1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 64 return ip->i_d.di_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_d.di_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && 128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_lock locking order: 148 * 149 * i_rwsem -> page lock -> mmap_lock 150 * mmap_lock -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_lock locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_lock. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 STATIC uint 602 _xfs_dic2xflags( 603 uint16_t di_flags, 604 uint64_t di_flags2, 605 bool has_attr) 606 { 607 uint flags = 0; 608 609 if (di_flags & XFS_DIFLAG_ANY) { 610 if (di_flags & XFS_DIFLAG_REALTIME) 611 flags |= FS_XFLAG_REALTIME; 612 if (di_flags & XFS_DIFLAG_PREALLOC) 613 flags |= FS_XFLAG_PREALLOC; 614 if (di_flags & XFS_DIFLAG_IMMUTABLE) 615 flags |= FS_XFLAG_IMMUTABLE; 616 if (di_flags & XFS_DIFLAG_APPEND) 617 flags |= FS_XFLAG_APPEND; 618 if (di_flags & XFS_DIFLAG_SYNC) 619 flags |= FS_XFLAG_SYNC; 620 if (di_flags & XFS_DIFLAG_NOATIME) 621 flags |= FS_XFLAG_NOATIME; 622 if (di_flags & XFS_DIFLAG_NODUMP) 623 flags |= FS_XFLAG_NODUMP; 624 if (di_flags & XFS_DIFLAG_RTINHERIT) 625 flags |= FS_XFLAG_RTINHERIT; 626 if (di_flags & XFS_DIFLAG_PROJINHERIT) 627 flags |= FS_XFLAG_PROJINHERIT; 628 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 629 flags |= FS_XFLAG_NOSYMLINKS; 630 if (di_flags & XFS_DIFLAG_EXTSIZE) 631 flags |= FS_XFLAG_EXTSIZE; 632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 633 flags |= FS_XFLAG_EXTSZINHERIT; 634 if (di_flags & XFS_DIFLAG_NODEFRAG) 635 flags |= FS_XFLAG_NODEFRAG; 636 if (di_flags & XFS_DIFLAG_FILESTREAM) 637 flags |= FS_XFLAG_FILESTREAM; 638 } 639 640 if (di_flags2 & XFS_DIFLAG2_ANY) { 641 if (di_flags2 & XFS_DIFLAG2_DAX) 642 flags |= FS_XFLAG_DAX; 643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 644 flags |= FS_XFLAG_COWEXTSIZE; 645 } 646 647 if (has_attr) 648 flags |= FS_XFLAG_HASATTR; 649 650 return flags; 651 } 652 653 uint 654 xfs_ip2xflags( 655 struct xfs_inode *ip) 656 { 657 struct xfs_icdinode *dic = &ip->i_d; 658 659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 660 } 661 662 /* 663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 664 * is allowed, otherwise it has to be an exact match. If a CI match is found, 665 * ci_name->name will point to a the actual name (caller must free) or 666 * will be set to NULL if an exact match is found. 667 */ 668 int 669 xfs_lookup( 670 xfs_inode_t *dp, 671 struct xfs_name *name, 672 xfs_inode_t **ipp, 673 struct xfs_name *ci_name) 674 { 675 xfs_ino_t inum; 676 int error; 677 678 trace_xfs_lookup(dp, name); 679 680 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 681 return -EIO; 682 683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 684 if (error) 685 goto out_unlock; 686 687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 688 if (error) 689 goto out_free_name; 690 691 return 0; 692 693 out_free_name: 694 if (ci_name) 695 kmem_free(ci_name->name); 696 out_unlock: 697 *ipp = NULL; 698 return error; 699 } 700 701 /* Propagate di_flags from a parent inode to a child inode. */ 702 static void 703 xfs_inode_inherit_flags( 704 struct xfs_inode *ip, 705 const struct xfs_inode *pip) 706 { 707 unsigned int di_flags = 0; 708 umode_t mode = VFS_I(ip)->i_mode; 709 710 if (S_ISDIR(mode)) { 711 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 712 di_flags |= XFS_DIFLAG_RTINHERIT; 713 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 714 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 715 ip->i_d.di_extsize = pip->i_d.di_extsize; 716 } 717 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 718 di_flags |= XFS_DIFLAG_PROJINHERIT; 719 } else if (S_ISREG(mode)) { 720 if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) && 721 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) 722 di_flags |= XFS_DIFLAG_REALTIME; 723 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 724 di_flags |= XFS_DIFLAG_EXTSIZE; 725 ip->i_d.di_extsize = pip->i_d.di_extsize; 726 } 727 } 728 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 729 xfs_inherit_noatime) 730 di_flags |= XFS_DIFLAG_NOATIME; 731 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 732 xfs_inherit_nodump) 733 di_flags |= XFS_DIFLAG_NODUMP; 734 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 735 xfs_inherit_sync) 736 di_flags |= XFS_DIFLAG_SYNC; 737 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 738 xfs_inherit_nosymlinks) 739 di_flags |= XFS_DIFLAG_NOSYMLINKS; 740 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 741 xfs_inherit_nodefrag) 742 di_flags |= XFS_DIFLAG_NODEFRAG; 743 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 744 di_flags |= XFS_DIFLAG_FILESTREAM; 745 746 ip->i_d.di_flags |= di_flags; 747 } 748 749 /* Propagate di_flags2 from a parent inode to a child inode. */ 750 static void 751 xfs_inode_inherit_flags2( 752 struct xfs_inode *ip, 753 const struct xfs_inode *pip) 754 { 755 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 756 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 757 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 758 } 759 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 760 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 761 } 762 763 /* 764 * Initialise a newly allocated inode and return the in-core inode to the 765 * caller locked exclusively. 766 */ 767 static int 768 xfs_init_new_inode( 769 struct xfs_trans *tp, 770 struct xfs_inode *pip, 771 xfs_ino_t ino, 772 umode_t mode, 773 xfs_nlink_t nlink, 774 dev_t rdev, 775 prid_t prid, 776 struct xfs_inode **ipp) 777 { 778 struct inode *dir = pip ? VFS_I(pip) : NULL; 779 struct xfs_mount *mp = tp->t_mountp; 780 struct xfs_inode *ip; 781 unsigned int flags; 782 int error; 783 struct timespec64 tv; 784 struct inode *inode; 785 786 /* 787 * Protect against obviously corrupt allocation btree records. Later 788 * xfs_iget checks will catch re-allocation of other active in-memory 789 * and on-disk inodes. If we don't catch reallocating the parent inode 790 * here we will deadlock in xfs_iget() so we have to do these checks 791 * first. 792 */ 793 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 794 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 795 return -EFSCORRUPTED; 796 } 797 798 /* 799 * Get the in-core inode with the lock held exclusively to prevent 800 * others from looking at until we're done. 801 */ 802 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 803 if (error) 804 return error; 805 806 ASSERT(ip != NULL); 807 inode = VFS_I(ip); 808 set_nlink(inode, nlink); 809 inode->i_rdev = rdev; 810 ip->i_d.di_projid = prid; 811 812 if (dir && !(dir->i_mode & S_ISGID) && 813 (mp->m_flags & XFS_MOUNT_GRPID)) { 814 inode->i_uid = current_fsuid(); 815 inode->i_gid = dir->i_gid; 816 inode->i_mode = mode; 817 } else { 818 inode_init_owner(inode, dir, mode); 819 } 820 821 /* 822 * If the group ID of the new file does not match the effective group 823 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 824 * (and only if the irix_sgid_inherit compatibility variable is set). 825 */ 826 if (irix_sgid_inherit && 827 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 828 inode->i_mode &= ~S_ISGID; 829 830 ip->i_d.di_size = 0; 831 ip->i_df.if_nextents = 0; 832 ASSERT(ip->i_d.di_nblocks == 0); 833 834 tv = current_time(inode); 835 inode->i_mtime = tv; 836 inode->i_atime = tv; 837 inode->i_ctime = tv; 838 839 ip->i_d.di_extsize = 0; 840 ip->i_d.di_dmevmask = 0; 841 ip->i_d.di_dmstate = 0; 842 ip->i_d.di_flags = 0; 843 844 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 845 inode_set_iversion(inode, 1); 846 ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2; 847 ip->i_d.di_cowextsize = 0; 848 ip->i_d.di_crtime = tv; 849 } 850 851 flags = XFS_ILOG_CORE; 852 switch (mode & S_IFMT) { 853 case S_IFIFO: 854 case S_IFCHR: 855 case S_IFBLK: 856 case S_IFSOCK: 857 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 858 ip->i_df.if_flags = 0; 859 flags |= XFS_ILOG_DEV; 860 break; 861 case S_IFREG: 862 case S_IFDIR: 863 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) 864 xfs_inode_inherit_flags(ip, pip); 865 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) 866 xfs_inode_inherit_flags2(ip, pip); 867 /* FALLTHROUGH */ 868 case S_IFLNK: 869 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 870 ip->i_df.if_flags = XFS_IFEXTENTS; 871 ip->i_df.if_bytes = 0; 872 ip->i_df.if_u1.if_root = NULL; 873 break; 874 default: 875 ASSERT(0); 876 } 877 878 /* 879 * Log the new values stuffed into the inode. 880 */ 881 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 882 xfs_trans_log_inode(tp, ip, flags); 883 884 /* now that we have an i_mode we can setup the inode structure */ 885 xfs_setup_inode(ip); 886 887 *ipp = ip; 888 return 0; 889 } 890 891 /* 892 * Allocates a new inode from disk and return a pointer to the incore copy. This 893 * routine will internally commit the current transaction and allocate a new one 894 * if we needed to allocate more on-disk free inodes to perform the requested 895 * operation. 896 * 897 * If we are allocating quota inodes, we do not have a parent inode to attach to 898 * or associate with (i.e. dp == NULL) because they are not linked into the 899 * directory structure - they are attached directly to the superblock - and so 900 * have no parent. 901 */ 902 int 903 xfs_dir_ialloc( 904 struct xfs_trans **tpp, 905 struct xfs_inode *dp, 906 umode_t mode, 907 xfs_nlink_t nlink, 908 dev_t rdev, 909 prid_t prid, 910 struct xfs_inode **ipp) 911 { 912 struct xfs_buf *agibp; 913 xfs_ino_t parent_ino = dp ? dp->i_ino : 0; 914 xfs_ino_t ino; 915 int error; 916 917 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 918 919 /* 920 * Call the space management code to pick the on-disk inode to be 921 * allocated. 922 */ 923 error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp); 924 if (error) 925 return error; 926 927 if (!agibp) 928 return -ENOSPC; 929 930 /* Allocate an inode from the selected AG */ 931 error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino); 932 if (error) 933 return error; 934 ASSERT(ino != NULLFSINO); 935 936 return xfs_init_new_inode(*tpp, dp, ino, mode, nlink, rdev, prid, ipp); 937 } 938 939 /* 940 * Decrement the link count on an inode & log the change. If this causes the 941 * link count to go to zero, move the inode to AGI unlinked list so that it can 942 * be freed when the last active reference goes away via xfs_inactive(). 943 */ 944 static int /* error */ 945 xfs_droplink( 946 xfs_trans_t *tp, 947 xfs_inode_t *ip) 948 { 949 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 950 951 drop_nlink(VFS_I(ip)); 952 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 953 954 if (VFS_I(ip)->i_nlink) 955 return 0; 956 957 return xfs_iunlink(tp, ip); 958 } 959 960 /* 961 * Increment the link count on an inode & log the change. 