xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 
41 struct kmem_cache *xfs_inode_cache;
42 
43 /*
44  * Used in xfs_itruncate_extents().  This is the maximum number of extents
45  * freed from a file in a single transaction.
46  */
47 #define	XFS_ITRUNC_MAX_EXTENTS	2
48 
49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 	struct xfs_inode *);
52 
53 /*
54  * helper function to extract extent size hint from inode
55  */
56 xfs_extlen_t
57 xfs_get_extsz_hint(
58 	struct xfs_inode	*ip)
59 {
60 	/*
61 	 * No point in aligning allocations if we need to COW to actually
62 	 * write to them.
63 	 */
64 	if (xfs_is_always_cow_inode(ip))
65 		return 0;
66 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 		return ip->i_extsize;
68 	if (XFS_IS_REALTIME_INODE(ip))
69 		return ip->i_mount->m_sb.sb_rextsize;
70 	return 0;
71 }
72 
73 /*
74  * Helper function to extract CoW extent size hint from inode.
75  * Between the extent size hint and the CoW extent size hint, we
76  * return the greater of the two.  If the value is zero (automatic),
77  * use the default size.
78  */
79 xfs_extlen_t
80 xfs_get_cowextsz_hint(
81 	struct xfs_inode	*ip)
82 {
83 	xfs_extlen_t		a, b;
84 
85 	a = 0;
86 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 		a = ip->i_cowextsize;
88 	b = xfs_get_extsz_hint(ip);
89 
90 	a = max(a, b);
91 	if (a == 0)
92 		return XFS_DEFAULT_COWEXTSZ_HINT;
93 	return a;
94 }
95 
96 /*
97  * These two are wrapper routines around the xfs_ilock() routine used to
98  * centralize some grungy code.  They are used in places that wish to lock the
99  * inode solely for reading the extents.  The reason these places can't just
100  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101  * bringing in of the extents from disk for a file in b-tree format.  If the
102  * inode is in b-tree format, then we need to lock the inode exclusively until
103  * the extents are read in.  Locking it exclusively all the time would limit
104  * our parallelism unnecessarily, though.  What we do instead is check to see
105  * if the extents have been read in yet, and only lock the inode exclusively
106  * if they have not.
107  *
108  * The functions return a value which should be given to the corresponding
109  * xfs_iunlock() call.
110  */
111 uint
112 xfs_ilock_data_map_shared(
113 	struct xfs_inode	*ip)
114 {
115 	uint			lock_mode = XFS_ILOCK_SHARED;
116 
117 	if (xfs_need_iread_extents(&ip->i_df))
118 		lock_mode = XFS_ILOCK_EXCL;
119 	xfs_ilock(ip, lock_mode);
120 	return lock_mode;
121 }
122 
123 uint
124 xfs_ilock_attr_map_shared(
125 	struct xfs_inode	*ip)
126 {
127 	uint			lock_mode = XFS_ILOCK_SHARED;
128 
129 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * You can't set both SHARED and EXCL for the same lock,
137  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139  * to set in lock_flags.
140  */
141 static inline void
142 xfs_lock_flags_assert(
143 	uint		lock_flags)
144 {
145 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 	ASSERT(lock_flags != 0);
153 }
154 
155 /*
156  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
158  * various combinations of the locks to be obtained.
159  *
160  * The 3 locks should always be ordered so that the IO lock is obtained first,
161  * the mmap lock second and the ilock last in order to prevent deadlock.
162  *
163  * Basic locking order:
164  *
165  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166  *
167  * mmap_lock locking order:
168  *
169  * i_rwsem -> page lock -> mmap_lock
170  * mmap_lock -> invalidate_lock -> page_lock
171  *
172  * The difference in mmap_lock locking order mean that we cannot hold the
173  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174  * can fault in pages during copy in/out (for buffered IO) or require the
175  * mmap_lock in get_user_pages() to map the user pages into the kernel address
176  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177  * fault because page faults already hold the mmap_lock.
178  *
179  * Hence to serialise fully against both syscall and mmap based IO, we need to
180  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181  * both taken in places where we need to invalidate the page cache in a race
182  * free manner (e.g. truncate, hole punch and other extent manipulation
183  * functions).
184  */
185 void
186 xfs_ilock(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191 
192 	xfs_lock_flags_assert(lock_flags);
193 
194 	if (lock_flags & XFS_IOLOCK_EXCL) {
195 		down_write_nested(&VFS_I(ip)->i_rwsem,
196 				  XFS_IOLOCK_DEP(lock_flags));
197 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
198 		down_read_nested(&VFS_I(ip)->i_rwsem,
199 				 XFS_IOLOCK_DEP(lock_flags));
200 	}
201 
202 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204 				  XFS_MMAPLOCK_DEP(lock_flags));
205 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207 				 XFS_MMAPLOCK_DEP(lock_flags));
208 	}
209 
210 	if (lock_flags & XFS_ILOCK_EXCL)
211 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 	else if (lock_flags & XFS_ILOCK_SHARED)
213 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214 }
215 
216 /*
217  * This is just like xfs_ilock(), except that the caller
218  * is guaranteed not to sleep.  It returns 1 if it gets
219  * the requested locks and 0 otherwise.  If the IO lock is
220  * obtained but the inode lock cannot be, then the IO lock
221  * is dropped before returning.
222  *
223  * ip -- the inode being locked
224  * lock_flags -- this parameter indicates the inode's locks to be
225  *       to be locked.  See the comment for xfs_ilock() for a list
226  *	 of valid values.
227  */
228 int
229 xfs_ilock_nowait(
230 	xfs_inode_t		*ip,
231 	uint			lock_flags)
232 {
233 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234 
235 	xfs_lock_flags_assert(lock_flags);
236 
237 	if (lock_flags & XFS_IOLOCK_EXCL) {
238 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 			goto out;
243 	}
244 
245 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 			goto out_undo_iolock;
248 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 			goto out_undo_iolock;
251 	}
252 
253 	if (lock_flags & XFS_ILOCK_EXCL) {
254 		if (!mrtryupdate(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	} else if (lock_flags & XFS_ILOCK_SHARED) {
257 		if (!mrtryaccess(&ip->i_lock))
258 			goto out_undo_mmaplock;
259 	}
260 	return 1;
261 
262 out_undo_mmaplock:
263 	if (lock_flags & XFS_MMAPLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 	if (lock_flags & XFS_IOLOCK_EXCL)
269 		up_write(&VFS_I(ip)->i_rwsem);
270 	else if (lock_flags & XFS_IOLOCK_SHARED)
271 		up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 	return 0;
274 }
275 
276 /*
277  * xfs_iunlock() is used to drop the inode locks acquired with
278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280  * that we know which locks to drop.
281  *
282  * ip -- the inode being unlocked
283  * lock_flags -- this parameter indicates the inode's locks to be
284  *       to be unlocked.  See the comment for xfs_ilock() for a list
285  *	 of valid values for this parameter.
286  *
287  */
288 void
289 xfs_iunlock(
290 	xfs_inode_t		*ip,
291 	uint			lock_flags)
292 {
293 	xfs_lock_flags_assert(lock_flags);
294 
295 	if (lock_flags & XFS_IOLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_rwsem);
297 	else if (lock_flags & XFS_IOLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_rwsem);
299 
300 	if (lock_flags & XFS_MMAPLOCK_EXCL)
301 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
302 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
303 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304 
305 	if (lock_flags & XFS_ILOCK_EXCL)
306 		mrunlock_excl(&ip->i_lock);
307 	else if (lock_flags & XFS_ILOCK_SHARED)
308 		mrunlock_shared(&ip->i_lock);
309 
310 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311 }
312 
313 /*
314  * give up write locks.  the i/o lock cannot be held nested
315  * if it is being demoted.
316  */
317 void
318 xfs_ilock_demote(
319 	xfs_inode_t		*ip,
320 	uint			lock_flags)
321 {
322 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 	ASSERT((lock_flags &
324 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325 
326 	if (lock_flags & XFS_ILOCK_EXCL)
327 		mrdemote(&ip->i_lock);
328 	if (lock_flags & XFS_MMAPLOCK_EXCL)
329 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
330 	if (lock_flags & XFS_IOLOCK_EXCL)
331 		downgrade_write(&VFS_I(ip)->i_rwsem);
332 
333 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334 }
335 
336 #if defined(DEBUG) || defined(XFS_WARN)
337 static inline bool
338 __xfs_rwsem_islocked(
339 	struct rw_semaphore	*rwsem,
340 	bool			shared)
341 {
342 	if (!debug_locks)
343 		return rwsem_is_locked(rwsem);
344 
345 	if (!shared)
346 		return lockdep_is_held_type(rwsem, 0);
347 
348 	/*
349 	 * We are checking that the lock is held at least in shared
350 	 * mode but don't care that it might be held exclusively
351 	 * (i.e. shared | excl). Hence we check if the lock is held
352 	 * in any mode rather than an explicit shared mode.
353 	 */
354 	return lockdep_is_held_type(rwsem, -1);
355 }
356 
357 bool
358 xfs_isilocked(
359 	struct xfs_inode	*ip,
360 	uint			lock_flags)
361 {
362 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 		if (!(lock_flags & XFS_ILOCK_SHARED))
364 			return !!ip->i_lock.mr_writer;
365 		return rwsem_is_locked(&ip->i_lock.mr_lock);
366 	}
367 
368 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370 				(lock_flags & XFS_MMAPLOCK_SHARED));
371 	}
372 
373 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375 				(lock_flags & XFS_IOLOCK_SHARED));
376 	}
377 
378 	ASSERT(0);
379 	return false;
380 }
381 #endif
382 
383 /*
384  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387  * errors and warnings.
388  */
389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390 static bool
391 xfs_lockdep_subclass_ok(
392 	int subclass)
393 {
394 	return subclass < MAX_LOCKDEP_SUBCLASSES;
395 }
396 #else
397 #define xfs_lockdep_subclass_ok(subclass)	(true)
398 #endif
399 
400 /*
401  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402  * value. This can be called for any type of inode lock combination, including
403  * parent locking. Care must be taken to ensure we don't overrun the subclass
404  * storage fields in the class mask we build.
405  */
406 static inline uint
407 xfs_lock_inumorder(
408 	uint	lock_mode,
409 	uint	subclass)
410 {
411 	uint	class = 0;
412 
413 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 			      XFS_ILOCK_RTSUM)));
415 	ASSERT(xfs_lockdep_subclass_ok(subclass));
416 
417 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419 		class += subclass << XFS_IOLOCK_SHIFT;
420 	}
421 
422 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 		class += subclass << XFS_MMAPLOCK_SHIFT;
425 	}
426 
427 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 		class += subclass << XFS_ILOCK_SHIFT;
430 	}
431 
432 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433 }
434 
435 /*
436  * The following routine will lock n inodes in exclusive mode.  We assume the
437  * caller calls us with the inodes in i_ino order.
438  *
439  * We need to detect deadlock where an inode that we lock is in the AIL and we
440  * start waiting for another inode that is locked by a thread in a long running
441  * transaction (such as truncate). This can result in deadlock since the long
442  * running trans might need to wait for the inode we just locked in order to
443  * push the tail and free space in the log.
444  *
445  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447  * lock more than one at a time, lockdep will report false positives saying we
448  * have violated locking orders.
449  */
450 static void
451 xfs_lock_inodes(
452 	struct xfs_inode	**ips,
453 	int			inodes,
454 	uint			lock_mode)
455 {
456 	int			attempts = 0;
457 	uint			i;
458 	int			j;
459 	bool			try_lock;
460 	struct xfs_log_item	*lp;
461 
462 	/*
463 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
464 	 * support an arbitrary depth of locking here, but absolute limits on
465 	 * inodes depend on the type of locking and the limits placed by
466 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
467 	 * the asserts.
468 	 */
469 	ASSERT(ips && inodes >= 2 && inodes <= 5);
470 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 			    XFS_ILOCK_EXCL));
472 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 			      XFS_ILOCK_SHARED)));
474 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478 
479 	if (lock_mode & XFS_IOLOCK_EXCL) {
480 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483 
484 again:
485 	try_lock = false;
486 	i = 0;
487 	for (; i < inodes; i++) {
488 		ASSERT(ips[i]);
489 
490 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
491 			continue;
492 
493 		/*
494 		 * If try_lock is not set yet, make sure all locked inodes are
495 		 * not in the AIL.  If any are, set try_lock to be used later.
496 		 */
497 		if (!try_lock) {
498 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 				lp = &ips[j]->i_itemp->ili_item;
500 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501 					try_lock = true;
502 			}
503 		}
504 
505 		/*
506 		 * If any of the previous locks we have locked is in the AIL,
507 		 * we must TRY to get the second and subsequent locks. If
508 		 * we can't get any, we must release all we have
509 		 * and try again.
510 		 */
511 		if (!try_lock) {
512 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 			continue;
514 		}
515 
516 		/* try_lock means we have an inode locked that is in the AIL. */
517 		ASSERT(i != 0);
518 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 			continue;
520 
521 		/*
522 		 * Unlock all previous guys and try again.  xfs_iunlock will try
523 		 * to push the tail if the inode is in the AIL.
524 		 */
525 		attempts++;
526 		for (j = i - 1; j >= 0; j--) {
527 			/*
528 			 * Check to see if we've already unlocked this one.  Not
529 			 * the first one going back, and the inode ptr is the
530 			 * same.
