xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 92bfc6e7c4eabbbd15e7d6d49123b296d05dcfd1)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 
70 #ifdef DEBUG
71 /*
72  * Make sure that the extents in the given memory buffer
73  * are valid.
74  */
75 STATIC void
76 xfs_validate_extents(
77 	xfs_ifork_t		*ifp,
78 	int			nrecs,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_irec_t		irec;
82 	xfs_bmbt_rec_host_t	rec;
83 	int			i;
84 
85 	for (i = 0; i < nrecs; i++) {
86 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 		rec.l0 = get_unaligned(&ep->l0);
88 		rec.l1 = get_unaligned(&ep->l1);
89 		xfs_bmbt_get_all(&rec, &irec);
90 		if (fmt == XFS_EXTFMT_NOSTATE)
91 			ASSERT(irec.br_state == XFS_EXT_NORM);
92 	}
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97 
98 /*
99  * Check that none of the inode's in the buffer have a next
100  * unlinked field of 0.
101  */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 	xfs_mount_t	*mp,
106 	xfs_buf_t	*bp)
107 {
108 	int		i;
109 	int		j;
110 	xfs_dinode_t	*dip;
111 
112 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 
114 	for (i = 0; i < j; i++) {
115 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 					i * mp->m_sb.sb_inodesize);
117 		if (!dip->di_next_unlinked)  {
118 			xfs_fs_cmn_err(CE_ALERT, mp,
119 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
120 				bp);
121 			ASSERT(dip->di_next_unlinked);
122 		}
123 	}
124 }
125 #endif
126 
127 /*
128  * Find the buffer associated with the given inode map
129  * We do basic validation checks on the buffer once it has been
130  * retrieved from disk.
131  */
132 STATIC int
133 xfs_imap_to_bp(
134 	xfs_mount_t	*mp,
135 	xfs_trans_t	*tp,
136 	struct xfs_imap	*imap,
137 	xfs_buf_t	**bpp,
138 	uint		buf_flags,
139 	uint		imap_flags)
140 {
141 	int		error;
142 	int		i;
143 	int		ni;
144 	xfs_buf_t	*bp;
145 
146 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 				   (int)imap->im_len, buf_flags, &bp);
148 	if (error) {
149 		if (error != EAGAIN) {
150 			cmn_err(CE_WARN,
151 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 				"an error %d on %s.  Returning error.",
153 				error, mp->m_fsname);
154 		} else {
155 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 		}
157 		return error;
158 	}
159 
160 	/*
161 	 * Validate the magic number and version of every inode in the buffer
162 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 	 */
164 #ifdef DEBUG
165 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else	/* usual case */
167 	ni = 1;
168 #endif
169 
170 	for (i = 0; i < ni; i++) {
171 		int		di_ok;
172 		xfs_dinode_t	*dip;
173 
174 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 					(i << mp->m_sb.sb_inodelog));
176 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
178 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 						XFS_ERRTAG_ITOBP_INOTOBP,
180 						XFS_RANDOM_ITOBP_INOTOBP))) {
181 			if (imap_flags & XFS_IMAP_BULKSTAT) {
182 				xfs_trans_brelse(tp, bp);
183 				return XFS_ERROR(EINVAL);
184 			}
185 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 						XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 			cmn_err(CE_PANIC,
189 					"Device %s - bad inode magic/vsn "
190 					"daddr %lld #%d (magic=%x)",
191 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 				(unsigned long long)imap->im_blkno, i,
193 				be16_to_cpu(dip->di_magic));
194 #endif
195 			xfs_trans_brelse(tp, bp);
196 			return XFS_ERROR(EFSCORRUPTED);
197 		}
198 	}
199 
200 	xfs_inobp_check(mp, bp);
201 
202 	/*
203 	 * Mark the buffer as an inode buffer now that it looks good
204 	 */
205 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 
207 	*bpp = bp;
208 	return 0;
209 }
210 
211 /*
212  * This routine is called to map an inode number within a file
213  * system to the buffer containing the on-disk version of the
214  * inode.  It returns a pointer to the buffer containing the
215  * on-disk inode in the bpp parameter, and in the dip parameter
216  * it returns a pointer to the on-disk inode within that buffer.
217  *
218  * If a non-zero error is returned, then the contents of bpp and
219  * dipp are undefined.
220  *
221  * Use xfs_imap() to determine the size and location of the
222  * buffer to read from disk.
223  */
224 int
225 xfs_inotobp(
226 	xfs_mount_t	*mp,
227 	xfs_trans_t	*tp,
228 	xfs_ino_t	ino,
229 	xfs_dinode_t	**dipp,
230 	xfs_buf_t	**bpp,
231 	int		*offset,
232 	uint		imap_flags)
233 {
234 	struct xfs_imap	imap;
235 	xfs_buf_t	*bp;
236 	int		error;
237 
238 	imap.im_blkno = 0;
239 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
240 	if (error)
241 		return error;
242 
243 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
244 	if (error)
245 		return error;
246 
247 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 	*bpp = bp;
249 	*offset = imap.im_boffset;
250 	return 0;
251 }
252 
253 
254 /*
255  * This routine is called to map an inode to the buffer containing
256  * the on-disk version of the inode.  It returns a pointer to the
257  * buffer containing the on-disk inode in the bpp parameter, and in
258  * the dip parameter it returns a pointer to the on-disk inode within
259  * that buffer.
260  *
261  * If a non-zero error is returned, then the contents of bpp and
262  * dipp are undefined.
263  *
264  * The inode is expected to already been mapped to its buffer and read
265  * in once, thus we can use the mapping information stored in the inode
266  * rather than calling xfs_imap().  This allows us to avoid the overhead
267  * of looking at the inode btree for small block file systems
268  * (see xfs_imap()).
269  */
270 int
271 xfs_itobp(
272 	xfs_mount_t	*mp,
273 	xfs_trans_t	*tp,
274 	xfs_inode_t	*ip,
275 	xfs_dinode_t	**dipp,
276 	xfs_buf_t	**bpp,
277 	uint		buf_flags)
278 {
279 	xfs_buf_t	*bp;
280 	int		error;
281 
282 	ASSERT(ip->i_imap.im_blkno != 0);
283 
284 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
285 	if (error)
286 		return error;
287 
288 	if (!bp) {
289 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
290 		ASSERT(tp == NULL);
291 		*bpp = NULL;
292 		return EAGAIN;
293 	}
294 
295 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
296 	*bpp = bp;
297 	return 0;
298 }
299 
300 /*
301  * Move inode type and inode format specific information from the
302  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
303  * this means set if_rdev to the proper value.  For files, directories,
304  * and symlinks this means to bring in the in-line data or extent
305  * pointers.  For a file in B-tree format, only the root is immediately
306  * brought in-core.  The rest will be in-lined in if_extents when it
307  * is first referenced (see xfs_iread_extents()).
308  */
309 STATIC int
310 xfs_iformat(
311 	xfs_inode_t		*ip,
312 	xfs_dinode_t		*dip)
313 {
314 	xfs_attr_shortform_t	*atp;
315 	int			size;
316 	int			error;
317 	xfs_fsize_t             di_size;
318 	ip->i_df.if_ext_max =
319 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
320 	error = 0;
321 
322 	if (unlikely(be32_to_cpu(dip->di_nextents) +
323 		     be16_to_cpu(dip->di_anextents) >
324 		     be64_to_cpu(dip->di_nblocks))) {
325 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 			(unsigned long long)ip->i_ino,
328 			(int)(be32_to_cpu(dip->di_nextents) +
329 			      be16_to_cpu(dip->di_anextents)),
330 			(unsigned long long)
331 				be64_to_cpu(dip->di_nblocks));
332 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
333 				     ip->i_mount, dip);
334 		return XFS_ERROR(EFSCORRUPTED);
335 	}
336 
337 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
338 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 			"corrupt dinode %Lu, forkoff = 0x%x.",
340 			(unsigned long long)ip->i_ino,
341 			dip->di_forkoff);
342 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
343 				     ip->i_mount, dip);
344 		return XFS_ERROR(EFSCORRUPTED);
345 	}
346 
347 	switch (ip->i_d.di_mode & S_IFMT) {
348 	case S_IFIFO:
349 	case S_IFCHR:
350 	case S_IFBLK:
351 	case S_IFSOCK:
352 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
353 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
354 					      ip->i_mount, dip);
355 			return XFS_ERROR(EFSCORRUPTED);
356 		}
357 		ip->i_d.di_size = 0;
358 		ip->i_size = 0;
359 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
360 		break;
361 
362 	case S_IFREG:
363 	case S_IFLNK:
364 	case S_IFDIR:
365 		switch (dip->di_format) {
366 		case XFS_DINODE_FMT_LOCAL:
367 			/*
368 			 * no local regular files yet
369 			 */
370 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
371 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
372 					"corrupt inode %Lu "
373 					"(local format for regular file).",
374 					(unsigned long long) ip->i_ino);
375 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 						     XFS_ERRLEVEL_LOW,
377 						     ip->i_mount, dip);
378 				return XFS_ERROR(EFSCORRUPTED);
379 			}
380 
381 			di_size = be64_to_cpu(dip->di_size);
382 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
384 					"corrupt inode %Lu "
385 					"(bad size %Ld for local inode).",
386 					(unsigned long long) ip->i_ino,
387 					(long long) di_size);
388 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 						     XFS_ERRLEVEL_LOW,
390 						     ip->i_mount, dip);
391 				return XFS_ERROR(EFSCORRUPTED);
392 			}
393 
394 			size = (int)di_size;
395 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 			break;
397 		case XFS_DINODE_FMT_EXTENTS:
398 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 			break;
400 		case XFS_DINODE_FMT_BTREE:
401 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 			break;
403 		default:
404 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 					 ip->i_mount);
406 			return XFS_ERROR(EFSCORRUPTED);
407 		}
408 		break;
409 
410 	default:
411 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	if (error) {
415 		return error;
416 	}
417 	if (!XFS_DFORK_Q(dip))
418 		return 0;
419 	ASSERT(ip->i_afp == NULL);
420 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 	ip->i_afp->if_ext_max =
422 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 	switch (dip->di_aformat) {
424 	case XFS_DINODE_FMT_LOCAL:
425 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 		size = be16_to_cpu(atp->hdr.totsize);
427 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
428 		break;
429 	case XFS_DINODE_FMT_EXTENTS:
430 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
431 		break;
432 	case XFS_DINODE_FMT_BTREE:
433 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
434 		break;
435 	default:
436 		error = XFS_ERROR(EFSCORRUPTED);
437 		break;
438 	}
439 	if (error) {
440 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
441 		ip->i_afp = NULL;
442 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
443 	}
444 	return error;
445 }
446 
447 /*
448  * The file is in-lined in the on-disk inode.
449  * If it fits into if_inline_data, then copy
450  * it there, otherwise allocate a buffer for it
451  * and copy the data there.  Either way, set
452  * if_data to point at the data.
453  * If we allocate a buffer for the data, make
454  * sure that its size is a multiple of 4 and
455  * record the real size in i_real_bytes.
456  */
457 STATIC int
458 xfs_iformat_local(
459 	xfs_inode_t	*ip,
460 	xfs_dinode_t	*dip,
461 	int		whichfork,
462 	int		size)
463 {
464 	xfs_ifork_t	*ifp;
465 	int		real_size;
466 
467 	/*
468 	 * If the size is unreasonable, then something
469 	 * is wrong and we just bail out rather than crash in
470 	 * kmem_alloc() or memcpy() below.
471 	 */
472 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
473 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
474 			"corrupt inode %Lu "
475 			"(bad size %d for local fork, size = %d).",
476 			(unsigned long long) ip->i_ino, size,
477 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
478 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
479 				     ip->i_mount, dip);
480 		return XFS_ERROR(EFSCORRUPTED);
481 	}
482 	ifp = XFS_IFORK_PTR(ip, whichfork);
483 	real_size = 0;
484 	if (size == 0)
485 		ifp->if_u1.if_data = NULL;
486 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
487 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
488 	else {
489 		real_size = roundup(size, 4);
490 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
491 	}
492 	ifp->if_bytes = size;
493 	ifp->if_real_bytes = real_size;
494 	if (size)
495 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
496 	ifp->if_flags &= ~XFS_IFEXTENTS;
497 	ifp->if_flags |= XFS_IFINLINE;
498 	return 0;
499 }
500 
501 /*
502  * The file consists of a set of extents all
503  * of which fit into the on-disk inode.
504  * If there are few enough extents to fit into
505  * the if_inline_ext, then copy them there.
506  * Otherwise allocate a buffer for them and copy
507  * them into it.  Either way, set if_extents
508  * to point at the extents.
509  */
510 STATIC int
511 xfs_iformat_extents(
512 	xfs_inode_t	*ip,
513 	xfs_dinode_t	*dip,
514 	int		whichfork)
515 {
516 	xfs_bmbt_rec_t	*dp;
517 	xfs_ifork_t	*ifp;
518 	int		nex;
519 	int		size;
520 	int		i;
521 
522 	ifp = XFS_IFORK_PTR(ip, whichfork);
523 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
524 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
525 
526 	/*
527 	 * If the number of extents is unreasonable, then something
528 	 * is wrong and we just bail out rather than crash in
529 	 * kmem_alloc() or memcpy() below.
530 	 */
531 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
532 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
533 			"corrupt inode %Lu ((a)extents = %d).",
534 			(unsigned long long) ip->i_ino, nex);
535 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
536 				     ip->i_mount, dip);
537 		return XFS_ERROR(EFSCORRUPTED);
538 	}
539 
540 	ifp->if_real_bytes = 0;
541 	if (nex == 0)
542 		ifp->if_u1.if_extents = NULL;
543 	else if (nex <= XFS_INLINE_EXTS)
544 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
545 	else
546 		xfs_iext_add(ifp, 0, nex);
547 
548 	ifp->if_bytes = size;
549 	if (size) {
550 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
551 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
552 		for (i = 0; i < nex; i++, dp++) {
553 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
554 			ep->l0 = get_unaligned_be64(&dp->l0);
555 			ep->l1 = get_unaligned_be64(&dp->l1);
556 		}
557 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
558 		if (whichfork != XFS_DATA_FORK ||
559 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
560 				if (unlikely(xfs_check_nostate_extents(
561 				    ifp, 0, nex))) {
562 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
563 							 XFS_ERRLEVEL_LOW,
564 							 ip->i_mount);
565 					return XFS_ERROR(EFSCORRUPTED);
566 				}
567 	}
568 	ifp->if_flags |= XFS_IFEXTENTS;
569 	return 0;
570 }
571 
572 /*
573  * The file has too many extents to fit into
574  * the inode, so they are in B-tree format.
575  * Allocate a buffer for the root of the B-tree
576  * and copy the root into it.  The i_extents
577  * field will remain NULL until all of the
578  * extents are read in (when they are needed).
579  */
580 STATIC int
581 xfs_iformat_btree(
582 	xfs_inode_t		*ip,
583 	xfs_dinode_t		*dip,
584 	int			whichfork)
585 {
586 	xfs_bmdr_block_t	*dfp;
587 	xfs_ifork_t		*ifp;
588 	/* REFERENCED */
589 	int			nrecs;
590 	int			size;
591 
592 	ifp = XFS_IFORK_PTR(ip, whichfork);
593 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
594 	size = XFS_BMAP_BROOT_SPACE(dfp);
595 	nrecs = be16_to_cpu(dfp->bb_numrecs);
596 
597 	/*
598 	 * blow out if -- fork has less extents than can fit in
599 	 * fork (fork shouldn't be a btree format), root btree
600 	 * block has more records than can fit into the fork,
601 	 * or the number of extents is greater than the number of
602 	 * blocks.
603 	 */
604 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
605 	    || XFS_BMDR_SPACE_CALC(nrecs) >
606 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
607 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
608 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
609 			"corrupt inode %Lu (btree).",
610 			(unsigned long long) ip->i_ino);
611 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
612 				 ip->i_mount);
613 		return XFS_ERROR(EFSCORRUPTED);
614 	}
615 
616 	ifp->if_broot_bytes = size;
617 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
618 	ASSERT(ifp->if_broot != NULL);
619 	/*
620 	 * Copy and convert from the on-disk structure
621 	 * to the in-memory structure.