962 */ 963 static void 964 xfs_bumplink( 965 xfs_trans_t *tp, 966 xfs_inode_t *ip) 967 { 968 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 969 970 inc_nlink(VFS_I(ip)); 971 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 972 } 973 974 int 975 xfs_create( 976 xfs_inode_t *dp, 977 struct xfs_name *name, 978 umode_t mode, 979 dev_t rdev, 980 xfs_inode_t **ipp) 981 { 982 int is_dir = S_ISDIR(mode); 983 struct xfs_mount *mp = dp->i_mount; 984 struct xfs_inode *ip = NULL; 985 struct xfs_trans *tp = NULL; 986 int error; 987 bool unlock_dp_on_error = false; 988 prid_t prid; 989 struct xfs_dquot *udqp = NULL; 990 struct xfs_dquot *gdqp = NULL; 991 struct xfs_dquot *pdqp = NULL; 992 struct xfs_trans_res *tres; 993 uint resblks; 994 995 trace_xfs_create(dp, name); 996 997 if (XFS_FORCED_SHUTDOWN(mp)) 998 return -EIO; 999 1000 prid = xfs_get_initial_prid(dp); 1001 1002 /* 1003 * Make sure that we have allocated dquot(s) on disk. 1004 */ 1005 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1006 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1007 &udqp, &gdqp, &pdqp); 1008 if (error) 1009 return error; 1010 1011 if (is_dir) { 1012 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1013 tres = &M_RES(mp)->tr_mkdir; 1014 } else { 1015 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1016 tres = &M_RES(mp)->tr_create; 1017 } 1018 1019 /* 1020 * Initially assume that the file does not exist and 1021 * reserve the resources for that case. If that is not 1022 * the case we'll drop the one we have and get a more 1023 * appropriate transaction later. 1024 */ 1025 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1026 if (error == -ENOSPC) { 1027 /* flush outstanding delalloc blocks and retry */ 1028 xfs_flush_inodes(mp); 1029 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1030 } 1031 if (error) 1032 goto out_release_inode; 1033 1034 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1035 unlock_dp_on_error = true; 1036 1037 /* 1038 * Reserve disk quota and the inode. 1039 */ 1040 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1041 pdqp, resblks, 1, 0); 1042 if (error) 1043 goto out_trans_cancel; 1044 1045 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1046 XFS_IEXT_DIR_MANIP_CNT(mp)); 1047 if (error) 1048 goto out_trans_cancel; 1049 1050 /* 1051 * A newly created regular or special file just has one directory 1052 * entry pointing to them, but a directory also the "." entry 1053 * pointing to itself. 1054 */ 1055 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1056 if (error) 1057 goto out_trans_cancel; 1058 1059 /* 1060 * Now we join the directory inode to the transaction. We do not do it 1061 * earlier because xfs_dir_ialloc might commit the previous transaction 1062 * (and release all the locks). An error from here on will result in 1063 * the transaction cancel unlocking dp so don't do it explicitly in the 1064 * error path. 1065 */ 1066 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1067 unlock_dp_on_error = false; 1068 1069 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1070 resblks - XFS_IALLOC_SPACE_RES(mp)); 1071 if (error) { 1072 ASSERT(error != -ENOSPC); 1073 goto out_trans_cancel; 1074 } 1075 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1076 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1077 1078 if (is_dir) { 1079 error = xfs_dir_init(tp, ip, dp); 1080 if (error) 1081 goto out_trans_cancel; 1082 1083 xfs_bumplink(tp, dp); 1084 } 1085 1086 /* 1087 * If this is a synchronous mount, make sure that the 1088 * create transaction goes to disk before returning to 1089 * the user. 1090 */ 1091 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1092 xfs_trans_set_sync(tp); 1093 1094 /* 1095 * Attach the dquot(s) to the inodes and modify them incore. 1096 * These ids of the inode couldn't have changed since the new 1097 * inode has been locked ever since it was created. 1098 */ 1099 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1100 1101 error = xfs_trans_commit(tp); 1102 if (error) 1103 goto out_release_inode; 1104 1105 xfs_qm_dqrele(udqp); 1106 xfs_qm_dqrele(gdqp); 1107 xfs_qm_dqrele(pdqp); 1108 1109 *ipp = ip; 1110 return 0; 1111 1112 out_trans_cancel: 1113 xfs_trans_cancel(tp); 1114 out_release_inode: 1115 /* 1116 * Wait until after the current transaction is aborted to finish the 1117 * setup of the inode and release the inode. This prevents recursive 1118 * transactions and deadlocks from xfs_inactive. 1119 */ 1120 if (ip) { 1121 xfs_finish_inode_setup(ip); 1122 xfs_irele(ip); 1123 } 1124 1125 xfs_qm_dqrele(udqp); 1126 xfs_qm_dqrele(gdqp); 1127 xfs_qm_dqrele(pdqp); 1128 1129 if (unlock_dp_on_error) 1130 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1131 return error; 1132 } 1133 1134 int 1135 xfs_create_tmpfile( 1136 struct xfs_inode *dp, 1137 umode_t mode, 1138 struct xfs_inode **ipp) 1139 { 1140 struct xfs_mount *mp = dp->i_mount; 1141 struct xfs_inode *ip = NULL; 1142 struct xfs_trans *tp = NULL; 1143 int error; 1144 prid_t prid; 1145 struct xfs_dquot *udqp = NULL; 1146 struct xfs_dquot *gdqp = NULL; 1147 struct xfs_dquot *pdqp = NULL; 1148 struct xfs_trans_res *tres; 1149 uint resblks; 1150 1151 if (XFS_FORCED_SHUTDOWN(mp)) 1152 return -EIO; 1153 1154 prid = xfs_get_initial_prid(dp); 1155 1156 /* 1157 * Make sure that we have allocated dquot(s) on disk. 1158 */ 1159 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1160 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1161 &udqp, &gdqp, &pdqp); 1162 if (error) 1163 return error; 1164 1165 resblks = XFS_IALLOC_SPACE_RES(mp); 1166 tres = &M_RES(mp)->tr_create_tmpfile; 1167 1168 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1169 if (error) 1170 goto out_release_inode; 1171 1172 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1173 pdqp, resblks, 1, 0); 1174 if (error) 1175 goto out_trans_cancel; 1176 1177 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1178 if (error) 1179 goto out_trans_cancel; 1180 1181 if (mp->m_flags & XFS_MOUNT_WSYNC) 1182 xfs_trans_set_sync(tp); 1183 1184 /* 1185 * Attach the dquot(s) to the inodes and modify them incore. 1186 * These ids of the inode couldn't have changed since the new 1187 * inode has been locked ever since it was created. 1188 */ 1189 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1190 1191 error = xfs_iunlink(tp, ip); 1192 if (error) 1193 goto out_trans_cancel; 1194 1195 error = xfs_trans_commit(tp); 1196 if (error) 1197 goto out_release_inode; 1198 1199 xfs_qm_dqrele(udqp); 1200 xfs_qm_dqrele(gdqp); 1201 xfs_qm_dqrele(pdqp); 1202 1203 *ipp = ip; 1204 return 0; 1205 1206 out_trans_cancel: 1207 xfs_trans_cancel(tp); 1208 out_release_inode: 1209 /* 1210 * Wait until after the current transaction is aborted to finish the 1211 * setup of the inode and release the inode. This prevents recursive 1212 * transactions and deadlocks from xfs_inactive. 1213 */ 1214 if (ip) { 1215 xfs_finish_inode_setup(ip); 1216 xfs_irele(ip); 1217 } 1218 1219 xfs_qm_dqrele(udqp); 1220 xfs_qm_dqrele(gdqp); 1221 xfs_qm_dqrele(pdqp); 1222 1223 return error; 1224 } 1225 1226 int 1227 xfs_link( 1228 xfs_inode_t *tdp, 1229 xfs_inode_t *sip, 1230 struct xfs_name *target_name) 1231 { 1232 xfs_mount_t *mp = tdp->i_mount; 1233 xfs_trans_t *tp; 1234 int error; 1235 int resblks; 1236 1237 trace_xfs_link(tdp, target_name); 1238 1239 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1240 1241 if (XFS_FORCED_SHUTDOWN(mp)) 1242 return -EIO; 1243 1244 error = xfs_qm_dqattach(sip); 1245 if (error) 1246 goto std_return; 1247 1248 error = xfs_qm_dqattach(tdp); 1249 if (error) 1250 goto std_return; 1251 1252 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1253 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1254 if (error == -ENOSPC) { 1255 resblks = 0; 1256 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1257 } 1258 if (error) 1259 goto std_return; 1260 1261 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1262 1263 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1264 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1265 1266 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1267 XFS_IEXT_DIR_MANIP_CNT(mp)); 1268 if (error) 1269 goto error_return; 1270 1271 /* 1272 * If we are using project inheritance, we only allow hard link 1273 * creation in our tree when the project IDs are the same; else 1274 * the tree quota mechanism could be circumvented. 1275 */ 1276 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1277 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1278 error = -EXDEV; 1279 goto error_return; 1280 } 1281 1282 if (!resblks) { 1283 error = xfs_dir_canenter(tp, tdp, target_name); 1284 if (error) 1285 goto error_return; 1286 } 1287 1288 /* 1289 * Handle initial link state of O_TMPFILE inode 1290 */ 1291 if (VFS_I(sip)->i_nlink == 0) { 1292 error = xfs_iunlink_remove(tp, sip); 1293 if (error) 1294 goto error_return; 1295 } 1296 1297 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1298 resblks); 1299 if (error) 1300 goto error_return; 1301 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1302 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1303 1304 xfs_bumplink(tp, sip); 1305 1306 /* 1307 * If this is a synchronous mount, make sure that the 1308 * link transaction goes to disk before returning to 1309 * the user. 1310 */ 1311 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1312 xfs_trans_set_sync(tp); 1313 1314 return xfs_trans_commit(tp); 1315 1316 error_return: 1317 xfs_trans_cancel(tp); 1318 std_return: 1319 return error; 1320 } 1321 1322 /* Clear the reflink flag and the cowblocks tag if possible. */ 1323 static void 1324 xfs_itruncate_clear_reflink_flags( 1325 struct xfs_inode *ip) 1326 { 1327 struct xfs_ifork *dfork; 1328 struct xfs_ifork *cfork; 1329 1330 if (!xfs_is_reflink_inode(ip)) 1331 return; 1332 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1333 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1334 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1335 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1336 if (cfork->if_bytes == 0) 1337 xfs_inode_clear_cowblocks_tag(ip); 1338 } 1339 1340 /* 1341 * Free up the underlying blocks past new_size. The new size must be smaller 1342 * than the current size. This routine can be used both for the attribute and 1343 * data fork, and does not modify the inode size, which is left to the caller. 1344 * 1345 * The transaction passed to this routine must have made a permanent log 1346 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1347 * given transaction and start new ones, so make sure everything involved in 1348 * the transaction is tidy before calling here. Some transaction will be 1349 * returned to the caller to be committed. The incoming transaction must 1350 * already include the inode, and both inode locks must be held exclusively. 1351 * The inode must also be "held" within the transaction. On return the inode 1352 * will be "held" within the returned transaction. This routine does NOT 1353 * require any disk space to be reserved for it within the transaction. 1354 * 1355 * If we get an error, we must return with the inode locked and linked into the 1356 * current transaction. This keeps things simple for the higher level code, 1357 * because it always knows that the inode is locked and held in the transaction 1358 * that returns to it whether errors occur or not. We don't mark the inode 1359 * dirty on error so that transactions can be easily aborted if possible. 