removed and the idx parameter contains 3683 * the extent index where the extents will be removed from. 3684 * 3685 * If the amount of space needed has decreased below the linear 3686 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3687 * extent array. Otherwise, use kmem_realloc() to adjust the 3688 * size to what is needed. 3689 */ 3690 void 3691 xfs_iext_remove( 3692 xfs_ifork_t *ifp, /* inode fork pointer */ 3693 xfs_extnum_t idx, /* index to begin removing exts */ 3694 int ext_diff) /* number of extents to remove */ 3695 { 3696 xfs_extnum_t nextents; /* number of extents in file */ 3697 int new_size; /* size of extents after removal */ 3698 3699 ASSERT(ext_diff > 0); 3700 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3701 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3702 3703 if (new_size == 0) { 3704 xfs_iext_destroy(ifp); 3705 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3706 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3707 } else if (ifp->if_real_bytes) { 3708 xfs_iext_remove_direct(ifp, idx, ext_diff); 3709 } else { 3710 xfs_iext_remove_inline(ifp, idx, ext_diff); 3711 } 3712 ifp->if_bytes = new_size; 3713 } 3714 3715 /* 3716 * This removes ext_diff extents from the inline buffer, beginning 3717 * at extent index idx. 3718 */ 3719 void 3720 xfs_iext_remove_inline( 3721 xfs_ifork_t *ifp, /* inode fork pointer */ 3722 xfs_extnum_t idx, /* index to begin removing exts */ 3723 int ext_diff) /* number of extents to remove */ 3724 { 3725 int nextents; /* number of extents in file */ 3726 3727 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3728 ASSERT(idx < XFS_INLINE_EXTS); 3729 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3730 ASSERT(((nextents - ext_diff) > 0) && 3731 (nextents - ext_diff) < XFS_INLINE_EXTS); 3732 3733 if (idx + ext_diff < nextents) { 3734 memmove(&ifp->if_u2.if_inline_ext[idx], 3735 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3736 (nextents - (idx + ext_diff)) * 3737 sizeof(xfs_bmbt_rec_t)); 3738 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3739 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3740 } else { 3741 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3742 ext_diff * sizeof(xfs_bmbt_rec_t)); 3743 } 3744 } 3745 3746 /* 3747 * This removes ext_diff extents from a linear (direct) extent list, 3748 * beginning at extent index idx. If the extents are being removed 3749 * from the end of the list (ie. truncate) then we just need to re- 3750 * allocate the list to remove the extra space. Otherwise, if the 3751 * extents are being removed from the middle of the existing extent 3752 * entries, then we first need to move the extent records beginning 3753 * at idx + ext_diff up in the list to overwrite the records being 3754 * removed, then remove the extra space via kmem_realloc. 3755 */ 3756 void 3757 xfs_iext_remove_direct( 3758 xfs_ifork_t *ifp, /* inode fork pointer */ 3759 xfs_extnum_t idx, /* index to begin removing exts */ 3760 int ext_diff) /* number of extents to remove */ 3761 { 3762 xfs_extnum_t nextents; /* number of extents in file */ 3763 int new_size; /* size of extents after removal */ 3764 3765 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3766 new_size = ifp->if_bytes - 3767 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3768 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3769 3770 if (new_size == 0) { 3771 xfs_iext_destroy(ifp); 3772 return; 3773 } 3774 /* Move extents up in the list (if needed) */ 3775 if (idx + ext_diff < nextents) { 3776 memmove(&ifp->if_u1.if_extents[idx], 3777 &ifp->if_u1.if_extents[idx + ext_diff], 3778 (nextents - (idx + ext_diff)) * 3779 sizeof(xfs_bmbt_rec_t)); 3780 } 3781 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3782 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3783 /* 3784 * Reallocate the direct extent list. If the extents 3785 * will fit inside the inode then xfs_iext_realloc_direct 3786 * will switch from direct to inline extent allocation 3787 * mode for us. 3788 */ 3789 xfs_iext_realloc_direct(ifp, new_size); 3790 ifp->if_bytes = new_size; 3791 } 3792 3793 /* 3794 * This is called when incore extents are being removed from the 3795 * indirection array and the extents being removed span multiple extent 3796 * buffers. The idx parameter contains the file extent index where we 3797 * want to begin removing extents, and the count parameter contains 3798 * how many extents need to be removed. 