531 			 */
532 			if (j != (i - 1) && ips[j] == ips[j + 1])
533 				continue;
534 
535 			xfs_iunlock(ips[j], lock_mode);
536 		}
537 
538 		if ((attempts % 5) == 0) {
539 			delay(1); /* Don't just spin the CPU */
540 		}
541 		goto again;
542 	}
543 }
544 
545 /*
546  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547  * mmaplock must be double-locked separately since we use i_rwsem and
548  * invalidate_lock for that. We now support taking one lock EXCL and the
549  * other SHARED.
550  */
551 void
552 xfs_lock_two_inodes(
553 	struct xfs_inode	*ip0,
554 	uint			ip0_mode,
555 	struct xfs_inode	*ip1,
556 	uint			ip1_mode)
557 {
558 	int			attempts = 0;
559 	struct xfs_log_item	*lp;
560 
561 	ASSERT(hweight32(ip0_mode) == 1);
562 	ASSERT(hweight32(ip1_mode) == 1);
563 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567 	ASSERT(ip0->i_ino != ip1->i_ino);
568 
569 	if (ip0->i_ino > ip1->i_ino) {
570 		swap(ip0, ip1);
571 		swap(ip0_mode, ip1_mode);
572 	}
573 
574  again:
575 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576 
577 	/*
578 	 * If the first lock we have locked is in the AIL, we must TRY to get
579 	 * the second lock. If we can't get it, we must release the first one
580 	 * and try again.
581 	 */
582 	lp = &ip0->i_itemp->ili_item;
583 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 			xfs_iunlock(ip0, ip0_mode);
586 			if ((++attempts % 5) == 0)
587 				delay(1); /* Don't just spin the CPU */
588 			goto again;
589 		}
590 	} else {
591 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 	}
593 }
594 
595 uint
596 xfs_ip2xflags(
597 	struct xfs_inode	*ip)
598 {
599 	uint			flags = 0;
600 
601 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603 			flags |= FS_XFLAG_REALTIME;
604 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605 			flags |= FS_XFLAG_PREALLOC;
606 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607 			flags |= FS_XFLAG_IMMUTABLE;
608 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
609 			flags |= FS_XFLAG_APPEND;
610 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
611 			flags |= FS_XFLAG_SYNC;
612 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613 			flags |= FS_XFLAG_NOATIME;
614 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615 			flags |= FS_XFLAG_NODUMP;
616 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617 			flags |= FS_XFLAG_RTINHERIT;
618 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619 			flags |= FS_XFLAG_PROJINHERIT;
620 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621 			flags |= FS_XFLAG_NOSYMLINKS;
622 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623 			flags |= FS_XFLAG_EXTSIZE;
624 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625 			flags |= FS_XFLAG_EXTSZINHERIT;
626 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627 			flags |= FS_XFLAG_NODEFRAG;
628 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629 			flags |= FS_XFLAG_FILESTREAM;
630 	}
631 
632 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634 			flags |= FS_XFLAG_DAX;
635 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636 			flags |= FS_XFLAG_COWEXTSIZE;
637 	}
638 
639 	if (xfs_inode_has_attr_fork(ip))
640 		flags |= FS_XFLAG_HASATTR;
641 	return flags;
642 }
643 
644 /*
645  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646  * is allowed, otherwise it has to be an exact match. If a CI match is found,
647  * ci_name->name will point to a the actual name (caller must free) or
648  * will be set to NULL if an exact match is found.
649  */
650 int
651 xfs_lookup(
652 	struct xfs_inode	*dp,
653 	const struct xfs_name	*name,
654 	struct xfs_inode	**ipp,
655 	struct xfs_name		*ci_name)
656 {
657 	xfs_ino_t		inum;
658 	int			error;
659 
660 	trace_xfs_lookup(dp, name);
661 
662 	if (xfs_is_shutdown(dp->i_mount))
663 		return -EIO;
664 
665 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666 	if (error)
667 		goto out_unlock;
668 
669 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670 	if (error)
671 		goto out_free_name;
672 
673 	return 0;
674 
675 out_free_name:
676 	if (ci_name)
677 		kmem_free(ci_name->name);
678 out_unlock:
679 	*ipp = NULL;
680 	return error;
681 }
682 
683 /* Propagate di_flags from a parent inode to a child inode. */
684 static void
685 xfs_inode_inherit_flags(
686 	struct xfs_inode	*ip,
687 	const struct xfs_inode	*pip)
688 {
689 	unsigned int		di_flags = 0;
690 	xfs_failaddr_t		failaddr;
691 	umode_t			mode = VFS_I(ip)->i_mode;
692 
693 	if (S_ISDIR(mode)) {
694 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695 			di_flags |= XFS_DIFLAG_RTINHERIT;
696 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698 			ip->i_extsize = pip->i_extsize;
699 		}
700 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701 			di_flags |= XFS_DIFLAG_PROJINHERIT;
702 	} else if (S_ISREG(mode)) {
703 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704 		    xfs_has_realtime(ip->i_mount))
705 			di_flags |= XFS_DIFLAG_REALTIME;
706 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 			di_flags |= XFS_DIFLAG_EXTSIZE;
708 			ip->i_extsize = pip->i_extsize;
709 		}
710 	}
711 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 	    xfs_inherit_noatime)
713 		di_flags |= XFS_DIFLAG_NOATIME;
714 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 	    xfs_inherit_nodump)
716 		di_flags |= XFS_DIFLAG_NODUMP;
717 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 	    xfs_inherit_sync)
719 		di_flags |= XFS_DIFLAG_SYNC;
720 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721 	    xfs_inherit_nosymlinks)
722 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
723 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724 	    xfs_inherit_nodefrag)
725 		di_flags |= XFS_DIFLAG_NODEFRAG;
726 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727 		di_flags |= XFS_DIFLAG_FILESTREAM;
728 
729 	ip->i_diflags |= di_flags;
730 
731 	/*
732 	 * Inode verifiers on older kernels only check that the extent size
733 	 * hint is an integer multiple of the rt extent size on realtime files.
734 	 * They did not check the hint alignment on a directory with both
735 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
736 	 * propagated from a directory into a new realtime file, new file
737 	 * allocations will fail due to math errors in the rt allocator and/or
738 	 * trip the verifiers.  Validate the hint settings in the new file so
739 	 * that we don't let broken hints propagate.
740 	 */
741 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 			VFS_I(ip)->i_mode, ip->i_diflags);
743 	if (failaddr) {
744 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 				   XFS_DIFLAG_EXTSZINHERIT);
746 		ip->i_extsize = 0;
747 	}
748 }
749 
750 /* Propagate di_flags2 from a parent inode to a child inode. */
751 static void
752 xfs_inode_inherit_flags2(
753 	struct xfs_inode	*ip,
754 	const struct xfs_inode	*pip)
755 {
756 	xfs_failaddr_t		failaddr;
757 
758 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760 		ip->i_cowextsize = pip->i_cowextsize;
761 	}
762 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764 
765 	/* Don't let invalid cowextsize hints propagate. */
766 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 	if (failaddr) {
769 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 		ip->i_cowextsize = 0;
771 	}
772 }
773 
774 /*
775  * Initialise a newly allocated inode and return the in-core inode to the
776  * caller locked exclusively.
777  */
778 int
779 xfs_init_new_inode(
780 	struct user_namespace	*mnt_userns,
781 	struct xfs_trans	*tp,
782 	struct xfs_inode	*pip,
783 	xfs_ino_t		ino,
784 	umode_t			mode,
785 	xfs_nlink_t		nlink,
786 	dev_t			rdev,
787 	prid_t			prid,
788 	bool			init_xattrs,
789 	struct xfs_inode	**ipp)
790 {
791 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
792 	struct xfs_mount	*mp = tp->t_mountp;
793 	struct xfs_inode	*ip;
794 	unsigned int		flags;
795 	int			error;
796 	struct timespec64	tv;
797 	struct inode		*inode;
798 
799 	/*
800 	 * Protect against obviously corrupt allocation btree records. Later
801 	 * xfs_iget checks will catch re-allocation of other active in-memory
802 	 * and on-disk inodes. If we don't catch reallocating the parent inode
803 	 * here we will deadlock in xfs_iget() so we have to do these checks
804 	 * first.
805 	 */
806 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 		return -EFSCORRUPTED;
809 	}
810 
811 	/*
812 	 * Get the in-core inode with the lock held exclusively to prevent
813 	 * others from looking at until we're done.
814 	 */
815 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
816 	if (error)
817 		return error;
818 
819 	ASSERT(ip != NULL);
820 	inode = VFS_I(ip);
821 	set_nlink(inode, nlink);
822 	inode->i_rdev = rdev;
823 	ip->i_projid = prid;
824 
825 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826 		inode_fsuid_set(inode, mnt_userns);
827 		inode->i_gid = dir->i_gid;
828 		inode->i_mode = mode;
829 	} else {
830 		inode_init_owner(mnt_userns, inode, dir, mode);
831 	}
832 
833 	/*
834 	 * If the group ID of the new file does not match the effective group
835 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 	 * (and only if the irix_sgid_inherit compatibility variable is set).
837 	 */
838 	if (irix_sgid_inherit &&
839 	    (inode->i_mode & S_ISGID) &&
840 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
841 		inode->i_mode &= ~S_ISGID;
842 
843 	ip->i_disk_size = 0;
844 	ip->i_df.if_nextents = 0;
845 	ASSERT(ip->i_nblocks == 0);
846 
847 	tv = current_time(inode);
848 	inode->i_mtime = tv;
849 	inode->i_atime = tv;
850 	inode->i_ctime = tv;
851 
852 	ip->i_extsize = 0;
853 	ip->i_diflags = 0;
854 
855 	if (xfs_has_v3inodes(mp)) {
856 		inode_set_iversion(inode, 1);
857 		ip->i_cowextsize = 0;
858 		ip->i_crtime = tv;
859 	}
860 
861 	flags = XFS_ILOG_CORE;
862 	switch (mode & S_IFMT) {
863 	case S_IFIFO:
864 	case S_IFCHR:
865 	case S_IFBLK:
866 	case S_IFSOCK:
867 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
868 		flags |= XFS_ILOG_DEV;
869 		break;
870 	case S_IFREG:
871 	case S_IFDIR:
872 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
873 			xfs_inode_inherit_flags(ip, pip);
874 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
875 			xfs_inode_inherit_flags2(ip, pip);
876 		fallthrough;
877 	case S_IFLNK:
878 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
879 		ip->i_df.if_bytes = 0;
880 		ip->i_df.if_u1.if_root = NULL;
881 		break;
882 	default:
883 		ASSERT(0);
884 	}
885 
886 	/*
887 	 * If we need to create attributes immediately after allocating the
888 	 * inode, initialise an empty attribute fork right now. We use the
889 	 * default fork offset for attributes here as we don't know exactly what
890 	 * size or how many attributes we might be adding. We can do this
891 	 * safely here because we know the data fork is completely empty and
892 	 * this saves us from needing to run a separate transaction to set the
893 	 * fork offset in the immediate future.
894 	 */
895 	if (init_xattrs && xfs_has_attr(mp)) {
896 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
897 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
898 	}
899 
900 	/*
901 	 * Log the new values stuffed into the inode.
902 	 */
903 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
904 	xfs_trans_log_inode(tp, ip, flags);
905 
906 	/* now that we have an i_mode we can setup the inode structure */
907 	xfs_setup_inode(ip);
908 
909 	*ipp = ip;
910 	return 0;
911 }
912 
913 /*
914  * Decrement the link count on an inode & log the change.  If this causes the
915  * link count to go to zero, move the inode to AGI unlinked list so that it can
916  * be freed when the last active reference goes away via xfs_inactive().
917  */
918 static int			/* error */
919 xfs_droplink(
920 	xfs_trans_t *tp,
921 	xfs_inode_t *ip)
922 {
923 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
924 
925 	drop_nlink(VFS_I(ip));
926 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
927 
928 	if (VFS_I(ip)->i_nlink)
929 		return 0;
930 
931 	return xfs_iunlink(tp, ip);
932 }
933 
934 /*
935  * Increment the link count on an inode & log the change.
936  */
937 static void
938 xfs_bumplink(
939 	xfs_trans_t *tp,
940 	xfs_inode_t *ip)
941 {
942 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
943 
944 	inc_nlink(VFS_I(ip));
945 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
946 }
947 
948 int
949 xfs_create(
950 	struct user_namespace	*mnt_userns,
951 	xfs_inode_t		*dp,
952 	struct xfs_name		*name,
953 	umode_t			mode,
954 	dev_t			rdev,
955 	bool			init_xattrs,
956 	xfs_inode_t		**ipp)
957 {
958 	int			is_dir = S_ISDIR(mode);
959 	struct xfs_mount	*mp = dp->i_mount;
960 	struct xfs_inode	*ip = NULL;
961 	struct xfs_trans	*tp = NULL;
962 	int			error;
963 	bool                    unlock_dp_on_error = false;
964 	prid_t			prid;
965 	struct xfs_dquot	*udqp = NULL;
966 	struct xfs_dquot	*gdqp = NULL;
967 	struct xfs_dquot	*pdqp = NULL;
968 	struct xfs_trans_res	*tres;
969 	uint			resblks;
970 	xfs_ino_t		ino;
971 
972 	trace_xfs_create(dp, name);
973 
974 	if (xfs_is_shutdown(mp))
975 		return -EIO;
976 
977 	prid = xfs_get_initial_prid(dp);
978 
979 	/*
980 	 * Make sure that we have allocated dquot(s) on disk.