622 	 */
623 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
624 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
625 			 ifp->if_broot, size);
626 	ifp->if_flags &= ~XFS_IFEXTENTS;
627 	ifp->if_flags |= XFS_IFBROOT;
628 
629 	return 0;
630 }
631 
632 void
633 xfs_dinode_from_disk(
634 	xfs_icdinode_t		*to,
635 	xfs_dinode_t		*from)
636 {
637 	to->di_magic = be16_to_cpu(from->di_magic);
638 	to->di_mode = be16_to_cpu(from->di_mode);
639 	to->di_version = from ->di_version;
640 	to->di_format = from->di_format;
641 	to->di_onlink = be16_to_cpu(from->di_onlink);
642 	to->di_uid = be32_to_cpu(from->di_uid);
643 	to->di_gid = be32_to_cpu(from->di_gid);
644 	to->di_nlink = be32_to_cpu(from->di_nlink);
645 	to->di_projid = be16_to_cpu(from->di_projid);
646 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
647 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
648 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
649 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
650 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
651 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
652 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
653 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
654 	to->di_size = be64_to_cpu(from->di_size);
655 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
656 	to->di_extsize = be32_to_cpu(from->di_extsize);
657 	to->di_nextents = be32_to_cpu(from->di_nextents);
658 	to->di_anextents = be16_to_cpu(from->di_anextents);
659 	to->di_forkoff = from->di_forkoff;
660 	to->di_aformat	= from->di_aformat;
661 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
662 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
663 	to->di_flags	= be16_to_cpu(from->di_flags);
664 	to->di_gen	= be32_to_cpu(from->di_gen);
665 }
666 
667 void
668 xfs_dinode_to_disk(
669 	xfs_dinode_t		*to,
670 	xfs_icdinode_t		*from)
671 {
672 	to->di_magic = cpu_to_be16(from->di_magic);
673 	to->di_mode = cpu_to_be16(from->di_mode);
674 	to->di_version = from ->di_version;
675 	to->di_format = from->di_format;
676 	to->di_onlink = cpu_to_be16(from->di_onlink);
677 	to->di_uid = cpu_to_be32(from->di_uid);
678 	to->di_gid = cpu_to_be32(from->di_gid);
679 	to->di_nlink = cpu_to_be32(from->di_nlink);
680 	to->di_projid = cpu_to_be16(from->di_projid);
681 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
682 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
683 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
684 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
685 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
686 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
687 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
688 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
689 	to->di_size = cpu_to_be64(from->di_size);
690 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
691 	to->di_extsize = cpu_to_be32(from->di_extsize);
692 	to->di_nextents = cpu_to_be32(from->di_nextents);
693 	to->di_anextents = cpu_to_be16(from->di_anextents);
694 	to->di_forkoff = from->di_forkoff;
695 	to->di_aformat = from->di_aformat;
696 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
697 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
698 	to->di_flags = cpu_to_be16(from->di_flags);
699 	to->di_gen = cpu_to_be32(from->di_gen);
700 }
701 
702 STATIC uint
703 _xfs_dic2xflags(
704 	__uint16_t		di_flags)
705 {
706 	uint			flags = 0;
707 
708 	if (di_flags & XFS_DIFLAG_ANY) {
709 		if (di_flags & XFS_DIFLAG_REALTIME)
710 			flags |= XFS_XFLAG_REALTIME;
711 		if (di_flags & XFS_DIFLAG_PREALLOC)
712 			flags |= XFS_XFLAG_PREALLOC;
713 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
714 			flags |= XFS_XFLAG_IMMUTABLE;
715 		if (di_flags & XFS_DIFLAG_APPEND)
716 			flags |= XFS_XFLAG_APPEND;
717 		if (di_flags & XFS_DIFLAG_SYNC)
718 			flags |= XFS_XFLAG_SYNC;
719 		if (di_flags & XFS_DIFLAG_NOATIME)
720 			flags |= XFS_XFLAG_NOATIME;
721 		if (di_flags & XFS_DIFLAG_NODUMP)
722 			flags |= XFS_XFLAG_NODUMP;
723 		if (di_flags & XFS_DIFLAG_RTINHERIT)
724 			flags |= XFS_XFLAG_RTINHERIT;
725 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
726 			flags |= XFS_XFLAG_PROJINHERIT;
727 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
728 			flags |= XFS_XFLAG_NOSYMLINKS;
729 		if (di_flags & XFS_DIFLAG_EXTSIZE)
730 			flags |= XFS_XFLAG_EXTSIZE;
731 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
732 			flags |= XFS_XFLAG_EXTSZINHERIT;
733 		if (di_flags & XFS_DIFLAG_NODEFRAG)
734 			flags |= XFS_XFLAG_NODEFRAG;
735 		if (di_flags & XFS_DIFLAG_FILESTREAM)
736 			flags |= XFS_XFLAG_FILESTREAM;
737 	}
738 
739 	return flags;
740 }
741 
742 uint
743 xfs_ip2xflags(
744 	xfs_inode_t		*ip)
745 {
746 	xfs_icdinode_t		*dic = &ip->i_d;
747 
748 	return _xfs_dic2xflags(dic->di_flags) |
749 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
750 }
751 
752 uint
753 xfs_dic2xflags(
754 	xfs_dinode_t		*dip)
755 {
756 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
757 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
758 }
759 
760 /*
761  * Allocate and initialise an xfs_inode.
762  */
763 STATIC struct xfs_inode *
764 xfs_inode_alloc(
765 	struct xfs_mount	*mp,
766 	xfs_ino_t		ino)
767 {
768 	struct xfs_inode	*ip;
769 
770 	/*
771 	 * if this didn't occur in transactions, we could use
772 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
773 	 * code up to do this anyway.
774 	 */
775 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
776 	if (!ip)
777 		return NULL;
778 
779 	ASSERT(atomic_read(&ip->i_iocount) == 0);
780 	ASSERT(atomic_read(&ip->i_pincount) == 0);
781 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
782 	ASSERT(completion_done(&ip->i_flush));
783 
784 	/*
785 	 * initialise the VFS inode here to get failures
786 	 * out of the way early.
787 	 */
788 	if (!inode_init_always(mp->m_super, VFS_I(ip))) {
789 		kmem_zone_free(xfs_inode_zone, ip);
790 		return NULL;
791 	}
792 
793 	/* initialise the xfs inode */
794 	ip->i_ino = ino;
795 	ip->i_mount = mp;
796 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
797 	ip->i_afp = NULL;
798 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
799 	ip->i_flags = 0;
800 	ip->i_update_core = 0;
801 	ip->i_update_size = 0;
802 	ip->i_delayed_blks = 0;
803 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
804 	ip->i_size = 0;
805 	ip->i_new_size = 0;
806 
807 	/*
808 	 * Initialize inode's trace buffers.
809 	 */
810 #ifdef	XFS_INODE_TRACE
811 	ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
812 #endif
813 #ifdef XFS_BMAP_TRACE
814 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
815 #endif
816 #ifdef XFS_BTREE_TRACE
817 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
818 #endif
819 #ifdef XFS_RW_TRACE
820 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
821 #endif
822 #ifdef XFS_ILOCK_TRACE
823 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
824 #endif
825 #ifdef XFS_DIR2_TRACE
826 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
827 #endif
828 
829 	return ip;
830 }
831 
832 /*
833  * Given a mount structure and an inode number, return a pointer
834  * to a newly allocated in-core inode corresponding to the given
835  * inode number.
836  *
837  * Initialize the inode's attributes and extent pointers if it
838  * already has them (it will not if the inode has no links).
839  */
840 int
841 xfs_iread(
842 	xfs_mount_t	*mp,
843 	xfs_trans_t	*tp,
844 	xfs_ino_t	ino,
845 	xfs_inode_t	**ipp,
846 	xfs_daddr_t	bno,
847 	uint		imap_flags)
848 {
849 	xfs_buf_t	*bp;
850 	xfs_dinode_t	*dip;
851 	xfs_inode_t	*ip;
852 	int		error;
853 
854 	ip = xfs_inode_alloc(mp, ino);
855 	if (!ip)
856 		return ENOMEM;
857 
858 	/*
859 	 * Fill in the location information in the in-core inode.
860 	 */
861 	ip->i_imap.im_blkno = bno;
862 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, imap_flags);
863 	if (error)
864 		goto out_destroy_inode;
865 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
866 
867 	/*
868 	 * Get pointers to the on-disk inode and the buffer containing it.
869 	 */
870 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
871 			       XFS_BUF_LOCK, imap_flags);
872 	if (error)
873 		goto out_destroy_inode;
874 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
875 
876 	/*
877 	 * If we got something that isn't an inode it means someone
878 	 * (nfs or dmi) has a stale handle.
879 	 */
880 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
881 #ifdef DEBUG
882 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
883 				"dip->di_magic (0x%x) != "
884 				"XFS_DINODE_MAGIC (0x%x)",
885 				be16_to_cpu(dip->di_magic),
886 				XFS_DINODE_MAGIC);
887 #endif /* DEBUG */
888 		error = XFS_ERROR(EINVAL);
889 		goto out_brelse;
890 	}
891 
892 	/*
893 	 * If the on-disk inode is already linked to a directory
894 	 * entry, copy all of the inode into the in-core inode.
895 	 * xfs_iformat() handles copying in the inode format
896 	 * specific information.
897 	 * Otherwise, just get the truly permanent information.
898 	 */
899 	if (dip->di_mode) {
900 		xfs_dinode_from_disk(&ip->i_d, dip);
901 		error = xfs_iformat(ip, dip);
902 		if (error)  {
903 #ifdef DEBUG
904 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
905 					"xfs_iformat() returned error %d",
906 					error);
907 #endif /* DEBUG */
908 			goto out_brelse;
909 		}
910 	} else {
911 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
912 		ip->i_d.di_version = dip->di_version;
913 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
914 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
915 		/*
916 		 * Make sure to pull in the mode here as well in
917 		 * case the inode is released without being used.
918 		 * This ensures that xfs_inactive() will see that
919 		 * the inode is already free and not try to mess
920 		 * with the uninitialized part of it.
921 		 */
922 		ip->i_d.di_mode = 0;
923 		/*
924 		 * Initialize the per-fork minima and maxima for a new
925 		 * inode here.  xfs_iformat will do it for old inodes.
926 		 */
927 		ip->i_df.if_ext_max =
928 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
929 	}
930 
931 	/*
932 	 * The inode format changed when we moved the link count and
933 	 * made it 32 bits long.  If this is an old format inode,
934 	 * convert it in memory to look like a new one.  If it gets
935 	 * flushed to disk we will convert back before flushing or
936 	 * logging it.  We zero out the new projid field and the old link
937 	 * count field.  We'll handle clearing the pad field (the remains
938 	 * of the old uuid field) when we actually convert the inode to
939 	 * the new format. We don't change the version number so that we
940 	 * can distinguish this from a real new format inode.
941 	 */
942 	if (ip->i_d.di_version == 1) {
943 		ip->i_d.di_nlink = ip->i_d.di_onlink;
944 		ip->i_d.di_onlink = 0;
945 		ip->i_d.di_projid = 0;
946 	}
947 
948 	ip->i_delayed_blks = 0;
949 	ip->i_size = ip->i_d.di_size;
950 
951 	/*
952 	 * Mark the buffer containing the inode as something to keep
953 	 * around for a while.  This helps to keep recently accessed
954 	 * meta-data in-core longer.
955 	 */
956 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
957 
958 	/*
959 	 * Use xfs_trans_brelse() to release the buffer containing the
960 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
961 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
962 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
963 	 * will only release the buffer if it is not dirty within the
964 	 * transaction.  It will be OK to release the buffer in this case,
965 	 * because inodes on disk are never destroyed and we will be
966 	 * locking the new in-core inode before putting it in the hash
967 	 * table where other processes can find it.  Thus we don't have
968 	 * to worry about the inode being changed just because we released
969 	 * the buffer.
970 	 */
971 	xfs_trans_brelse(tp, bp);
972 	*ipp = ip;
973 	return 0;
974 
975  out_brelse:
976 	xfs_trans_brelse(tp, bp);
977  out_destroy_inode:
978 	xfs_destroy_inode(ip);
979 	return error;
980 }
981 
982 /*
983  * Read in extents from a btree-format inode.
984  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
985  */
986 int
987 xfs_iread_extents(
988 	xfs_trans_t	*tp,
989 	xfs_inode_t	*ip,
990 	int		whichfork)
991 {
992 	int		error;
993 	xfs_ifork_t	*ifp;
994 	xfs_extnum_t	nextents;
995 	size_t		size;
996 
997 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
998 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
999 				 ip->i_mount);
1000 		return XFS_ERROR(EFSCORRUPTED);
1001 	}
1002 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1003 	size = nextents * sizeof(xfs_bmbt_rec_t);
1004 	ifp = XFS_IFORK_PTR(ip, whichfork);
1005 
1006 	/*
1007 	 * We know that the size is valid (it's checked in iformat_btree)
1008 	 */
1009 	ifp->if_lastex = NULLEXTNUM;
1010 	ifp->if_bytes = ifp->if_real_bytes = 0;
1011 	ifp->if_flags |= XFS_IFEXTENTS;
1012 	xfs_iext_add(ifp, 0, nextents);
1013 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1014 	if (error) {
1015 		xfs_iext_destroy(ifp);
1016 		ifp->if_flags &= ~XFS_IFEXTENTS;
1017 		return error;
1018 	}
1019 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Allocate an inode on disk and return a copy of its in-core version.
1025  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1026  * appropriately within the inode.  The uid and gid for the inode are
1027  * set according to the contents of the given cred structure.
1028  *
1029  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1030  * has a free inode available, call xfs_iget()
1031  * to obtain the in-core version of the allocated inode.  Finally,
1032  * fill in the inode and log its initial contents.  In this case,
1033  * ialloc_context would be set to NULL and call_again set to false.
1034  *
1035  * If xfs_dialloc() does not have an available inode,
1036  * it will replenish its supply by doing an allocation. Since we can
1037  * only do one allocation within a transaction without deadlocks, we
1038  * must commit the current transaction before returning the inode itself.
1039  * In this case, therefore, we will set call_again to true and return.
1040  * The caller should then commit the current transaction, start a new
1041  * transaction, and call xfs_ialloc() again to actually get the inode.
1042  *
1043  * To ensure that some other process does not grab the inode that
1044  * was allocated during the first call to xfs_ialloc(), this routine
1045  * also returns the [locked] bp pointing to the head of the freelist
1046  * as ialloc_context.  The caller should hold this buffer across
1047  * the commit and pass it back into this routine on the second call.
1048  *
1049  * If we are allocating quota inodes, we do not have a parent inode
1050  * to attach to or associate with (i.e. pip == NULL) because they
1051  * are not linked into the directory structure - they are attached
1052  * directly to the superblock - and so have no parent.
1053  */
1054 int
1055 xfs_ialloc(
1056 	xfs_trans_t	*tp,
1057 	xfs_inode_t	*pip,
1058 	mode_t		mode,
1059 	xfs_nlink_t	nlink,
1060 	xfs_dev_t	rdev,
1061 	cred_t		*cr,
1062 	xfs_prid_t	prid,
1063 	int		okalloc,
1064 	xfs_buf_t	**ialloc_context,
1065 	boolean_t	*call_again,
1066 	xfs_inode_t	**ipp)
1067 {
1068 	xfs_ino_t	ino;
1069 	xfs_inode_t	*ip;
1070 	uint		flags;
1071 	int		error;
1072 	timespec_t	tv;
1073 	int		filestreams = 0;
1074 
1075 	/*
1076 	 * Call the space management code to pick
1077 	 * the on-disk inode to be allocated.
1078 	 */
1079 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1080 			    ialloc_context, call_again, &ino);
1081 	if (error)
1082 		return error;
1083 	if (*call_again || ino == NULLFSINO) {
1084 		*ipp = NULL;
1085 		return 0;
1086 	}
1087 	ASSERT(*ialloc_context == NULL);
1088 
1089 	/*
1090 	 * Get the in-core inode with the lock held exclusively.
1091 	 * This is because we're setting fields here we need
1092 	 * to prevent others from looking at until we're done.
1093 	 */
1094 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1095 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1096 	if (error)
1097 		return error;
1098 	ASSERT(ip != NULL);
1099 
1100 	ip->i_d.di_mode = (__uint16_t)mode;
1101 	ip->i_d.di_onlink = 0;
1102 	ip->i_d.di_nlink = nlink;
1103 	ASSERT(ip->i_d.di_nlink == nlink);
1104 	ip->i_d.di_uid = current_fsuid();
1105 	ip->i_d.di_gid = current_fsgid();
1106 	ip->i_d.di_projid = prid;
1107 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1108 
1109 	/*
1110 	 * If the superblock version is up to where we support new format
1111 	 * inodes and this is currently an old format inode, then change
1112 	 * the inode version number now.  This way we only do the conversion
1113 	 * here rather than here and in the flush/logging code.
1114 	 */
1115 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1116 	    ip->i_d.di_version == 1) {
1117 		ip->i_d.di_version = 2;
1118 		/*
1119 		 * We've already zeroed the old link count, the projid field,
1120 		 * and the pad field.
1121 		 */
1122 	}
1123 
1124 	/*
1125 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1126 	 */
1127 	if ((prid != 0) && (ip->i_d.di_version == 1))
1128 		xfs_bump_ino_vers2(tp, ip);
1129 
1130 	if (pip && XFS_INHERIT_GID(pip)) {
1131 		ip->i_d.di_gid = pip->i_d.di_gid;
1132 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1133 			ip->i_d.di_mode |= S_ISGID;
1134 		}
1135 	}
1136 
1137 	/*
1138 	 * If the group ID of the new file does not match the effective group
1139 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1140 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1141 	 */
1142 	if ((irix_sgid_inherit) &&
1143 	    (ip->i_d.di_mode & S_ISGID) &&
1144 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1145 		ip->i_d.di_mode &= ~S_ISGID;
1146 	}
1147 
1148 	ip->i_d.di_size = 0;
1149 	ip->i_size = 0;
1150 	ip->i_d.di_nextents = 0;
1151 	ASSERT(ip->i_d.di_nblocks == 0);
1152 
1153 	nanotime(&tv);
1154 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1155 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1156 	ip->i_d.di_atime = ip->i_d.di_mtime;
1157 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1158 
1159 	/*
1160 	 * di_gen will have been taken care of in xfs_iread.
1161 	 */
1162 	ip->i_d.di_extsize = 0;
1163 	ip->i_d.di_dmevmask = 0;
1164 	ip->i_d.di_dmstate = 0;
1165 	ip->i_d.di_flags = 0;
1166 	flags = XFS_ILOG_CORE;
1167 	switch (mode & S_IFMT) {
1168 	case S_IFIFO:
1169 	case S_IFCHR:
1170 	case S_IFBLK:
1171 	case S_IFSOCK:
1172 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1173 		ip->i_df.if_u2.if_rdev = rdev;
1174 		ip->i_df.if_flags = 0;
1175 		flags |= XFS_ILOG_DEV;
1176 		break;
1177 	case S_IFREG:
1178 		/*
1179 		 * we can't set up filestreams until after the VFS inode
1180 		 * is set up properly.