3799 * 3800 * |-------| |-------| 3801 * | nex1 | | | nex1 - number of extents before idx 3802 * |-------| | count | 3803 * | | | | count - number of extents being removed at idx 3804 * | count | |-------| 3805 * | | | nex2 | nex2 - number of extents after idx + count 3806 * |-------| |-------| 3807 */ 3808 void 3809 xfs_iext_remove_indirect( 3810 xfs_ifork_t *ifp, /* inode fork pointer */ 3811 xfs_extnum_t idx, /* index to begin removing extents */ 3812 int count) /* number of extents to remove */ 3813 { 3814 xfs_ext_irec_t *erp; /* indirection array pointer */ 3815 int erp_idx = 0; /* indirection array index */ 3816 xfs_extnum_t ext_cnt; /* extents left to remove */ 3817 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3818 xfs_extnum_t nex1; /* number of extents before idx */ 3819 xfs_extnum_t nex2; /* extents after idx + count */ 3820 int nlists; /* entries in indirection array */ 3821 int page_idx = idx; /* index in target extent list */ 3822 3823 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3824 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3825 ASSERT(erp != NULL); 3826 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3827 nex1 = page_idx; 3828 ext_cnt = count; 3829 while (ext_cnt) { 3830 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3831 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3832 /* 3833 * Check for deletion of entire list; 3834 * xfs_iext_irec_remove() updates extent offsets. 3835 */ 3836 if (ext_diff == erp->er_extcount) { 3837 xfs_iext_irec_remove(ifp, erp_idx); 3838 ext_cnt -= ext_diff; 3839 nex1 = 0; 3840 if (ext_cnt) { 3841 ASSERT(erp_idx < ifp->if_real_bytes / 3842 XFS_IEXT_BUFSZ); 3843 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3844 nex1 = 0; 3845 continue; 3846 } else { 3847 break; 3848 } 3849 } 3850 /* Move extents up (if needed) */ 3851 if (nex2) { 3852 memmove(&erp->er_extbuf[nex1], 3853 &erp->er_extbuf[nex1 + ext_diff], 3854 nex2 * sizeof(xfs_bmbt_rec_t)); 3855 } 3856 /* Zero out rest of page */ 3857 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3858 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3859 /* Update remaining counters */ 3860 erp->er_extcount -= ext_diff; 3861 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3862 ext_cnt -= ext_diff; 3863 nex1 = 0; 3864 erp_idx++; 3865 erp++; 3866 } 3867 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3868 xfs_iext_irec_compact(ifp); 3869 } 3870 3871 /* 3872 * Create, destroy, or resize a linear (direct) block of extents. 3873 */ 3874 void 3875 xfs_iext_realloc_direct( 3876 xfs_ifork_t *ifp, /* inode fork pointer */ 3877 int new_size) /* new size of extents */ 3878 { 3879 int rnew_size; /* real new size of extents */ 3880 3881 rnew_size = new_size; 3882 3883 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3884 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3885 (new_size != ifp->if_real_bytes))); 3886 3887 /* Free extent records */ 3888 if (new_size == 0) { 3889 xfs_iext_destroy(ifp); 3890 } 3891 /* Resize direct extent list and zero any new bytes */ 3892 else if (ifp->if_real_bytes) { 3893 /* Check if extents will fit inside the inode */ 3894 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3895 xfs_iext_direct_to_inline(ifp, new_size / 3896 (uint)sizeof(xfs_bmbt_rec_t)); 3897 ifp->if_bytes = new_size; 3898 return; 3899 } 3900 if (!is_power_of_2(new_size)){ 3901 rnew_size = roundup_pow_of_two(new_size); 3902 } 3903 if (rnew_size != ifp->if_real_bytes) { 3904 ifp->if_u1.if_extents = 3905 kmem_realloc(ifp->if_u1.if_extents, 3906 rnew_size, 3907 ifp->if_real_bytes, KM_NOFS); 3908 } 3909 if (rnew_size > ifp->if_real_bytes) { 3910 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3911 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3912 rnew_size - ifp->if_real_bytes); 3913 } 3914 } 3915 /* 3916 * Switch from the inline extent buffer to a direct 3917 * extent list. Be sure to include the inline extent 3918 * bytes in new_size. 3919 */ 3920 else { 3921 new_size += ifp->if_bytes; 3922 if (!is_power_of_2(new_size)) { 3923 rnew_size = roundup_pow_of_two(new_size); 3924 } 3925 xfs_iext_inline_to_direct(ifp, rnew_size); 3926 } 3927 ifp->if_real_bytes = rnew_size; 3928 ifp->if_bytes = new_size; 3929 } 3930 3931 /* 3932 * Switch from linear (direct) extent records to inline buffer. 