1360 */ 1361 int 1362 xfs_itruncate_extents_flags( 1363 struct xfs_trans **tpp, 1364 struct xfs_inode *ip, 1365 int whichfork, 1366 xfs_fsize_t new_size, 1367 int flags) 1368 { 1369 struct xfs_mount *mp = ip->i_mount; 1370 struct xfs_trans *tp = *tpp; 1371 xfs_fileoff_t first_unmap_block; 1372 xfs_filblks_t unmap_len; 1373 int error = 0; 1374 1375 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1376 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1377 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1378 ASSERT(new_size <= XFS_ISIZE(ip)); 1379 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1380 ASSERT(ip->i_itemp != NULL); 1381 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1382 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1383 1384 trace_xfs_itruncate_extents_start(ip, new_size); 1385 1386 flags |= xfs_bmapi_aflag(whichfork); 1387 1388 /* 1389 * Since it is possible for space to become allocated beyond 1390 * the end of the file (in a crash where the space is allocated 1391 * but the inode size is not yet updated), simply remove any 1392 * blocks which show up between the new EOF and the maximum 1393 * possible file size. 1394 * 1395 * We have to free all the blocks to the bmbt maximum offset, even if 1396 * the page cache can't scale that far. 1397 */ 1398 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1399 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1400 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1401 return 0; 1402 } 1403 1404 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1405 while (unmap_len > 0) { 1406 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1407 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1408 flags, XFS_ITRUNC_MAX_EXTENTS); 1409 if (error) 1410 goto out; 1411 1412 /* free the just unmapped extents */ 1413 error = xfs_defer_finish(&tp); 1414 if (error) 1415 goto out; 1416 } 1417 1418 if (whichfork == XFS_DATA_FORK) { 1419 /* Remove all pending CoW reservations. */ 1420 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1421 first_unmap_block, XFS_MAX_FILEOFF, true); 1422 if (error) 1423 goto out; 1424 1425 xfs_itruncate_clear_reflink_flags(ip); 1426 } 1427 1428 /* 1429 * Always re-log the inode so that our permanent transaction can keep 1430 * on rolling it forward in the log. 1431 */ 1432 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1433 1434 trace_xfs_itruncate_extents_end(ip, new_size); 1435 1436 out: 1437 *tpp = tp; 1438 return error; 1439 } 1440 1441 int 1442 xfs_release( 1443 xfs_inode_t *ip) 1444 { 1445 xfs_mount_t *mp = ip->i_mount; 1446 int error; 1447 1448 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1449 return 0; 1450 1451 /* If this is a read-only mount, don't do this (would generate I/O) */ 1452 if (mp->m_flags & XFS_MOUNT_RDONLY) 1453 return 0; 1454 1455 if (!XFS_FORCED_SHUTDOWN(mp)) { 1456 int truncated; 1457 1458 /* 1459 * If we previously truncated this file and removed old data 1460 * in the process, we want to initiate "early" writeout on 1461 * the last close. This is an attempt to combat the notorious 1462 * NULL files problem which is particularly noticeable from a 1463 * truncate down, buffered (re-)write (delalloc), followed by 1464 * a crash. What we are effectively doing here is 1465 * significantly reducing the time window where we'd otherwise 1466 * be exposed to that problem. 1467 */ 1468 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1469 if (truncated) { 1470 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1471 if (ip->i_delayed_blks > 0) { 1472 error = filemap_flush(VFS_I(ip)->i_mapping); 1473 if (error) 1474 return error; 1475 } 1476 } 1477 } 1478 1479 if (VFS_I(ip)->i_nlink == 0) 1480 return 0; 1481 1482 if (xfs_can_free_eofblocks(ip, false)) { 1483 1484 /* 1485 * Check if the inode is being opened, written and closed 1486 * frequently and we have delayed allocation blocks outstanding 1487 * (e.g. streaming writes from the NFS server), truncating the 1488 * blocks past EOF will cause fragmentation to occur. 1489 * 1490 * In this case don't do the truncation, but we have to be 1491 * careful how we detect this case. Blocks beyond EOF show up as 1492 * i_delayed_blks even when the inode is clean, so we need to 1493 * truncate them away first before checking for a dirty release. 1494 * Hence on the first dirty close we will still remove the 1495 * speculative allocation, but after that we will leave it in 1496 * place. 1497 */ 1498 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1499 return 0; 1500 /* 1501 * If we can't get the iolock just skip truncating the blocks 1502 * past EOF because we could deadlock with the mmap_lock 1503 * otherwise. We'll get another chance to drop them once the 1504 * last reference to the inode is dropped, so we'll never leak 1505 * blocks permanently. 1506 */ 1507 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1508 error = xfs_free_eofblocks(ip); 1509 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1510 if (error) 1511 return error; 1512 } 1513 1514 /* delalloc blocks after truncation means it really is dirty */ 1515 if (ip->i_delayed_blks) 1516 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1517 } 1518 return 0; 1519 } 1520 1521 /* 1522 * xfs_inactive_truncate 1523 * 1524 * Called to perform a truncate when an inode becomes unlinked. 1525 */ 1526 STATIC int 1527 xfs_inactive_truncate( 1528 struct xfs_inode *ip) 1529 { 1530 struct xfs_mount *mp = ip->i_mount; 1531 struct xfs_trans *tp; 1532 int error; 1533 1534 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1535 if (error) { 1536 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1537 return error; 1538 } 1539 xfs_ilock(ip, XFS_ILOCK_EXCL); 1540 xfs_trans_ijoin(tp, ip, 0); 1541 1542 /* 1543 * Log the inode size first to prevent stale data exposure in the event 1544 * of a system crash before the truncate completes. See the related 1545 * comment in xfs_vn_setattr_size() for details. 1546 */ 1547 ip->i_d.di_size = 0; 1548 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1549 1550 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1551 if (error) 1552 goto error_trans_cancel; 1553 1554 ASSERT(ip->i_df.if_nextents == 0); 1555 1556 error = xfs_trans_commit(tp); 1557 if (error) 1558 goto error_unlock; 1559 1560 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1561 return 0; 1562 1563 error_trans_cancel: 1564 xfs_trans_cancel(tp); 1565 error_unlock: 1566 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1567 return error; 1568 } 1569 1570 /* 1571 * xfs_inactive_ifree() 1572 * 1573 * Perform the inode free when an inode is unlinked. 1574 */ 1575 STATIC int 1576 xfs_inactive_ifree( 1577 struct xfs_inode *ip) 1578 { 1579 struct xfs_mount *mp = ip->i_mount; 1580 struct xfs_trans *tp; 1581 int error; 1582 1583 /* 1584 * We try to use a per-AG reservation for any block needed by the finobt 1585 * tree, but as the finobt feature predates the per-AG reservation 1586 * support a degraded file system might not have enough space for the 1587 * reservation at mount time. In that case try to dip into the reserved 1588 * pool and pray. 1589 * 1590 * Send a warning if the reservation does happen to fail, as the inode 1591 * now remains allocated and sits on the unlinked list until the fs is 1592 * repaired. 1593 */ 1594 if (unlikely(mp->m_finobt_nores)) { 1595 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1596 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1597 &tp); 1598 } else { 1599 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1600 } 1601 if (error) { 1602 if (error == -ENOSPC) { 1603 xfs_warn_ratelimited(mp, 1604 "Failed to remove inode(s) from unlinked list. " 1605 "Please free space, unmount and run xfs_repair."); 1606 } else { 1607 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1608 } 1609 return error; 1610 } 1611 1612 /* 1613 * We do not hold the inode locked across the entire rolling transaction 1614 * here. We only need to hold it for the first transaction that 1615 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1616 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1617 * here breaks the relationship between cluster buffer invalidation and 1618 * stale inode invalidation on cluster buffer item journal commit 1619 * completion, and can result in leaving dirty stale inodes hanging 1620 * around in memory. 1621 * 1622 * We have no need for serialising this inode operation against other 1623 * operations - we freed the inode and hence reallocation is required 1624 * and that will serialise on reallocating the space the deferops need 1625 * to free. Hence we can unlock the inode on the first commit of 1626 * the transaction rather than roll it right through the deferops. This 1627 * avoids relogging the XFS_ISTALE inode. 1628 * 1629 * We check that xfs_ifree() hasn't grown an internal transaction roll 1630 * by asserting that the inode is still locked when it returns. 1631 */ 1632 xfs_ilock(ip, XFS_ILOCK_EXCL); 1633 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1634 1635 error = xfs_ifree(tp, ip); 1636 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1637 if (error) { 1638 /* 1639 * If we fail to free the inode, shut down. The cancel 1640 * might do that, we need to make sure. Otherwise the 1641 * inode might be lost for a long time or forever. 1642 */ 1643 if (!XFS_FORCED_SHUTDOWN(mp)) { 1644 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1645 __func__, error); 1646 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1647 } 1648 xfs_trans_cancel(tp); 1649 return error; 1650 } 1651 1652 /* 1653 * Credit the quota account(s). The inode is gone. 1654 */ 1655 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1656 1657 /* 1658 * Just ignore errors at this point. There is nothing we can do except 1659 * to try to keep going. Make sure it's not a silent error. 1660 */ 1661 error = xfs_trans_commit(tp); 1662 if (error) 1663 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1664 __func__, error); 1665 1666 return 0; 1667 } 1668 1669 /* 1670 * xfs_inactive 1671 * 1672 * This is called when the vnode reference count for the vnode 1673 * goes to zero. If the file has been unlinked, then it must 1674 * now be truncated. Also, we clear all of the read-ahead state 1675 * kept for the inode here since the file is now closed. 1676 */ 1677 void 1678 xfs_inactive( 1679 xfs_inode_t *ip) 1680 { 1681 struct xfs_mount *mp; 1682 int error; 1683 int truncate = 0; 1684 1685 /* 1686 * If the inode is already free, then there can be nothing 1687 * to clean up here. 1688 */ 1689 if (VFS_I(ip)->i_mode == 0) { 1690 ASSERT(ip->i_df.if_broot_bytes == 0); 1691 return; 1692 } 1693 1694 mp = ip->i_mount; 1695 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1696 1697 /* If this is a read-only mount, don't do this (would generate I/O) */ 1698 if (mp->m_flags & XFS_MOUNT_RDONLY) 1699 return; 1700 1701 /* Try to clean out the cow blocks if there are any. */ 1702 if (xfs_inode_has_cow_data(ip)) 1703 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1704 1705 if (VFS_I(ip)->i_nlink != 0) { 1706 /* 1707 * force is true because we are evicting an inode from the 1708 * cache. Post-eof blocks must be freed, lest we end up with 1709 * broken free space accounting. 