1181 		 */
1182 		if (pip && xfs_inode_is_filestream(pip))
1183 			filestreams = 1;
1184 		/* fall through */
1185 	case S_IFDIR:
1186 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1187 			uint	di_flags = 0;
1188 
1189 			if ((mode & S_IFMT) == S_IFDIR) {
1190 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1191 					di_flags |= XFS_DIFLAG_RTINHERIT;
1192 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1193 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1194 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1195 				}
1196 			} else if ((mode & S_IFMT) == S_IFREG) {
1197 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1198 					di_flags |= XFS_DIFLAG_REALTIME;
1199 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1200 					di_flags |= XFS_DIFLAG_EXTSIZE;
1201 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1202 				}
1203 			}
1204 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1205 			    xfs_inherit_noatime)
1206 				di_flags |= XFS_DIFLAG_NOATIME;
1207 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1208 			    xfs_inherit_nodump)
1209 				di_flags |= XFS_DIFLAG_NODUMP;
1210 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1211 			    xfs_inherit_sync)
1212 				di_flags |= XFS_DIFLAG_SYNC;
1213 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1214 			    xfs_inherit_nosymlinks)
1215 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1216 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1217 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1218 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1219 			    xfs_inherit_nodefrag)
1220 				di_flags |= XFS_DIFLAG_NODEFRAG;
1221 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1222 				di_flags |= XFS_DIFLAG_FILESTREAM;
1223 			ip->i_d.di_flags |= di_flags;
1224 		}
1225 		/* FALLTHROUGH */
1226 	case S_IFLNK:
1227 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1228 		ip->i_df.if_flags = XFS_IFEXTENTS;
1229 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1230 		ip->i_df.if_u1.if_extents = NULL;
1231 		break;
1232 	default:
1233 		ASSERT(0);
1234 	}
1235 	/*
1236 	 * Attribute fork settings for new inode.
1237 	 */
1238 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1239 	ip->i_d.di_anextents = 0;
1240 
1241 	/*
1242 	 * Log the new values stuffed into the inode.
1243 	 */
1244 	xfs_trans_log_inode(tp, ip, flags);
1245 
1246 	/* now that we have an i_mode we can setup inode ops and unlock */
1247 	xfs_setup_inode(ip);
1248 
1249 	/* now we have set up the vfs inode we can associate the filestream */
1250 	if (filestreams) {
1251 		error = xfs_filestream_associate(pip, ip);
1252 		if (error < 0)
1253 			return -error;
1254 		if (!error)
1255 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1256 	}
1257 
1258 	*ipp = ip;
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Check to make sure that there are no blocks allocated to the
1264  * file beyond the size of the file.  We don't check this for
1265  * files with fixed size extents or real time extents, but we
1266  * at least do it for regular files.
1267  */
1268 #ifdef DEBUG
1269 void
1270 xfs_isize_check(
1271 	xfs_mount_t	*mp,
1272 	xfs_inode_t	*ip,
1273 	xfs_fsize_t	isize)
1274 {
1275 	xfs_fileoff_t	map_first;
1276 	int		nimaps;
1277 	xfs_bmbt_irec_t	imaps[2];
1278 
1279 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1280 		return;
1281 
1282 	if (XFS_IS_REALTIME_INODE(ip))
1283 		return;
1284 
1285 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1286 		return;
1287 
1288 	nimaps = 2;
1289 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1290 	/*
1291 	 * The filesystem could be shutting down, so bmapi may return
1292 	 * an error.
1293 	 */
1294 	if (xfs_bmapi(NULL, ip, map_first,
1295 			 (XFS_B_TO_FSB(mp,
1296 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1297 			  map_first),
1298 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1299 			 NULL, NULL))
1300 	    return;
1301 	ASSERT(nimaps == 1);
1302 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1303 }
1304 #endif	/* DEBUG */
1305 
1306 /*
1307  * Calculate the last possible buffered byte in a file.  This must
1308  * include data that was buffered beyond the EOF by the write code.
1309  * This also needs to deal with overflowing the xfs_fsize_t type
1310  * which can happen for sizes near the limit.
1311  *
1312  * We also need to take into account any blocks beyond the EOF.  It
1313  * may be the case that they were buffered by a write which failed.
1314  * In that case the pages will still be in memory, but the inode size
1315  * will never have been updated.
1316  */
1317 xfs_fsize_t
1318 xfs_file_last_byte(
1319 	xfs_inode_t	*ip)
1320 {
1321 	xfs_mount_t	*mp;
1322 	xfs_fsize_t	last_byte;
1323 	xfs_fileoff_t	last_block;
1324 	xfs_fileoff_t	size_last_block;
1325 	int		error;
1326 
1327 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1328 
1329 	mp = ip->i_mount;
1330 	/*
1331 	 * Only check for blocks beyond the EOF if the extents have
1332 	 * been read in.  This eliminates the need for the inode lock,
1333 	 * and it also saves us from looking when it really isn't
1334 	 * necessary.
1335 	 */
1336 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1337 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1338 			XFS_DATA_FORK);
1339 		if (error) {
1340 			last_block = 0;
1341 		}
1342 	} else {
1343 		last_block = 0;
1344 	}
1345 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1346 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1347 
1348 	last_byte = XFS_FSB_TO_B(mp, last_block);
1349 	if (last_byte < 0) {
1350 		return XFS_MAXIOFFSET(mp);
1351 	}
1352 	last_byte += (1 << mp->m_writeio_log);
1353 	if (last_byte < 0) {
1354 		return XFS_MAXIOFFSET(mp);
1355 	}
1356 	return last_byte;
1357 }
1358 
1359 #if defined(XFS_RW_TRACE)
1360 STATIC void
1361 xfs_itrunc_trace(
1362 	int		tag,
1363 	xfs_inode_t	*ip,
1364 	int		flag,
1365 	xfs_fsize_t	new_size,
1366 	xfs_off_t	toss_start,
1367 	xfs_off_t	toss_finish)
1368 {
1369 	if (ip->i_rwtrace == NULL) {
1370 		return;
1371 	}
1372 
1373 	ktrace_enter(ip->i_rwtrace,
1374 		     (void*)((long)tag),
1375 		     (void*)ip,
1376 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1377 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1378 		     (void*)((long)flag),
1379 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1380 		     (void*)(unsigned long)(new_size & 0xffffffff),
1381 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1382 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1383 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1384 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1385 		     (void*)(unsigned long)current_cpu(),
1386 		     (void*)(unsigned long)current_pid(),
1387 		     (void*)NULL,
1388 		     (void*)NULL,
1389 		     (void*)NULL);
1390 }
1391 #else
1392 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1393 #endif
1394 
1395 /*
1396  * Start the truncation of the file to new_size.  The new size
1397  * must be smaller than the current size.  This routine will
1398  * clear the buffer and page caches of file data in the removed
1399  * range, and xfs_itruncate_finish() will remove the underlying
1400  * disk blocks.
1401  *
1402  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1403  * must NOT have the inode lock held at all.  This is because we're
1404  * calling into the buffer/page cache code and we can't hold the
1405  * inode lock when we do so.
1406  *
1407  * We need to wait for any direct I/Os in flight to complete before we
1408  * proceed with the truncate. This is needed to prevent the extents
1409  * being read or written by the direct I/Os from being removed while the
1410  * I/O is in flight as there is no other method of synchronising
1411  * direct I/O with the truncate operation.  Also, because we hold
1412  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1413  * started until the truncate completes and drops the lock. Essentially,
1414  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1415  * between direct I/Os and the truncate operation.
1416  *
1417  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1418  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1419  * in the case that the caller is locking things out of order and
1420  * may not be able to call xfs_itruncate_finish() with the inode lock
1421  * held without dropping the I/O lock.  If the caller must drop the
1422  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1423  * must be called again with all the same restrictions as the initial
1424  * call.
1425  */
1426 int
1427 xfs_itruncate_start(
1428 	xfs_inode_t	*ip,
1429 	uint		flags,
1430 	xfs_fsize_t	new_size)
1431 {
1432 	xfs_fsize_t	last_byte;
1433 	xfs_off_t	toss_start;
1434 	xfs_mount_t	*mp;
1435 	int		error = 0;
1436 
1437 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1438 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1439 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1440 	       (flags == XFS_ITRUNC_MAYBE));
1441 
1442 	mp = ip->i_mount;
1443 
1444 	/* wait for the completion of any pending DIOs */
1445 	if (new_size == 0 || new_size < ip->i_size)
1446 		vn_iowait(ip);
1447 
1448 	/*
1449 	 * Call toss_pages or flushinval_pages to get rid of pages
1450 	 * overlapping the region being removed.  We have to use
1451 	 * the less efficient flushinval_pages in the case that the
1452 	 * caller may not be able to finish the truncate without
1453 	 * dropping the inode's I/O lock.  Make sure
1454 	 * to catch any pages brought in by buffers overlapping
1455 	 * the EOF by searching out beyond the isize by our
1456 	 * block size. We round new_size up to a block boundary
1457 	 * so that we don't toss things on the same block as
1458 	 * new_size but before it.
1459 	 *
1460 	 * Before calling toss_page or flushinval_pages, make sure to
1461 	 * call remapf() over the same region if the file is mapped.
1462 	 * This frees up mapped file references to the pages in the
1463 	 * given range and for the flushinval_pages case it ensures
1464 	 * that we get the latest mapped changes flushed out.
1465 	 */
1466 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1467 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1468 	if (toss_start < 0) {
1469 		/*
1470 		 * The place to start tossing is beyond our maximum
1471 		 * file size, so there is no way that the data extended
1472 		 * out there.
1473 		 */
1474 		return 0;
1475 	}
1476 	last_byte = xfs_file_last_byte(ip);
1477 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1478 			 last_byte);
1479 	if (last_byte > toss_start) {
1480 		if (flags & XFS_ITRUNC_DEFINITE) {
1481 			xfs_tosspages(ip, toss_start,
1482 					-1, FI_REMAPF_LOCKED);
1483 		} else {
1484 			error = xfs_flushinval_pages(ip, toss_start,
1485 					-1, FI_REMAPF_LOCKED);
1486 		}
1487 	}
1488 
1489 #ifdef DEBUG
1490 	if (new_size == 0) {
1491 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1492 	}
1493 #endif
1494 	return error;
1495 }
1496 
1497 /*
1498  * Shrink the file to the given new_size.  The new size must be smaller than
1499  * the current size.  This will free up the underlying blocks in the removed
1500  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1501  *
1502  * The transaction passed to this routine must have made a permanent log
1503  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1504  * given transaction and start new ones, so make sure everything involved in
1505  * the transaction is tidy before calling here.  Some transaction will be
1506  * returned to the caller to be committed.  The incoming transaction must
1507  * already include the inode, and both inode locks must be held exclusively.
1508  * The inode must also be "held" within the transaction.  On return the inode
1509  * will be "held" within the returned transaction.  This routine does NOT
1510  * require any disk space to be reserved for it within the transaction.
1511  *
1512  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1513  * indicates the fork which is to be truncated.  For the attribute fork we only
1514  * support truncation to size 0.
1515  *
1516  * We use the sync parameter to indicate whether or not the first transaction
1517  * we perform might have to be synchronous.  For the attr fork, it needs to be
1518  * so if the unlink of the inode is not yet known to be permanent in the log.
1519  * This keeps us from freeing and reusing the blocks of the attribute fork
1520  * before the unlink of the inode becomes permanent.
1521  *
1522  * For the data fork, we normally have to run synchronously if we're being
1523  * called out of the inactive path or we're being called out of the create path
1524  * where we're truncating an existing file.  Either way, the truncate needs to
1525  * be sync so blocks don't reappear in the file with altered data in case of a
1526  * crash.  wsync filesystems can run the first case async because anything that
1527  * shrinks the inode has to run sync so by the time we're called here from
1528  * inactive, the inode size is permanently set to 0.
1529  *
1530  * Calls from the truncate path always need to be sync unless we're in a wsync
1531  * filesystem and the file has already been unlinked.
1532  *
1533  * The caller is responsible for correctly setting the sync parameter.  It gets
1534  * too hard for us to guess here which path we're being called out of just
1535  * based on inode state.
1536  *
1537  * If we get an error, we must return with the inode locked and linked into the
1538  * current transaction. This keeps things simple for the higher level code,
1539  * because it always knows that the inode is locked and held in the transaction
1540  * that returns to it whether errors occur or not.  We don't mark the inode
1541  * dirty on error so that transactions can be easily aborted if possible.
1542  */
1543 int
1544 xfs_itruncate_finish(
1545 	xfs_trans_t	**tp,
1546 	xfs_inode_t	*ip,
1547 	xfs_fsize_t	new_size,
1548 	int		fork,
1549 	int		sync)
1550 {
1551 	xfs_fsblock_t	first_block;
1552 	xfs_fileoff_t	first_unmap_block;
1553 	xfs_fileoff_t	last_block;
1554 	xfs_filblks_t	unmap_len=0;
1555 	xfs_mount_t	*mp;
1556 	xfs_trans_t	*ntp;
1557 	int		done;
1558 	int		committed;
1559 	xfs_bmap_free_t	free_list;
1560 	int		error;
1561 
1562 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1563 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1564 	ASSERT(*tp != NULL);
1565 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1566 	ASSERT(ip->i_transp == *tp);
1567 	ASSERT(ip->i_itemp != NULL);
1568 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1569 
1570 
1571 	ntp = *tp;
1572 	mp = (ntp)->t_mountp;
1573 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1574 
1575 	/*
1576 	 * We only support truncating the entire attribute fork.
1577 	 */
1578 	if (fork == XFS_ATTR_FORK) {
1579 		new_size = 0LL;
1580 	}
1581 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1582 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1583 	/*
1584 	 * The first thing we do is set the size to new_size permanently
1585 	 * on disk.  This way we don't have to worry about anyone ever
1586 	 * being able to look at the data being freed even in the face
1587 	 * of a crash.  What we're getting around here is the case where
1588 	 * we free a block, it is allocated to another file, it is written
1589 	 * to, and then we crash.  If the new data gets written to the
1590 	 * file but the log buffers containing the free and reallocation
1591 	 * don't, then we'd end up with garbage in the blocks being freed.
1592 	 * As long as we make the new_size permanent before actually
1593 	 * freeing any blocks it doesn't matter if they get writtten to.
1594 	 *
1595 	 * The callers must signal into us whether or not the size
1596 	 * setting here must be synchronous.  There are a few cases
1597 	 * where it doesn't have to be synchronous.  Those cases
1598 	 * occur if the file is unlinked and we know the unlink is
1599 	 * permanent or if the blocks being truncated are guaranteed
1600 	 * to be beyond the inode eof (regardless of the link count)
1601 	 * and the eof value is permanent.  Both of these cases occur
1602 	 * only on wsync-mounted filesystems.  In those cases, we're
1603 	 * guaranteed that no user will ever see the data in the blocks
1604 	 * that are being truncated so the truncate can run async.
1605 	 * In the free beyond eof case, the file may wind up with
1606 	 * more blocks allocated to it than it needs if we crash
1607 	 * and that won't get fixed until the next time the file
1608 	 * is re-opened and closed but that's ok as that shouldn't
1609 	 * be too many blocks.
1610 	 *
1611 	 * However, we can't just make all wsync xactions run async
1612 	 * because there's one call out of the create path that needs
1613 	 * to run sync where it's truncating an existing file to size
1614 	 * 0 whose size is > 0.
1615 	 *
1616 	 * It's probably possible to come up with a test in this
1617 	 * routine that would correctly distinguish all the above
1618 	 * cases from the values of the function parameters and the
1619 	 * inode state but for sanity's sake, I've decided to let the
1620 	 * layers above just tell us.  It's simpler to correctly figure
1621 	 * out in the layer above exactly under what conditions we
1622 	 * can run async and I think it's easier for others read and
1623 	 * follow the logic in case something has to be changed.
1624 	 * cscope is your friend -- rcc.
1625 	 *
1626 	 * The attribute fork is much simpler.
1627 	 *
1628 	 * For the attribute fork we allow the caller to tell us whether
1629 	 * the unlink of the inode that led to this call is yet permanent
1630 	 * in the on disk log.  If it is not and we will be freeing extents
1631 	 * in this inode then we make the first transaction synchronous
1632 	 * to make sure that the unlink is permanent by the time we free
1633 	 * the blocks.
1634 	 */
1635 	if (fork == XFS_DATA_FORK) {
1636 		if (ip->i_d.di_nextents > 0) {
1637 			/*
1638 			 * If we are not changing the file size then do
1639 			 * not update the on-disk file size - we may be
1640 			 * called from xfs_inactive_free_eofblocks().  If we
1641 			 * update the on-disk file size and then the system
1642 			 * crashes before the contents of the file are
1643 			 * flushed to disk then the files may be full of
1644 			 * holes (ie NULL files bug).
1645 			 */
1646 			if (ip->i_size != new_size) {
1647 				ip->i_d.di_size = new_size;
1648 				ip->i_size = new_size;
1649 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1650 			}
1651 		}
1652 	} else if (sync) {
1653 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1654 		if (ip->i_d.di_anextents > 0)
1655 			xfs_trans_set_sync(ntp);
1656 	}
1657 	ASSERT(fork == XFS_DATA_FORK ||
1658 		(fork == XFS_ATTR_FORK &&
1659 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1660 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1661 
1662 	/*
1663 	 * Since it is possible for space to become allocated beyond
1664 	 * the end of the file (in a crash where the space is allocated
1665 	 * but the inode size is not yet updated), simply remove any
1666 	 * blocks which show up between the new EOF and the maximum
1667 	 * possible file size.  If the first block to be removed is
1668 	 * beyond the maximum file size (ie it is the same as last_block),
1669 	 * then there is nothing to do.
1670 	 */
1671 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1672 	ASSERT(first_unmap_block <= last_block);
1673 	done = 0;
1674 	if (last_block == first_unmap_block) {
1675 		done = 1;
1676 	} else {
1677 		unmap_len = last_block - first_unmap_block + 1;
1678 	}
1679 	while (!done) {
1680 		/*
1681 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1682 		 * will tell us whether it freed the entire range or
1683 		 * not.  If this is a synchronous mount (wsync),
1684 		 * then we can tell bunmapi to keep all the
1685 		 * transactions asynchronous since the unlink
1686 		 * transaction that made this inode inactive has
1687 		 * already hit the disk.  There's no danger of
1688 		 * the freed blocks being reused, there being a
1689 		 * crash, and the reused blocks suddenly reappearing
1690 		 * in this file with garbage in them once recovery
1691 		 * runs.