3933 */ 3934 void 3935 xfs_iext_direct_to_inline( 3936 xfs_ifork_t *ifp, /* inode fork pointer */ 3937 xfs_extnum_t nextents) /* number of extents in file */ 3938 { 3939 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3940 ASSERT(nextents <= XFS_INLINE_EXTS); 3941 /* 3942 * The inline buffer was zeroed when we switched 3943 * from inline to direct extent allocation mode, 3944 * so we don't need to clear it here. 3945 */ 3946 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3947 nextents * sizeof(xfs_bmbt_rec_t)); 3948 kmem_free(ifp->if_u1.if_extents); 3949 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3950 ifp->if_real_bytes = 0; 3951 } 3952 3953 /* 3954 * Switch from inline buffer to linear (direct) extent records. 3955 * new_size should already be rounded up to the next power of 2 3956 * by the caller (when appropriate), so use new_size as it is. 3957 * However, since new_size may be rounded up, we can't update 3958 * if_bytes here. It is the caller's responsibility to update 3959 * if_bytes upon return. 3960 */ 3961 void 3962 xfs_iext_inline_to_direct( 3963 xfs_ifork_t *ifp, /* inode fork pointer */ 3964 int new_size) /* number of extents in file */ 3965 { 3966 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3967 memset(ifp->if_u1.if_extents, 0, new_size); 3968 if (ifp->if_bytes) { 3969 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3970 ifp->if_bytes); 3971 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3972 sizeof(xfs_bmbt_rec_t)); 3973 } 3974 ifp->if_real_bytes = new_size; 3975 } 3976 3977 /* 3978 * Resize an extent indirection array to new_size bytes. 3979 */ 3980 void 3981 xfs_iext_realloc_indirect( 3982 xfs_ifork_t *ifp, /* inode fork pointer */ 3983 int new_size) /* new indirection array size */ 3984 { 3985 int nlists; /* number of irec's (ex lists) */ 3986 int size; /* current indirection array size */ 3987 3988 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3989 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3990 size = nlists * sizeof(xfs_ext_irec_t); 3991 ASSERT(ifp->if_real_bytes); 3992 ASSERT((new_size >= 0) && (new_size != size)); 3993 if (new_size == 0) { 3994 xfs_iext_destroy(ifp); 3995 } else { 3996 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3997 kmem_realloc(ifp->if_u1.if_ext_irec, 3998 new_size, size, KM_NOFS); 3999 } 4000 } 4001 4002 /* 4003 * Switch from indirection array to linear (direct) extent allocations. 4004 */ 4005 void 4006 xfs_iext_indirect_to_direct( 4007 xfs_ifork_t *ifp) /* inode fork pointer */ 4008 { 4009 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 4010 xfs_extnum_t nextents; /* number of extents in file */ 4011 int size; /* size of file extents */ 4012 4013 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4014 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4015 ASSERT(nextents <= XFS_LINEAR_EXTS); 4016 size = nextents * sizeof(xfs_bmbt_rec_t); 4017 4018 xfs_iext_irec_compact_pages(ifp); 4019 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4020 4021 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4022 kmem_free(ifp->if_u1.if_ext_irec); 4023 ifp->if_flags &= ~XFS_IFEXTIREC; 4024 ifp->if_u1.if_extents = ep; 4025 ifp->if_bytes = size; 4026 if (nextents < XFS_LINEAR_EXTS) { 4027 xfs_iext_realloc_direct(ifp, size); 4028 } 4029 } 4030 4031 /* 4032 * Free incore file extents. 4033 */ 4034 void 4035 xfs_iext_destroy( 4036 xfs_ifork_t *ifp) /* inode fork pointer */ 4037 { 4038 if (ifp->if_flags & XFS_IFEXTIREC) { 4039 int erp_idx; 4040 int nlists; 4041 4042 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4043 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4044 xfs_iext_irec_remove(ifp, erp_idx); 4045 } 4046 ifp->if_flags &= ~XFS_IFEXTIREC; 4047 } else if (ifp->if_real_bytes) { 4048 kmem_free(ifp->if_u1.if_extents); 4049 } else if (ifp->if_bytes) { 4050 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4051 sizeof(xfs_bmbt_rec_t)); 4052 } 4053 ifp->if_u1.if_extents = NULL; 4054 ifp->if_real_bytes = 0; 4055 ifp->if_bytes = 0; 4056 } 4057 4058 /* 4059 * Return