1710 * 1711 * Note: don't bother with iolock here since lockdep complains 1712 * about acquiring it in reclaim context. We have the only 1713 * reference to the inode at this point anyways. 1714 */ 1715 if (xfs_can_free_eofblocks(ip, true)) 1716 xfs_free_eofblocks(ip); 1717 1718 return; 1719 } 1720 1721 if (S_ISREG(VFS_I(ip)->i_mode) && 1722 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1723 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1724 truncate = 1; 1725 1726 error = xfs_qm_dqattach(ip); 1727 if (error) 1728 return; 1729 1730 if (S_ISLNK(VFS_I(ip)->i_mode)) 1731 error = xfs_inactive_symlink(ip); 1732 else if (truncate) 1733 error = xfs_inactive_truncate(ip); 1734 if (error) 1735 return; 1736 1737 /* 1738 * If there are attributes associated with the file then blow them away 1739 * now. The code calls a routine that recursively deconstructs the 1740 * attribute fork. If also blows away the in-core attribute fork. 1741 */ 1742 if (XFS_IFORK_Q(ip)) { 1743 error = xfs_attr_inactive(ip); 1744 if (error) 1745 return; 1746 } 1747 1748 ASSERT(!ip->i_afp); 1749 ASSERT(ip->i_d.di_forkoff == 0); 1750 1751 /* 1752 * Free the inode. 1753 */ 1754 error = xfs_inactive_ifree(ip); 1755 if (error) 1756 return; 1757 1758 /* 1759 * Release the dquots held by inode, if any. 1760 */ 1761 xfs_qm_dqdetach(ip); 1762 } 1763 1764 /* 1765 * In-Core Unlinked List Lookups 1766 * ============================= 1767 * 1768 * Every inode is supposed to be reachable from some other piece of metadata 1769 * with the exception of the root directory. Inodes with a connection to a 1770 * file descriptor but not linked from anywhere in the on-disk directory tree 1771 * are collectively known as unlinked inodes, though the filesystem itself 1772 * maintains links to these inodes so that on-disk metadata are consistent. 1773 * 1774 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1775 * header contains a number of buckets that point to an inode, and each inode 1776 * record has a pointer to the next inode in the hash chain. This 1777 * singly-linked list causes scaling problems in the iunlink remove function 1778 * because we must walk that list to find the inode that points to the inode 1779 * being removed from the unlinked hash bucket list. 1780 * 1781 * What if we modelled the unlinked list as a collection of records capturing 1782 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1783 * have a fast way to look up unlinked list predecessors, which avoids the 1784 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1785 * rhashtable. 1786 * 1787 * Because this is a backref cache, we ignore operational failures since the 1788 * iunlink code can fall back to the slow bucket walk. The only errors that 1789 * should bubble out are for obviously incorrect situations. 1790 * 1791 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1792 * access or have otherwise provided for concurrency control. 1793 */ 1794 1795 /* Capture a "X.next_unlinked = Y" relationship. */ 1796 struct xfs_iunlink { 1797 struct rhash_head iu_rhash_head; 1798 xfs_agino_t iu_agino; /* X */ 1799 xfs_agino_t iu_next_unlinked; /* Y */ 1800 }; 1801 1802 /* Unlinked list predecessor lookup hashtable construction */ 1803 static int 1804 xfs_iunlink_obj_cmpfn( 1805 struct rhashtable_compare_arg *arg, 1806 const void *obj) 1807 { 1808 const xfs_agino_t *key = arg->key; 1809 const struct xfs_iunlink *iu = obj; 1810 1811 if (iu->iu_next_unlinked != *key) 1812 return 1; 1813 return 0; 1814 } 1815 1816 static const struct rhashtable_params xfs_iunlink_hash_params = { 1817 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1818 .key_len = sizeof(xfs_agino_t), 1819 .key_offset = offsetof(struct xfs_iunlink, 1820 iu_next_unlinked), 1821 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1822 .automatic_shrinking = true, 1823 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1824 }; 1825 1826 /* 1827 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1828 * relation is found. 1829 */ 1830 static xfs_agino_t 1831 xfs_iunlink_lookup_backref( 1832 struct xfs_perag *pag, 1833 xfs_agino_t agino) 1834 { 1835 struct xfs_iunlink *iu; 1836 1837 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1838 xfs_iunlink_hash_params); 1839 return iu ? iu->iu_agino : NULLAGINO; 1840 } 1841 1842 /* 1843 * Take ownership of an iunlink cache entry and insert it into the hash table. 1844 * If successful, the entry will be owned by the cache; if not, it is freed. 1845 * Either way, the caller does not own @iu after this call. 1846 */ 1847 static int 1848 xfs_iunlink_insert_backref( 1849 struct xfs_perag *pag, 1850 struct xfs_iunlink *iu) 1851 { 1852 int error; 1853 1854 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1855 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1856 /* 1857 * Fail loudly if there already was an entry because that's a sign of 1858 * corruption of in-memory data. Also fail loudly if we see an error 1859 * code we didn't anticipate from the rhashtable code. Currently we 1860 * only anticipate ENOMEM. 1861 */ 1862 if (error) { 1863 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1864 kmem_free(iu); 1865 } 1866 /* 1867 * Absorb any runtime errors that aren't a result of corruption because 1868 * this is a cache and we can always fall back to bucket list scanning. 1869 */ 1870 if (error != 0 && error != -EEXIST) 1871 error = 0; 1872 return error; 1873 } 1874 1875 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1876 static int 1877 xfs_iunlink_add_backref( 1878 struct xfs_perag *pag, 1879 xfs_agino_t prev_agino, 1880 xfs_agino_t this_agino) 1881 { 1882 struct xfs_iunlink *iu; 1883 1884 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1885 return 0; 1886 1887 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1888 iu->iu_agino = prev_agino; 1889 iu->iu_next_unlinked = this_agino; 1890 1891 return xfs_iunlink_insert_backref(pag, iu); 1892 } 1893 1894 /* 1895 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1896 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1897 * wasn't any such entry then we don't bother. 1898 */ 1899 static int 1900 xfs_iunlink_change_backref( 1901 struct xfs_perag *pag, 1902 xfs_agino_t agino, 1903 xfs_agino_t next_unlinked) 1904 { 1905 struct xfs_iunlink *iu; 1906 int error; 1907 1908 /* Look up the old entry; if there wasn't one then exit. */ 1909 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1910 xfs_iunlink_hash_params); 1911 if (!iu) 1912 return 0; 1913 1914 /* 1915 * Remove the entry. This shouldn't ever return an error, but if we 1916 * couldn't remove the old entry we don't want to add it again to the 1917 * hash table, and if the entry disappeared on us then someone's 1918 * violated the locking rules and we need to fail loudly. Either way 1919 * we cannot remove the inode because internal state is or would have 1920 * been corrupt. 1921 */ 1922 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1923 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1924 if (error) 1925 return error; 1926 1927 /* If there is no new next entry just free our item and return. */ 1928 if (next_unlinked == NULLAGINO) { 1929 kmem_free(iu); 1930 return 0; 1931 } 1932 1933 /* Update the entry and re-add it to the hash table. */ 1934 iu->iu_next_unlinked = next_unlinked; 1935 return xfs_iunlink_insert_backref(pag, iu); 1936 } 1937 1938 /* Set up the in-core predecessor structures. */ 1939 int 1940 xfs_iunlink_init( 1941 struct xfs_perag *pag) 1942 { 1943 return rhashtable_init(&pag->pagi_unlinked_hash, 1944 &xfs_iunlink_hash_params); 1945 } 1946 1947 /* Free the in-core predecessor structures. */ 1948 static void 1949 xfs_iunlink_free_item( 1950 void *ptr, 1951 void *arg) 1952 { 1953 struct xfs_iunlink *iu = ptr; 1954 bool *freed_anything = arg; 1955 1956 *freed_anything = true; 1957 kmem_free(iu); 1958 } 1959 1960 void 1961 xfs_iunlink_destroy( 1962 struct xfs_perag *pag) 1963 { 1964 bool freed_anything = false; 1965 1966 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1967 xfs_iunlink_free_item, &freed_anything); 1968 1969 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 1970 } 1971 1972 /* 1973 * Point the AGI unlinked bucket at an inode and log the results. The caller 1974 * is responsible for validating the old value. 1975 */ 1976 STATIC int 1977 xfs_iunlink_update_bucket( 1978 struct xfs_trans *tp, 1979 xfs_agnumber_t agno, 1980 struct xfs_buf *agibp, 1981 unsigned int bucket_index, 1982 xfs_agino_t new_agino) 1983 { 1984 struct xfs_agi *agi = agibp->b_addr; 1985 xfs_agino_t old_value; 1986 int offset; 1987 1988 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 1989 1990 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1991 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 1992 old_value, new_agino); 1993 1994 /* 1995 * We should never find the head of the list already set to the value 1996 * passed in because either we're adding or removing ourselves from the 1997 * head of the list. 1998 */ 1999 if (old_value == new_agino) { 2000 xfs_buf_mark_corrupt(agibp); 2001 return -EFSCORRUPTED; 2002 } 2003 2004 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2005 offset = offsetof(struct xfs_agi, agi_unlinked) + 2006 (sizeof(xfs_agino_t) * bucket_index); 2007 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2008 return 0; 2009 } 2010 2011 /* Set an on-disk inode's next_unlinked pointer. */ 2012 STATIC void 2013 xfs_iunlink_update_dinode( 2014 struct xfs_trans *tp, 2015 xfs_agnumber_t agno, 2016 xfs_agino_t agino, 2017 struct xfs_buf *ibp, 2018 struct xfs_dinode *dip, 2019 struct xfs_imap *imap, 2020 xfs_agino_t next_agino) 2021 { 2022 struct xfs_mount *mp = tp->t_mountp; 2023 int offset; 2024 2025 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2026 2027 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2028 be32_to_cpu(dip->di_next_unlinked), next_agino); 2029 2030 dip->di_next_unlinked = cpu_to_be32(next_agino); 2031 offset = imap->im_boffset + 2032 offsetof(struct xfs_dinode, di_next_unlinked); 2033 2034 /* need to recalc the inode CRC if appropriate */ 2035 xfs_dinode_calc_crc(mp, dip); 2036 xfs_trans_inode_buf(tp, ibp); 2037 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2038 } 2039 2040 /* Set an in-core inode's unlinked pointer and return the old value. */ 2041 STATIC int 2042 xfs_iunlink_update_inode( 2043 struct xfs_trans *tp, 2044 struct xfs_inode *ip, 2045 xfs_agnumber_t agno, 2046 xfs_agino_t next_agino, 2047 xfs_agino_t *old_next_agino) 2048 { 2049 struct xfs_mount *mp = tp->t_mountp; 2050 struct xfs_dinode *dip; 2051 struct xfs_buf *ibp; 2052 xfs_agino_t old_value; 2053 int error; 2054 2055 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2056 2057 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2058 if (error) 2059 return error; 2060 2061 /* Make sure the old pointer isn't garbage. */ 2062 old_value = be32_to_cpu(dip->di_next_unlinked); 2063 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2064 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2065 sizeof(*dip), __this_address); 2066 error = -EFSCORRUPTED; 2067 goto out; 2068 } 2069 2070 /* 2071 * Since we're updating a linked list, we should never find that the 2072 * current pointer is the same as the new value, unless we're 2073 * terminating the list. 2074 */ 2075 *old_next_agino = old_value; 2076 if (old_value == next_agino) { 2077 if (next_agino != NULLAGINO) { 2078 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2079 dip, sizeof(*dip), __this_address); 2080 error = -EFSCORRUPTED; 2081 } 2082 goto out; 2083 } 2084 2085 /* Ok, update the new pointer. */ 2086 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2087 ibp, dip, &ip->i_imap, next_agino); 2088 return 0; 2089 out: 2090 xfs_trans_brelse(tp, ibp); 2091 return error; 2092 } 2093 2094 /* 2095 * This is called when the inode's link count has gone to 0 or we are creating 2096 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2097 * 2098 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2099 * list when the inode is freed. 