1692 		 */
1693 		XFS_BMAP_INIT(&free_list, &first_block);
1694 		error = xfs_bunmapi(ntp, ip,
1695 				    first_unmap_block, unmap_len,
1696 				    XFS_BMAPI_AFLAG(fork) |
1697 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1698 				    XFS_ITRUNC_MAX_EXTENTS,
1699 				    &first_block, &free_list,
1700 				    NULL, &done);
1701 		if (error) {
1702 			/*
1703 			 * If the bunmapi call encounters an error,
1704 			 * return to the caller where the transaction
1705 			 * can be properly aborted.  We just need to
1706 			 * make sure we're not holding any resources
1707 			 * that we were not when we came in.
1708 			 */
1709 			xfs_bmap_cancel(&free_list);
1710 			return error;
1711 		}
1712 
1713 		/*
1714 		 * Duplicate the transaction that has the permanent
1715 		 * reservation and commit the old transaction.
1716 		 */
1717 		error = xfs_bmap_finish(tp, &free_list, &committed);
1718 		ntp = *tp;
1719 		if (committed) {
1720 			/* link the inode into the next xact in the chain */
1721 			xfs_trans_ijoin(ntp, ip,
1722 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1723 			xfs_trans_ihold(ntp, ip);
1724 		}
1725 
1726 		if (error) {
1727 			/*
1728 			 * If the bmap finish call encounters an error, return
1729 			 * to the caller where the transaction can be properly
1730 			 * aborted.  We just need to make sure we're not
1731 			 * holding any resources that we were not when we came
1732 			 * in.
1733 			 *
1734 			 * Aborting from this point might lose some blocks in
1735 			 * the file system, but oh well.
1736 			 */
1737 			xfs_bmap_cancel(&free_list);
1738 			return error;
1739 		}
1740 
1741 		if (committed) {
1742 			/*
1743 			 * Mark the inode dirty so it will be logged and
1744 			 * moved forward in the log as part of every commit.
1745 			 */
1746 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1747 		}
1748 
1749 		ntp = xfs_trans_dup(ntp);
1750 		error = xfs_trans_commit(*tp, 0);
1751 		*tp = ntp;
1752 
1753 		/* link the inode into the next transaction in the chain */
1754 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1755 		xfs_trans_ihold(ntp, ip);
1756 
1757 		if (error)
1758 			return error;
1759 		/*
1760 		 * transaction commit worked ok so we can drop the extra ticket
1761 		 * reference that we gained in xfs_trans_dup()
1762 		 */
1763 		xfs_log_ticket_put(ntp->t_ticket);
1764 		error = xfs_trans_reserve(ntp, 0,
1765 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1766 					XFS_TRANS_PERM_LOG_RES,
1767 					XFS_ITRUNCATE_LOG_COUNT);
1768 		if (error)
1769 			return error;
1770 	}
1771 	/*
1772 	 * Only update the size in the case of the data fork, but
1773 	 * always re-log the inode so that our permanent transaction
1774 	 * can keep on rolling it forward in the log.
1775 	 */
1776 	if (fork == XFS_DATA_FORK) {
1777 		xfs_isize_check(mp, ip, new_size);
1778 		/*
1779 		 * If we are not changing the file size then do
1780 		 * not update the on-disk file size - we may be
1781 		 * called from xfs_inactive_free_eofblocks().  If we
1782 		 * update the on-disk file size and then the system
1783 		 * crashes before the contents of the file are
1784 		 * flushed to disk then the files may be full of
1785 		 * holes (ie NULL files bug).
1786 		 */
1787 		if (ip->i_size != new_size) {
1788 			ip->i_d.di_size = new_size;
1789 			ip->i_size = new_size;
1790 		}
1791 	}
1792 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1793 	ASSERT((new_size != 0) ||
1794 	       (fork == XFS_ATTR_FORK) ||
1795 	       (ip->i_delayed_blks == 0));
1796 	ASSERT((new_size != 0) ||
1797 	       (fork == XFS_ATTR_FORK) ||
1798 	       (ip->i_d.di_nextents == 0));
1799 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1800 	return 0;
1801 }
1802 
1803 /*
1804  * This is called when the inode's link count goes to 0.
1805  * We place the on-disk inode on a list in the AGI.  It
1806  * will be pulled from this list when the inode is freed.
1807  */
1808 int
1809 xfs_iunlink(
1810 	xfs_trans_t	*tp,
1811 	xfs_inode_t	*ip)
1812 {
1813 	xfs_mount_t	*mp;
1814 	xfs_agi_t	*agi;
1815 	xfs_dinode_t	*dip;
1816 	xfs_buf_t	*agibp;
1817 	xfs_buf_t	*ibp;
1818 	xfs_agino_t	agino;
1819 	short		bucket_index;
1820 	int		offset;
1821 	int		error;
1822 
1823 	ASSERT(ip->i_d.di_nlink == 0);
1824 	ASSERT(ip->i_d.di_mode != 0);
1825 	ASSERT(ip->i_transp == tp);
1826 
1827 	mp = tp->t_mountp;
1828 
1829 	/*
1830 	 * Get the agi buffer first.  It ensures lock ordering
1831 	 * on the list.
1832 	 */
1833 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1834 	if (error)
1835 		return error;
1836 	agi = XFS_BUF_TO_AGI(agibp);
1837 
1838 	/*
1839 	 * Get the index into the agi hash table for the
1840 	 * list this inode will go on.
1841 	 */
1842 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1843 	ASSERT(agino != 0);
1844 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1845 	ASSERT(agi->agi_unlinked[bucket_index]);
1846 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1847 
1848 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1849 		/*
1850 		 * There is already another inode in the bucket we need
1851 		 * to add ourselves to.  Add us at the front of the list.
1852 		 * Here we put the head pointer into our next pointer,
1853 		 * and then we fall through to point the head at us.
1854 		 */
1855 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1856 		if (error)
1857 			return error;
1858 
1859 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1860 		/* both on-disk, don't endian flip twice */
1861 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1862 		offset = ip->i_imap.im_boffset +
1863 			offsetof(xfs_dinode_t, di_next_unlinked);
1864 		xfs_trans_inode_buf(tp, ibp);
1865 		xfs_trans_log_buf(tp, ibp, offset,
1866 				  (offset + sizeof(xfs_agino_t) - 1));
1867 		xfs_inobp_check(mp, ibp);
1868 	}
1869 
1870 	/*
1871 	 * Point the bucket head pointer at the inode being inserted.
1872 	 */
1873 	ASSERT(agino != 0);
1874 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1875 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1876 		(sizeof(xfs_agino_t) * bucket_index);
1877 	xfs_trans_log_buf(tp, agibp, offset,
1878 			  (offset + sizeof(xfs_agino_t) - 1));
1879 	return 0;
1880 }
1881 
1882 /*
1883  * Pull the on-disk inode from the AGI unlinked list.
1884  */
1885 STATIC int
1886 xfs_iunlink_remove(
1887 	xfs_trans_t	*tp,
1888 	xfs_inode_t	*ip)
1889 {
1890 	xfs_ino_t	next_ino;
1891 	xfs_mount_t	*mp;
1892 	xfs_agi_t	*agi;
1893 	xfs_dinode_t	*dip;
1894 	xfs_buf_t	*agibp;
1895 	xfs_buf_t	*ibp;
1896 	xfs_agnumber_t	agno;
1897 	xfs_agino_t	agino;
1898 	xfs_agino_t	next_agino;
1899 	xfs_buf_t	*last_ibp;
1900 	xfs_dinode_t	*last_dip = NULL;
1901 	short		bucket_index;
1902 	int		offset, last_offset = 0;
1903 	int		error;
1904 
1905 	mp = tp->t_mountp;
1906 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1907 
1908 	/*
1909 	 * Get the agi buffer first.  It ensures lock ordering
1910 	 * on the list.
1911 	 */
1912 	error = xfs_read_agi(mp, tp, agno, &agibp);
1913 	if (error)
1914 		return error;
1915 
1916 	agi = XFS_BUF_TO_AGI(agibp);
1917 
1918 	/*
1919 	 * Get the index into the agi hash table for the
1920 	 * list this inode will go on.
1921 	 */
1922 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1923 	ASSERT(agino != 0);
1924 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1925 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1926 	ASSERT(agi->agi_unlinked[bucket_index]);
1927 
1928 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1929 		/*
1930 		 * We're at the head of the list.  Get the inode's
1931 		 * on-disk buffer to see if there is anyone after us
1932 		 * on the list.  Only modify our next pointer if it
1933 		 * is not already NULLAGINO.  This saves us the overhead
1934 		 * of dealing with the buffer when there is no need to
1935 		 * change it.
1936 		 */
1937 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1938 		if (error) {
1939 			cmn_err(CE_WARN,
1940 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1941 				error, mp->m_fsname);
1942 			return error;
1943 		}
1944 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1945 		ASSERT(next_agino != 0);
1946 		if (next_agino != NULLAGINO) {
1947 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1948 			offset = ip->i_imap.im_boffset +
1949 				offsetof(xfs_dinode_t, di_next_unlinked);
1950 			xfs_trans_inode_buf(tp, ibp);
1951 			xfs_trans_log_buf(tp, ibp, offset,
1952 					  (offset + sizeof(xfs_agino_t) - 1));
1953 			xfs_inobp_check(mp, ibp);
1954 		} else {
1955 			xfs_trans_brelse(tp, ibp);
1956 		}
1957 		/*
1958 		 * Point the bucket head pointer at the next inode.
1959 		 */
1960 		ASSERT(next_agino != 0);
1961 		ASSERT(next_agino != agino);
1962 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1963 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1964 			(sizeof(xfs_agino_t) * bucket_index);
1965 		xfs_trans_log_buf(tp, agibp, offset,
1966 				  (offset + sizeof(xfs_agino_t) - 1));
1967 	} else {
1968 		/*
1969 		 * We need to search the list for the inode being freed.
1970 		 */
1971 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1972 		last_ibp = NULL;
1973 		while (next_agino != agino) {
1974 			/*
1975 			 * If the last inode wasn't the one pointing to
1976 			 * us, then release its buffer since we're not
1977 			 * going to do anything with it.
1978 			 */
1979 			if (last_ibp != NULL) {
1980 				xfs_trans_brelse(tp, last_ibp);
1981 			}
1982 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1983 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1984 					    &last_ibp, &last_offset, 0);
1985 			if (error) {
1986 				cmn_err(CE_WARN,
1987 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1988 					error, mp->m_fsname);
1989 				return error;
1990 			}
1991 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1992 			ASSERT(next_agino != NULLAGINO);
1993 			ASSERT(next_agino != 0);
1994 		}
1995 		/*
1996 		 * Now last_ibp points to the buffer previous to us on
1997 		 * the unlinked list.  Pull us from the list.
1998 		 */
1999 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2000 		if (error) {
2001 			cmn_err(CE_WARN,
2002 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2003 				error, mp->m_fsname);
2004 			return error;
2005 		}
2006 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2007 		ASSERT(next_agino != 0);
2008 		ASSERT(next_agino != agino);
2009 		if (next_agino != NULLAGINO) {
2010 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2011 			offset = ip->i_imap.im_boffset +
2012 				offsetof(xfs_dinode_t, di_next_unlinked);
2013 			xfs_trans_inode_buf(tp, ibp);
2014 			xfs_trans_log_buf(tp, ibp, offset,
2015 					  (offset + sizeof(xfs_agino_t) - 1));
2016 			xfs_inobp_check(mp, ibp);
2017 		} else {
2018 			xfs_trans_brelse(tp, ibp);
2019 		}
2020 		/*
2021 		 * Point the previous inode on the list to the next inode.
2022 		 */
2023 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2024 		ASSERT(next_agino != 0);
2025 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2026 		xfs_trans_inode_buf(tp, last_ibp);
2027 		xfs_trans_log_buf(tp, last_ibp, offset,
2028 				  (offset + sizeof(xfs_agino_t) - 1));
2029 		xfs_inobp_check(mp, last_ibp);
2030 	}
2031 	return 0;
2032 }
2033 
2034 STATIC void
2035 xfs_ifree_cluster(
2036 	xfs_inode_t	*free_ip,
2037 	xfs_trans_t	*tp,
2038 	xfs_ino_t	inum)
2039 {
2040 	xfs_mount_t		*mp = free_ip->i_mount;
2041 	int			blks_per_cluster;
2042 	int			nbufs;
2043 	int			ninodes;
2044 	int			i, j, found, pre_flushed;
2045 	xfs_daddr_t		blkno;
2046 	xfs_buf_t		*bp;
2047 	xfs_inode_t		*ip, **ip_found;
2048 	xfs_inode_log_item_t	*iip;
2049 	xfs_log_item_t		*lip;
2050 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
2051 
2052 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2053 		blks_per_cluster = 1;
2054 		ninodes = mp->m_sb.sb_inopblock;
2055 		nbufs = XFS_IALLOC_BLOCKS(mp);
2056 	} else {
2057 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2058 					mp->m_sb.sb_blocksize;
2059 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2060 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2061 	}
2062 
2063 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2064 
2065 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2066 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2067 					 XFS_INO_TO_AGBNO(mp, inum));
2068 
2069 
2070 		/*
2071 		 * Look for each inode in memory and attempt to lock it,
2072 		 * we can be racing with flush and tail pushing here.
2073 		 * any inode we get the locks on, add to an array of
2074 		 * inode items to process later.
2075 		 *
2076 		 * The get the buffer lock, we could beat a flush
2077 		 * or tail pushing thread to the lock here, in which
2078 		 * case they will go looking for the inode buffer
2079 		 * and fail, we need some other form of interlock
2080 		 * here.
2081 		 */
2082 		found = 0;
2083 		for (i = 0; i < ninodes; i++) {
2084 			read_lock(&pag->pag_ici_lock);
2085 			ip = radix_tree_lookup(&pag->pag_ici_root,
2086 					XFS_INO_TO_AGINO(mp, (inum + i)));
2087 
2088 			/* Inode not in memory or we found it already,
2089 			 * nothing to do
2090 			 */
2091 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2092 				read_unlock(&pag->pag_ici_lock);
2093 				continue;
2094 			}
2095 
2096 			if (xfs_inode_clean(ip)) {
2097 				read_unlock(&pag->pag_ici_lock);
2098 				continue;
2099 			}
2100 
2101 			/* If we can get the locks then add it to the
2102 			 * list, otherwise by the time we get the bp lock
2103 			 * below it will already be attached to the
2104 			 * inode buffer.
2105 			 */
2106 
2107 			/* This inode will already be locked - by us, lets
2108 			 * keep it that way.
2109 			 */
2110 
2111 			if (ip == free_ip) {
2112 				if (xfs_iflock_nowait(ip)) {
2113 					xfs_iflags_set(ip, XFS_ISTALE);
2114 					if (xfs_inode_clean(ip)) {
2115 						xfs_ifunlock(ip);
2116 					} else {
2117 						ip_found[found++] = ip;
2118 					}
2119 				}
2120 				read_unlock(&pag->pag_ici_lock);
2121 				continue;
2122 			}
2123 
2124 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2125 				if (xfs_iflock_nowait(ip)) {
2126 					xfs_iflags_set(ip, XFS_ISTALE);
2127 
2128 					if (xfs_inode_clean(ip)) {
2129 						xfs_ifunlock(ip);
2130 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2131 					} else {
2132 						ip_found[found++] = ip;
2133 					}
2134 				} else {
2135 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2136 				}
2137 			}
2138 			read_unlock(&pag->pag_ici_lock);
2139 		}
2140 
2141 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2142 					mp->m_bsize * blks_per_cluster,
2143 					XFS_BUF_LOCK);
2144 
2145 		pre_flushed = 0;
2146 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2147 		while (lip) {
2148 			if (lip->li_type == XFS_LI_INODE) {
2149 				iip = (xfs_inode_log_item_t *)lip;
2150 				ASSERT(iip->ili_logged == 1);
2151 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2152 				xfs_trans_ail_copy_lsn(mp->m_ail,
2153 							&iip->ili_flush_lsn,
2154 							&iip->ili_item.li_lsn);
2155 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2156 				pre_flushed++;
2157 			}
2158 			lip = lip->li_bio_list;
2159 		}
2160 
2161 		for (i = 0; i < found; i++) {
2162 			ip = ip_found[i];
2163 			iip = ip->i_itemp;
2164 
2165 			if (!iip) {
2166 				ip->i_update_core = 0;
2167 				xfs_ifunlock(ip);
2168 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169 				continue;
2170 			}
2171 
2172 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2173 			iip->ili_format.ilf_fields = 0;
2174 			iip->ili_logged = 1;
2175 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2176 						&iip->ili_item.li_lsn);
2177 
2178 			xfs_buf_attach_iodone(bp,
2179 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2180 				xfs_istale_done, (xfs_log_item_t *)iip);
2181 			if (ip != free_ip) {
2182 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2183 			}
2184 		}
2185 
2186 		if (found || pre_flushed)
2187 			xfs_trans_stale_inode_buf(tp, bp);
2188 		xfs_trans_binval(tp, bp);
2189 	}
2190 
2191 	kmem_free(ip_found);
2192 	xfs_put_perag(mp, pag);
2193 }
2194 
2195 /*
2196  * This is called to return an inode to the inode free list.
2197  * The inode should already be truncated to 0 length and have
2198  * no pages associated with it.  This routine also assumes that
2199  * the inode is already a part of the transaction.