a pointer to the extent record for file system block bno. 4060 */ 4061 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 4062 xfs_iext_bno_to_ext( 4063 xfs_ifork_t *ifp, /* inode fork pointer */ 4064 xfs_fileoff_t bno, /* block number to search for */ 4065 xfs_extnum_t *idxp) /* index of target extent */ 4066 { 4067 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 4068 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4069 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 4070 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4071 int high; /* upper boundary in search */ 4072 xfs_extnum_t idx = 0; /* index of target extent */ 4073 int low; /* lower boundary in search */ 4074 xfs_extnum_t nextents; /* number of file extents */ 4075 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4076 4077 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4078 if (nextents == 0) { 4079 *idxp = 0; 4080 return NULL; 4081 } 4082 low = 0; 4083 if (ifp->if_flags & XFS_IFEXTIREC) { 4084 /* Find target extent list */ 4085 int erp_idx = 0; 4086 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4087 base = erp->er_extbuf; 4088 high = erp->er_extcount - 1; 4089 } else { 4090 base = ifp->if_u1.if_extents; 4091 high = nextents - 1; 4092 } 4093 /* Binary search extent records */ 4094 while (low <= high) { 4095 idx = (low + high) >> 1; 4096 ep = base + idx; 4097 startoff = xfs_bmbt_get_startoff(ep); 4098 blockcount = xfs_bmbt_get_blockcount(ep); 4099 if (bno < startoff) { 4100 high = idx - 1; 4101 } else if (bno >= startoff + blockcount) { 4102 low = idx + 1; 4103 } else { 4104 /* Convert back to file-based extent index */ 4105 if (ifp->if_flags & XFS_IFEXTIREC) { 4106 idx += erp->er_extoff; 4107 } 4108 *idxp = idx; 4109 return ep; 4110 } 4111 } 4112 /* Convert back to file-based extent index */ 4113 if (ifp->if_flags & XFS_IFEXTIREC) { 4114 idx += erp->er_extoff; 4115 } 4116 if (bno >= startoff + blockcount) { 4117 if (++idx == nextents) { 4118 ep = NULL; 4119 } else { 4120 ep = xfs_iext_get_ext(ifp, idx); 4121 } 4122 } 4123 *idxp = idx; 4124 return ep; 4125 } 4126 4127 /* 4128 * Return a pointer to the indirection array entry containing the 4129 * extent record for filesystem block bno. Store the index of the 4130 * target irec in *erp_idxp. 4131 */ 4132 xfs_ext_irec_t * /* pointer to found extent record */ 4133 xfs_iext_bno_to_irec( 4134 xfs_ifork_t *ifp, /* inode fork pointer */ 4135 xfs_fileoff_t bno, /* block number to search for */ 4136 int *erp_idxp) /* irec index of target ext list */ 4137 { 4138 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4139 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4140 int erp_idx; /* indirection array index */ 4141 int nlists; /* number of extent irec's (lists) */ 4142 int high; /* binary search upper limit */ 4143 int low; /* binary search lower limit */ 4144 4145 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4146 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4147 erp_idx = 0; 4148 low = 0; 4149 high = nlists - 1; 4150 while (low <= high) { 4151 erp_idx = (low + high) >> 1; 4152 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4153 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4154 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4155 high = erp_idx - 1; 4156 } else if (erp_next && bno >= 4157 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4158 low = erp_idx + 1; 4159 } else { 4160 break; 4161 } 4162 } 4163 *erp_idxp = erp_idx; 4164 return erp; 4165 } 4166 4167 /* 4168 * Return a pointer to the indirection array entry containing the 4169 * extent record at file extent index *idxp. Store the index of the 4170 * target irec in *erp_idxp and store the page index of the target 4171 * extent record in *idxp. 4172 */ 4173 xfs_ext_irec_t * 4174 xfs_iext_idx_to_irec( 4175 xfs_ifork_t *ifp, /* inode fork pointer */ 4176 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4177 int *erp_idxp, /* pointer to target irec */ 4178 int realloc) /* new bytes were just added */ 4179 { 4180 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4181 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4182 int erp_idx; /* indirection array index */ 4183 int nlists; /* number of irec's (ex lists) */ 4184 int high; /* binary search