2100 */ 2101 STATIC int 2102 xfs_iunlink( 2103 struct xfs_trans *tp, 2104 struct xfs_inode *ip) 2105 { 2106 struct xfs_mount *mp = tp->t_mountp; 2107 struct xfs_agi *agi; 2108 struct xfs_buf *agibp; 2109 xfs_agino_t next_agino; 2110 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2111 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2112 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2113 int error; 2114 2115 ASSERT(VFS_I(ip)->i_nlink == 0); 2116 ASSERT(VFS_I(ip)->i_mode != 0); 2117 trace_xfs_iunlink(ip); 2118 2119 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2120 error = xfs_read_agi(mp, tp, agno, &agibp); 2121 if (error) 2122 return error; 2123 agi = agibp->b_addr; 2124 2125 /* 2126 * Get the index into the agi hash table for the list this inode will 2127 * go on. Make sure the pointer isn't garbage and that this inode 2128 * isn't already on the list. 2129 */ 2130 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2131 if (next_agino == agino || 2132 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2133 xfs_buf_mark_corrupt(agibp); 2134 return -EFSCORRUPTED; 2135 } 2136 2137 if (next_agino != NULLAGINO) { 2138 xfs_agino_t old_agino; 2139 2140 /* 2141 * There is already another inode in the bucket, so point this 2142 * inode to the current head of the list. 2143 */ 2144 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2145 &old_agino); 2146 if (error) 2147 return error; 2148 ASSERT(old_agino == NULLAGINO); 2149 2150 /* 2151 * agino has been unlinked, add a backref from the next inode 2152 * back to agino. 2153 */ 2154 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2155 if (error) 2156 return error; 2157 } 2158 2159 /* Point the head of the list to point to this inode. */ 2160 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2161 } 2162 2163 /* Return the imap, dinode pointer, and buffer for an inode. */ 2164 STATIC int 2165 xfs_iunlink_map_ino( 2166 struct xfs_trans *tp, 2167 xfs_agnumber_t agno, 2168 xfs_agino_t agino, 2169 struct xfs_imap *imap, 2170 struct xfs_dinode **dipp, 2171 struct xfs_buf **bpp) 2172 { 2173 struct xfs_mount *mp = tp->t_mountp; 2174 int error; 2175 2176 imap->im_blkno = 0; 2177 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2178 if (error) { 2179 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2180 __func__, error); 2181 return error; 2182 } 2183 2184 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2185 if (error) { 2186 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2187 __func__, error); 2188 return error; 2189 } 2190 2191 return 0; 2192 } 2193 2194 /* 2195 * Walk the unlinked chain from @head_agino until we find the inode that 2196 * points to @target_agino. Return the inode number, map, dinode pointer, 2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2198 * 2199 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2200 * @agino, @imap, @dipp, and @bpp are all output parameters. 2201 * 2202 * Do not call this function if @target_agino is the head of the list. 2203 */ 2204 STATIC int 2205 xfs_iunlink_map_prev( 2206 struct xfs_trans *tp, 2207 xfs_agnumber_t agno, 2208 xfs_agino_t head_agino, 2209 xfs_agino_t target_agino, 2210 xfs_agino_t *agino, 2211 struct xfs_imap *imap, 2212 struct xfs_dinode **dipp, 2213 struct xfs_buf **bpp, 2214 struct xfs_perag *pag) 2215 { 2216 struct xfs_mount *mp = tp->t_mountp; 2217 xfs_agino_t next_agino; 2218 int error; 2219 2220 ASSERT(head_agino != target_agino); 2221 *bpp = NULL; 2222 2223 /* See if our backref cache can find it faster. */ 2224 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2225 if (*agino != NULLAGINO) { 2226 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2227 if (error) 2228 return error; 2229 2230 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2231 return 0; 2232 2233 /* 2234 * If we get here the cache contents were corrupt, so drop the 2235 * buffer and fall back to walking the bucket list. 2236 */ 2237 xfs_trans_brelse(tp, *bpp); 2238 *bpp = NULL; 2239 WARN_ON_ONCE(1); 2240 } 2241 2242 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2243 2244 /* Otherwise, walk the entire bucket until we find it. */ 2245 next_agino = head_agino; 2246 while (next_agino != target_agino) { 2247 xfs_agino_t unlinked_agino; 2248 2249 if (*bpp) 2250 xfs_trans_brelse(tp, *bpp); 2251 2252 *agino = next_agino; 2253 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2254 bpp); 2255 if (error) 2256 return error; 2257 2258 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2259 /* 2260 * Make sure this pointer is valid and isn't an obvious 2261 * infinite loop. 2262 */ 2263 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2264 next_agino == unlinked_agino) { 2265 XFS_CORRUPTION_ERROR(__func__, 2266 XFS_ERRLEVEL_LOW, mp, 2267 *dipp, sizeof(**dipp)); 2268 error = -EFSCORRUPTED; 2269 return error; 2270 } 2271 next_agino = unlinked_agino; 2272 } 2273 2274 return 0; 2275 } 2276 2277 /* 2278 * Pull the on-disk inode from the AGI unlinked list. 2279 */ 2280 STATIC int 2281 xfs_iunlink_remove( 2282 struct xfs_trans *tp, 2283 struct xfs_inode *ip) 2284 { 2285 struct xfs_mount *mp = tp->t_mountp; 2286 struct xfs_agi *agi; 2287 struct xfs_buf *agibp; 2288 struct xfs_buf *last_ibp; 2289 struct xfs_dinode *last_dip = NULL; 2290 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2291 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2292 xfs_agino_t next_agino; 2293 xfs_agino_t head_agino; 2294 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2295 int error; 2296 2297 trace_xfs_iunlink_remove(ip); 2298 2299 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2300 error = xfs_read_agi(mp, tp, agno, &agibp); 2301 if (error) 2302 return error; 2303 agi = agibp->b_addr; 2304 2305 /* 2306 * Get the index into the agi hash table for the list this inode will 2307 * go on. Make sure the head pointer isn't garbage. 2308 */ 2309 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2310 if (!xfs_verify_agino(mp, agno, head_agino)) { 2311 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2312 agi, sizeof(*agi)); 2313 return -EFSCORRUPTED; 2314 } 2315 2316 /* 2317 * Set our inode's next_unlinked pointer to NULL and then return 2318 * the old pointer value so that we can update whatever was previous 2319 * to us in the list to point to whatever was next in the list. 2320 */ 2321 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2322 if (error) 2323 return error; 2324 2325 /* 2326 * If there was a backref pointing from the next inode back to this 2327 * one, remove it because we've removed this inode from the list. 2328 * 2329 * Later, if this inode was in the middle of the list we'll update 2330 * this inode's backref to point from the next inode. 2331 */ 2332 if (next_agino != NULLAGINO) { 2333 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2334 NULLAGINO); 2335 if (error) 2336 return error; 2337 } 2338 2339 if (head_agino != agino) { 2340 struct xfs_imap imap; 2341 xfs_agino_t prev_agino; 2342 2343 /* We need to search the list for the inode being freed. */ 2344 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2345 &prev_agino, &imap, &last_dip, &last_ibp, 2346 agibp->b_pag); 2347 if (error) 2348 return error; 2349 2350 /* Point the previous inode on the list to the next inode. */ 2351 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2352 last_dip, &imap, next_agino); 2353 2354 /* 2355 * Now we deal with the backref for this inode. If this inode 2356 * pointed at a real inode, change the backref that pointed to 2357 * us to point to our old next. If this inode was the end of 2358 * the list, delete the backref that pointed to us. Note that 2359 * change_backref takes care of deleting the backref if 2360 * next_agino is NULLAGINO. 2361 */ 2362 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2363 next_agino); 2364 } 2365 2366 /* Point the head of the list to the next unlinked inode. */ 2367 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2368 next_agino); 2369 } 2370 2371 /* 2372 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2373 * mark it stale. We should only find clean inodes in this lookup that aren't 2374 * already stale. 2375 */ 2376 static void 2377 xfs_ifree_mark_inode_stale( 2378 struct xfs_buf *bp, 2379 struct xfs_inode *free_ip, 2380 xfs_ino_t inum) 2381 { 2382 struct xfs_mount *mp = bp->b_mount; 2383 struct xfs_perag *pag = bp->b_pag; 2384 struct xfs_inode_log_item *iip; 2385 struct xfs_inode *ip; 2386 2387 retry: 2388 rcu_read_lock(); 2389 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2390 2391 /* Inode not in memory, nothing to do */ 2392 if (!ip) { 2393 rcu_read_unlock(); 2394 return; 2395 } 2396 2397 /* 2398 * because this is an RCU protected lookup, we could find a recently 2399 * freed or even reallocated inode during the lookup. We need to check 2400 * under the i_flags_lock for a valid inode here. Skip it if it is not 2401 * valid, the wrong inode or stale. 2402 */ 2403 spin_lock(&ip->i_flags_lock); 2404 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2405 goto out_iflags_unlock; 2406 2407 /* 2408 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2409 * other inodes that we did not find in the list attached to the buffer 2410 * and are not already marked stale. If we can't lock it, back off and 2411 * retry. 2412 */ 2413 if (ip != free_ip) { 2414 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2415 spin_unlock(&ip->i_flags_lock); 2416 rcu_read_unlock(); 2417 delay(1); 2418 goto retry; 2419 } 2420 } 2421 ip->i_flags |= XFS_ISTALE; 2422 2423 /* 2424 * If the inode is flushing, it is already attached to the buffer. All 2425 * we needed to do here is mark the inode stale so buffer IO completion 2426 * will remove it from the AIL. 2427 */ 2428 iip = ip->i_itemp; 2429 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2430 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2431 ASSERT(iip->ili_last_fields); 2432 goto out_iunlock; 2433 } 2434 2435 /* 2436 * Inodes not attached to the buffer can be released immediately. 2437 * Everything else has to go through xfs_iflush_abort() on journal 2438 * commit as the flock synchronises removal of the inode from the 2439 * cluster buffer against inode reclaim. 