2200  *
2201  * The on-disk copy of the inode will have been added to the list
2202  * of unlinked inodes in the AGI. We need to remove the inode from
2203  * that list atomically with respect to freeing it here.
2204  */
2205 int
2206 xfs_ifree(
2207 	xfs_trans_t	*tp,
2208 	xfs_inode_t	*ip,
2209 	xfs_bmap_free_t	*flist)
2210 {
2211 	int			error;
2212 	int			delete;
2213 	xfs_ino_t		first_ino;
2214 	xfs_dinode_t    	*dip;
2215 	xfs_buf_t       	*ibp;
2216 
2217 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2218 	ASSERT(ip->i_transp == tp);
2219 	ASSERT(ip->i_d.di_nlink == 0);
2220 	ASSERT(ip->i_d.di_nextents == 0);
2221 	ASSERT(ip->i_d.di_anextents == 0);
2222 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2223 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2224 	ASSERT(ip->i_d.di_nblocks == 0);
2225 
2226 	/*
2227 	 * Pull the on-disk inode from the AGI unlinked list.
2228 	 */
2229 	error = xfs_iunlink_remove(tp, ip);
2230 	if (error != 0) {
2231 		return error;
2232 	}
2233 
2234 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2235 	if (error != 0) {
2236 		return error;
2237 	}
2238 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2239 	ip->i_d.di_flags = 0;
2240 	ip->i_d.di_dmevmask = 0;
2241 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2242 	ip->i_df.if_ext_max =
2243 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2244 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2245 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2246 	/*
2247 	 * Bump the generation count so no one will be confused
2248 	 * by reincarnations of this inode.
2249 	 */
2250 	ip->i_d.di_gen++;
2251 
2252 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2253 
2254 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2255 	if (error)
2256 		return error;
2257 
2258         /*
2259 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2260 	* from picking up this inode when it is reclaimed (its incore state
2261 	* initialzed but not flushed to disk yet). The in-core di_mode is
2262 	* already cleared  and a corresponding transaction logged.
2263 	* The hack here just synchronizes the in-core to on-disk
2264 	* di_mode value in advance before the actual inode sync to disk.
2265 	* This is OK because the inode is already unlinked and would never
2266 	* change its di_mode again for this inode generation.
2267 	* This is a temporary hack that would require a proper fix
2268 	* in the future.
2269 	*/
2270 	dip->di_mode = 0;
2271 
2272 	if (delete) {
2273 		xfs_ifree_cluster(ip, tp, first_ino);
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 /*
2280  * Reallocate the space for if_broot based on the number of records
2281  * being added or deleted as indicated in rec_diff.  Move the records
2282  * and pointers in if_broot to fit the new size.  When shrinking this
2283  * will eliminate holes between the records and pointers created by
2284  * the caller.  When growing this will create holes to be filled in
2285  * by the caller.
2286  *
2287  * The caller must not request to add more records than would fit in
2288  * the on-disk inode root.  If the if_broot is currently NULL, then
2289  * if we adding records one will be allocated.  The caller must also
2290  * not request that the number of records go below zero, although
2291  * it can go to zero.
2292  *
2293  * ip -- the inode whose if_broot area is changing
2294  * ext_diff -- the change in the number of records, positive or negative,
2295  *	 requested for the if_broot array.
2296  */
2297 void
2298 xfs_iroot_realloc(
2299 	xfs_inode_t		*ip,
2300 	int			rec_diff,
2301 	int			whichfork)
2302 {
2303 	struct xfs_mount	*mp = ip->i_mount;
2304 	int			cur_max;
2305 	xfs_ifork_t		*ifp;
2306 	struct xfs_btree_block	*new_broot;
2307 	int			new_max;
2308 	size_t			new_size;
2309 	char			*np;
2310 	char			*op;
2311 
2312 	/*
2313 	 * Handle the degenerate case quietly.
2314 	 */
2315 	if (rec_diff == 0) {
2316 		return;
2317 	}
2318 
2319 	ifp = XFS_IFORK_PTR(ip, whichfork);
2320 	if (rec_diff > 0) {
2321 		/*
2322 		 * If there wasn't any memory allocated before, just
2323 		 * allocate it now and get out.
2324 		 */
2325 		if (ifp->if_broot_bytes == 0) {
2326 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2327 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2328 			ifp->if_broot_bytes = (int)new_size;
2329 			return;
2330 		}
2331 
2332 		/*
2333 		 * If there is already an existing if_broot, then we need
2334 		 * to realloc() it and shift the pointers to their new
2335 		 * location.  The records don't change location because
2336 		 * they are kept butted up against the btree block header.
2337 		 */
2338 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2339 		new_max = cur_max + rec_diff;
2340 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2341 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2342 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2343 				KM_SLEEP);
2344 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2345 						     ifp->if_broot_bytes);
2346 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2347 						     (int)new_size);
2348 		ifp->if_broot_bytes = (int)new_size;
2349 		ASSERT(ifp->if_broot_bytes <=
2350 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2351 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2352 		return;
2353 	}
2354 
2355 	/*
2356 	 * rec_diff is less than 0.  In this case, we are shrinking the
2357 	 * if_broot buffer.  It must already exist.  If we go to zero
2358 	 * records, just get rid of the root and clear the status bit.
2359 	 */
2360 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2361 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2362 	new_max = cur_max + rec_diff;
2363 	ASSERT(new_max >= 0);
2364 	if (new_max > 0)
2365 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2366 	else
2367 		new_size = 0;
2368 	if (new_size > 0) {
2369 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2370 		/*
2371 		 * First copy over the btree block header.
2372 		 */
2373 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2374 	} else {
2375 		new_broot = NULL;
2376 		ifp->if_flags &= ~XFS_IFBROOT;
2377 	}
2378 
2379 	/*
2380 	 * Only copy the records and pointers if there are any.
2381 	 */
2382 	if (new_max > 0) {
2383 		/*
2384 		 * First copy the records.
2385 		 */
2386 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2387 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2388 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2389 
2390 		/*
2391 		 * Then copy the pointers.
2392 		 */
2393 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2394 						     ifp->if_broot_bytes);
2395 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2396 						     (int)new_size);
2397 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2398 	}
2399 	kmem_free(ifp->if_broot);
2400 	ifp->if_broot = new_broot;
2401 	ifp->if_broot_bytes = (int)new_size;
2402 	ASSERT(ifp->if_broot_bytes <=
2403 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2404 	return;
2405 }
2406 
2407 
2408 /*
2409  * This is called when the amount of space needed for if_data
2410  * is increased or decreased.  The change in size is indicated by
2411  * the number of bytes that need to be added or deleted in the
2412  * byte_diff parameter.
2413  *
2414  * If the amount of space needed has decreased below the size of the
2415  * inline buffer, then switch to using the inline buffer.  Otherwise,
2416  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2417  * to what is needed.
2418  *
2419  * ip -- the inode whose if_data area is changing
2420  * byte_diff -- the change in the number of bytes, positive or negative,
2421  *	 requested for the if_data array.
2422  */
2423 void
2424 xfs_idata_realloc(
2425 	xfs_inode_t	*ip,
2426 	int		byte_diff,
2427 	int		whichfork)
2428 {
2429 	xfs_ifork_t	*ifp;
2430 	int		new_size;
2431 	int		real_size;
2432 
2433 	if (byte_diff == 0) {
2434 		return;
2435 	}
2436 
2437 	ifp = XFS_IFORK_PTR(ip, whichfork);
2438 	new_size = (int)ifp->if_bytes + byte_diff;
2439 	ASSERT(new_size >= 0);
2440 
2441 	if (new_size == 0) {
2442 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2443 			kmem_free(ifp->if_u1.if_data);
2444 		}
2445 		ifp->if_u1.if_data = NULL;
2446 		real_size = 0;
2447 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2448 		/*
2449 		 * If the valid extents/data can fit in if_inline_ext/data,
2450 		 * copy them from the malloc'd vector and free it.
2451 		 */
2452 		if (ifp->if_u1.if_data == NULL) {
2453 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2454 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2455 			ASSERT(ifp->if_real_bytes != 0);
2456 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2457 			      new_size);
2458 			kmem_free(ifp->if_u1.if_data);
2459 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2460 		}
2461 		real_size = 0;
2462 	} else {
2463 		/*
2464 		 * Stuck with malloc/realloc.
2465 		 * For inline data, the underlying buffer must be
2466 		 * a multiple of 4 bytes in size so that it can be
2467 		 * logged and stay on word boundaries.  We enforce
2468 		 * that here.
2469 		 */
2470 		real_size = roundup(new_size, 4);
2471 		if (ifp->if_u1.if_data == NULL) {
2472 			ASSERT(ifp->if_real_bytes == 0);
2473 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2474 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2475 			/*
2476 			 * Only do the realloc if the underlying size
2477 			 * is really changing.
2478 			 */
2479 			if (ifp->if_real_bytes != real_size) {
2480 				ifp->if_u1.if_data =
2481 					kmem_realloc(ifp->if_u1.if_data,
2482 							real_size,
2483 							ifp->if_real_bytes,
2484 							KM_SLEEP);
2485 			}
2486 		} else {
2487 			ASSERT(ifp->if_real_bytes == 0);
2488 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2489 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2490 				ifp->if_bytes);
2491 		}
2492 	}
2493 	ifp->if_real_bytes = real_size;
2494 	ifp->if_bytes = new_size;
2495 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2496 }
2497 
2498 void
2499 xfs_idestroy_fork(
2500 	xfs_inode_t	*ip,
2501 	int		whichfork)
2502 {
2503 	xfs_ifork_t	*ifp;
2504 
2505 	ifp = XFS_IFORK_PTR(ip, whichfork);
2506 	if (ifp->if_broot != NULL) {
2507 		kmem_free(ifp->if_broot);
2508 		ifp->if_broot = NULL;
2509 	}
2510 
2511 	/*
2512 	 * If the format is local, then we can't have an extents
2513 	 * array so just look for an inline data array.  If we're
2514 	 * not local then we may or may not have an extents list,
2515 	 * so check and free it up if we do.
2516 	 */
2517 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2518 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2519 		    (ifp->if_u1.if_data != NULL)) {
2520 			ASSERT(ifp->if_real_bytes != 0);
2521 			kmem_free(ifp->if_u1.if_data);
2522 			ifp->if_u1.if_data = NULL;
2523 			ifp->if_real_bytes = 0;
2524 		}
2525 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2526 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2527 		    ((ifp->if_u1.if_extents != NULL) &&
2528 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2529 		ASSERT(ifp->if_real_bytes != 0);
2530 		xfs_iext_destroy(ifp);
2531 	}
2532 	ASSERT(ifp->if_u1.if_extents == NULL ||
2533 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2534 	ASSERT(ifp->if_real_bytes == 0);
2535 	if (whichfork == XFS_ATTR_FORK) {
2536 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2537 		ip->i_afp = NULL;
2538 	}
2539 }
2540 
2541 /*
2542  * This is called free all the memory associated with an inode.
2543  * It must free the inode itself and any buffers allocated for
2544  * if_extents/if_data and if_broot.  It must also free the lock
2545  * associated with the inode.
2546  *
2547  * Note: because we don't initialise everything on reallocation out
2548  * of the zone, we must ensure we nullify everything correctly before
2549  * freeing the structure.
2550  */
2551 void
2552 xfs_idestroy(
2553 	xfs_inode_t	*ip)
2554 {
2555 	switch (ip->i_d.di_mode & S_IFMT) {
2556 	case S_IFREG:
2557 	case S_IFDIR:
2558 	case S_IFLNK:
2559 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2560 		break;
2561 	}
2562 	if (ip->i_afp)
2563 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2564 
2565 #ifdef XFS_INODE_TRACE
2566 	ktrace_free(ip->i_trace);
2567 #endif
2568 #ifdef XFS_BMAP_TRACE
2569 	ktrace_free(ip->i_xtrace);
2570 #endif
2571 #ifdef XFS_BTREE_TRACE
2572 	ktrace_free(ip->i_btrace);
2573 #endif
2574 #ifdef XFS_RW_TRACE
2575 	ktrace_free(ip->i_rwtrace);
2576 #endif
2577 #ifdef XFS_ILOCK_TRACE
2578 	ktrace_free(ip->i_lock_trace);
2579 #endif
2580 #ifdef XFS_DIR2_TRACE
2581 	ktrace_free(ip->i_dir_trace);
2582 #endif
2583 	if (ip->i_itemp) {
2584 		/*
2585 		 * Only if we are shutting down the fs will we see an
2586 		 * inode still in the AIL. If it is there, we should remove
2587 		 * it to prevent a use-after-free from occurring.
2588 		 */
2589 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2590 		struct xfs_ail	*ailp = lip->li_ailp;
2591 
2592 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2593 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2594 		if (lip->li_flags & XFS_LI_IN_AIL) {
2595 			spin_lock(&ailp->xa_lock);
2596 			if (lip->li_flags & XFS_LI_IN_AIL)
2597 				xfs_trans_ail_delete(ailp, lip);
2598 			else
2599 				spin_unlock(&ailp->xa_lock);
2600 		}
2601 		xfs_inode_item_destroy(ip);
2602 		ip->i_itemp = NULL;
2603 	}
2604 	/* asserts to verify all state is correct here */
2605 	ASSERT(atomic_read(&ip->i_iocount) == 0);
2606 	ASSERT(atomic_read(&ip->i_pincount) == 0);
2607 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
2608 	ASSERT(completion_done(&ip->i_flush));
2609 	kmem_zone_free(xfs_inode_zone, ip);
2610 }
2611 
2612 
2613 /*
2614  * Increment the pin count of the given buffer.
2615  * This value is protected by ipinlock spinlock in the mount structure.
2616  */
2617 void
2618 xfs_ipin(
2619 	xfs_inode_t	*ip)
2620 {
2621 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2622 
2623 	atomic_inc(&ip->i_pincount);
2624 }
2625 
2626 /*
2627  * Decrement the pin count of the given inode, and wake up
2628  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2629  * inode must have been previously pinned with a call to xfs_ipin().
2630  */
2631 void
2632 xfs_iunpin(
2633 	xfs_inode_t	*ip)
2634 {
2635 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2636 
2637 	if (atomic_dec_and_test(&ip->i_pincount))
2638 		wake_up(&ip->i_ipin_wait);
2639 }
2640 
2641 /*
2642  * This is called to unpin an inode. It can be directed to wait or to return
2643  * immediately without waiting for the inode to be unpinned.  The caller must
2644  * have the inode locked in at least shared mode so that the buffer cannot be
2645  * subsequently pinned once someone is waiting for it to be unpinned.
2646  */
2647 STATIC void
2648 __xfs_iunpin_wait(
2649 	xfs_inode_t	*ip,
2650 	int		wait)
2651 {
2652 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2653 
2654 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2655 	if (atomic_read(&ip->i_pincount) == 0)
2656 		return;
2657 
2658 	/* Give the log a push to start the unpinning I/O */
2659 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2660 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2661 	if (wait)
2662 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2663 }
2664 
2665 static inline void
2666 xfs_iunpin_wait(
2667 	xfs_inode_t	*ip)
2668 {
2669 	__xfs_iunpin_wait(ip, 1);
2670 }
2671 
2672 static inline void
2673 xfs_iunpin_nowait(
2674 	xfs_inode_t	*ip)
2675 {
2676 	__xfs_iunpin_wait(ip, 0);
2677 }
2678 
2679 
2680 /*
2681  * xfs_iextents_copy()
2682  *
2683  * This is called to copy the REAL extents (as opposed to the delayed
2684  * allocation extents) from the inode into the given buffer.  It
2685  * returns the number of bytes copied into the buffer.
2686  *
2687  * If there are no delayed allocation extents, then we can just
2688  * memcpy() the extents into the buffer.  Otherwise, we need to
2689  * examine each extent in turn and skip those which are delayed.
2690  */
2691 int
2692 xfs_iextents_copy(
2693 	xfs_inode_t		*ip,
2694 	xfs_bmbt_rec_t		*dp,
2695 	int			whichfork)
2696 {
2697 	int			copied;
2698 	int			i;
2699 	xfs_ifork_t		*ifp;
2700 	int			nrecs;
2701 	xfs_fsblock_t		start_block;
2702 
2703 	ifp = XFS_IFORK_PTR(ip, whichfork);
2704 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2705 	ASSERT(ifp->if_bytes > 0);
2706 
2707 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2708 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2709 	ASSERT(nrecs > 0);
2710 
2711 	/*
2712 	 * There are some delayed allocation extents in the
2713 	 * inode, so copy the extents one at a time and skip
2714 	 * the delayed ones.  There must be at least one
2715 	 * non-delayed extent.
2716 	 */
2717 	copied = 0;
2718 	for (i = 0; i < nrecs; i++) {
2719 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2720 		start_block = xfs_bmbt_get_startblock(ep);
2721 		if (ISNULLSTARTBLOCK(start_block)) {
2722 			/*
2723 			 * It's a delayed allocation extent, so skip it.
2724 			 */
2725 			continue;
2726 		}
2727 
2728 		/* Translate to on disk format */
2729 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2730 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2731 		dp++;
2732 		copied++;
2733 	}
2734 	ASSERT(copied != 0);
2735 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2736 
2737 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2738 }
2739 
2740 /*
2741  * Each of the following cases stores data into the same region
2742  * of the on-disk inode, so only one of them can be valid at
2743  * any given time. While it is possible to have conflicting formats
2744  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2745  * in EXTENTS format, this can only happen when the fork has
2746  * changed formats after being modified but before being flushed.
2747  * In these cases, the format always takes precedence, because the
2748  * format indicates the current state of the fork.