upper limit */ 4185 int low; /* binary search lower limit */ 4186 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4187 4188 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4189 ASSERT(page_idx >= 0 && page_idx <= 4190 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4191 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4192 erp_idx = 0; 4193 low = 0; 4194 high = nlists - 1; 4195 4196 /* Binary search extent irec's */ 4197 while (low <= high) { 4198 erp_idx = (low + high) >> 1; 4199 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4200 prev = erp_idx > 0 ? erp - 1 : NULL; 4201 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4202 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4203 high = erp_idx - 1; 4204 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4205 (page_idx == erp->er_extoff + erp->er_extcount && 4206 !realloc)) { 4207 low = erp_idx + 1; 4208 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4209 erp->er_extcount == XFS_LINEAR_EXTS) { 4210 ASSERT(realloc); 4211 page_idx = 0; 4212 erp_idx++; 4213 erp = erp_idx < nlists ? erp + 1 : NULL; 4214 break; 4215 } else { 4216 page_idx -= erp->er_extoff; 4217 break; 4218 } 4219 } 4220 *idxp = page_idx; 4221 *erp_idxp = erp_idx; 4222 return(erp); 4223 } 4224 4225 /* 4226 * Allocate and initialize an indirection array once the space needed 4227 * for incore extents increases above XFS_IEXT_BUFSZ. 4228 */ 4229 void 4230 xfs_iext_irec_init( 4231 xfs_ifork_t *ifp) /* inode fork pointer */ 4232 { 4233 xfs_ext_irec_t *erp; /* indirection array pointer */ 4234 xfs_extnum_t nextents; /* number of extents in file */ 4235 4236 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4237 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4238 ASSERT(nextents <= XFS_LINEAR_EXTS); 4239 4240 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 4241 4242 if (nextents == 0) { 4243 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4244 } else if (!ifp->if_real_bytes) { 4245 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4246 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4247 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4248 } 4249 erp->er_extbuf = ifp->if_u1.if_extents; 4250 erp->er_extcount = nextents; 4251 erp->er_extoff = 0; 4252 4253 ifp->if_flags |= XFS_IFEXTIREC; 4254 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4255 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4256 ifp->if_u1.if_ext_irec = erp; 4257 4258 return; 4259 } 4260 4261 /* 4262 * Allocate and initialize a new entry in the indirection array. 4263 */ 4264 xfs_ext_irec_t * 4265 xfs_iext_irec_new( 4266 xfs_ifork_t *ifp, /* inode fork pointer */ 4267 int erp_idx) /* index for new irec */ 4268 { 4269 xfs_ext_irec_t *erp; /* indirection array pointer */ 4270 int i; /* loop counter */ 4271 int nlists; /* number of irec's (ex lists) */ 4272 4273 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4274 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4275 4276 /* Resize indirection array */ 4277 xfs_iext_realloc_indirect(ifp, ++nlists * 4278 sizeof(xfs_ext_irec_t)); 4279 /* 4280 * Move records down in the array so the 4281 * new page can use erp_idx. 4282 */ 4283 erp = ifp->if_u1.if_ext_irec; 4284 for (i = nlists - 1; i > erp_idx; i--) { 4285 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4286 } 4287 ASSERT(i == erp_idx); 4288 4289 /* Initialize new extent record */ 4290 erp = ifp->if_u1.if_ext_irec; 4291 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4292 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4293 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4294 erp[erp_idx].er_extcount = 0; 4295 erp[erp_idx].er_extoff = erp_idx > 0 ? 4296 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4297 return (&erp[erp_idx]); 4298 } 4299 4300 /* 4301 * Remove a record from the indirection array. 