981 	 */
982 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
983 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
984 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
985 			&udqp, &gdqp, &pdqp);
986 	if (error)
987 		return error;
988 
989 	if (is_dir) {
990 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
991 		tres = &M_RES(mp)->tr_mkdir;
992 	} else {
993 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
994 		tres = &M_RES(mp)->tr_create;
995 	}
996 
997 	/*
998 	 * Initially assume that the file does not exist and
999 	 * reserve the resources for that case.  If that is not
1000 	 * the case we'll drop the one we have and get a more
1001 	 * appropriate transaction later.
1002 	 */
1003 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1004 			&tp);
1005 	if (error == -ENOSPC) {
1006 		/* flush outstanding delalloc blocks and retry */
1007 		xfs_flush_inodes(mp);
1008 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1009 				resblks, &tp);
1010 	}
1011 	if (error)
1012 		goto out_release_dquots;
1013 
1014 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1015 	unlock_dp_on_error = true;
1016 
1017 	/*
1018 	 * A newly created regular or special file just has one directory
1019 	 * entry pointing to them, but a directory also the "." entry
1020 	 * pointing to itself.
1021 	 */
1022 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1023 	if (!error)
1024 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1025 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1026 	if (error)
1027 		goto out_trans_cancel;
1028 
1029 	/*
1030 	 * Now we join the directory inode to the transaction.  We do not do it
1031 	 * earlier because xfs_dialloc might commit the previous transaction
1032 	 * (and release all the locks).  An error from here on will result in
1033 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1034 	 * error path.
1035 	 */
1036 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1037 	unlock_dp_on_error = false;
1038 
1039 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1040 					resblks - XFS_IALLOC_SPACE_RES(mp));
1041 	if (error) {
1042 		ASSERT(error != -ENOSPC);
1043 		goto out_trans_cancel;
1044 	}
1045 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1046 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1047 
1048 	if (is_dir) {
1049 		error = xfs_dir_init(tp, ip, dp);
1050 		if (error)
1051 			goto out_trans_cancel;
1052 
1053 		xfs_bumplink(tp, dp);
1054 	}
1055 
1056 	/*
1057 	 * If this is a synchronous mount, make sure that the
1058 	 * create transaction goes to disk before returning to
1059 	 * the user.
1060 	 */
1061 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1062 		xfs_trans_set_sync(tp);
1063 
1064 	/*
1065 	 * Attach the dquot(s) to the inodes and modify them incore.
1066 	 * These ids of the inode couldn't have changed since the new
1067 	 * inode has been locked ever since it was created.
1068 	 */
1069 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1070 
1071 	error = xfs_trans_commit(tp);
1072 	if (error)
1073 		goto out_release_inode;
1074 
1075 	xfs_qm_dqrele(udqp);
1076 	xfs_qm_dqrele(gdqp);
1077 	xfs_qm_dqrele(pdqp);
1078 
1079 	*ipp = ip;
1080 	return 0;
1081 
1082  out_trans_cancel:
1083 	xfs_trans_cancel(tp);
1084  out_release_inode:
1085 	/*
1086 	 * Wait until after the current transaction is aborted to finish the
1087 	 * setup of the inode and release the inode.  This prevents recursive
1088 	 * transactions and deadlocks from xfs_inactive.
1089 	 */
1090 	if (ip) {
1091 		xfs_finish_inode_setup(ip);
1092 		xfs_irele(ip);
1093 	}
1094  out_release_dquots:
1095 	xfs_qm_dqrele(udqp);
1096 	xfs_qm_dqrele(gdqp);
1097 	xfs_qm_dqrele(pdqp);
1098 
1099 	if (unlock_dp_on_error)
1100 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1101 	return error;
1102 }
1103 
1104 int
1105 xfs_create_tmpfile(
1106 	struct user_namespace	*mnt_userns,
1107 	struct xfs_inode	*dp,
1108 	umode_t			mode,
1109 	struct xfs_inode	**ipp)
1110 {
1111 	struct xfs_mount	*mp = dp->i_mount;
1112 	struct xfs_inode	*ip = NULL;
1113 	struct xfs_trans	*tp = NULL;
1114 	int			error;
1115 	prid_t                  prid;
1116 	struct xfs_dquot	*udqp = NULL;
1117 	struct xfs_dquot	*gdqp = NULL;
1118 	struct xfs_dquot	*pdqp = NULL;
1119 	struct xfs_trans_res	*tres;
1120 	uint			resblks;
1121 	xfs_ino_t		ino;
1122 
1123 	if (xfs_is_shutdown(mp))
1124 		return -EIO;
1125 
1126 	prid = xfs_get_initial_prid(dp);
1127 
1128 	/*
1129 	 * Make sure that we have allocated dquot(s) on disk.
1130 	 */
1131 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1132 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
1133 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1134 			&udqp, &gdqp, &pdqp);
1135 	if (error)
1136 		return error;
1137 
1138 	resblks = XFS_IALLOC_SPACE_RES(mp);
1139 	tres = &M_RES(mp)->tr_create_tmpfile;
1140 
1141 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1142 			&tp);
1143 	if (error)
1144 		goto out_release_dquots;
1145 
1146 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1147 	if (!error)
1148 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1149 				0, 0, prid, false, &ip);
1150 	if (error)
1151 		goto out_trans_cancel;
1152 
1153 	if (xfs_has_wsync(mp))
1154 		xfs_trans_set_sync(tp);
1155 
1156 	/*
1157 	 * Attach the dquot(s) to the inodes and modify them incore.
1158 	 * These ids of the inode couldn't have changed since the new
1159 	 * inode has been locked ever since it was created.
1160 	 */
1161 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1162 
1163 	error = xfs_iunlink(tp, ip);
1164 	if (error)
1165 		goto out_trans_cancel;
1166 
1167 	error = xfs_trans_commit(tp);
1168 	if (error)
1169 		goto out_release_inode;
1170 
1171 	xfs_qm_dqrele(udqp);
1172 	xfs_qm_dqrele(gdqp);
1173 	xfs_qm_dqrele(pdqp);
1174 
1175 	*ipp = ip;
1176 	return 0;
1177 
1178  out_trans_cancel:
1179 	xfs_trans_cancel(tp);
1180  out_release_inode:
1181 	/*
1182 	 * Wait until after the current transaction is aborted to finish the
1183 	 * setup of the inode and release the inode.  This prevents recursive
1184 	 * transactions and deadlocks from xfs_inactive.
1185 	 */
1186 	if (ip) {
1187 		xfs_finish_inode_setup(ip);
1188 		xfs_irele(ip);
1189 	}
1190  out_release_dquots:
1191 	xfs_qm_dqrele(udqp);
1192 	xfs_qm_dqrele(gdqp);
1193 	xfs_qm_dqrele(pdqp);
1194 
1195 	return error;
1196 }
1197 
1198 int
1199 xfs_link(
1200 	xfs_inode_t		*tdp,
1201 	xfs_inode_t		*sip,
1202 	struct xfs_name		*target_name)
1203 {
1204 	xfs_mount_t		*mp = tdp->i_mount;
1205 	xfs_trans_t		*tp;
1206 	int			error, nospace_error = 0;
1207 	int			resblks;
1208 
1209 	trace_xfs_link(tdp, target_name);
1210 
1211 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1212 
1213 	if (xfs_is_shutdown(mp))
1214 		return -EIO;
1215 
1216 	error = xfs_qm_dqattach(sip);
1217 	if (error)
1218 		goto std_return;
1219 
1220 	error = xfs_qm_dqattach(tdp);
1221 	if (error)
1222 		goto std_return;
1223 
1224 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1225 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1226 			&tp, &nospace_error);
1227 	if (error)
1228 		goto std_return;
1229 
1230 	/*
1231 	 * If we are using project inheritance, we only allow hard link
1232 	 * creation in our tree when the project IDs are the same; else
1233 	 * the tree quota mechanism could be circumvented.
1234 	 */
1235 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1236 		     tdp->i_projid != sip->i_projid)) {
1237 		error = -EXDEV;
1238 		goto error_return;
1239 	}
1240 
1241 	if (!resblks) {
1242 		error = xfs_dir_canenter(tp, tdp, target_name);
1243 		if (error)
1244 			goto error_return;
1245 	}
1246 
1247 	/*
1248 	 * Handle initial link state of O_TMPFILE inode
1249 	 */
1250 	if (VFS_I(sip)->i_nlink == 0) {
1251 		struct xfs_perag	*pag;
1252 
1253 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1254 		error = xfs_iunlink_remove(tp, pag, sip);
1255 		xfs_perag_put(pag);
1256 		if (error)
1257 			goto error_return;
1258 	}
1259 
1260 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1261 				   resblks);
1262 	if (error)
1263 		goto error_return;
1264 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1265 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1266 
1267 	xfs_bumplink(tp, sip);
1268 
1269 	/*
1270 	 * If this is a synchronous mount, make sure that the
1271 	 * link transaction goes to disk before returning to
1272 	 * the user.
1273 	 */
1274 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1275 		xfs_trans_set_sync(tp);
1276 
1277 	return xfs_trans_commit(tp);
1278 
1279  error_return:
1280 	xfs_trans_cancel(tp);
1281  std_return:
1282 	if (error == -ENOSPC && nospace_error)
1283 		error = nospace_error;
1284 	return error;
1285 }
1286 
1287 /* Clear the reflink flag and the cowblocks tag if possible. */
1288 static void
1289 xfs_itruncate_clear_reflink_flags(
1290 	struct xfs_inode	*ip)
1291 {
1292 	struct xfs_ifork	*dfork;
1293 	struct xfs_ifork	*cfork;
1294 
1295 	if (!xfs_is_reflink_inode(ip))
1296 		return;
1297 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1298 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1299 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1300 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1301 	if (cfork->if_bytes == 0)
1302 		xfs_inode_clear_cowblocks_tag(ip);
1303 }
1304 
1305 /*
1306  * Free up the underlying blocks past new_size.  The new size must be smaller
1307  * than the current size.  This routine can be used both for the attribute and
1308  * data fork, and does not modify the inode size, which is left to the caller.
1309  *
1310  * The transaction passed to this routine must have made a permanent log
1311  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1312  * given transaction and start new ones, so make sure everything involved in
1313  * the transaction is tidy before calling here.  Some transaction will be
1314  * returned to the caller to be committed.  The incoming transaction must
1315  * already include the inode, and both inode locks must be held exclusively.
1316  * The inode must also be "held" within the transaction.  On return the inode
1317  * will be "held" within the returned transaction.  This routine does NOT
1318  * require any disk space to be reserved for it within the transaction.
1319  *
1320  * If we get an error, we must return with the inode locked and linked into the
1321  * current transaction. This keeps things simple for the higher level code,
1322  * because it always knows that the inode is locked and held in the transaction
1323  * that returns to it whether errors occur or not.  We don't mark the inode
1324  * dirty on error so that transactions can be easily aborted if possible.
1325  */
1326 int
1327 xfs_itruncate_extents_flags(
1328 	struct xfs_trans	**tpp,
1329 	struct xfs_inode	*ip,
1330 	int			whichfork,
1331 	xfs_fsize_t		new_size,
1332 	int			flags)
1333 {
1334 	struct xfs_mount	*mp = ip->i_mount;
1335 	struct xfs_trans	*tp = *tpp;
1336 	xfs_fileoff_t		first_unmap_block;
1337 	xfs_filblks_t		unmap_len;
1338 	int			error = 0;
1339 
1340 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1341 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1342 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1343 	ASSERT(new_size <= XFS_ISIZE(ip));
1344 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1345 	ASSERT(ip->i_itemp != NULL);
1346 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1347 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1348 
1349 	trace_xfs_itruncate_extents_start(ip, new_size);
1350 
1351 	flags |= xfs_bmapi_aflag(whichfork);
1352 
1353 	/*
1354 	 * Since it is possible for space to become allocated beyond
1355 	 * the end of the file (in a crash where the space is allocated
1356 	 * but the inode size is not yet updated), simply remove any
1357 	 * blocks which show up between the new EOF and the maximum
1358 	 * possible file size.
1359 	 *
1360 	 * We have to free all the blocks to the bmbt maximum offset, even if
1361 	 * the page cache can't scale that far.
1362 	 */
1363 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1364 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1365 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1366 		return 0;
1367 	}
1368 
1369 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1370 	while (unmap_len > 0) {
1371 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1372 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1373 				flags, XFS_ITRUNC_MAX_EXTENTS);
1374 		if (error)
1375 			goto out;
1376 
1377 		/* free the just unmapped extents */
1378 		error = xfs_defer_finish(&tp);
1379 		if (error)
1380 			goto out;
1381 	}
1382 
1383 	if (whichfork == XFS_DATA_FORK) {
1384 		/* Remove all pending CoW reservations. */
1385 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1386 				first_unmap_block, XFS_MAX_FILEOFF, true);
1387 		if (error)
1388 			goto out;
1389 
1390 		xfs_itruncate_clear_reflink_flags(ip);
1391 	}
1392 
1393 	/*
1394 	 * Always re-log the inode so that our permanent transaction can keep
1395 	 * on rolling it forward in the log.