2749  */
2750 /*ARGSUSED*/
2751 STATIC void
2752 xfs_iflush_fork(
2753 	xfs_inode_t		*ip,
2754 	xfs_dinode_t		*dip,
2755 	xfs_inode_log_item_t	*iip,
2756 	int			whichfork,
2757 	xfs_buf_t		*bp)
2758 {
2759 	char			*cp;
2760 	xfs_ifork_t		*ifp;
2761 	xfs_mount_t		*mp;
2762 #ifdef XFS_TRANS_DEBUG
2763 	int			first;
2764 #endif
2765 	static const short	brootflag[2] =
2766 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2767 	static const short	dataflag[2] =
2768 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2769 	static const short	extflag[2] =
2770 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2771 
2772 	if (!iip)
2773 		return;
2774 	ifp = XFS_IFORK_PTR(ip, whichfork);
2775 	/*
2776 	 * This can happen if we gave up in iformat in an error path,
2777 	 * for the attribute fork.
2778 	 */
2779 	if (!ifp) {
2780 		ASSERT(whichfork == XFS_ATTR_FORK);
2781 		return;
2782 	}
2783 	cp = XFS_DFORK_PTR(dip, whichfork);
2784 	mp = ip->i_mount;
2785 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2786 	case XFS_DINODE_FMT_LOCAL:
2787 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2788 		    (ifp->if_bytes > 0)) {
2789 			ASSERT(ifp->if_u1.if_data != NULL);
2790 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2791 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2792 		}
2793 		break;
2794 
2795 	case XFS_DINODE_FMT_EXTENTS:
2796 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2797 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2798 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2799 			(ifp->if_bytes == 0));
2800 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2801 			(ifp->if_bytes > 0));
2802 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2803 		    (ifp->if_bytes > 0)) {
2804 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2805 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2806 				whichfork);
2807 		}
2808 		break;
2809 
2810 	case XFS_DINODE_FMT_BTREE:
2811 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2812 		    (ifp->if_broot_bytes > 0)) {
2813 			ASSERT(ifp->if_broot != NULL);
2814 			ASSERT(ifp->if_broot_bytes <=
2815 			       (XFS_IFORK_SIZE(ip, whichfork) +
2816 				XFS_BROOT_SIZE_ADJ));
2817 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2818 				(xfs_bmdr_block_t *)cp,
2819 				XFS_DFORK_SIZE(dip, mp, whichfork));
2820 		}
2821 		break;
2822 
2823 	case XFS_DINODE_FMT_DEV:
2824 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2825 			ASSERT(whichfork == XFS_DATA_FORK);
2826 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2827 		}
2828 		break;
2829 
2830 	case XFS_DINODE_FMT_UUID:
2831 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2832 			ASSERT(whichfork == XFS_DATA_FORK);
2833 			memcpy(XFS_DFORK_DPTR(dip),
2834 			       &ip->i_df.if_u2.if_uuid,
2835 			       sizeof(uuid_t));
2836 		}
2837 		break;
2838 
2839 	default:
2840 		ASSERT(0);
2841 		break;
2842 	}
2843 }
2844 
2845 STATIC int
2846 xfs_iflush_cluster(
2847 	xfs_inode_t	*ip,
2848 	xfs_buf_t	*bp)
2849 {
2850 	xfs_mount_t		*mp = ip->i_mount;
2851 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2852 	unsigned long		first_index, mask;
2853 	unsigned long		inodes_per_cluster;
2854 	int			ilist_size;
2855 	xfs_inode_t		**ilist;
2856 	xfs_inode_t		*iq;
2857 	int			nr_found;
2858 	int			clcount = 0;
2859 	int			bufwasdelwri;
2860 	int			i;
2861 
2862 	ASSERT(pag->pagi_inodeok);
2863 	ASSERT(pag->pag_ici_init);
2864 
2865 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2866 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2867 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2868 	if (!ilist)
2869 		return 0;
2870 
2871 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2872 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2873 	read_lock(&pag->pag_ici_lock);
2874 	/* really need a gang lookup range call here */
2875 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2876 					first_index, inodes_per_cluster);
2877 	if (nr_found == 0)
2878 		goto out_free;
2879 
2880 	for (i = 0; i < nr_found; i++) {
2881 		iq = ilist[i];
2882 		if (iq == ip)
2883 			continue;
2884 		/* if the inode lies outside this cluster, we're done. */
2885 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2886 			break;
2887 		/*
2888 		 * Do an un-protected check to see if the inode is dirty and
2889 		 * is a candidate for flushing.  These checks will be repeated
2890 		 * later after the appropriate locks are acquired.
2891 		 */
2892 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2893 			continue;
2894 
2895 		/*
2896 		 * Try to get locks.  If any are unavailable or it is pinned,
2897 		 * then this inode cannot be flushed and is skipped.
2898 		 */
2899 
2900 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2901 			continue;
2902 		if (!xfs_iflock_nowait(iq)) {
2903 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2904 			continue;
2905 		}
2906 		if (xfs_ipincount(iq)) {
2907 			xfs_ifunlock(iq);
2908 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2909 			continue;
2910 		}
2911 
2912 		/*
2913 		 * arriving here means that this inode can be flushed.  First
2914 		 * re-check that it's dirty before flushing.
2915 		 */
2916 		if (!xfs_inode_clean(iq)) {
2917 			int	error;
2918 			error = xfs_iflush_int(iq, bp);
2919 			if (error) {
2920 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2921 				goto cluster_corrupt_out;
2922 			}
2923 			clcount++;
2924 		} else {
2925 			xfs_ifunlock(iq);
2926 		}
2927 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2928 	}
2929 
2930 	if (clcount) {
2931 		XFS_STATS_INC(xs_icluster_flushcnt);
2932 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2933 	}
2934 
2935 out_free:
2936 	read_unlock(&pag->pag_ici_lock);
2937 	kmem_free(ilist);
2938 	return 0;
2939 
2940 
2941 cluster_corrupt_out:
2942 	/*
2943 	 * Corruption detected in the clustering loop.  Invalidate the
2944 	 * inode buffer and shut down the filesystem.
2945 	 */
2946 	read_unlock(&pag->pag_ici_lock);
2947 	/*
2948 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2949 	 * brelse can handle it with no problems.  If not, shut down the
2950 	 * filesystem before releasing the buffer.
2951 	 */
2952 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2953 	if (bufwasdelwri)
2954 		xfs_buf_relse(bp);
2955 
2956 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2957 
2958 	if (!bufwasdelwri) {
2959 		/*
2960 		 * Just like incore_relse: if we have b_iodone functions,
2961 		 * mark the buffer as an error and call them.  Otherwise
2962 		 * mark it as stale and brelse.
2963 		 */
2964 		if (XFS_BUF_IODONE_FUNC(bp)) {
2965 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2966 			XFS_BUF_UNDONE(bp);
2967 			XFS_BUF_STALE(bp);
2968 			XFS_BUF_SHUT(bp);
2969 			XFS_BUF_ERROR(bp,EIO);
2970 			xfs_biodone(bp);
2971 		} else {
2972 			XFS_BUF_STALE(bp);
2973 			xfs_buf_relse(bp);
2974 		}
2975 	}
2976 
2977 	/*
2978 	 * Unlocks the flush lock
2979 	 */
2980 	xfs_iflush_abort(iq);
2981 	kmem_free(ilist);
2982 	return XFS_ERROR(EFSCORRUPTED);
2983 }
2984 
2985 /*
2986  * xfs_iflush() will write a modified inode's changes out to the
2987  * inode's on disk home.  The caller must have the inode lock held
2988  * in at least shared mode and the inode flush completion must be
2989  * active as well.  The inode lock will still be held upon return from
2990  * the call and the caller is free to unlock it.
2991  * The inode flush will be completed when the inode reaches the disk.
2992  * The flags indicate how the inode's buffer should be written out.
2993  */
2994 int
2995 xfs_iflush(
2996 	xfs_inode_t		*ip,
2997 	uint			flags)
2998 {
2999 	xfs_inode_log_item_t	*iip;
3000 	xfs_buf_t		*bp;
3001 	xfs_dinode_t		*dip;
3002 	xfs_mount_t		*mp;
3003 	int			error;
3004 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3005 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3006 
3007 	XFS_STATS_INC(xs_iflush_count);
3008 
3009 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3010 	ASSERT(!completion_done(&ip->i_flush));
3011 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3012 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3013 
3014 	iip = ip->i_itemp;
3015 	mp = ip->i_mount;
3016 
3017 	/*
3018 	 * If the inode isn't dirty, then just release the inode
3019 	 * flush lock and do nothing.
3020 	 */
3021 	if (xfs_inode_clean(ip)) {
3022 		xfs_ifunlock(ip);
3023 		return 0;
3024 	}
3025 
3026 	/*
3027 	 * We can't flush the inode until it is unpinned, so wait for it if we
3028 	 * are allowed to block.  We know noone new can pin it, because we are
3029 	 * holding the inode lock shared and you need to hold it exclusively to
3030 	 * pin the inode.
3031 	 *
3032 	 * If we are not allowed to block, force the log out asynchronously so
3033 	 * that when we come back the inode will be unpinned. If other inodes
3034 	 * in the same cluster are dirty, they will probably write the inode
3035 	 * out for us if they occur after the log force completes.
3036 	 */
3037 	if (noblock && xfs_ipincount(ip)) {
3038 		xfs_iunpin_nowait(ip);
3039 		xfs_ifunlock(ip);
3040 		return EAGAIN;
3041 	}
3042 	xfs_iunpin_wait(ip);
3043 
3044 	/*
3045 	 * This may have been unpinned because the filesystem is shutting
3046 	 * down forcibly. If that's the case we must not write this inode
3047 	 * to disk, because the log record didn't make it to disk!
3048 	 */
3049 	if (XFS_FORCED_SHUTDOWN(mp)) {
3050 		ip->i_update_core = 0;
3051 		if (iip)
3052 			iip->ili_format.ilf_fields = 0;
3053 		xfs_ifunlock(ip);
3054 		return XFS_ERROR(EIO);
3055 	}
3056 
3057 	/*
3058 	 * Decide how buffer will be flushed out.  This is done before
3059 	 * the call to xfs_iflush_int because this field is zeroed by it.
3060 	 */
3061 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3062 		/*
3063 		 * Flush out the inode buffer according to the directions
3064 		 * of the caller.  In the cases where the caller has given
3065 		 * us a choice choose the non-delwri case.  This is because
3066 		 * the inode is in the AIL and we need to get it out soon.
3067 		 */
3068 		switch (flags) {
3069 		case XFS_IFLUSH_SYNC:
3070 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3071 			flags = 0;
3072 			break;
3073 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3074 		case XFS_IFLUSH_ASYNC:
3075 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3076 			flags = INT_ASYNC;
3077 			break;
3078 		case XFS_IFLUSH_DELWRI:
3079 			flags = INT_DELWRI;
3080 			break;
3081 		default:
3082 			ASSERT(0);
3083 			flags = 0;
3084 			break;
3085 		}
3086 	} else {
3087 		switch (flags) {
3088 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3089 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3090 		case XFS_IFLUSH_DELWRI:
3091 			flags = INT_DELWRI;
3092 			break;
3093 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3094 		case XFS_IFLUSH_ASYNC:
3095 			flags = INT_ASYNC;
3096 			break;
3097 		case XFS_IFLUSH_SYNC:
3098 			flags = 0;
3099 			break;
3100 		default:
3101 			ASSERT(0);
3102 			flags = 0;
3103 			break;
3104 		}
3105 	}
3106 
3107 	/*
3108 	 * Get the buffer containing the on-disk inode.
3109 	 */
3110 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
3111 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3112 	if (error || !bp) {
3113 		xfs_ifunlock(ip);
3114 		return error;
3115 	}
3116 
3117 	/*
3118 	 * First flush out the inode that xfs_iflush was called with.
3119 	 */
3120 	error = xfs_iflush_int(ip, bp);
3121 	if (error)
3122 		goto corrupt_out;
3123 
3124 	/*
3125 	 * If the buffer is pinned then push on the log now so we won't
3126 	 * get stuck waiting in the write for too long.
3127 	 */
3128 	if (XFS_BUF_ISPINNED(bp))
3129 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3130 
3131 	/*
3132 	 * inode clustering:
3133 	 * see if other inodes can be gathered into this write
3134 	 */
3135 	error = xfs_iflush_cluster(ip, bp);
3136 	if (error)
3137 		goto cluster_corrupt_out;
3138 
3139 	if (flags & INT_DELWRI) {
3140 		xfs_bdwrite(mp, bp);
3141 	} else if (flags & INT_ASYNC) {
3142 		error = xfs_bawrite(mp, bp);
3143 	} else {
3144 		error = xfs_bwrite(mp, bp);
3145 	}
3146 	return error;
3147 
3148 corrupt_out:
3149 	xfs_buf_relse(bp);
3150 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3151 cluster_corrupt_out:
3152 	/*
3153 	 * Unlocks the flush lock
3154 	 */
3155 	xfs_iflush_abort(ip);
3156 	return XFS_ERROR(EFSCORRUPTED);
3157 }
3158 
3159 
3160 STATIC int
3161 xfs_iflush_int(
3162 	xfs_inode_t		*ip,
3163 	xfs_buf_t		*bp)
3164 {
3165 	xfs_inode_log_item_t	*iip;
3166 	xfs_dinode_t		*dip;
3167 	xfs_mount_t		*mp;
3168 #ifdef XFS_TRANS_DEBUG
3169 	int			first;
3170 #endif
3171 
3172 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3173 	ASSERT(!completion_done(&ip->i_flush));
3174 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3175 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3176 
3177 	iip = ip->i_itemp;
3178 	mp = ip->i_mount;
3179 
3180 
3181 	/*
3182 	 * If the inode isn't dirty, then just release the inode
3183 	 * flush lock and do nothing.
3184 	 */
3185 	if (xfs_inode_clean(ip)) {
3186 		xfs_ifunlock(ip);
3187 		return 0;
3188 	}
3189 
3190 	/* set *dip = inode's place in the buffer */
3191 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192 
3193 	/*
3194 	 * Clear i_update_core before copying out the data.
3195 	 * This is for coordination with our timestamp updates
3196 	 * that don't hold the inode lock. They will always
3197 	 * update the timestamps BEFORE setting i_update_core,
3198 	 * so if we clear i_update_core after they set it we
3199 	 * are guaranteed to see their updates to the timestamps.
3200 	 * I believe that this depends on strongly ordered memory
3201 	 * semantics, but we have that.  We use the SYNCHRONIZE
3202 	 * macro to make sure that the compiler does not reorder
3203 	 * the i_update_core access below the data copy below.
3204 	 */
3205 	ip->i_update_core = 0;
3206 	SYNCHRONIZE();
3207 
3208 	/*
3209 	 * Make sure to get the latest atime from the Linux inode.
3210 	 */
3211 	xfs_synchronize_atime(ip);
3212 
3213 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3214 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3215 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3216 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3217 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3218 		goto corrupt_out;
3219 	}
3220 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3221 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3222 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3223 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3224 			ip->i_ino, ip, ip->i_d.di_magic);
3225 		goto corrupt_out;
3226 	}
3227 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3228 		if (XFS_TEST_ERROR(
3229 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3230 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3231 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3232 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3233 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3234 				ip->i_ino, ip);
3235 			goto corrupt_out;
3236 		}
3237 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3238 		if (XFS_TEST_ERROR(
3239 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3240 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3241 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3242 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3243 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3244 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3245 				ip->i_ino, ip);
3246 			goto corrupt_out;
3247 		}
3248 	}
3249 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3250 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3251 				XFS_RANDOM_IFLUSH_5)) {
3252 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3253 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3254 			ip->i_ino,
3255 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3256 			ip->i_d.di_nblocks,
3257 			ip);
3258 		goto corrupt_out;
3259 	}
3260 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3261 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3262 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3263 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3264 			ip->i_ino, ip->i_d.di_forkoff, ip);
3265 		goto corrupt_out;
3266 	}
3267 	/*
3268 	 * bump the flush iteration count, used to detect flushes which
3269 	 * postdate a log record during recovery.
3270 	 */
3271 
3272 	ip->i_d.di_flushiter++;
3273 
3274 	/*
3275 	 * Copy the dirty parts of the inode into the on-disk
3276 	 * inode.  We always copy out the core of the inode,
3277 	 * because if the inode is dirty at all the core must
3278 	 * be.
3279 	 */
3280 	xfs_dinode_to_disk(dip, &ip->i_d);
3281 
3282 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3283 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3284 		ip->i_d.di_flushiter = 0;
3285 
3286 	/*
3287 	 * If this is really an old format inode and the superblock version
3288 	 * has not been updated to support only new format inodes, then
3289 	 * convert back to the old inode format.  If the superblock version
3290 	 * has been updated, then make the conversion permanent.
3291 	 */
3292 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3293 	if (ip->i_d.di_version == 1) {
3294 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3295 			/*
3296 			 * Convert it back.
3297 			 */
3298 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3299 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3300 		} else {
3301 			/*
3302 			 * The superblock version has already been bumped,
3303 			 * so just make the conversion to the new inode
3304 			 * format permanent.
3305 			 */
3306 			ip->i_d.di_version = 2;
3307 			dip->di_version = 2;
3308 			ip->i_d.di_onlink = 0;
3309 			dip->di_onlink = 0;
3310 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3311 			memset(&(dip->di_pad[0]), 0,
3312 			      sizeof(dip->di_pad));
3313 			ASSERT(ip->i_d.di_projid == 0);
3314 		}
3315 	}
3316 
3317 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3318 	if (XFS_IFORK_Q(ip))
3319 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3320 	xfs_inobp_check(mp, bp);
3321 
3322 	/*
3323 	 * We've recorded everything logged in the inode, so we'd
3324 	 * like to clear the ilf_fields bits so we don't log and
3325 	 * flush things unnecessarily.  However, we can't stop
3326 	 * logging all this information until the data we've copied
3327 	 * into the disk buffer is written to disk.  If we did we might
3328 	 * overwrite the copy of the inode in the log with all the
3329 	 * data after re-logging only part of it, and in the face of
3330 	 * a crash we wouldn't have all the data we need to recover.