2440 */ 2441 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2442 goto out_iunlock; 2443 2444 __xfs_iflags_set(ip, XFS_IFLUSHING); 2445 spin_unlock(&ip->i_flags_lock); 2446 rcu_read_unlock(); 2447 2448 /* we have a dirty inode in memory that has not yet been flushed. */ 2449 spin_lock(&iip->ili_lock); 2450 iip->ili_last_fields = iip->ili_fields; 2451 iip->ili_fields = 0; 2452 iip->ili_fsync_fields = 0; 2453 spin_unlock(&iip->ili_lock); 2454 ASSERT(iip->ili_last_fields); 2455 2456 if (ip != free_ip) 2457 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2458 return; 2459 2460 out_iunlock: 2461 if (ip != free_ip) 2462 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2463 out_iflags_unlock: 2464 spin_unlock(&ip->i_flags_lock); 2465 rcu_read_unlock(); 2466 } 2467 2468 /* 2469 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2470 * inodes that are in memory - they all must be marked stale and attached to 2471 * the cluster buffer. 2472 */ 2473 STATIC int 2474 xfs_ifree_cluster( 2475 struct xfs_inode *free_ip, 2476 struct xfs_trans *tp, 2477 struct xfs_icluster *xic) 2478 { 2479 struct xfs_mount *mp = free_ip->i_mount; 2480 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2481 struct xfs_buf *bp; 2482 xfs_daddr_t blkno; 2483 xfs_ino_t inum = xic->first_ino; 2484 int nbufs; 2485 int i, j; 2486 int ioffset; 2487 int error; 2488 2489 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2490 2491 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2492 /* 2493 * The allocation bitmap tells us which inodes of the chunk were 2494 * physically allocated. Skip the cluster if an inode falls into 2495 * a sparse region. 2496 */ 2497 ioffset = inum - xic->first_ino; 2498 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2499 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2500 continue; 2501 } 2502 2503 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2504 XFS_INO_TO_AGBNO(mp, inum)); 2505 2506 /* 2507 * We obtain and lock the backing buffer first in the process 2508 * here to ensure dirty inodes attached to the buffer remain in 2509 * the flushing state while we mark them stale. 2510 * 2511 * If we scan the in-memory inodes first, then buffer IO can 2512 * complete before we get a lock on it, and hence we may fail 2513 * to mark all the active inodes on the buffer stale. 2514 */ 2515 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2516 mp->m_bsize * igeo->blocks_per_cluster, 2517 XBF_UNMAPPED, &bp); 2518 if (error) 2519 return error; 2520 2521 /* 2522 * This buffer may not have been correctly initialised as we 2523 * didn't read it from disk. That's not important because we are 2524 * only using to mark the buffer as stale in the log, and to 2525 * attach stale cached inodes on it. That means it will never be 2526 * dispatched for IO. If it is, we want to know about it, and we 2527 * want it to fail. We can acheive this by adding a write 2528 * verifier to the buffer. 2529 */ 2530 bp->b_ops = &xfs_inode_buf_ops; 2531 2532 /* 2533 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2534 * too. This requires lookups, and will skip inodes that we've 2535 * already marked XFS_ISTALE. 2536 */ 2537 for (i = 0; i < igeo->inodes_per_cluster; i++) 2538 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2539 2540 xfs_trans_stale_inode_buf(tp, bp); 2541 xfs_trans_binval(tp, bp); 2542 } 2543 return 0; 2544 } 2545 2546 /* 2547 * This is called to return an inode to the inode free list. 2548 * The inode should already be truncated to 0 length and have 2549 * no pages associated with it. This routine also assumes that 2550 * the inode is already a part of the transaction. 2551 * 2552 * The on-disk copy of the inode will have been added to the list 2553 * of unlinked inodes in the AGI. We need to remove the inode from 2554 * that list atomically with respect to freeing it here. 2555 */ 2556 int 2557 xfs_ifree( 2558 struct xfs_trans *tp, 2559 struct xfs_inode *ip) 2560 { 2561 int error; 2562 struct xfs_icluster xic = { 0 }; 2563 struct xfs_inode_log_item *iip = ip->i_itemp; 2564 2565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2566 ASSERT(VFS_I(ip)->i_nlink == 0); 2567 ASSERT(ip->i_df.if_nextents == 0); 2568 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2569 ASSERT(ip->i_d.di_nblocks == 0); 2570 2571 /* 2572 * Pull the on-disk inode from the AGI unlinked list. 2573 */ 2574 error = xfs_iunlink_remove(tp, ip); 2575 if (error) 2576 return error; 2577 2578 error = xfs_difree(tp, ip->i_ino, &xic); 2579 if (error) 2580 return error; 2581 2582 /* 2583 * Free any local-format data sitting around before we reset the 2584 * data fork to extents format. Note that the attr fork data has 2585 * already been freed by xfs_attr_inactive. 2586 */ 2587 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2588 kmem_free(ip->i_df.if_u1.if_data); 2589 ip->i_df.if_u1.if_data = NULL; 2590 ip->i_df.if_bytes = 0; 2591 } 2592 2593 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2594 ip->i_d.di_flags = 0; 2595 ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2; 2596 ip->i_d.di_dmevmask = 0; 2597 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2598 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2599 2600 /* Don't attempt to replay owner changes for a deleted inode */ 2601 spin_lock(&iip->ili_lock); 2602 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2603 spin_unlock(&iip->ili_lock); 2604 2605 /* 2606 * Bump the generation count so no one will be confused 2607 * by reincarnations of this inode. 2608 */ 2609 VFS_I(ip)->i_generation++; 2610 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2611 2612 if (xic.deleted) 2613 error = xfs_ifree_cluster(ip, tp, &xic); 2614 2615 return error; 2616 } 2617 2618 /* 2619 * This is called to unpin an inode. The caller must have the inode locked 2620 * in at least shared mode so that the buffer cannot be subsequently pinned 2621 * once someone is waiting for it to be unpinned. 2622 */ 2623 static void 2624 xfs_iunpin( 2625 struct xfs_inode *ip) 2626 { 2627 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2628 2629 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2630 2631 /* Give the log a push to start the unpinning I/O */ 2632 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2633 2634 } 2635 2636 static void 2637 __xfs_iunpin_wait( 2638 struct xfs_inode *ip) 2639 { 2640 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2641 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2642 2643 xfs_iunpin(ip); 2644 2645 do { 2646 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2647 if (xfs_ipincount(ip)) 2648 io_schedule(); 2649 } while (xfs_ipincount(ip)); 2650 finish_wait(wq, &wait.wq_entry); 2651 } 2652 2653 void 2654 xfs_iunpin_wait( 2655 struct xfs_inode *ip) 2656 { 2657 if (xfs_ipincount(ip)) 2658 __xfs_iunpin_wait(ip); 2659 } 2660 2661 /* 2662 * Removing an inode from the namespace involves removing the directory entry 2663 * and dropping the link count on the inode. Removing the directory entry can 2664 * result in locking an AGF (directory blocks were freed) and removing a link 2665 * count can result in placing the inode on an unlinked list which results in 2666 * locking an AGI. 2667 * 2668 * The big problem here is that we have an ordering constraint on AGF and AGI 2669 * locking - inode allocation locks the AGI, then can allocate a new extent for 2670 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2671 * removes the inode from the unlinked list, requiring that we lock the AGI 2672 * first, and then freeing the inode can result in an inode chunk being freed 2673 * and hence freeing disk space requiring that we lock an AGF. 2674 * 2675 * Hence the ordering that is imposed by other parts of the code is AGI before 2676 * AGF. This means we cannot remove the directory entry before we drop the inode 2677 * reference count and put it on the unlinked list as this results in a lock 2678 * order of AGF then AGI, and this can deadlock against inode allocation and 2679 * freeing. Therefore we must drop the link counts before we remove the 2680 * directory entry. 2681 * 2682 * This is still safe from a transactional point of view - it is not until we 2683 * get to xfs_defer_finish() that we have the possibility of multiple 2684 * transactions in this operation. Hence as long as we remove the directory 2685 * entry and drop the link count in the first transaction of the remove 2686 * operation, there are no transactional constraints on the ordering here. 2687 */ 2688 int 2689 xfs_remove( 2690 xfs_inode_t *dp, 2691 struct xfs_name *name, 2692 xfs_inode_t *ip) 2693 { 2694 xfs_mount_t *mp = dp->i_mount; 2695 xfs_trans_t *tp = NULL; 2696 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2697 int error = 0; 2698 uint resblks; 2699 2700 trace_xfs_remove(dp, name); 2701 2702 if (XFS_FORCED_SHUTDOWN(mp)) 2703 return -EIO; 2704 2705 error = xfs_qm_dqattach(dp); 2706 if (error) 2707 goto std_return; 2708 2709 error = xfs_qm_dqattach(ip); 2710 if (error) 2711 goto std_return; 2712 2713 /* 2714 * We try to get the real space reservation first, 2715 * allowing for directory btree deletion(s) implying 2716 * possible bmap insert(s). If we can't get the space 2717 * reservation then we use 0 instead, and avoid the bmap 2718 * btree insert(s) in the directory code by, if the bmap 2719 * insert tries to happen, instead trimming the LAST 2720 * block from the directory. 2721 */ 2722 resblks = XFS_REMOVE_SPACE_RES(mp); 2723 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2724 if (error == -ENOSPC) { 2725 resblks = 0; 2726 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2727 &tp); 2728 } 2729 if (error) { 2730 ASSERT(error != -ENOSPC); 2731 goto std_return; 2732 } 2733 2734 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2735 2736 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2737 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2738 2739 /* 2740 * If we're removing a directory perform some additional validation. 2741 */ 2742 if (is_dir) { 2743 ASSERT(VFS_I(ip)->i_nlink >= 2); 2744 if (VFS_I(ip)->i_nlink != 2) { 2745 error = -ENOTEMPTY; 2746 goto out_trans_cancel; 2747 } 2748 if (!xfs_dir_isempty(ip)) { 2749 error = -ENOTEMPTY; 2750 goto out_trans_cancel; 2751 } 2752 2753 /* Drop the link from ip's "..". */ 2754 error = xfs_droplink(tp, dp); 2755 if (error) 2756 goto out_trans_cancel; 2757 2758 /* Drop the "." link from ip to self. */ 2759 error = xfs_droplink(tp, ip); 2760 if (error) 2761 goto out_trans_cancel; 2762 } else { 2763 /* 2764 * When removing a non-directory we need to log the parent 2765 * inode here. For a directory this is done implicitly 2766 * by the xfs_droplink call for the ".." entry. 2767 */ 2768 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2769 } 2770 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2771 2772 /* Drop the link from dp to ip. */ 2773 error = xfs_droplink(tp, ip); 2774 if (error) 2775 goto out_trans_cancel; 2776 2777 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2778 if (error) { 2779 ASSERT(error != -ENOENT); 2780 goto out_trans_cancel; 2781 } 2782 2783 /* 2784 * If this is a synchronous mount, make sure that the 2785 * remove transaction goes to disk before returning to 2786 * the user. 2787 */ 2788 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2789 xfs_trans_set_sync(tp); 2790 2791 error = xfs_trans_commit(tp); 2792 if (error) 2793 goto std_return; 2794 2795 if (is_dir && xfs_inode_is_filestream(ip)) 2796 xfs_filestream_deassociate(ip); 2797 2798 return 0; 2799 2800 out_trans_cancel: 2801 xfs_trans_cancel(tp); 2802 std_return: 2803 return error; 2804 } 2805 2806 /* 2807 * Enter all inodes for a rename transaction into a sorted array. 