1396 	 */
1397 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1398 
1399 	trace_xfs_itruncate_extents_end(ip, new_size);
1400 
1401 out:
1402 	*tpp = tp;
1403 	return error;
1404 }
1405 
1406 int
1407 xfs_release(
1408 	xfs_inode_t	*ip)
1409 {
1410 	xfs_mount_t	*mp = ip->i_mount;
1411 	int		error = 0;
1412 
1413 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1414 		return 0;
1415 
1416 	/* If this is a read-only mount, don't do this (would generate I/O) */
1417 	if (xfs_is_readonly(mp))
1418 		return 0;
1419 
1420 	if (!xfs_is_shutdown(mp)) {
1421 		int truncated;
1422 
1423 		/*
1424 		 * If we previously truncated this file and removed old data
1425 		 * in the process, we want to initiate "early" writeout on
1426 		 * the last close.  This is an attempt to combat the notorious
1427 		 * NULL files problem which is particularly noticeable from a
1428 		 * truncate down, buffered (re-)write (delalloc), followed by
1429 		 * a crash.  What we are effectively doing here is
1430 		 * significantly reducing the time window where we'd otherwise
1431 		 * be exposed to that problem.
1432 		 */
1433 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1434 		if (truncated) {
1435 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1436 			if (ip->i_delayed_blks > 0) {
1437 				error = filemap_flush(VFS_I(ip)->i_mapping);
1438 				if (error)
1439 					return error;
1440 			}
1441 		}
1442 	}
1443 
1444 	if (VFS_I(ip)->i_nlink == 0)
1445 		return 0;
1446 
1447 	/*
1448 	 * If we can't get the iolock just skip truncating the blocks past EOF
1449 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1450 	 * another chance to drop them once the last reference to the inode is
1451 	 * dropped, so we'll never leak blocks permanently.
1452 	 */
1453 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1454 		return 0;
1455 
1456 	if (xfs_can_free_eofblocks(ip, false)) {
1457 		/*
1458 		 * Check if the inode is being opened, written and closed
1459 		 * frequently and we have delayed allocation blocks outstanding
1460 		 * (e.g. streaming writes from the NFS server), truncating the
1461 		 * blocks past EOF will cause fragmentation to occur.
1462 		 *
1463 		 * In this case don't do the truncation, but we have to be
1464 		 * careful how we detect this case. Blocks beyond EOF show up as
1465 		 * i_delayed_blks even when the inode is clean, so we need to
1466 		 * truncate them away first before checking for a dirty release.
1467 		 * Hence on the first dirty close we will still remove the
1468 		 * speculative allocation, but after that we will leave it in
1469 		 * place.
1470 		 */
1471 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1472 			goto out_unlock;
1473 
1474 		error = xfs_free_eofblocks(ip);
1475 		if (error)
1476 			goto out_unlock;
1477 
1478 		/* delalloc blocks after truncation means it really is dirty */
1479 		if (ip->i_delayed_blks)
1480 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1481 	}
1482 
1483 out_unlock:
1484 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1485 	return error;
1486 }
1487 
1488 /*
1489  * xfs_inactive_truncate
1490  *
1491  * Called to perform a truncate when an inode becomes unlinked.
1492  */
1493 STATIC int
1494 xfs_inactive_truncate(
1495 	struct xfs_inode *ip)
1496 {
1497 	struct xfs_mount	*mp = ip->i_mount;
1498 	struct xfs_trans	*tp;
1499 	int			error;
1500 
1501 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1502 	if (error) {
1503 		ASSERT(xfs_is_shutdown(mp));
1504 		return error;
1505 	}
1506 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1507 	xfs_trans_ijoin(tp, ip, 0);
1508 
1509 	/*
1510 	 * Log the inode size first to prevent stale data exposure in the event
1511 	 * of a system crash before the truncate completes. See the related
1512 	 * comment in xfs_vn_setattr_size() for details.
1513 	 */
1514 	ip->i_disk_size = 0;
1515 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1516 
1517 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1518 	if (error)
1519 		goto error_trans_cancel;
1520 
1521 	ASSERT(ip->i_df.if_nextents == 0);
1522 
1523 	error = xfs_trans_commit(tp);
1524 	if (error)
1525 		goto error_unlock;
1526 
1527 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1528 	return 0;
1529 
1530 error_trans_cancel:
1531 	xfs_trans_cancel(tp);
1532 error_unlock:
1533 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1534 	return error;
1535 }
1536 
1537 /*
1538  * xfs_inactive_ifree()
1539  *
1540  * Perform the inode free when an inode is unlinked.
1541  */
1542 STATIC int
1543 xfs_inactive_ifree(
1544 	struct xfs_inode *ip)
1545 {
1546 	struct xfs_mount	*mp = ip->i_mount;
1547 	struct xfs_trans	*tp;
1548 	int			error;
1549 
1550 	/*
1551 	 * We try to use a per-AG reservation for any block needed by the finobt
1552 	 * tree, but as the finobt feature predates the per-AG reservation
1553 	 * support a degraded file system might not have enough space for the
1554 	 * reservation at mount time.  In that case try to dip into the reserved
1555 	 * pool and pray.
1556 	 *
1557 	 * Send a warning if the reservation does happen to fail, as the inode
1558 	 * now remains allocated and sits on the unlinked list until the fs is
1559 	 * repaired.
1560 	 */
1561 	if (unlikely(mp->m_finobt_nores)) {
1562 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1563 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1564 				&tp);
1565 	} else {
1566 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1567 	}
1568 	if (error) {
1569 		if (error == -ENOSPC) {
1570 			xfs_warn_ratelimited(mp,
1571 			"Failed to remove inode(s) from unlinked list. "
1572 			"Please free space, unmount and run xfs_repair.");
1573 		} else {
1574 			ASSERT(xfs_is_shutdown(mp));
1575 		}
1576 		return error;
1577 	}
1578 
1579 	/*
1580 	 * We do not hold the inode locked across the entire rolling transaction
1581 	 * here. We only need to hold it for the first transaction that
1582 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1583 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1584 	 * here breaks the relationship between cluster buffer invalidation and
1585 	 * stale inode invalidation on cluster buffer item journal commit
1586 	 * completion, and can result in leaving dirty stale inodes hanging
1587 	 * around in memory.
1588 	 *
1589 	 * We have no need for serialising this inode operation against other
1590 	 * operations - we freed the inode and hence reallocation is required
1591 	 * and that will serialise on reallocating the space the deferops need
1592 	 * to free. Hence we can unlock the inode on the first commit of
1593 	 * the transaction rather than roll it right through the deferops. This
1594 	 * avoids relogging the XFS_ISTALE inode.
1595 	 *
1596 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1597 	 * by asserting that the inode is still locked when it returns.
1598 	 */
1599 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1600 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1601 
1602 	error = xfs_ifree(tp, ip);
1603 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1604 	if (error) {
1605 		/*
1606 		 * If we fail to free the inode, shut down.  The cancel
1607 		 * might do that, we need to make sure.  Otherwise the
1608 		 * inode might be lost for a long time or forever.
1609 		 */
1610 		if (!xfs_is_shutdown(mp)) {
1611 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1612 				__func__, error);
1613 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1614 		}
1615 		xfs_trans_cancel(tp);
1616 		return error;
1617 	}
1618 
1619 	/*
1620 	 * Credit the quota account(s). The inode is gone.
1621 	 */
1622 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1623 
1624 	/*
1625 	 * Just ignore errors at this point.  There is nothing we can do except
1626 	 * to try to keep going. Make sure it's not a silent error.
1627 	 */
1628 	error = xfs_trans_commit(tp);
1629 	if (error)
1630 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1631 			__func__, error);
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  * Returns true if we need to update the on-disk metadata before we can free
1638  * the memory used by this inode.  Updates include freeing post-eof
1639  * preallocations; freeing COW staging extents; and marking the inode free in
1640  * the inobt if it is on the unlinked list.
1641  */
1642 bool
1643 xfs_inode_needs_inactive(
1644 	struct xfs_inode	*ip)
1645 {
1646 	struct xfs_mount	*mp = ip->i_mount;
1647 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1648 
1649 	/*
1650 	 * If the inode is already free, then there can be nothing
1651 	 * to clean up here.
1652 	 */
1653 	if (VFS_I(ip)->i_mode == 0)
1654 		return false;
1655 
1656 	/* If this is a read-only mount, don't do this (would generate I/O) */
1657 	if (xfs_is_readonly(mp))
1658 		return false;
1659 
1660 	/* If the log isn't running, push inodes straight to reclaim. */
1661 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1662 		return false;
1663 
1664 	/* Metadata inodes require explicit resource cleanup. */
1665 	if (xfs_is_metadata_inode(ip))
1666 		return false;
1667 
1668 	/* Want to clean out the cow blocks if there are any. */
1669 	if (cow_ifp && cow_ifp->if_bytes > 0)
1670 		return true;
1671 
1672 	/* Unlinked files must be freed. */
1673 	if (VFS_I(ip)->i_nlink == 0)
1674 		return true;
1675 
1676 	/*
1677 	 * This file isn't being freed, so check if there are post-eof blocks
1678 	 * to free.  @force is true because we are evicting an inode from the
1679 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1680 	 * free space accounting.
1681 	 *
1682 	 * Note: don't bother with iolock here since lockdep complains about
1683 	 * acquiring it in reclaim context. We have the only reference to the
1684 	 * inode at this point anyways.
1685 	 */
1686 	return xfs_can_free_eofblocks(ip, true);
1687 }
1688 
1689 /*
1690  * xfs_inactive
1691  *
1692  * This is called when the vnode reference count for the vnode
1693  * goes to zero.  If the file has been unlinked, then it must
1694  * now be truncated.  Also, we clear all of the read-ahead state
1695  * kept for the inode here since the file is now closed.
1696  */
1697 void
1698 xfs_inactive(
1699 	xfs_inode_t	*ip)
1700 {
1701 	struct xfs_mount	*mp;
1702 	int			error;
1703 	int			truncate = 0;
1704 
1705 	/*
1706 	 * If the inode is already free, then there can be nothing
1707 	 * to clean up here.
1708 	 */
1709 	if (VFS_I(ip)->i_mode == 0) {
1710 		ASSERT(ip->i_df.if_broot_bytes == 0);
1711 		goto out;
1712 	}
1713 
1714 	mp = ip->i_mount;
1715 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1716 
1717 	/* If this is a read-only mount, don't do this (would generate I/O) */
1718 	if (xfs_is_readonly(mp))
1719 		goto out;
1720 
1721 	/* Metadata inodes require explicit resource cleanup. */
1722 	if (xfs_is_metadata_inode(ip))
1723 		goto out;
1724 
1725 	/* Try to clean out the cow blocks if there are any. */
1726 	if (xfs_inode_has_cow_data(ip))
1727 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1728 
1729 	if (VFS_I(ip)->i_nlink != 0) {
1730 		/*
1731 		 * force is true because we are evicting an inode from the
1732 		 * cache. Post-eof blocks must be freed, lest we end up with
1733 		 * broken free space accounting.
1734 		 *
1735 		 * Note: don't bother with iolock here since lockdep complains
1736 		 * about acquiring it in reclaim context. We have the only
1737 		 * reference to the inode at this point anyways.
1738 		 */
1739 		if (xfs_can_free_eofblocks(ip, true))
1740 			xfs_free_eofblocks(ip);
1741 
1742 		goto out;
1743 	}
1744 
1745 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1746 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1747 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1748 		truncate = 1;
1749 
1750 	error = xfs_qm_dqattach(ip);
1751 	if (error)
1752 		goto out;
1753 
1754 	if (S_ISLNK(VFS_I(ip)->i_mode))
1755 		error = xfs_inactive_symlink(ip);
1756 	else if (truncate)
1757 		error = xfs_inactive_truncate(ip);
1758 	if (error)
1759 		goto out;
1760 
1761 	/*
1762 	 * If there are attributes associated with the file then blow them away
1763 	 * now.  The code calls a routine that recursively deconstructs the
1764 	 * attribute fork. If also blows away the in-core attribute fork.
1765 	 */
1766 	if (xfs_inode_has_attr_fork(ip)) {
1767 		error = xfs_attr_inactive(ip);
1768 		if (error)
1769 			goto out;
1770 	}
1771 
1772 	ASSERT(ip->i_forkoff == 0);
1773 
1774 	/*
1775 	 * Free the inode.
1776 	 */
1777 	xfs_inactive_ifree(ip);
1778 
1779 out:
1780 	/*
1781 	 * We're done making metadata updates for this inode, so we can release
1782 	 * the attached dquots.
1783 	 */
1784 	xfs_qm_dqdetach(ip);
1785 }
1786 
1787 /*
1788  * In-Core Unlinked List Lookups
1789  * =============================
1790  *
1791  * Every inode is supposed to be reachable from some other piece of metadata
1792  * with the exception of the root directory.  Inodes with a connection to a
1793  * file descriptor but not linked from anywhere in the on-disk directory tree
1794  * are collectively known as unlinked inodes, though the filesystem itself
1795  * maintains links to these inodes so that on-disk metadata are consistent.
1796  *
1797  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1798  * header contains a number of buckets that point to an inode, and each inode
1799  * record has a pointer to the next inode in the hash chain.  This
1800  * singly-linked list causes scaling problems in the iunlink remove function
1801  * because we must walk that list to find the inode that points to the inode
1802  * being removed from the unlinked hash bucket list.
1803  *
1804  * Hence we keep an in-memory double linked list to link each inode on an
1805  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1806  * based lists would require having 64 list heads in the perag, one for each
1807  * list. This is expensive in terms of memory (think millions of AGs) and cache
1808  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1809  * must be referenced at the VFS level to keep them on the list and hence we
1810  * have an existence guarantee for inodes on the unlinked list.