3331 	 *
3332 	 * What we do is move the bits to the ili_last_fields field.
3333 	 * When logging the inode, these bits are moved back to the
3334 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3335 	 * clear ili_last_fields, since we know that the information
3336 	 * those bits represent is permanently on disk.  As long as
3337 	 * the flush completes before the inode is logged again, then
3338 	 * both ilf_fields and ili_last_fields will be cleared.
3339 	 *
3340 	 * We can play with the ilf_fields bits here, because the inode
3341 	 * lock must be held exclusively in order to set bits there
3342 	 * and the flush lock protects the ili_last_fields bits.
3343 	 * Set ili_logged so the flush done
3344 	 * routine can tell whether or not to look in the AIL.
3345 	 * Also, store the current LSN of the inode so that we can tell
3346 	 * whether the item has moved in the AIL from xfs_iflush_done().
3347 	 * In order to read the lsn we need the AIL lock, because
3348 	 * it is a 64 bit value that cannot be read atomically.
3349 	 */
3350 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3351 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3352 		iip->ili_format.ilf_fields = 0;
3353 		iip->ili_logged = 1;
3354 
3355 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3356 					&iip->ili_item.li_lsn);
3357 
3358 		/*
3359 		 * Attach the function xfs_iflush_done to the inode's
3360 		 * buffer.  This will remove the inode from the AIL
3361 		 * and unlock the inode's flush lock when the inode is
3362 		 * completely written to disk.
3363 		 */
3364 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3365 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3366 
3367 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3368 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3369 	} else {
3370 		/*
3371 		 * We're flushing an inode which is not in the AIL and has
3372 		 * not been logged but has i_update_core set.  For this
3373 		 * case we can use a B_DELWRI flush and immediately drop
3374 		 * the inode flush lock because we can avoid the whole
3375 		 * AIL state thing.  It's OK to drop the flush lock now,
3376 		 * because we've already locked the buffer and to do anything
3377 		 * you really need both.
3378 		 */
3379 		if (iip != NULL) {
3380 			ASSERT(iip->ili_logged == 0);
3381 			ASSERT(iip->ili_last_fields == 0);
3382 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3383 		}
3384 		xfs_ifunlock(ip);
3385 	}
3386 
3387 	return 0;
3388 
3389 corrupt_out:
3390 	return XFS_ERROR(EFSCORRUPTED);
3391 }
3392 
3393 
3394 
3395 #ifdef XFS_ILOCK_TRACE
3396 ktrace_t	*xfs_ilock_trace_buf;
3397 
3398 void
3399 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3400 {
3401 	ktrace_enter(ip->i_lock_trace,
3402 		     (void *)ip,
3403 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3404 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3405 		     (void *)ra,		/* caller of ilock */
3406 		     (void *)(unsigned long)current_cpu(),
3407 		     (void *)(unsigned long)current_pid(),
3408 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3409 }
3410 #endif
3411 
3412 /*
3413  * Return a pointer to the extent record at file index idx.
3414  */
3415 xfs_bmbt_rec_host_t *
3416 xfs_iext_get_ext(
3417 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3418 	xfs_extnum_t	idx)		/* index of target extent */
3419 {
3420 	ASSERT(idx >= 0);
3421 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3422 		return ifp->if_u1.if_ext_irec->er_extbuf;
3423 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3424 		xfs_ext_irec_t	*erp;		/* irec pointer */
3425 		int		erp_idx = 0;	/* irec index */
3426 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3427 
3428 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3429 		return &erp->er_extbuf[page_idx];
3430 	} else if (ifp->if_bytes) {
3431 		return &ifp->if_u1.if_extents[idx];
3432 	} else {
3433 		return NULL;
3434 	}
3435 }
3436 
3437 /*
3438  * Insert new item(s) into the extent records for incore inode
3439  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3440  */
3441 void
3442 xfs_iext_insert(
3443 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3444 	xfs_extnum_t	idx,		/* starting index of new items */
3445 	xfs_extnum_t	count,		/* number of inserted items */
3446 	xfs_bmbt_irec_t	*new)		/* items to insert */
3447 {
3448 	xfs_extnum_t	i;		/* extent record index */
3449 
3450 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3451 	xfs_iext_add(ifp, idx, count);
3452 	for (i = idx; i < idx + count; i++, new++)
3453 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3454 }
3455 
3456 /*
3457  * This is called when the amount of space required for incore file
3458  * extents needs to be increased. The ext_diff parameter stores the
3459  * number of new extents being added and the idx parameter contains
3460  * the extent index where the new extents will be added. If the new
3461  * extents are being appended, then we just need to (re)allocate and
3462  * initialize the space. Otherwise, if the new extents are being
3463  * inserted into the middle of the existing entries, a bit more work
3464  * is required to make room for the new extents to be inserted. The
3465  * caller is responsible for filling in the new extent entries upon
3466  * return.
3467  */
3468 void
3469 xfs_iext_add(
3470 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3471 	xfs_extnum_t	idx,		/* index to begin adding exts */
3472 	int		ext_diff)	/* number of extents to add */
3473 {
3474 	int		byte_diff;	/* new bytes being added */
3475 	int		new_size;	/* size of extents after adding */
3476 	xfs_extnum_t	nextents;	/* number of extents in file */
3477 
3478 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3479 	ASSERT((idx >= 0) && (idx <= nextents));
3480 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3481 	new_size = ifp->if_bytes + byte_diff;
3482 	/*
3483 	 * If the new number of extents (nextents + ext_diff)
3484 	 * fits inside the inode, then continue to use the inline
3485 	 * extent buffer.
3486 	 */
3487 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3488 		if (idx < nextents) {
3489 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3490 				&ifp->if_u2.if_inline_ext[idx],
3491 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3492 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3493 		}
3494 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3495 		ifp->if_real_bytes = 0;
3496 		ifp->if_lastex = nextents + ext_diff;
3497 	}
3498 	/*
3499 	 * Otherwise use a linear (direct) extent list.
3500 	 * If the extents are currently inside the inode,
3501 	 * xfs_iext_realloc_direct will switch us from
3502 	 * inline to direct extent allocation mode.
3503 	 */
3504 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3505 		xfs_iext_realloc_direct(ifp, new_size);
3506 		if (idx < nextents) {
3507 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3508 				&ifp->if_u1.if_extents[idx],
3509 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3510 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3511 		}
3512 	}
3513 	/* Indirection array */
3514 	else {
3515 		xfs_ext_irec_t	*erp;
3516 		int		erp_idx = 0;
3517 		int		page_idx = idx;
3518 
3519 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3520 		if (ifp->if_flags & XFS_IFEXTIREC) {
3521 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3522 		} else {
3523 			xfs_iext_irec_init(ifp);
3524 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3525 			erp = ifp->if_u1.if_ext_irec;
3526 		}
3527 		/* Extents fit in target extent page */
3528 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3529 			if (page_idx < erp->er_extcount) {
3530 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3531 					&erp->er_extbuf[page_idx],
3532 					(erp->er_extcount - page_idx) *
3533 					sizeof(xfs_bmbt_rec_t));
3534 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3535 			}
3536 			erp->er_extcount += ext_diff;
3537 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3538 		}
3539 		/* Insert a new extent page */
3540 		else if (erp) {
3541 			xfs_iext_add_indirect_multi(ifp,
3542 				erp_idx, page_idx, ext_diff);
3543 		}
3544 		/*
3545 		 * If extent(s) are being appended to the last page in
3546 		 * the indirection array and the new extent(s) don't fit
3547 		 * in the page, then erp is NULL and erp_idx is set to
3548 		 * the next index needed in the indirection array.
3549 		 */
3550 		else {
3551 			int	count = ext_diff;
3552 
3553 			while (count) {
3554 				erp = xfs_iext_irec_new(ifp, erp_idx);
3555 				erp->er_extcount = count;
3556 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3557 				if (count) {
3558 					erp_idx++;
3559 				}
3560 			}
3561 		}
3562 	}
3563 	ifp->if_bytes = new_size;
3564 }
3565 
3566 /*
3567  * This is called when incore extents are being added to the indirection
3568  * array and the new extents do not fit in the target extent list. The
3569  * erp_idx parameter contains the irec index for the target extent list
3570  * in the indirection array, and the idx parameter contains the extent
3571  * index within the list. The number of extents being added is stored
3572  * in the count parameter.
3573  *
3574  *    |-------|   |-------|
3575  *    |       |   |       |    idx - number of extents before idx
3576  *    |  idx  |   | count |
3577  *    |       |   |       |    count - number of extents being inserted at idx
3578  *    |-------|   |-------|
3579  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3580  *    |-------|   |-------|
3581  */
3582 void
3583 xfs_iext_add_indirect_multi(
3584 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3585 	int		erp_idx,		/* target extent irec index */
3586 	xfs_extnum_t	idx,			/* index within target list */
3587 	int		count)			/* new extents being added */
3588 {
3589 	int		byte_diff;		/* new bytes being added */
3590 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3591 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3592 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3593 	xfs_extnum_t	nex2;			/* extents after idx + count */
3594 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3595 	int		nlists;			/* number of irec's (lists) */
3596 
3597 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3598 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3599 	nex2 = erp->er_extcount - idx;
3600 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3601 
3602 	/*
3603 	 * Save second part of target extent list
3604 	 * (all extents past */
3605 	if (nex2) {
3606 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3607 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3608 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3609 		erp->er_extcount -= nex2;
3610 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3611 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3612 	}
3613 
3614 	/*
3615 	 * Add the new extents to the end of the target
3616 	 * list, then allocate new irec record(s) and
3617 	 * extent buffer(s) as needed to store the rest
3618 	 * of the new extents.
3619 	 */
3620 	ext_cnt = count;
3621 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3622 	if (ext_diff) {
3623 		erp->er_extcount += ext_diff;
3624 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3625 		ext_cnt -= ext_diff;
3626 	}
3627 	while (ext_cnt) {
3628 		erp_idx++;
3629 		erp = xfs_iext_irec_new(ifp, erp_idx);
3630 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3631 		erp->er_extcount = ext_diff;
3632 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3633 		ext_cnt -= ext_diff;
3634 	}
3635 
3636 	/* Add nex2 extents back to indirection array */
3637 	if (nex2) {
3638 		xfs_extnum_t	ext_avail;
3639 		int		i;
3640 
3641 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3642 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3643 		i = 0;
3644 		/*
3645 		 * If nex2 extents fit in the current page, append
3646 		 * nex2_ep after the new extents.
3647 		 */
3648 		if (nex2 <= ext_avail) {
3649 			i = erp->er_extcount;
3650 		}
3651 		/*
3652 		 * Otherwise, check if space is available in the
3653 		 * next page.
3654 		 */
3655 		else if ((erp_idx < nlists - 1) &&
3656 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3657 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3658 			erp_idx++;
3659 			erp++;
3660 			/* Create a hole for nex2 extents */
3661 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3662 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3663 		}
3664 		/*
3665 		 * Final choice, create a new extent page for
3666 		 * nex2 extents.
3667 		 */
3668 		else {
3669 			erp_idx++;
3670 			erp = xfs_iext_irec_new(ifp, erp_idx);
3671 		}
3672 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3673 		kmem_free(nex2_ep);
3674 		erp->er_extcount += nex2;
3675 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3676 	}
3677 }
3678 
3679 /*
3680  * This is called when the amount of space required for incore file
3681  * extents needs to be decreased. The ext_diff parameter stores the
3682  * number of extents to be removed and the idx parameter contains
3683  * the extent index where the extents will be removed from.
3684  *
3685  * If the amount of space needed has decreased below the linear
3686  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3687  * extent array.  Otherwise, use kmem_realloc() to adjust the
3688  * size to what is needed.
3689  */
3690 void
3691 xfs_iext_remove(
3692 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3693 	xfs_extnum_t	idx,		/* index to begin removing exts */
3694 	int		ext_diff)	/* number of extents to remove */
3695 {
3696 	xfs_extnum_t	nextents;	/* number of extents in file */
3697 	int		new_size;	/* size of extents after removal */
3698 
3699 	ASSERT(ext_diff > 0);
3700 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3701 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3702 
3703 	if (new_size == 0) {
3704 		xfs_iext_destroy(ifp);
3705 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3706 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3707 	} else if (ifp->if_real_bytes) {
3708 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3709 	} else {
3710 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3711 	}
3712 	ifp->if_bytes = new_size;
3713 }
3714 
3715 /*
3716  * This removes ext_diff extents from the inline buffer, beginning
3717  * at extent index idx.
3718  */
3719 void
3720 xfs_iext_remove_inline(
3721 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3722 	xfs_extnum_t	idx,		/* index to begin removing exts */
3723 	int		ext_diff)	/* number of extents to remove */
3724 {
3725 	int		nextents;	/* number of extents in file */
3726 
3727 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3728 	ASSERT(idx < XFS_INLINE_EXTS);
3729 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3730 	ASSERT(((nextents - ext_diff) > 0) &&
3731 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3732 
3733 	if (idx + ext_diff < nextents) {
3734 		memmove(&ifp->if_u2.if_inline_ext[idx],
3735 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3736 			(nextents - (idx + ext_diff)) *
3737 			 sizeof(xfs_bmbt_rec_t));
3738 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3739 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3740 	} else {
3741 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3742 			ext_diff * sizeof(xfs_bmbt_rec_t));
3743 	}
3744 }
3745 
3746 /*
3747  * This removes ext_diff extents from a linear (direct) extent list,
3748  * beginning at extent index idx. If the extents are being removed
3749  * from the end of the list (ie. truncate) then we just need to re-
3750  * allocate the list to remove the extra space. Otherwise, if the
3751  * extents are being removed from the middle of the existing extent
3752  * entries, then we first need to move the extent records beginning
3753  * at idx + ext_diff up in the list to overwrite the records being
3754  * removed, then remove the extra space via kmem_realloc.
3755  */
3756 void
3757 xfs_iext_remove_direct(
3758 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3759 	xfs_extnum_t	idx,		/* index to begin removing exts */
3760 	int		ext_diff)	/* number of extents to remove */
3761 {
3762 	xfs_extnum_t	nextents;	/* number of extents in file */
3763 	int		new_size;	/* size of extents after removal */
3764 
3765 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3766 	new_size = ifp->if_bytes -
3767 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3768 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3769 
3770 	if (new_size == 0) {
3771 		xfs_iext_destroy(ifp);
3772 		return;
3773 	}
3774 	/* Move extents up in the list (if needed) */
3775 	if (idx + ext_diff < nextents) {
3776 		memmove(&ifp->if_u1.if_extents[idx],
3777 			&ifp->if_u1.if_extents[idx + ext_diff],
3778 			(nextents - (idx + ext_diff)) *
3779 			 sizeof(xfs_bmbt_rec_t));
3780 	}
3781 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3782 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3783 	/*
3784 	 * Reallocate the direct extent list. If the extents
3785 	 * will fit inside the inode then xfs_iext_realloc_direct
3786 	 * will switch from direct to inline extent allocation
3787 	 * mode for us.
3788 	 */
3789 	xfs_iext_realloc_direct(ifp, new_size);
3790 	ifp->if_bytes = new_size;
3791 }
3792 
3793 /*
3794  * This is called when incore extents are being removed from the
3795  * indirection array and the extents being removed span multiple extent
3796  * buffers. The idx parameter contains the file extent index where we
3797  * want to begin removing extents, and the count parameter contains
3798  * how many extents need to be removed.
3799  *
3800  *    |-------|   |-------|
3801  *    | nex1  |   |       |    nex1 - number of extents before idx
3802  *    |-------|   | count |
3803  *    |       |   |       |    count - number of extents being removed at idx
3804  *    | count |   |-------|
3805  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3806  *    |-------|   |-------|
3807  */
3808 void
3809 xfs_iext_remove_indirect(
3810 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3811 	xfs_extnum_t	idx,		/* index to begin removing extents */
3812 	int		count)		/* number of extents to remove */
3813 {
3814 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3815 	int		erp_idx = 0;	/* indirection array index */
3816 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3817 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3818 	xfs_extnum_t	nex1;		/* number of extents before idx */
3819 	xfs_extnum_t	nex2;		/* extents after idx + count */
3820 	int		nlists;		/* entries in indirection array */
3821 	int		page_idx = idx;	/* index in target extent list */
3822 
3823 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3824 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3825 	ASSERT(erp != NULL);
3826 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3827 	nex1 = page_idx;
3828 	ext_cnt = count;
3829 	while (ext_cnt) {
3830 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3831 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3832 		/*
3833 		 * Check for deletion of entire list;
3834 		 * xfs_iext_irec_remove() updates extent offsets.
3835 		 */
3836 		if (ext_diff == erp->er_extcount) {
3837 			xfs_iext_irec_remove(ifp, erp_idx);
3838 			ext_cnt -= ext_diff;
3839 			nex1 = 0;
3840 			if (ext_cnt) {
3841 				ASSERT(erp_idx < ifp->if_real_bytes /
3842 					XFS_IEXT_BUFSZ);
3843 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3844 				nex1 = 0;
3845 				continue;
3846 			} else {
3847 				break;
3848 			}
3849 		}
3850 		/* Move extents up (if needed) */
3851 		if (nex2) {
3852 			memmove(&erp->er_extbuf[nex1],
3853 				&erp->er_extbuf[nex1 + ext_diff],
3854 				nex2 * sizeof(xfs_bmbt_rec_t));
3855 		}
3856 		/* Zero out rest of page */
3857 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3858 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3859 		/* Update remaining counters */
3860 		erp->er_extcount -= ext_diff;
3861 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3862 		ext_cnt -= ext_diff;
3863 		nex1 = 0;
3864 		erp_idx++;
3865 		erp++;
3866 	}
3867 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3868 	xfs_iext_irec_compact(ifp);
3869 }
3870 
3871 /*
3872  * Create, destroy, or resize a linear (direct) block of extents.