4302 */ 4303 void 4304 xfs_iext_irec_remove( 4305 xfs_ifork_t *ifp, /* inode fork pointer */ 4306 int erp_idx) /* irec index to remove */ 4307 { 4308 xfs_ext_irec_t *erp; /* indirection array pointer */ 4309 int i; /* loop counter */ 4310 int nlists; /* number of irec's (ex lists) */ 4311 4312 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4313 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4314 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4315 if (erp->er_extbuf) { 4316 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4317 -erp->er_extcount); 4318 kmem_free(erp->er_extbuf); 4319 } 4320 /* Compact extent records */ 4321 erp = ifp->if_u1.if_ext_irec; 4322 for (i = erp_idx; i < nlists - 1; i++) { 4323 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4324 } 4325 /* 4326 * Manually free the last extent record from the indirection 4327 * array. A call to xfs_iext_realloc_indirect() with a size 4328 * of zero would result in a call to xfs_iext_destroy() which 4329 * would in turn call this function again, creating a nasty 4330 * infinite loop. 4331 */ 4332 if (--nlists) { 4333 xfs_iext_realloc_indirect(ifp, 4334 nlists * sizeof(xfs_ext_irec_t)); 4335 } else { 4336 kmem_free(ifp->if_u1.if_ext_irec); 4337 } 4338 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4339 } 4340 4341 /* 4342 * This is called to clean up large amounts of unused memory allocated 4343 * by the indirection array. Before compacting anything though, verify 4344 * that the indirection array is still needed and switch back to the 4345 * linear extent list (or even the inline buffer) if possible. The 4346 * compaction policy is as follows: 4347 * 4348 * Full Compaction: Extents fit into a single page (or inline buffer) 4349 * Partial Compaction: Extents occupy less than 50% of allocated space 4350 * No Compaction: Extents occupy at least 50% of allocated space 4351 */ 4352 void 4353 xfs_iext_irec_compact( 4354 xfs_ifork_t *ifp) /* inode fork pointer */ 4355 { 4356 xfs_extnum_t nextents; /* number of extents in file */ 4357 int nlists; /* number of irec's (ex lists) */ 4358 4359 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4360 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4361 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4362 4363 if (nextents == 0) { 4364 xfs_iext_destroy(ifp); 4365 } else if (nextents <= XFS_INLINE_EXTS) { 4366 xfs_iext_indirect_to_direct(ifp); 4367 xfs_iext_direct_to_inline(ifp, nextents); 4368 } else if (nextents <= XFS_LINEAR_EXTS) { 4369 xfs_iext_indirect_to_direct(ifp); 4370 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4371 xfs_iext_irec_compact_pages(ifp); 4372 } 4373 } 4374 4375 /* 4376 * Combine extents from neighboring extent pages. 4377 */ 4378 void 4379 xfs_iext_irec_compact_pages( 4380 xfs_ifork_t *ifp) /* inode fork pointer */ 4381 { 4382 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4383 int erp_idx = 0; /* indirection array index */ 4384 int nlists; /* number of irec's (ex lists) */ 4385 4386 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4387 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4388 while (erp_idx < nlists - 1) { 4389 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4390 erp_next = erp + 1; 4391 if (erp_next->er_extcount <= 4392 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4393 memcpy(&erp->er_extbuf[erp->er_extcount], 4394 erp_next->er_extbuf, erp_next->er_extcount * 4395 sizeof(xfs_bmbt_rec_t)); 4396 erp->er_extcount += erp_next->er_extcount; 4397 /* 4398 * Free page before removing extent record 4399 * so er_extoffs don't get modified in 4400 * xfs_iext_irec_remove. 4401 */ 4402 kmem_free(erp_next->er_extbuf); 4403 erp_next->er_extbuf = NULL; 4404 xfs_iext_irec_remove(ifp, erp_idx + 1); 4405 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4406 } else { 4407 erp_idx++; 4408 } 4409 } 4410 } 4411 4412 /* 4413 * This is called to update the er_extoff field in the indirection 4414 * array when extents have been added or removed from one of the 4415 * extent lists. erp_idx contains the irec index to begin updating 4416 * at and ext_diff contains the number of extents that were added 4417 * or removed. 4418 */ 4419 void 4420 xfs_iext_irec_update_extoffs( 4421 xfs_ifork_t *ifp, /* inode fork pointer */ 4422 int erp_idx, /* irec index to update */ 4423 int ext_diff) /* number of new extents */ 4424 { 4425 int i; /* loop counter */ 4426 int nlists; /* number of irec's (ex lists */ 4427 4428 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4429 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4430 for (i = erp_idx; i < nlists; i++) { 4431 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4432 } 4433 } 4434