1811  *
1812  * Given we have an existence guarantee, we can use lockless inode cache lookups
1813  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1814  * for the double linked unlinked list, and we don't need any extra locking to
1815  * keep the list safe as all manipulations are done under the AGI buffer lock.
1816  * Keeping the list up to date does not require memory allocation, just finding
1817  * the XFS inode and updating the next/prev unlinked list aginos.
1818  */
1819 
1820 /*
1821  * Find an inode on the unlinked list. This does not take references to the
1822  * inode as we have existence guarantees by holding the AGI buffer lock and that
1823  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1824  * don't find the inode in cache, then let the caller handle the situation.
1825  */
1826 static struct xfs_inode *
1827 xfs_iunlink_lookup(
1828 	struct xfs_perag	*pag,
1829 	xfs_agino_t		agino)
1830 {
1831 	struct xfs_inode	*ip;
1832 
1833 	rcu_read_lock();
1834 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1835 
1836 	/*
1837 	 * Inode not in memory or in RCU freeing limbo should not happen.
1838 	 * Warn about this and let the caller handle the failure.
1839 	 */
1840 	if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1841 		rcu_read_unlock();
1842 		return NULL;
1843 	}
1844 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1845 	rcu_read_unlock();
1846 	return ip;
1847 }
1848 
1849 /* Update the prev pointer of the next agino. */
1850 static int
1851 xfs_iunlink_update_backref(
1852 	struct xfs_perag	*pag,
1853 	xfs_agino_t		prev_agino,
1854 	xfs_agino_t		next_agino)
1855 {
1856 	struct xfs_inode	*ip;
1857 
1858 	/* No update necessary if we are at the end of the list. */
1859 	if (next_agino == NULLAGINO)
1860 		return 0;
1861 
1862 	ip = xfs_iunlink_lookup(pag, next_agino);
1863 	if (!ip)
1864 		return -EFSCORRUPTED;
1865 	ip->i_prev_unlinked = prev_agino;
1866 	return 0;
1867 }
1868 
1869 /*
1870  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1871  * is responsible for validating the old value.
1872  */
1873 STATIC int
1874 xfs_iunlink_update_bucket(
1875 	struct xfs_trans	*tp,
1876 	struct xfs_perag	*pag,
1877 	struct xfs_buf		*agibp,
1878 	unsigned int		bucket_index,
1879 	xfs_agino_t		new_agino)
1880 {
1881 	struct xfs_agi		*agi = agibp->b_addr;
1882 	xfs_agino_t		old_value;
1883 	int			offset;
1884 
1885 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1886 
1887 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1888 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1889 			old_value, new_agino);
1890 
1891 	/*
1892 	 * We should never find the head of the list already set to the value
1893 	 * passed in because either we're adding or removing ourselves from the
1894 	 * head of the list.
1895 	 */
1896 	if (old_value == new_agino) {
1897 		xfs_buf_mark_corrupt(agibp);
1898 		return -EFSCORRUPTED;
1899 	}
1900 
1901 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1902 	offset = offsetof(struct xfs_agi, agi_unlinked) +
1903 			(sizeof(xfs_agino_t) * bucket_index);
1904 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1905 	return 0;
1906 }
1907 
1908 static int
1909 xfs_iunlink_insert_inode(
1910 	struct xfs_trans	*tp,
1911 	struct xfs_perag	*pag,
1912 	struct xfs_buf		*agibp,
1913 	struct xfs_inode	*ip)
1914 {
1915 	struct xfs_mount	*mp = tp->t_mountp;
1916 	struct xfs_agi		*agi = agibp->b_addr;
1917 	xfs_agino_t		next_agino;
1918 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1919 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1920 	int			error;
1921 
1922 	/*
1923 	 * Get the index into the agi hash table for the list this inode will
1924 	 * go on.  Make sure the pointer isn't garbage and that this inode
1925 	 * isn't already on the list.
1926 	 */
1927 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1928 	if (next_agino == agino ||
1929 	    !xfs_verify_agino_or_null(pag, next_agino)) {
1930 		xfs_buf_mark_corrupt(agibp);
1931 		return -EFSCORRUPTED;
1932 	}
1933 
1934 	/*
1935 	 * Update the prev pointer in the next inode to point back to this
1936 	 * inode.
1937 	 */
1938 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
1939 	if (error)
1940 		return error;
1941 
1942 	if (next_agino != NULLAGINO) {
1943 		/*
1944 		 * There is already another inode in the bucket, so point this
1945 		 * inode to the current head of the list.
1946 		 */
1947 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1948 		if (error)
1949 			return error;
1950 		ip->i_next_unlinked = next_agino;
1951 	}
1952 
1953 	/* Point the head of the list to point to this inode. */
1954 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1955 }
1956 
1957 /*
1958  * This is called when the inode's link count has gone to 0 or we are creating
1959  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
1960  *
1961  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1962  * list when the inode is freed.
1963  */
1964 STATIC int
1965 xfs_iunlink(
1966 	struct xfs_trans	*tp,
1967 	struct xfs_inode	*ip)
1968 {
1969 	struct xfs_mount	*mp = tp->t_mountp;
1970 	struct xfs_perag	*pag;
1971 	struct xfs_buf		*agibp;
1972 	int			error;
1973 
1974 	ASSERT(VFS_I(ip)->i_nlink == 0);
1975 	ASSERT(VFS_I(ip)->i_mode != 0);
1976 	trace_xfs_iunlink(ip);
1977 
1978 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1979 
1980 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
1981 	error = xfs_read_agi(pag, tp, &agibp);
1982 	if (error)
1983 		goto out;
1984 
1985 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1986 out:
1987 	xfs_perag_put(pag);
1988 	return error;
1989 }
1990 
1991 static int
1992 xfs_iunlink_remove_inode(
1993 	struct xfs_trans	*tp,
1994 	struct xfs_perag	*pag,
1995 	struct xfs_buf		*agibp,
1996 	struct xfs_inode	*ip)
1997 {
1998 	struct xfs_mount	*mp = tp->t_mountp;
1999 	struct xfs_agi		*agi = agibp->b_addr;
2000 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 	xfs_agino_t		head_agino;
2002 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2003 	int			error;
2004 
2005 	trace_xfs_iunlink_remove(ip);
2006 
2007 	/*
2008 	 * Get the index into the agi hash table for the list this inode will
2009 	 * go on.  Make sure the head pointer isn't garbage.
2010 	 */
2011 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2012 	if (!xfs_verify_agino(pag, head_agino)) {
2013 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2014 				agi, sizeof(*agi));
2015 		return -EFSCORRUPTED;
2016 	}
2017 
2018 	/*
2019 	 * Set our inode's next_unlinked pointer to NULL and then return
2020 	 * the old pointer value so that we can update whatever was previous
2021 	 * to us in the list to point to whatever was next in the list.
2022 	 */
2023 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2024 	if (error)
2025 		return error;
2026 
2027 	/*
2028 	 * Update the prev pointer in the next inode to point back to previous
2029 	 * inode in the chain.
2030 	 */
2031 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2032 			ip->i_next_unlinked);
2033 	if (error)
2034 		return error;
2035 
2036 	if (head_agino != agino) {
2037 		struct xfs_inode	*prev_ip;
2038 
2039 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2040 		if (!prev_ip)
2041 			return -EFSCORRUPTED;
2042 
2043 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2044 				ip->i_next_unlinked);
2045 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2046 	} else {
2047 		/* Point the head of the list to the next unlinked inode. */
2048 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2049 				ip->i_next_unlinked);
2050 	}
2051 
2052 	ip->i_next_unlinked = NULLAGINO;
2053 	ip->i_prev_unlinked = NULLAGINO;
2054 	return error;
2055 }
2056 
2057 /*
2058  * Pull the on-disk inode from the AGI unlinked list.
2059  */
2060 STATIC int
2061 xfs_iunlink_remove(
2062 	struct xfs_trans	*tp,
2063 	struct xfs_perag	*pag,
2064 	struct xfs_inode	*ip)
2065 {
2066 	struct xfs_buf		*agibp;
2067 	int			error;
2068 
2069 	trace_xfs_iunlink_remove(ip);
2070 
2071 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2072 	error = xfs_read_agi(pag, tp, &agibp);
2073 	if (error)
2074 		return error;
2075 
2076 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2077 }
2078 
2079 /*
2080  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2081  * mark it stale. We should only find clean inodes in this lookup that aren't
2082  * already stale.
2083  */
2084 static void
2085 xfs_ifree_mark_inode_stale(
2086 	struct xfs_perag	*pag,
2087 	struct xfs_inode	*free_ip,
2088 	xfs_ino_t		inum)
2089 {
2090 	struct xfs_mount	*mp = pag->pag_mount;
2091 	struct xfs_inode_log_item *iip;
2092 	struct xfs_inode	*ip;
2093 
2094 retry:
2095 	rcu_read_lock();
2096 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2097 
2098 	/* Inode not in memory, nothing to do */
2099 	if (!ip) {
2100 		rcu_read_unlock();
2101 		return;
2102 	}
2103 
2104 	/*
2105 	 * because this is an RCU protected lookup, we could find a recently
2106 	 * freed or even reallocated inode during the lookup. We need to check
2107 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2108 	 * valid, the wrong inode or stale.
2109 	 */
2110 	spin_lock(&ip->i_flags_lock);
2111 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2112 		goto out_iflags_unlock;
2113 
2114 	/*
2115 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2116 	 * other inodes that we did not find in the list attached to the buffer
2117 	 * and are not already marked stale. If we can't lock it, back off and
2118 	 * retry.
2119 	 */
2120 	if (ip != free_ip) {
2121 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2122 			spin_unlock(&ip->i_flags_lock);
2123 			rcu_read_unlock();
2124 			delay(1);
2125 			goto retry;
2126 		}
2127 	}
2128 	ip->i_flags |= XFS_ISTALE;
2129 
2130 	/*
2131 	 * If the inode is flushing, it is already attached to the buffer.  All
2132 	 * we needed to do here is mark the inode stale so buffer IO completion
2133 	 * will remove it from the AIL.
2134 	 */
2135 	iip = ip->i_itemp;
2136 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2137 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2138 		ASSERT(iip->ili_last_fields);
2139 		goto out_iunlock;
2140 	}
2141 
2142 	/*
2143 	 * Inodes not attached to the buffer can be released immediately.
2144 	 * Everything else has to go through xfs_iflush_abort() on journal
2145 	 * commit as the flock synchronises removal of the inode from the
2146 	 * cluster buffer against inode reclaim.
2147 	 */
2148 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2149 		goto out_iunlock;
2150 
2151 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2152 	spin_unlock(&ip->i_flags_lock);
2153 	rcu_read_unlock();
2154 
2155 	/* we have a dirty inode in memory that has not yet been flushed. */
2156 	spin_lock(&iip->ili_lock);
2157 	iip->ili_last_fields = iip->ili_fields;
2158 	iip->ili_fields = 0;
2159 	iip->ili_fsync_fields = 0;
2160 	spin_unlock(&iip->ili_lock);
2161 	ASSERT(iip->ili_last_fields);
2162 
2163 	if (ip != free_ip)
2164 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2165 	return;
2166 
2167 out_iunlock:
2168 	if (ip != free_ip)
2169 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2170 out_iflags_unlock:
2171 	spin_unlock(&ip->i_flags_lock);
2172 	rcu_read_unlock();
2173 }
2174 
2175 /*
2176  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177  * inodes that are in memory - they all must be marked stale and attached to
2178  * the cluster buffer.
2179  */
2180 static int
2181 xfs_ifree_cluster(
2182 	struct xfs_trans	*tp,
2183 	struct xfs_perag	*pag,
2184 	struct xfs_inode	*free_ip,
2185 	struct xfs_icluster	*xic)
2186 {
2187 	struct xfs_mount	*mp = free_ip->i_mount;
2188 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2189 	struct xfs_buf		*bp;
2190 	xfs_daddr_t		blkno;
2191 	xfs_ino_t		inum = xic->first_ino;
2192 	int			nbufs;
2193 	int			i, j;
2194 	int			ioffset;
2195 	int			error;
2196 
2197 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2198 
2199 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2200 		/*
2201 		 * The allocation bitmap tells us which inodes of the chunk were
2202 		 * physically allocated. Skip the cluster if an inode falls into
2203 		 * a sparse region.
2204 		 */
2205 		ioffset = inum - xic->first_ino;
2206 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2207 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2208 			continue;
2209 		}
2210 
2211 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2212 					 XFS_INO_TO_AGBNO(mp, inum));
2213 
2214 		/*
2215 		 * We obtain and lock the backing buffer first in the process
2216 		 * here to ensure dirty inodes attached to the buffer remain in
2217 		 * the flushing state while we mark them stale.
2218 		 *
2219 		 * If we scan the in-memory inodes first, then buffer IO can
2220 		 * complete before we get a lock on it, and hence we may fail
2221 		 * to mark all the active inodes on the buffer stale.
2222 		 */
2223 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2224 				mp->m_bsize * igeo->blocks_per_cluster,
2225 				XBF_UNMAPPED, &bp);
2226 		if (error)
2227 			return error;
2228 
2229 		/*
2230 		 * This buffer may not have been correctly initialised as we
2231 		 * didn't read it from disk. That's not important because we are
2232 		 * only using to mark the buffer as stale in the log, and to
2233 		 * attach stale cached inodes on it. That means it will never be
2234 		 * dispatched for IO. If it is, we want to know about it, and we
2235 		 * want it to fail. We can acheive this by adding a write
2236 		 * verifier to the buffer.