3873  */
3874 void
3875 xfs_iext_realloc_direct(
3876 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3877 	int		new_size)	/* new size of extents */
3878 {
3879 	int		rnew_size;	/* real new size of extents */
3880 
3881 	rnew_size = new_size;
3882 
3883 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3884 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3885 		 (new_size != ifp->if_real_bytes)));
3886 
3887 	/* Free extent records */
3888 	if (new_size == 0) {
3889 		xfs_iext_destroy(ifp);
3890 	}
3891 	/* Resize direct extent list and zero any new bytes */
3892 	else if (ifp->if_real_bytes) {
3893 		/* Check if extents will fit inside the inode */
3894 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3895 			xfs_iext_direct_to_inline(ifp, new_size /
3896 				(uint)sizeof(xfs_bmbt_rec_t));
3897 			ifp->if_bytes = new_size;
3898 			return;
3899 		}
3900 		if (!is_power_of_2(new_size)){
3901 			rnew_size = roundup_pow_of_two(new_size);
3902 		}
3903 		if (rnew_size != ifp->if_real_bytes) {
3904 			ifp->if_u1.if_extents =
3905 				kmem_realloc(ifp->if_u1.if_extents,
3906 						rnew_size,
3907 						ifp->if_real_bytes, KM_NOFS);
3908 		}
3909 		if (rnew_size > ifp->if_real_bytes) {
3910 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3911 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3912 				rnew_size - ifp->if_real_bytes);
3913 		}
3914 	}
3915 	/*
3916 	 * Switch from the inline extent buffer to a direct
3917 	 * extent list. Be sure to include the inline extent
3918 	 * bytes in new_size.
3919 	 */
3920 	else {
3921 		new_size += ifp->if_bytes;
3922 		if (!is_power_of_2(new_size)) {
3923 			rnew_size = roundup_pow_of_two(new_size);
3924 		}
3925 		xfs_iext_inline_to_direct(ifp, rnew_size);
3926 	}
3927 	ifp->if_real_bytes = rnew_size;
3928 	ifp->if_bytes = new_size;
3929 }
3930 
3931 /*
3932  * Switch from linear (direct) extent records to inline buffer.
3933  */
3934 void
3935 xfs_iext_direct_to_inline(
3936 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3937 	xfs_extnum_t	nextents)	/* number of extents in file */
3938 {
3939 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3940 	ASSERT(nextents <= XFS_INLINE_EXTS);
3941 	/*
3942 	 * The inline buffer was zeroed when we switched
3943 	 * from inline to direct extent allocation mode,
3944 	 * so we don't need to clear it here.
3945 	 */
3946 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3947 		nextents * sizeof(xfs_bmbt_rec_t));
3948 	kmem_free(ifp->if_u1.if_extents);
3949 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3950 	ifp->if_real_bytes = 0;
3951 }
3952 
3953 /*
3954  * Switch from inline buffer to linear (direct) extent records.
3955  * new_size should already be rounded up to the next power of 2
3956  * by the caller (when appropriate), so use new_size as it is.
3957  * However, since new_size may be rounded up, we can't update
3958  * if_bytes here. It is the caller's responsibility to update
3959  * if_bytes upon return.
3960  */
3961 void
3962 xfs_iext_inline_to_direct(
3963 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3964 	int		new_size)	/* number of extents in file */
3965 {
3966 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3967 	memset(ifp->if_u1.if_extents, 0, new_size);
3968 	if (ifp->if_bytes) {
3969 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3970 			ifp->if_bytes);
3971 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3972 			sizeof(xfs_bmbt_rec_t));
3973 	}
3974 	ifp->if_real_bytes = new_size;
3975 }
3976 
3977 /*
3978  * Resize an extent indirection array to new_size bytes.
3979  */
3980 void
3981 xfs_iext_realloc_indirect(
3982 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3983 	int		new_size)	/* new indirection array size */
3984 {
3985 	int		nlists;		/* number of irec's (ex lists) */
3986 	int		size;		/* current indirection array size */
3987 
3988 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3989 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3990 	size = nlists * sizeof(xfs_ext_irec_t);
3991 	ASSERT(ifp->if_real_bytes);
3992 	ASSERT((new_size >= 0) && (new_size != size));
3993 	if (new_size == 0) {
3994 		xfs_iext_destroy(ifp);
3995 	} else {
3996 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3997 			kmem_realloc(ifp->if_u1.if_ext_irec,
3998 				new_size, size, KM_NOFS);
3999 	}
4000 }
4001 
4002 /*
4003  * Switch from indirection array to linear (direct) extent allocations.
4004  */
4005 void
4006 xfs_iext_indirect_to_direct(
4007 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4008 {
4009 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
4010 	xfs_extnum_t	nextents;	/* number of extents in file */
4011 	int		size;		/* size of file extents */
4012 
4013 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4014 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4015 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4016 	size = nextents * sizeof(xfs_bmbt_rec_t);
4017 
4018 	xfs_iext_irec_compact_pages(ifp);
4019 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4020 
4021 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4022 	kmem_free(ifp->if_u1.if_ext_irec);
4023 	ifp->if_flags &= ~XFS_IFEXTIREC;
4024 	ifp->if_u1.if_extents = ep;
4025 	ifp->if_bytes = size;
4026 	if (nextents < XFS_LINEAR_EXTS) {
4027 		xfs_iext_realloc_direct(ifp, size);
4028 	}
4029 }
4030 
4031 /*
4032  * Free incore file extents.
4033  */
4034 void
4035 xfs_iext_destroy(
4036 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4037 {
4038 	if (ifp->if_flags & XFS_IFEXTIREC) {
4039 		int	erp_idx;
4040 		int	nlists;
4041 
4042 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4043 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4044 			xfs_iext_irec_remove(ifp, erp_idx);
4045 		}
4046 		ifp->if_flags &= ~XFS_IFEXTIREC;
4047 	} else if (ifp->if_real_bytes) {
4048 		kmem_free(ifp->if_u1.if_extents);
4049 	} else if (ifp->if_bytes) {
4050 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4051 			sizeof(xfs_bmbt_rec_t));
4052 	}
4053 	ifp->if_u1.if_extents = NULL;
4054 	ifp->if_real_bytes = 0;
4055 	ifp->if_bytes = 0;
4056 }
4057 
4058 /*
4059  * Return a pointer to the extent record for file system block bno.
4060  */
4061 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
4062 xfs_iext_bno_to_ext(
4063 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4064 	xfs_fileoff_t	bno,		/* block number to search for */
4065 	xfs_extnum_t	*idxp)		/* index of target extent */
4066 {
4067 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
4068 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4069 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
4070 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4071 	int		high;		/* upper boundary in search */
4072 	xfs_extnum_t	idx = 0;	/* index of target extent */
4073 	int		low;		/* lower boundary in search */
4074 	xfs_extnum_t	nextents;	/* number of file extents */
4075 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4076 
4077 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4078 	if (nextents == 0) {
4079 		*idxp = 0;
4080 		return NULL;
4081 	}
4082 	low = 0;
4083 	if (ifp->if_flags & XFS_IFEXTIREC) {
4084 		/* Find target extent list */
4085 		int	erp_idx = 0;
4086 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4087 		base = erp->er_extbuf;
4088 		high = erp->er_extcount - 1;
4089 	} else {
4090 		base = ifp->if_u1.if_extents;
4091 		high = nextents - 1;
4092 	}
4093 	/* Binary search extent records */
4094 	while (low <= high) {
4095 		idx = (low + high) >> 1;
4096 		ep = base + idx;
4097 		startoff = xfs_bmbt_get_startoff(ep);
4098 		blockcount = xfs_bmbt_get_blockcount(ep);
4099 		if (bno < startoff) {
4100 			high = idx - 1;
4101 		} else if (bno >= startoff + blockcount) {
4102 			low = idx + 1;
4103 		} else {
4104 			/* Convert back to file-based extent index */
4105 			if (ifp->if_flags & XFS_IFEXTIREC) {
4106 				idx += erp->er_extoff;
4107 			}
4108 			*idxp = idx;
4109 			return ep;
4110 		}
4111 	}
4112 	/* Convert back to file-based extent index */
4113 	if (ifp->if_flags & XFS_IFEXTIREC) {
4114 		idx += erp->er_extoff;
4115 	}
4116 	if (bno >= startoff + blockcount) {
4117 		if (++idx == nextents) {
4118 			ep = NULL;
4119 		} else {
4120 			ep = xfs_iext_get_ext(ifp, idx);
4121 		}
4122 	}
4123 	*idxp = idx;
4124 	return ep;
4125 }
4126 
4127 /*
4128  * Return a pointer to the indirection array entry containing the
4129  * extent record for filesystem block bno. Store the index of the
4130  * target irec in *erp_idxp.
4131  */
4132 xfs_ext_irec_t *			/* pointer to found extent record */
4133 xfs_iext_bno_to_irec(
4134 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4135 	xfs_fileoff_t	bno,		/* block number to search for */
4136 	int		*erp_idxp)	/* irec index of target ext list */
4137 {
4138 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4139 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4140 	int		erp_idx;	/* indirection array index */
4141 	int		nlists;		/* number of extent irec's (lists) */
4142 	int		high;		/* binary search upper limit */
4143 	int		low;		/* binary search lower limit */
4144 
4145 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4146 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4147 	erp_idx = 0;
4148 	low = 0;
4149 	high = nlists - 1;
4150 	while (low <= high) {
4151 		erp_idx = (low + high) >> 1;
4152 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4153 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4154 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4155 			high = erp_idx - 1;
4156 		} else if (erp_next && bno >=
4157 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4158 			low = erp_idx + 1;
4159 		} else {
4160 			break;
4161 		}
4162 	}
4163 	*erp_idxp = erp_idx;
4164 	return erp;
4165 }
4166 
4167 /*
4168  * Return a pointer to the indirection array entry containing the
4169  * extent record at file extent index *idxp. Store the index of the
4170  * target irec in *erp_idxp and store the page index of the target
4171  * extent record in *idxp.
4172  */
4173 xfs_ext_irec_t *
4174 xfs_iext_idx_to_irec(
4175 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4176 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4177 	int		*erp_idxp,	/* pointer to target irec */
4178 	int		realloc)	/* new bytes were just added */
4179 {
4180 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4181 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4182 	int		erp_idx;	/* indirection array index */
4183 	int		nlists;		/* number of irec's (ex lists) */
4184 	int		high;		/* binary search upper limit */
4185 	int		low;		/* binary search lower limit */
4186 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4187 
4188 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4189 	ASSERT(page_idx >= 0 && page_idx <=
4190 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4191 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4192 	erp_idx = 0;
4193 	low = 0;
4194 	high = nlists - 1;
4195 
4196 	/* Binary search extent irec's */
4197 	while (low <= high) {
4198 		erp_idx = (low + high) >> 1;
4199 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4200 		prev = erp_idx > 0 ? erp - 1 : NULL;
4201 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4202 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4203 			high = erp_idx - 1;
4204 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4205 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4206 			    !realloc)) {
4207 			low = erp_idx + 1;
4208 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4209 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4210 			ASSERT(realloc);
4211 			page_idx = 0;
4212 			erp_idx++;
4213 			erp = erp_idx < nlists ? erp + 1 : NULL;
4214 			break;
4215 		} else {
4216 			page_idx -= erp->er_extoff;
4217 			break;
4218 		}
4219 	}
4220 	*idxp = page_idx;
4221 	*erp_idxp = erp_idx;
4222 	return(erp);
4223 }
4224 
4225 /*
4226  * Allocate and initialize an indirection array once the space needed
4227  * for incore extents increases above XFS_IEXT_BUFSZ.
4228  */
4229 void
4230 xfs_iext_irec_init(
4231 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4232 {
4233 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4234 	xfs_extnum_t	nextents;	/* number of extents in file */
4235 
4236 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4237 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4238 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4239 
4240 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4241 
4242 	if (nextents == 0) {
4243 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4244 	} else if (!ifp->if_real_bytes) {
4245 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4246 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4247 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4248 	}
4249 	erp->er_extbuf = ifp->if_u1.if_extents;
4250 	erp->er_extcount = nextents;
4251 	erp->er_extoff = 0;
4252 
4253 	ifp->if_flags |= XFS_IFEXTIREC;
4254 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4255 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4256 	ifp->if_u1.if_ext_irec = erp;
4257 
4258 	return;
4259 }
4260 
4261 /*
4262  * Allocate and initialize a new entry in the indirection array.
4263  */
4264 xfs_ext_irec_t *
4265 xfs_iext_irec_new(
4266 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4267 	int		erp_idx)	/* index for new irec */
4268 {
4269 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4270 	int		i;		/* loop counter */
4271 	int		nlists;		/* number of irec's (ex lists) */
4272 
4273 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4274 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4275 
4276 	/* Resize indirection array */
4277 	xfs_iext_realloc_indirect(ifp, ++nlists *
4278 				  sizeof(xfs_ext_irec_t));
4279 	/*
4280 	 * Move records down in the array so the
4281 	 * new page can use erp_idx.
4282 	 */
4283 	erp = ifp->if_u1.if_ext_irec;
4284 	for (i = nlists - 1; i > erp_idx; i--) {
4285 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4286 	}
4287 	ASSERT(i == erp_idx);
4288 
4289 	/* Initialize new extent record */
4290 	erp = ifp->if_u1.if_ext_irec;
4291 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4292 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4293 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4294 	erp[erp_idx].er_extcount = 0;
4295 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4296 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4297 	return (&erp[erp_idx]);
4298 }
4299 
4300 /*
4301  * Remove a record from the indirection array.
4302  */
4303 void
4304 xfs_iext_irec_remove(
4305 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4306 	int		erp_idx)	/* irec index to remove */
4307 {
4308 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4309 	int		i;		/* loop counter */
4310 	int		nlists;		/* number of irec's (ex lists) */
4311 
4312 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4313 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4314 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4315 	if (erp->er_extbuf) {
4316 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4317 			-erp->er_extcount);
4318 		kmem_free(erp->er_extbuf);
4319 	}
4320 	/* Compact extent records */
4321 	erp = ifp->if_u1.if_ext_irec;
4322 	for (i = erp_idx; i < nlists - 1; i++) {
4323 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4324 	}
4325 	/*
4326 	 * Manually free the last extent record from the indirection
4327 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4328 	 * of zero would result in a call to xfs_iext_destroy() which
4329 	 * would in turn call this function again, creating a nasty
4330 	 * infinite loop.
4331 	 */
4332 	if (--nlists) {
4333 		xfs_iext_realloc_indirect(ifp,
4334 			nlists * sizeof(xfs_ext_irec_t));
4335 	} else {
4336 		kmem_free(ifp->if_u1.if_ext_irec);
4337 	}
4338 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4339 }
4340 
4341 /*
4342  * This is called to clean up large amounts of unused memory allocated
4343  * by the indirection array.  Before compacting anything though, verify
4344  * that the indirection array is still needed and switch back to the
4345  * linear extent list (or even the inline buffer) if possible.  The
4346  * compaction policy is as follows:
4347  *
4348  *    Full Compaction: Extents fit into a single page (or inline buffer)
4349  * Partial Compaction: Extents occupy less than 50% of allocated space
4350  *      No Compaction: Extents occupy at least 50% of allocated space
4351  */
4352 void
4353 xfs_iext_irec_compact(
4354 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4355 {
4356 	xfs_extnum_t	nextents;	/* number of extents in file */
4357 	int		nlists;		/* number of irec's (ex lists) */
4358 
4359 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4360 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4361 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4362 
4363 	if (nextents == 0) {
4364 		xfs_iext_destroy(ifp);
4365 	} else if (nextents <= XFS_INLINE_EXTS) {
4366 		xfs_iext_indirect_to_direct(ifp);
4367 		xfs_iext_direct_to_inline(ifp, nextents);
4368 	} else if (nextents <= XFS_LINEAR_EXTS) {
4369 		xfs_iext_indirect_to_direct(ifp);
4370 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4371 		xfs_iext_irec_compact_pages(ifp);
4372 	}
4373 }
4374 
4375 /*
4376  * Combine extents from neighboring extent pages.
4377  */
4378 void
4379 xfs_iext_irec_compact_pages(
4380 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4381 {
4382 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4383 	int		erp_idx = 0;	/* indirection array index */
4384 	int		nlists;		/* number of irec's (ex lists) */
4385 
4386 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4387 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4388 	while (erp_idx < nlists - 1) {
4389 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4390 		erp_next = erp + 1;
4391 		if (erp_next->er_extcount <=
4392 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4393 			memcpy(&erp->er_extbuf[erp->er_extcount],
4394 				erp_next->er_extbuf, erp_next->er_extcount *
4395 				sizeof(xfs_bmbt_rec_t));
4396 			erp->er_extcount += erp_next->er_extcount;
4397 			/*
4398 			 * Free page before removing extent record
4399 			 * so er_extoffs don't get modified in
4400 			 * xfs_iext_irec_remove.
4401 			 */
4402 			kmem_free(erp_next->er_extbuf);
4403 			erp_next->er_extbuf = NULL;
4404 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4405 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4406 		} else {
4407 			erp_idx++;
4408 		}
4409 	}
4410 }
4411 
4412 /*
4413  * This is called to update the er_extoff field in the indirection
4414  * array when extents have been added or removed from one of the
4415  * extent lists. erp_idx contains the irec index to begin updating
4416  * at and ext_diff contains the number of extents that were added
4417  * or removed.
4418  */
4419 void
4420 xfs_iext_irec_update_extoffs(
4421 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4422 	int		erp_idx,	/* irec index to update */
4423 	int		ext_diff)	/* number of new extents */
4424 {
4425 	int		i;		/* loop counter */
4426 	int		nlists;		/* number of irec's (ex lists */
4427 
4428 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4429 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4430 	for (i = erp_idx; i < nlists; i++) {
4431 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4432 	}
4433 }
4434