2808 */ 2809 #define __XFS_SORT_INODES 5 2810 STATIC void 2811 xfs_sort_for_rename( 2812 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2813 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2814 struct xfs_inode *ip1, /* in: inode of old entry */ 2815 struct xfs_inode *ip2, /* in: inode of new entry */ 2816 struct xfs_inode *wip, /* in: whiteout inode */ 2817 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2818 int *num_inodes) /* in/out: inodes in array */ 2819 { 2820 int i, j; 2821 2822 ASSERT(*num_inodes == __XFS_SORT_INODES); 2823 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2824 2825 /* 2826 * i_tab contains a list of pointers to inodes. We initialize 2827 * the table here & we'll sort it. We will then use it to 2828 * order the acquisition of the inode locks. 2829 * 2830 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2831 */ 2832 i = 0; 2833 i_tab[i++] = dp1; 2834 i_tab[i++] = dp2; 2835 i_tab[i++] = ip1; 2836 if (ip2) 2837 i_tab[i++] = ip2; 2838 if (wip) 2839 i_tab[i++] = wip; 2840 *num_inodes = i; 2841 2842 /* 2843 * Sort the elements via bubble sort. (Remember, there are at 2844 * most 5 elements to sort, so this is adequate.) 2845 */ 2846 for (i = 0; i < *num_inodes; i++) { 2847 for (j = 1; j < *num_inodes; j++) { 2848 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2849 struct xfs_inode *temp = i_tab[j]; 2850 i_tab[j] = i_tab[j-1]; 2851 i_tab[j-1] = temp; 2852 } 2853 } 2854 } 2855 } 2856 2857 static int 2858 xfs_finish_rename( 2859 struct xfs_trans *tp) 2860 { 2861 /* 2862 * If this is a synchronous mount, make sure that the rename transaction 2863 * goes to disk before returning to the user. 2864 */ 2865 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2866 xfs_trans_set_sync(tp); 2867 2868 return xfs_trans_commit(tp); 2869 } 2870 2871 /* 2872 * xfs_cross_rename() 2873 * 2874 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2875 */ 2876 STATIC int 2877 xfs_cross_rename( 2878 struct xfs_trans *tp, 2879 struct xfs_inode *dp1, 2880 struct xfs_name *name1, 2881 struct xfs_inode *ip1, 2882 struct xfs_inode *dp2, 2883 struct xfs_name *name2, 2884 struct xfs_inode *ip2, 2885 int spaceres) 2886 { 2887 int error = 0; 2888 int ip1_flags = 0; 2889 int ip2_flags = 0; 2890 int dp2_flags = 0; 2891 2892 /* Swap inode number for dirent in first parent */ 2893 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2894 if (error) 2895 goto out_trans_abort; 2896 2897 /* Swap inode number for dirent in second parent */ 2898 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2899 if (error) 2900 goto out_trans_abort; 2901 2902 /* 2903 * If we're renaming one or more directories across different parents, 2904 * update the respective ".." entries (and link counts) to match the new 2905 * parents. 2906 */ 2907 if (dp1 != dp2) { 2908 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2909 2910 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2911 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2912 dp1->i_ino, spaceres); 2913 if (error) 2914 goto out_trans_abort; 2915 2916 /* transfer ip2 ".." reference to dp1 */ 2917 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2918 error = xfs_droplink(tp, dp2); 2919 if (error) 2920 goto out_trans_abort; 2921 xfs_bumplink(tp, dp1); 2922 } 2923 2924 /* 2925 * Although ip1 isn't changed here, userspace needs 2926 * to be warned about the change, so that applications 2927 * relying on it (like backup ones), will properly 2928 * notify the change 2929 */ 2930 ip1_flags |= XFS_ICHGTIME_CHG; 2931 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2932 } 2933 2934 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2935 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2936 dp2->i_ino, spaceres); 2937 if (error) 2938 goto out_trans_abort; 2939 2940 /* transfer ip1 ".." reference to dp2 */ 2941 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2942 error = xfs_droplink(tp, dp1); 2943 if (error) 2944 goto out_trans_abort; 2945 xfs_bumplink(tp, dp2); 2946 } 2947 2948 /* 2949 * Although ip2 isn't changed here, userspace needs 2950 * to be warned about the change, so that applications 2951 * relying on it (like backup ones), will properly 2952 * notify the change 2953 */ 2954 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2955 ip2_flags |= XFS_ICHGTIME_CHG; 2956 } 2957 } 2958 2959 if (ip1_flags) { 2960 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2961 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2962 } 2963 if (ip2_flags) { 2964 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2965 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2966 } 2967 if (dp2_flags) { 2968 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2969 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2970 } 2971 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2972 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2973 return xfs_finish_rename(tp); 2974 2975 out_trans_abort: 2976 xfs_trans_cancel(tp); 2977 return error; 2978 } 2979 2980 /* 2981 * xfs_rename_alloc_whiteout() 2982 * 2983 * Return a referenced, unlinked, unlocked inode that can be used as a 2984 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2985 * crash between allocating the inode and linking it into the rename transaction 2986 * recovery will free the inode and we won't leak it. 2987 */ 2988 static int 2989 xfs_rename_alloc_whiteout( 2990 struct xfs_inode *dp, 2991 struct xfs_inode **wip) 2992 { 2993 struct xfs_inode *tmpfile; 2994 int error; 2995 2996 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2997 if (error) 2998 return error; 2999 3000 /* 3001 * Prepare the tmpfile inode as if it were created through the VFS. 3002 * Complete the inode setup and flag it as linkable. nlink is already 3003 * zero, so we can skip the drop_nlink. 3004 */ 3005 xfs_setup_iops(tmpfile); 3006 xfs_finish_inode_setup(tmpfile); 3007 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3008 3009 *wip = tmpfile; 3010 return 0; 3011 } 3012 3013 /* 3014 * xfs_rename 3015 */ 3016 int 3017 xfs_rename( 3018 struct xfs_inode *src_dp, 3019 struct xfs_name *src_name, 3020 struct xfs_inode *src_ip, 3021 struct xfs_inode *target_dp, 3022 struct xfs_name *target_name, 3023 struct xfs_inode *target_ip, 3024 unsigned int flags) 3025 { 3026 struct xfs_mount *mp = src_dp->i_mount; 3027 struct xfs_trans *tp; 3028 struct xfs_inode *wip = NULL; /* whiteout inode */ 3029 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3030 int i; 3031 int num_inodes = __XFS_SORT_INODES; 3032 bool new_parent = (src_dp != target_dp); 3033 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3034 int spaceres; 3035 int error; 3036 3037 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3038 3039 if ((flags & RENAME_EXCHANGE) && !target_ip) 3040 return -EINVAL; 3041 3042 /* 3043 * If we are doing a whiteout operation, allocate the whiteout inode 3044 * we will be placing at the target and ensure the type is set 3045 * appropriately. 3046 */ 3047 if (flags & RENAME_WHITEOUT) { 3048 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3049 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3050 if (error) 3051 return error; 3052 3053 /* setup target dirent info as whiteout */ 3054 src_name->type = XFS_DIR3_FT_CHRDEV; 3055 } 3056 3057 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3058 inodes, &num_inodes); 3059 3060 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3061 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3062 if (error == -ENOSPC) { 3063 spaceres = 0; 3064 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3065 &tp); 3066 } 3067 if (error) 3068 goto out_release_wip; 3069 3070 /* 3071 * Attach the dquots to the inodes 3072 */ 3073 error = xfs_qm_vop_rename_dqattach(inodes); 3074 if (error) 3075 goto out_trans_cancel; 3076 3077 /* 3078 * Lock all the participating inodes. Depending upon whether 3079 * the target_name exists in the target directory, and 3080 * whether the target directory is the same as the source 3081 * directory, we can lock from 2 to 4 inodes. 3082 */ 3083 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3084 3085 /* 3086 * Join all the inodes to the transaction. From this point on, 3087 * we can rely on either trans_commit or trans_cancel to unlock 3088 * them. 3089 */ 3090 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3091 if (new_parent) 3092 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3093 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3094 if (target_ip) 3095 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3096 if (wip) 3097 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3098 3099 /* 3100 * If we are using project inheritance, we only allow renames 3101 * into our tree when the project IDs are the same; else the 3102 * tree quota mechanism would be circumvented. 3103 */ 3104 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3105 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3106 error = -EXDEV; 3107 goto out_trans_cancel; 3108 } 3109 3110 /* RENAME_EXCHANGE is unique from here on. */ 3111 if (flags & RENAME_EXCHANGE) 3112 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3113 target_dp, target_name, target_ip, 3114 spaceres); 3115 3116 /* 3117 * Check for expected errors before we dirty the transaction 3118 * so we can return an error without a transaction abort. 3119 * 3120 * Extent count overflow check: 3121 * 3122 * From the perspective of src_dp, a rename operation is essentially a 3123 * directory entry remove operation. Hence the only place where we check 3124 * for extent count overflow for src_dp is in 3125 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3126 * -ENOSPC when it detects a possible extent count overflow and in 3127 * response, the higher layers of directory handling code do the 3128 * following: 3129 * 1. Data/Free blocks: XFS lets these blocks linger until a 3130 * future remove operation removes them. 3131 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3132 * Leaf space and unmaps the last block. 3133 * 3134 * For target_dp, there are two cases depending on whether the 3135 * destination directory entry exists or not. 3136 * 3137 * When destination directory entry does not exist (i.e. target_ip == 3138 * NULL), extent count overflow check is performed only when transaction 3139 * has a non-zero sized space reservation associated with it. With a 3140 * zero-sized space reservation, XFS allows a rename operation to 3141 * continue only when the directory has sufficient free space in its 3142 * data/leaf/free space blocks to hold the new entry. 3143 * 3144 * When destination directory entry exists (i.e. target_ip != NULL), all 3145 * we need to do is change the inode number associated with the already 3146 * existing entry. Hence there is no need to perform an extent count 3147 * overflow check. 