2237 		 */
2238 		bp->b_ops = &xfs_inode_buf_ops;
2239 
2240 		/*
2241 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2242 		 * too. This requires lookups, and will skip inodes that we've
2243 		 * already marked XFS_ISTALE.
2244 		 */
2245 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2246 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2247 
2248 		xfs_trans_stale_inode_buf(tp, bp);
2249 		xfs_trans_binval(tp, bp);
2250 	}
2251 	return 0;
2252 }
2253 
2254 /*
2255  * This is called to return an inode to the inode free list.  The inode should
2256  * already be truncated to 0 length and have no pages associated with it.  This
2257  * routine also assumes that the inode is already a part of the transaction.
2258  *
2259  * The on-disk copy of the inode will have been added to the list of unlinked
2260  * inodes in the AGI. We need to remove the inode from that list atomically with
2261  * respect to freeing it here.
2262  */
2263 int
2264 xfs_ifree(
2265 	struct xfs_trans	*tp,
2266 	struct xfs_inode	*ip)
2267 {
2268 	struct xfs_mount	*mp = ip->i_mount;
2269 	struct xfs_perag	*pag;
2270 	struct xfs_icluster	xic = { 0 };
2271 	struct xfs_inode_log_item *iip = ip->i_itemp;
2272 	int			error;
2273 
2274 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2275 	ASSERT(VFS_I(ip)->i_nlink == 0);
2276 	ASSERT(ip->i_df.if_nextents == 0);
2277 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2278 	ASSERT(ip->i_nblocks == 0);
2279 
2280 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2281 
2282 	/*
2283 	 * Free the inode first so that we guarantee that the AGI lock is going
2284 	 * to be taken before we remove the inode from the unlinked list. This
2285 	 * makes the AGI lock -> unlinked list modification order the same as
2286 	 * used in O_TMPFILE creation.
2287 	 */
2288 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2289 	if (error)
2290 		goto out;
2291 
2292 	error = xfs_iunlink_remove(tp, pag, ip);
2293 	if (error)
2294 		goto out;
2295 
2296 	/*
2297 	 * Free any local-format data sitting around before we reset the
2298 	 * data fork to extents format.  Note that the attr fork data has
2299 	 * already been freed by xfs_attr_inactive.
2300 	 */
2301 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2302 		kmem_free(ip->i_df.if_u1.if_data);
2303 		ip->i_df.if_u1.if_data = NULL;
2304 		ip->i_df.if_bytes = 0;
2305 	}
2306 
2307 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2308 	ip->i_diflags = 0;
2309 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2310 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2311 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2312 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2313 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2314 
2315 	/* Don't attempt to replay owner changes for a deleted inode */
2316 	spin_lock(&iip->ili_lock);
2317 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2318 	spin_unlock(&iip->ili_lock);
2319 
2320 	/*
2321 	 * Bump the generation count so no one will be confused
2322 	 * by reincarnations of this inode.
2323 	 */
2324 	VFS_I(ip)->i_generation++;
2325 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2326 
2327 	if (xic.deleted)
2328 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2329 out:
2330 	xfs_perag_put(pag);
2331 	return error;
2332 }
2333 
2334 /*
2335  * This is called to unpin an inode.  The caller must have the inode locked
2336  * in at least shared mode so that the buffer cannot be subsequently pinned
2337  * once someone is waiting for it to be unpinned.
2338  */
2339 static void
2340 xfs_iunpin(
2341 	struct xfs_inode	*ip)
2342 {
2343 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2344 
2345 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2346 
2347 	/* Give the log a push to start the unpinning I/O */
2348 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2349 
2350 }
2351 
2352 static void
2353 __xfs_iunpin_wait(
2354 	struct xfs_inode	*ip)
2355 {
2356 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2357 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2358 
2359 	xfs_iunpin(ip);
2360 
2361 	do {
2362 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2363 		if (xfs_ipincount(ip))
2364 			io_schedule();
2365 	} while (xfs_ipincount(ip));
2366 	finish_wait(wq, &wait.wq_entry);
2367 }
2368 
2369 void
2370 xfs_iunpin_wait(
2371 	struct xfs_inode	*ip)
2372 {
2373 	if (xfs_ipincount(ip))
2374 		__xfs_iunpin_wait(ip);
2375 }
2376 
2377 /*
2378  * Removing an inode from the namespace involves removing the directory entry
2379  * and dropping the link count on the inode. Removing the directory entry can
2380  * result in locking an AGF (directory blocks were freed) and removing a link
2381  * count can result in placing the inode on an unlinked list which results in
2382  * locking an AGI.
2383  *
2384  * The big problem here is that we have an ordering constraint on AGF and AGI
2385  * locking - inode allocation locks the AGI, then can allocate a new extent for
2386  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2387  * removes the inode from the unlinked list, requiring that we lock the AGI
2388  * first, and then freeing the inode can result in an inode chunk being freed
2389  * and hence freeing disk space requiring that we lock an AGF.
2390  *
2391  * Hence the ordering that is imposed by other parts of the code is AGI before
2392  * AGF. This means we cannot remove the directory entry before we drop the inode
2393  * reference count and put it on the unlinked list as this results in a lock
2394  * order of AGF then AGI, and this can deadlock against inode allocation and
2395  * freeing. Therefore we must drop the link counts before we remove the
2396  * directory entry.
2397  *
2398  * This is still safe from a transactional point of view - it is not until we
2399  * get to xfs_defer_finish() that we have the possibility of multiple
2400  * transactions in this operation. Hence as long as we remove the directory
2401  * entry and drop the link count in the first transaction of the remove
2402  * operation, there are no transactional constraints on the ordering here.
2403  */
2404 int
2405 xfs_remove(
2406 	xfs_inode_t             *dp,
2407 	struct xfs_name		*name,
2408 	xfs_inode_t		*ip)
2409 {
2410 	xfs_mount_t		*mp = dp->i_mount;
2411 	xfs_trans_t             *tp = NULL;
2412 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2413 	int			dontcare;
2414 	int                     error = 0;
2415 	uint			resblks;
2416 
2417 	trace_xfs_remove(dp, name);
2418 
2419 	if (xfs_is_shutdown(mp))
2420 		return -EIO;
2421 
2422 	error = xfs_qm_dqattach(dp);
2423 	if (error)
2424 		goto std_return;
2425 
2426 	error = xfs_qm_dqattach(ip);
2427 	if (error)
2428 		goto std_return;
2429 
2430 	/*
2431 	 * We try to get the real space reservation first, allowing for
2432 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2433 	 * can't get the space reservation then we use 0 instead, and avoid the
2434 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2435 	 * tries to happen, instead trimming the LAST block from the directory.
2436 	 *
2437 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2438 	 * the directory code can handle a reservationless update and we don't
2439 	 * want to prevent a user from trying to free space by deleting things.
2440 	 */
2441 	resblks = XFS_REMOVE_SPACE_RES(mp);
2442 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2443 			&tp, &dontcare);
2444 	if (error) {
2445 		ASSERT(error != -ENOSPC);
2446 		goto std_return;
2447 	}
2448 
2449 	/*
2450 	 * If we're removing a directory perform some additional validation.
2451 	 */
2452 	if (is_dir) {
2453 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2454 		if (VFS_I(ip)->i_nlink != 2) {
2455 			error = -ENOTEMPTY;
2456 			goto out_trans_cancel;
2457 		}
2458 		if (!xfs_dir_isempty(ip)) {
2459 			error = -ENOTEMPTY;
2460 			goto out_trans_cancel;
2461 		}
2462 
2463 		/* Drop the link from ip's "..".  */
2464 		error = xfs_droplink(tp, dp);
2465 		if (error)
2466 			goto out_trans_cancel;
2467 
2468 		/* Drop the "." link from ip to self.  */
2469 		error = xfs_droplink(tp, ip);
2470 		if (error)
2471 			goto out_trans_cancel;
2472 
2473 		/*
2474 		 * Point the unlinked child directory's ".." entry to the root
2475 		 * directory to eliminate back-references to inodes that may
2476 		 * get freed before the child directory is closed.  If the fs
2477 		 * gets shrunk, this can lead to dirent inode validation errors.
2478 		 */
2479 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2480 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2481 					tp->t_mountp->m_sb.sb_rootino, 0);
2482 			if (error)
2483 				return error;
2484 		}
2485 	} else {
2486 		/*
2487 		 * When removing a non-directory we need to log the parent
2488 		 * inode here.  For a directory this is done implicitly
2489 		 * by the xfs_droplink call for the ".." entry.
2490 		 */
2491 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2492 	}
2493 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2494 
2495 	/* Drop the link from dp to ip. */
2496 	error = xfs_droplink(tp, ip);
2497 	if (error)
2498 		goto out_trans_cancel;
2499 
2500 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2501 	if (error) {
2502 		ASSERT(error != -ENOENT);
2503 		goto out_trans_cancel;
2504 	}
2505 
2506 	/*
2507 	 * If this is a synchronous mount, make sure that the
2508 	 * remove transaction goes to disk before returning to
2509 	 * the user.
2510 	 */
2511 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2512 		xfs_trans_set_sync(tp);
2513 
2514 	error = xfs_trans_commit(tp);
2515 	if (error)
2516 		goto std_return;
2517 
2518 	if (is_dir && xfs_inode_is_filestream(ip))
2519 		xfs_filestream_deassociate(ip);
2520 
2521 	return 0;
2522 
2523  out_trans_cancel:
2524 	xfs_trans_cancel(tp);
2525  std_return:
2526 	return error;
2527 }
2528 
2529 /*
2530  * Enter all inodes for a rename transaction into a sorted array.
2531  */
2532 #define __XFS_SORT_INODES	5
2533 STATIC void
2534 xfs_sort_for_rename(
2535 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2536 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2537 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2538 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2539 	struct xfs_inode	*wip,	/* in: whiteout inode */
2540 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2541 	int			*num_inodes)  /* in/out: inodes in array */
2542 {
2543 	int			i, j;
2544 
2545 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2546 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2547 
2548 	/*
2549 	 * i_tab contains a list of pointers to inodes.  We initialize
2550 	 * the table here & we'll sort it.  We will then use it to
2551 	 * order the acquisition of the inode locks.
2552 	 *
2553 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2554 	 */
2555 	i = 0;
2556 	i_tab[i++] = dp1;
2557 	i_tab[i++] = dp2;
2558 	i_tab[i++] = ip1;
2559 	if (ip2)
2560 		i_tab[i++] = ip2;
2561 	if (wip)
2562 		i_tab[i++] = wip;
2563 	*num_inodes = i;
2564 
2565 	/*
2566 	 * Sort the elements via bubble sort.  (Remember, there are at
2567 	 * most 5 elements to sort, so this is adequate.)
2568 	 */
2569 	for (i = 0; i < *num_inodes; i++) {
2570 		for (j = 1; j < *num_inodes; j++) {
2571 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2572 				struct xfs_inode *temp = i_tab[j];
2573 				i_tab[j] = i_tab[j-1];
2574 				i_tab[j-1] = temp;
2575 			}
2576 		}
2577 	}
2578 }
2579 
2580 static int
2581 xfs_finish_rename(
2582 	struct xfs_trans	*tp)
2583 {
2584 	/*
2585 	 * If this is a synchronous mount, make sure that the rename transaction
2586 	 * goes to disk before returning to the user.
2587 	 */
2588 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2589 		xfs_trans_set_sync(tp);
2590 
2591 	return xfs_trans_commit(tp);
2592 }
2593 
2594 /*
2595  * xfs_cross_rename()
2596  *
2597  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2598  */
2599 STATIC int
2600 xfs_cross_rename(
2601 	struct xfs_trans	*tp,
2602 	struct xfs_inode	*dp1,
2603 	struct xfs_name		*name1,
2604 	struct xfs_inode	*ip1,
2605 	struct xfs_inode	*dp2,
2606 	struct xfs_name		*name2,
2607 	struct xfs_inode	*ip2,
2608 	int			spaceres)
2609 {
2610 	int		error = 0;
2611 	int		ip1_flags = 0;
2612 	int		ip2_flags = 0;
2613 	int		dp2_flags = 0;
2614 
2615 	/* Swap inode number for dirent in first parent */
2616 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2617 	if (error)
2618 		goto out_trans_abort;
2619 
2620 	/* Swap inode number for dirent in second parent */
2621 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2622 	if (error)
2623 		goto out_trans_abort;
2624 
2625 	/*
2626 	 * If we're renaming one or more directories across different parents,
2627 	 * update the respective ".." entries (and link counts) to match the new
2628 	 * parents.
2629 	 */
2630 	if (dp1 != dp2) {
2631 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2632 
2633 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2634 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2635 						dp1->i_ino, spaceres);
2636 			if (error)
2637 				goto out_trans_abort;
2638 
2639 			/* transfer ip2 ".." reference to dp1 */
2640 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2641 				error = xfs_droplink(tp, dp2);
2642 				if (error)
2643 					goto out_trans_abort;
2644 				xfs_bumplink(tp, dp1);
2645 			}
2646 
2647 			/*
2648 			 * Although ip1 isn't changed here, userspace needs
2649 			 * to be warned about the change, so that applications
2650 			 * relying on it (like backup ones), will properly
2651 			 * notify the change
2652 			 */
2653 			ip1_flags |= XFS_ICHGTIME_CHG;
2654 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2655 		}
2656 
2657 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2658 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2659 						dp2->i_ino, spaceres);
2660 			if (error)
2661 				goto out_trans_abort;
2662 
2663 			/* transfer ip1 ".." reference to dp2 */
2664 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2665 				error = xfs_droplink(tp, dp1);
2666 				if (error)
2667 					goto out_trans_abort;
2668 				xfs_bumplink(tp, dp2);
2669 			}
2670 
2671 			/*
2672 			 * Although ip2 isn't changed here, userspace needs
2673 			 * to be warned about the change, so that applications
2674 			 * relying on it (like backup ones), will properly
2675 			 * notify the change
2676 			 */
2677 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2678 			ip2_flags |= XFS_ICHGTIME_CHG;
2679 		}
2680 	}
2681 
2682 	if (ip1_flags) {
2683 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2684 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2685 	}
2686 	if (ip2_flags) {
2687 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2688 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2689 	}
2690 	if (dp2_flags) {
2691 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2692 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2693 	}
2694 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2695 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2696 	return xfs_finish_rename(tp);
2697 
2698 out_trans_abort:
2699 	xfs_trans_cancel(tp);
2700 	return error;
2701 }
2702 
2703 /*
2704  * xfs_rename_alloc_whiteout()
2705  *
2706  * Return a referenced, unlinked, unlocked inode that can be used as a
2707  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2708  * crash between allocating the inode and linking it into the rename transaction
2709  * recovery will free the inode and we won't leak it.
2710  */
2711 static int
2712 xfs_rename_alloc_whiteout(
2713 	struct user_namespace	*mnt_userns,
2714 	struct xfs_name		*src_name,
2715 	struct xfs_inode	*dp,
2716 	struct xfs_inode	**wip)
2717 {
2718 	struct xfs_inode	*tmpfile;
2719 	struct qstr		name;
2720 	int			error;
2721 
2722 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2723 				   &tmpfile);
2724 	if (error)
2725 		return error;
2726 
2727 	name.name = src_name->name;
2728 	name.len = src_name->len;
2729 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2730 	if (error) {
2731 		xfs_finish_inode_setup(tmpfile);
2732 		xfs_irele(tmpfile);
2733 		return error;
2734 	}
2735 
2736 	/*
2737 	 * Prepare the tmpfile inode as if it were created through the VFS.
2738 	 * Complete the inode setup and flag it as linkable.  nlink is already
2739 	 * zero, so we can skip the drop_nlink.
2740 	 */
2741 	xfs_setup_iops(tmpfile);
2742 	xfs_finish_inode_setup(tmpfile);
2743 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2744 
2745 	*wip = tmpfile;
2746 	return 0;
2747 }
2748 
2749 /*
2750  * xfs_rename
2751  */
2752 int
2753 xfs_rename(
2754 	struct user_namespace	*mnt_userns,
2755 	struct xfs_inode	*src_dp,
2756 	struct xfs_name		*src_name,
2757 	struct xfs_inode	*src_ip,
2758 	struct xfs_inode	*target_dp,
2759 	struct xfs_name		*target_name,
2760 	struct xfs_inode	*target_ip,
2761 	unsigned int		flags)
2762 {
2763 	struct xfs_mount	*mp = src_dp->i_mount;
2764 	struct xfs_trans	*tp;
2765 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2766 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2767 	int			i;
2768 	int			num_inodes = __XFS_SORT_INODES;
2769 	bool			new_parent = (src_dp != target_dp);
2770 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2771 	int			spaceres;
2772 	bool			retried = false;
2773 	int			error, nospace_error = 0;
2774 
2775 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2776 
2777 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2778 		return -EINVAL;
2779 
2780 	/*
2781 	 * If we are doing a whiteout operation, allocate the whiteout inode
2782 	 * we will be placing at the target and ensure the type is set
2783 	 * appropriately.
2784 	 */
2785 	if (flags & RENAME_WHITEOUT) {
2786 		error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2787 						  target_dp, &wip);
2788 		if (error)
2789 			return error;
2790 
2791 		/* setup target dirent info as whiteout */
2792 		src_name->type = XFS_DIR3_FT_CHRDEV;
2793 	}
2794 
2795 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2796 				inodes, &num_inodes);
2797 
2798 retry:
2799 	nospace_error = 0;
2800 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2801 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2802 	if (error == -ENOSPC) {
2803 		nospace_error = error;
2804 		spaceres = 0;
2805 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2806 				&tp);
2807 	}
2808 	if (error)
2809 		goto out_release_wip;
2810 
2811 	/*
2812 	 * Attach the dquots to the inodes
2813 	 */
2814 	error = xfs_qm_vop_rename_dqattach(inodes);
2815 	if (error)
2816 		goto out_trans_cancel;
2817 
2818 	/*
2819 	 * Lock all the participating inodes. Depending upon whether
2820 	 * the target_name exists in the target directory, and
2821 	 * whether the target directory is the same as the source
2822 	 * directory, we can lock from 2 to 4 inodes.
2823 	 */
2824 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2825 
2826 	/*
2827 	 * Join all the inodes to the transaction. From this point on,
2828 	 * we can rely on either trans_commit or trans_cancel to unlock
2829 	 * them.
2830 	 */
2831 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2832 	if (new_parent)
2833 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2834 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2835 	if (target_ip)
2836 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2837 	if (wip)
2838 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2839 
2840 	/*
2841 	 * If we are using project inheritance, we only allow renames
2842 	 * into our tree when the project IDs are the same; else the
2843 	 * tree quota mechanism would be circumvented.
2844 	 */
2845 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2846 		     target_dp->i_projid != src_ip->i_projid)) {
2847 		error = -EXDEV;
2848 		goto out_trans_cancel;
2849 	}
2850 
2851 	/* RENAME_EXCHANGE is unique from here on. */
2852 	if (flags & RENAME_EXCHANGE)
2853 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2854 					target_dp, target_name, target_ip,
2855 					spaceres);
2856 
2857 	/*
2858 	 * Try to reserve quota to handle an expansion of the target directory.
2859 	 * We'll allow the rename to continue in reservationless mode if we hit
2860 	 * a space usage constraint.  If we trigger reservationless mode, save
2861 	 * the errno if there isn't any free space in the target directory.
2862 	 */
2863 	if (spaceres != 0) {
2864 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2865 				0, false);
2866 		if (error == -EDQUOT || error == -ENOSPC) {
2867 			if (!retried) {
2868 				xfs_trans_cancel(tp);
2869 				xfs_blockgc_free_quota(target_dp, 0);
2870 				retried = true;
2871 				goto retry;
2872 			}
2873 
2874 			nospace_error = error;
2875 			spaceres = 0;
2876 			error = 0;
2877 		}
2878 		if (error)
2879 			goto out_trans_cancel;
2880 	}
2881 
2882 	/*
2883 	 * Check for expected errors before we dirty the transaction
2884 	 * so we can return an error without a transaction abort.
2885 	 */
2886 	if (target_ip == NULL) {
2887 		/*
2888 		 * If there's no space reservation, check the entry will
2889 		 * fit before actually inserting it.
2890 		 */
2891 		if (!spaceres) {
2892 			error = xfs_dir_canenter(tp, target_dp, target_name);
2893 			if (error)
2894 				goto out_trans_cancel;
2895 		}
2896 	} else {
2897 		/*
2898 		 * If target exists and it's a directory, check that whether
2899 		 * it can be destroyed.
2900 		 */
2901 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2902 		    (!xfs_dir_isempty(target_ip) ||
2903 		     (VFS_I(target_ip)->i_nlink > 2))) {
2904 			error = -EEXIST;
2905 			goto out_trans_cancel;
2906 		}
2907 	}
2908 
2909 	/*
2910 	 * Lock the AGI buffers we need to handle bumping the nlink of the
2911 	 * whiteout inode off the unlinked list and to handle dropping the
2912 	 * nlink of the target inode.  Per locking order rules, do this in
2913 	 * increasing AG order and before directory block allocation tries to
2914 	 * grab AGFs because we grab AGIs before AGFs.
2915 	 *
2916 	 * The (vfs) caller must ensure that if src is a directory then
2917 	 * target_ip is either null or an empty directory.
2918 	 */
2919 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2920 		if (inodes[i] == wip ||
2921 		    (inodes[i] == target_ip &&
2922 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2923 			struct xfs_perag	*pag;
2924 			struct xfs_buf		*bp;
2925 
2926 			pag = xfs_perag_get(mp,
2927 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2928 			error = xfs_read_agi(pag, tp, &bp);
2929 			xfs_perag_put(pag);
2930 			if (error)
2931 				goto out_trans_cancel;
2932 		}
2933 	}
2934 
2935 	/*
2936 	 * Directory entry creation below may acquire the AGF. Remove
2937 	 * the whiteout from the unlinked list first to preserve correct
2938 	 * AGI/AGF locking order. This dirties the transaction so failures
2939 	 * after this point will abort and log recovery will clean up the
2940 	 * mess.
2941 	 *
2942 	 * For whiteouts, we need to bump the link count on the whiteout
2943 	 * inode. After this point, we have a real link, clear the tmpfile
2944 	 * state flag from the inode so it doesn't accidentally get misused
2945 	 * in future.
2946 	 */
2947 	if (wip) {
2948 		struct xfs_perag	*pag;
2949 
2950 		ASSERT(VFS_I(wip)->i_nlink == 0);
2951 
2952 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2953 		error = xfs_iunlink_remove(tp, pag, wip);
2954 		xfs_perag_put(pag);
2955 		if (error)
2956 			goto out_trans_cancel;
2957 
2958 		xfs_bumplink(tp, wip);
2959 		VFS_I(wip)->i_state &= ~I_LINKABLE;
2960 	}
2961 
2962 	/*
2963 	 * Set up the target.
2964 	 */
2965 	if (target_ip == NULL) {
2966 		/*
2967 		 * If target does not exist and the rename crosses
2968 		 * directories, adjust the target directory link count
2969 		 * to account for the ".." reference from the new entry.
2970 		 */
2971 		error = xfs_dir_createname(tp, target_dp, target_name,
2972 					   src_ip->i_ino, spaceres);
2973 		if (error)
2974 			goto out_trans_cancel;
2975 
2976 		xfs_trans_ichgtime(tp, target_dp,
2977 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2978 
2979 		if (new_parent && src_is_directory) {
2980 			xfs_bumplink(tp, target_dp);
2981 		}
2982 	} else { /* target_ip != NULL */
2983 		/*
2984 		 * Link the source inode under the target name.
2985 		 * If the source inode is a directory and we are moving
2986 		 * it across directories, its ".." entry will be
2987 		 * inconsistent until we replace that down below.
2988 		 *
2989 		 * In case there is already an entry with the same
2990 		 * name at the destination directory, remove it first.
2991 		 */
2992 		error = xfs_dir_replace(tp, target_dp, target_name,
2993 					src_ip->i_ino, spaceres);
2994 		if (error)
2995 			goto out_trans_cancel;
2996 
2997 		xfs_trans_ichgtime(tp, target_dp,
2998 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2999 
3000 		/*
3001 		 * Decrement the link count on the target since the target
3002 		 * dir no longer points to it.
3003 		 */
3004 		error = xfs_droplink(tp, target_ip);
3005 		if (error)
3006 			goto out_trans_cancel;
3007 
3008 		if (src_is_directory) {
3009 			/*
3010 			 * Drop the link from the old "." entry.
3011 			 */
3012 			error = xfs_droplink(tp, target_ip);
3013 			if (error)
3014 				goto out_trans_cancel;
3015 		}
3016 	} /* target_ip != NULL */
3017 
3018 	/*
3019 	 * Remove the source.
3020 	 */
3021 	if (new_parent && src_is_directory) {
3022 		/*
3023 		 * Rewrite the ".." entry to point to the new
3024 		 * directory.
3025 		 */
3026 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3027 					target_dp->i_ino, spaceres);
3028 		ASSERT(error != -EEXIST);
3029 		if (error)
3030 			goto out_trans_cancel;
3031 	}
3032 
3033 	/*
3034 	 * We always want to hit the ctime on the source inode.
3035 	 *
3036 	 * This isn't strictly required by the standards since the source
3037 	 * inode isn't really being changed, but old unix file systems did
3038 	 * it and some incremental backup programs won't work without it.
3039 	 */
3040 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3041 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3042 
3043 	/*
3044 	 * Adjust the link count on src_dp.  This is necessary when
3045 	 * renaming a directory, either within one parent when
3046 	 * the target existed, or across two parent directories.
3047 	 */
3048 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3049 
3050 		/*
3051 		 * Decrement link count on src_directory since the
3052 		 * entry that's moved no longer points to it.
3053 		 */
3054 		error = xfs_droplink(tp, src_dp);
3055 		if (error)
3056 			goto out_trans_cancel;
3057 	}
3058 
3059 	/*
3060 	 * For whiteouts, we only need to update the source dirent with the
3061 	 * inode number of the whiteout inode rather than removing it
3062 	 * altogether.
3063 	 */
3064 	if (wip)
3065 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3066 					spaceres);
3067 	else
3068 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3069 					   spaceres);
3070 
3071 	if (error)
3072 		goto out_trans_cancel;
3073 
3074 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3075 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3076 	if (new_parent)
3077 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3078 
3079 	error = xfs_finish_rename(tp);
3080 	if (wip)
3081 		xfs_irele(wip);
3082 	return error;
3083 
3084 out_trans_cancel:
3085 	xfs_trans_cancel(tp);
3086 out_release_wip:
3087 	if (wip)
3088 		xfs_irele(wip);
3089 	if (error == -ENOSPC && nospace_error)
3090 		error = nospace_error;
3091 	return error;
3092 }
3093 
3094 static int
3095 xfs_iflush(
3096 	struct xfs_inode	*ip,
3097 	struct xfs_buf		*bp)
3098 {
3099 	struct xfs_inode_log_item *iip = ip->i_itemp;
3100 	struct xfs_dinode	*dip;
3101 	struct xfs_mount	*mp = ip->i_mount;
3102 	int			error;
3103 
3104 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3105 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3106 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3107 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3108 	ASSERT(iip->ili_item.li_buf == bp);
3109 
3110 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3111 
3112 	/*
3113 	 * We don't flush the inode if any of the following checks fail, but we
3114 	 * do still update the log item and attach to the backing buffer as if
3115 	 * the flush happened. This is a formality to facilitate predictable
3116 	 * error handling as the caller will shutdown and fail the buffer.
3117 	 */
3118 	error = -EFSCORRUPTED;
3119 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3120 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3121 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3122 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3123 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3124 		goto flush_out;
3125 	}
3126 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3127 		if (XFS_TEST_ERROR(
3128 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3129 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3130 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3131 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3132 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3133 				__func__, ip->i_ino, ip);
3134 			goto flush_out;
3135 		}
3136 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3137 		if (XFS_TEST_ERROR(
3138 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3139 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3140 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3141 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3142 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3143 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3144 				__func__, ip->i_ino, ip);
3145 			goto flush_out;
3146 		}
3147 	}
3148 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3149 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3150 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3151 			"%s: detected corrupt incore inode %llu, "
3152 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3153 			__func__, ip->i_ino,
3154 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3155 			ip->i_nblocks, ip);
3156 		goto flush_out;
3157 	}
3158 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3159 				mp, XFS_ERRTAG_IFLUSH_6)) {
3160 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3161 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3162 			__func__, ip->i_ino, ip->i_forkoff, ip);
3163 		goto flush_out;
3164 	}
3165 
3166 	/*
3167 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3168 	 * count for correct sequencing.  We bump the flush iteration count so
3169 	 * we can detect flushes which postdate a log record during recovery.
3170 	 * This is redundant as we now log every change and hence this can't
3171 	 * happen but we need to still do it to ensure backwards compatibility
3172 	 * with old kernels that predate logging all inode changes.
3173 	 */
3174 	if (!xfs_has_v3inodes(mp))
3175 		ip->i_flushiter++;
3176 
3177 	/*
3178 	 * If there are inline format data / attr forks attached to this inode,
3179 	 * make sure they are not corrupt.
3180 	 */
3181 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3182 	    xfs_ifork_verify_local_data(ip))
3183 		goto flush_out;
3184 	if (xfs_inode_has_attr_fork(ip) &&
3185 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3186 	    xfs_ifork_verify_local_attr(ip))
3187 		goto flush_out;
3188 
3189 	/*
3190 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3191 	 * copy out the core of the inode, because if the inode is dirty at all
3192 	 * the core must be.
3193 	 */
3194 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3195 
3196 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3197 	if (!xfs_has_v3inodes(mp)) {
3198 		if (ip->i_flushiter == DI_MAX_FLUSH)
3199 			ip->i_flushiter = 0;
3200 	}
3201 
3202 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3203 	if (xfs_inode_has_attr_fork(ip))
3204 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3205 
3206 	/*
3207 	 * We've recorded everything logged in the inode, so we'd like to clear
3208 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3209 	 * However, we can't stop logging all this information until the data
3210 	 * we've copied into the disk buffer is written to disk.  If we did we
3211 	 * might overwrite the copy of the inode in the log with all the data
3212 	 * after re-logging only part of it, and in the face of a crash we
3213 	 * wouldn't have all the data we need to recover.
3214 	 *
3215 	 * What we do is move the bits to the ili_last_fields field.  When
3216 	 * logging the inode, these bits are moved back to the ili_fields field.
3217 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3218 	 * we know that the information those bits represent is permanently on
3219 	 * disk.  As long as the flush completes before the inode is logged
3220 	 * again, then both ili_fields and ili_last_fields will be cleared.
3221 	 */
3222 	error = 0;
3223 flush_out:
3224 	spin_lock(&iip->ili_lock);
3225 	iip->ili_last_fields = iip->ili_fields;
3226 	iip->ili_fields = 0;
3227 	iip->ili_fsync_fields = 0;
3228 	spin_unlock(&iip->ili_lock);
3229 
3230 	/*
3231 	 * Store the current LSN of the inode so that we can tell whether the
3232 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3233 	 */
3234 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3235 				&iip->ili_item.li_lsn);
3236 
3237 	/* generate the checksum. */
3238 	xfs_dinode_calc_crc(mp, dip);
3239 	return error;
3240 }
3241 
3242 /*
3243  * Non-blocking flush of dirty inode metadata into the backing buffer.
3244  *
3245  * The caller must have a reference to the inode and hold the cluster buffer
3246  * locked. The function will walk across all the inodes on the cluster buffer it
3247  * can find and lock without blocking, and flush them to the cluster buffer.
3248  *
3249  * On successful flushing of at least one inode, the caller must write out the
3250  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3251  * the caller needs to release the buffer. On failure, the filesystem will be
3252  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3253  * will be returned.
3254  */
3255 int
3256 xfs_iflush_cluster(
3257 	struct xfs_buf		*bp)
3258 {
3259 	struct xfs_mount	*mp = bp->b_mount;
3260 	struct xfs_log_item	*lip, *n;
3261 	struct xfs_inode	*ip;
3262 	struct xfs_inode_log_item *iip;
3263 	int			clcount = 0;
3264 	int			error = 0;
3265 
3266 	/*
3267 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3268 	 * will remove itself from the list.
3269 	 */
3270 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3271 		iip = (struct xfs_inode_log_item *)lip;
3272 		ip = iip->ili_inode;
3273 
3274 		/*
3275 		 * Quick and dirty check to avoid locks if possible.
3276 		 */
3277 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3278 			continue;
3279 		if (xfs_ipincount(ip))
3280 			continue;
3281 
3282 		/*
3283 		 * The inode is still attached to the buffer, which means it is
3284 		 * dirty but reclaim might try to grab it. Check carefully for
3285 		 * that, and grab the ilock while still holding the i_flags_lock
3286 		 * to guarantee reclaim will not be able to reclaim this inode
3287 		 * once we drop the i_flags_lock.
3288 		 */
3289 		spin_lock(&ip->i_flags_lock);
3290 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3291 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3292 			spin_unlock(&ip->i_flags_lock);
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * ILOCK will pin the inode against reclaim and prevent
3298 		 * concurrent transactions modifying the inode while we are
3299 		 * flushing the inode. If we get the lock, set the flushing
3300 		 * state before we drop the i_flags_lock.
3301 		 */
3302 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3303 			spin_unlock(&ip->i_flags_lock);
3304 			continue;
3305 		}
3306 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3307 		spin_unlock(&ip->i_flags_lock);
3308 
3309 		/*
3310 		 * Abort flushing this inode if we are shut down because the
3311 		 * inode may not currently be in the AIL. This can occur when
3312 		 * log I/O failure unpins the inode without inserting into the
3313 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3314 		 * that otherwise looks like it should be flushed.
3315 		 */
3316 		if (xlog_is_shutdown(mp->m_log)) {
3317 			xfs_iunpin_wait(ip);
3318 			xfs_iflush_abort(ip);
3319 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3320 			error = -EIO;
3321 			continue;
3322 		}
3323 
3324 		/* don't block waiting on a log force to unpin dirty inodes */
3325 		if (xfs_ipincount(ip)) {
3326 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3327 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3328 			continue;
3329 		}
3330 
3331 		if (!xfs_inode_clean(ip))
3332 			error = xfs_iflush(ip, bp);
3333 		else
3334 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3335 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3336 		if (error)
3337 			break;
3338 		clcount++;
3339 	}
3340 
3341 	if (error) {
3342 		/*
3343 		 * Shutdown first so we kill the log before we release this
3344 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3345 		 * of the log, failing it before the _log_ is shut down can
3346 		 * result in the log tail being moved forward in the journal
3347 		 * on disk because log writes can still be taking place. Hence
3348 		 * unpinning the tail will allow the ICREATE intent to be
3349 		 * removed from the log an recovery will fail with uninitialised
3350 		 * inode cluster buffers.
3351 		 */
3352 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3353 		bp->b_flags |= XBF_ASYNC;
3354 		xfs_buf_ioend_fail(bp);
3355 		return error;
3356 	}
3357 
3358 	if (!clcount)
3359 		return -EAGAIN;
3360 
3361 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3362 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3363 	return 0;
3364 
3365 }
3366 
3367 /* Release an inode. */
3368 void
3369 xfs_irele(
3370 	struct xfs_inode	*ip)
3371 {
3372 	trace_xfs_irele(ip, _RET_IP_);
3373 	iput(VFS_I(ip));
3374 }
3375 
3376 /*
3377  * Ensure all commited transactions touching the inode are written to the log.
3378  */
3379 int
3380 xfs_log_force_inode(
3381 	struct xfs_inode	*ip)
3382 {
3383 	xfs_csn_t		seq = 0;
3384 
3385 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3386 	if (xfs_ipincount(ip))
3387 		seq = ip->i_itemp->ili_commit_seq;
3388 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3389 
3390 	if (!seq)
3391 		return 0;
3392 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3393 }
3394 
3395 /*
3396  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3397  * abide vfs locking order (lowest pointer value goes first) and breaking the
3398  * layout leases before proceeding.  The loop is needed because we cannot call
3399  * the blocking break_layout() with the iolocks held, and therefore have to
3400  * back out both locks.
3401  */
3402 static int
3403 xfs_iolock_two_inodes_and_break_layout(
3404 	struct inode		*src,
3405 	struct inode		*dest)
3406 {
3407 	int			error;
3408 
3409 	if (src > dest)
3410 		swap(src, dest);
3411 
3412 retry:
3413 	/* Wait to break both inodes' layouts before we start locking. */
3414 	error = break_layout(src, true);
3415 	if (error)
3416 		return error;
3417 	if (src != dest) {
3418 		error = break_layout(dest, true);
3419 		if (error)
3420 			return error;
3421 	}
3422 
3423 	/* Lock one inode and make sure nobody got in and leased it. */
3424 	inode_lock(src);
3425 	error = break_layout(src, false);
3426 	if (error) {
3427 		inode_unlock(src);
3428 		if (error == -EWOULDBLOCK)
3429 			goto retry;
3430 		return error;
3431 	}
3432 
3433 	if (src == dest)
3434 		return 0;
3435 
3436 	/* Lock the other inode and make sure nobody got in and leased it. */
3437 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3438 	error = break_layout(dest, false);
3439 	if (error) {
3440 		inode_unlock(src);
3441 		inode_unlock(dest);
3442 		if (error == -EWOULDBLOCK)
3443 			goto retry;
3444 		return error;
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static int
3451 xfs_mmaplock_two_inodes_and_break_dax_layout(
3452 	struct xfs_inode	*ip1,
3453 	struct xfs_inode	*ip2)
3454 {
3455 	int			error;
3456 	bool			retry;
3457 	struct page		*page;
3458 
3459 	if (ip1->i_ino > ip2->i_ino)
3460 		swap(ip1, ip2);
3461 
3462 again:
3463 	retry = false;
3464 	/* Lock the first inode */
3465 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3466 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3467 	if (error || retry) {
3468 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3469 		if (error == 0 && retry)
3470 			goto again;
3471 		return error;
3472 	}
3473 
3474 	if (ip1 == ip2)
3475 		return 0;
3476 
3477 	/* Nested lock the second inode */
3478 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3479 	/*
3480 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3481 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3482 	 * for this nested lock case.
3483 	 */
3484 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3485 	if (page && page_ref_count(page) != 1) {
3486 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3487 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3488 		goto again;
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 /*
3495  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3496  * mmap activity.
3497  */
3498 int
3499 xfs_ilock2_io_mmap(
3500 	struct xfs_inode	*ip1,
3501 	struct xfs_inode	*ip2)
3502 {
3503 	int			ret;
3504 
3505 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3506 	if (ret)
3507 		return ret;
3508 
3509 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3510 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3511 		if (ret) {
3512 			inode_unlock(VFS_I(ip2));
3513 			if (ip1 != ip2)
3514 				inode_unlock(VFS_I(ip1));
3515 			return ret;
3516 		}
3517 	} else
3518 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3519 					    VFS_I(ip2)->i_mapping);
3520 
3521 	return 0;
3522 }
3523 
3524 /* Unlock both inodes to allow IO and mmap activity. */
3525 void
3526 xfs_iunlock2_io_mmap(
3527 	struct xfs_inode	*ip1,
3528 	struct xfs_inode	*ip2)
3529 {
3530 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3531 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3532 		if (ip1 != ip2)
3533 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3534 	} else
3535 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3536 					      VFS_I(ip2)->i_mapping);
3537 
3538 	inode_unlock(VFS_I(ip2));
3539 	if (ip1 != ip2)
3540 		inode_unlock(VFS_I(ip1));
3541 }
3542