3148 */ 3149 if (target_ip == NULL) { 3150 /* 3151 * If there's no space reservation, check the entry will 3152 * fit before actually inserting it. 3153 */ 3154 if (!spaceres) { 3155 error = xfs_dir_canenter(tp, target_dp, target_name); 3156 if (error) 3157 goto out_trans_cancel; 3158 } else { 3159 error = xfs_iext_count_may_overflow(target_dp, 3160 XFS_DATA_FORK, 3161 XFS_IEXT_DIR_MANIP_CNT(mp)); 3162 if (error) 3163 goto out_trans_cancel; 3164 } 3165 } else { 3166 /* 3167 * If target exists and it's a directory, check that whether 3168 * it can be destroyed. 3169 */ 3170 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3171 (!xfs_dir_isempty(target_ip) || 3172 (VFS_I(target_ip)->i_nlink > 2))) { 3173 error = -EEXIST; 3174 goto out_trans_cancel; 3175 } 3176 } 3177 3178 /* 3179 * Lock the AGI buffers we need to handle bumping the nlink of the 3180 * whiteout inode off the unlinked list and to handle dropping the 3181 * nlink of the target inode. Per locking order rules, do this in 3182 * increasing AG order and before directory block allocation tries to 3183 * grab AGFs because we grab AGIs before AGFs. 3184 * 3185 * The (vfs) caller must ensure that if src is a directory then 3186 * target_ip is either null or an empty directory. 3187 */ 3188 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3189 if (inodes[i] == wip || 3190 (inodes[i] == target_ip && 3191 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3192 struct xfs_buf *bp; 3193 xfs_agnumber_t agno; 3194 3195 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3196 error = xfs_read_agi(mp, tp, agno, &bp); 3197 if (error) 3198 goto out_trans_cancel; 3199 } 3200 } 3201 3202 /* 3203 * Directory entry creation below may acquire the AGF. Remove 3204 * the whiteout from the unlinked list first to preserve correct 3205 * AGI/AGF locking order. This dirties the transaction so failures 3206 * after this point will abort and log recovery will clean up the 3207 * mess. 3208 * 3209 * For whiteouts, we need to bump the link count on the whiteout 3210 * inode. After this point, we have a real link, clear the tmpfile 3211 * state flag from the inode so it doesn't accidentally get misused 3212 * in future. 3213 */ 3214 if (wip) { 3215 ASSERT(VFS_I(wip)->i_nlink == 0); 3216 error = xfs_iunlink_remove(tp, wip); 3217 if (error) 3218 goto out_trans_cancel; 3219 3220 xfs_bumplink(tp, wip); 3221 VFS_I(wip)->i_state &= ~I_LINKABLE; 3222 } 3223 3224 /* 3225 * Set up the target. 3226 */ 3227 if (target_ip == NULL) { 3228 /* 3229 * If target does not exist and the rename crosses 3230 * directories, adjust the target directory link count 3231 * to account for the ".." reference from the new entry. 3232 */ 3233 error = xfs_dir_createname(tp, target_dp, target_name, 3234 src_ip->i_ino, spaceres); 3235 if (error) 3236 goto out_trans_cancel; 3237 3238 xfs_trans_ichgtime(tp, target_dp, 3239 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3240 3241 if (new_parent && src_is_directory) { 3242 xfs_bumplink(tp, target_dp); 3243 } 3244 } else { /* target_ip != NULL */ 3245 /* 3246 * Link the source inode under the target name. 3247 * If the source inode is a directory and we are moving 3248 * it across directories, its ".." entry will be 3249 * inconsistent until we replace that down below. 3250 * 3251 * In case there is already an entry with the same 3252 * name at the destination directory, remove it first. 3253 */ 3254 error = xfs_dir_replace(tp, target_dp, target_name, 3255 src_ip->i_ino, spaceres); 3256 if (error) 3257 goto out_trans_cancel; 3258 3259 xfs_trans_ichgtime(tp, target_dp, 3260 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3261 3262 /* 3263 * Decrement the link count on the target since the target 3264 * dir no longer points to it. 3265 */ 3266 error = xfs_droplink(tp, target_ip); 3267 if (error) 3268 goto out_trans_cancel; 3269 3270 if (src_is_directory) { 3271 /* 3272 * Drop the link from the old "." entry. 3273 */ 3274 error = xfs_droplink(tp, target_ip); 3275 if (error) 3276 goto out_trans_cancel; 3277 } 3278 } /* target_ip != NULL */ 3279 3280 /* 3281 * Remove the source. 3282 */ 3283 if (new_parent && src_is_directory) { 3284 /* 3285 * Rewrite the ".." entry to point to the new 3286 * directory. 3287 */ 3288 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3289 target_dp->i_ino, spaceres); 3290 ASSERT(error != -EEXIST); 3291 if (error) 3292 goto out_trans_cancel; 3293 } 3294 3295 /* 3296 * We always want to hit the ctime on the source inode. 3297 * 3298 * This isn't strictly required by the standards since the source 3299 * inode isn't really being changed, but old unix file systems did 3300 * it and some incremental backup programs won't work without it. 3301 */ 3302 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3303 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3304 3305 /* 3306 * Adjust the link count on src_dp. This is necessary when 3307 * renaming a directory, either within one parent when 3308 * the target existed, or across two parent directories. 3309 */ 3310 if (src_is_directory && (new_parent || target_ip != NULL)) { 3311 3312 /* 3313 * Decrement link count on src_directory since the 3314 * entry that's moved no longer points to it. 3315 */ 3316 error = xfs_droplink(tp, src_dp); 3317 if (error) 3318 goto out_trans_cancel; 3319 } 3320 3321 /* 3322 * For whiteouts, we only need to update the source dirent with the 3323 * inode number of the whiteout inode rather than removing it 3324 * altogether. 3325 */ 3326 if (wip) { 3327 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3328 spaceres); 3329 } else { 3330 /* 3331 * NOTE: We don't need to check for extent count overflow here 3332 * because the dir remove name code will leave the dir block in 3333 * place if the extent count would overflow. 3334 */ 3335 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3336 spaceres); 3337 } 3338 3339 if (error) 3340 goto out_trans_cancel; 3341 3342 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3343 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3344 if (new_parent) 3345 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3346 3347 error = xfs_finish_rename(tp); 3348 if (wip) 3349 xfs_irele(wip); 3350 return error; 3351 3352 out_trans_cancel: 3353 xfs_trans_cancel(tp); 3354 out_release_wip: 3355 if (wip) 3356 xfs_irele(wip); 3357 return error; 3358 } 3359 3360 static int 3361 xfs_iflush( 3362 struct xfs_inode *ip, 3363 struct xfs_buf *bp) 3364 { 3365 struct xfs_inode_log_item *iip = ip->i_itemp; 3366 struct xfs_dinode *dip; 3367 struct xfs_mount *mp = ip->i_mount; 3368 int error; 3369 3370 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3371 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3372 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3373 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3374 ASSERT(iip->ili_item.li_buf == bp); 3375 3376 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3377 3378 /* 3379 * We don't flush the inode if any of the following checks fail, but we 3380 * do still update the log item and attach to the backing buffer as if 3381 * the flush happened. This is a formality to facilitate predictable 3382 * error handling as the caller will shutdown and fail the buffer. 3383 */ 3384 error = -EFSCORRUPTED; 3385 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3386 mp, XFS_ERRTAG_IFLUSH_1)) { 3387 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3388 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3389 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3390 goto flush_out; 3391 } 3392 if (S_ISREG(VFS_I(ip)->i_mode)) { 3393 if (XFS_TEST_ERROR( 3394 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3395 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3396 mp, XFS_ERRTAG_IFLUSH_3)) { 3397 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3398 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3399 __func__, ip->i_ino, ip); 3400 goto flush_out; 3401 } 3402 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3403 if (XFS_TEST_ERROR( 3404 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3405 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3406 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3407 mp, XFS_ERRTAG_IFLUSH_4)) { 3408 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3409 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3410 __func__, ip->i_ino, ip); 3411 goto flush_out; 3412 } 3413 } 3414 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3415 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3416 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3417 "%s: detected corrupt incore inode %Lu, " 3418 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3419 __func__, ip->i_ino, 3420 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3421 ip->i_d.di_nblocks, ip); 3422 goto flush_out; 3423 } 3424 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3425 mp, XFS_ERRTAG_IFLUSH_6)) { 3426 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3427 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3428 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3429 goto flush_out; 3430 } 3431 3432 /* 3433 * Inode item log recovery for v2 inodes are dependent on the 3434 * di_flushiter count for correct sequencing. We bump the flush 3435 * iteration count so we can detect flushes which postdate a log record 3436 * during recovery. This is redundant as we now log every change and 3437 * hence this can't happen but we need to still do it to ensure 3438 * backwards compatibility with old kernels that predate logging all 3439 * inode changes. 3440 */ 3441 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3442 ip->i_d.di_flushiter++; 3443 3444 /* 3445 * If there are inline format data / attr forks attached to this inode, 3446 * make sure they are not corrupt. 3447 */ 3448 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3449 xfs_ifork_verify_local_data(ip)) 3450 goto flush_out; 3451 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3452 xfs_ifork_verify_local_attr(ip)) 3453 goto flush_out; 3454 3455 /* 3456 * Copy the dirty parts of the inode into the on-disk inode. We always 3457 * copy out the core of the inode, because if the inode is dirty at all 3458 * the core must be. 3459 */ 3460 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3461 3462 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3463 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3464 ip->i_d.di_flushiter = 0; 3465 3466 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3467 if (XFS_IFORK_Q(ip)) 3468 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3469 3470 /* 3471 * We've recorded everything logged in the inode, so we'd like to clear 3472 * the ili_fields bits so we don't log and flush things unnecessarily. 3473 * However, we can't stop logging all this information until the data 3474 * we've copied into the disk buffer is written to disk. If we did we 3475 * might overwrite the copy of the inode in the log with all the data 3476 * after re-logging only part of it, and in the face of a crash we 3477 * wouldn't have all the data we need to recover. 3478 * 3479 * What we do is move the bits to the ili_last_fields field. When 3480 * logging the inode, these bits are moved back to the ili_fields field. 3481 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3482 * we know that the information those bits represent is permanently on 3483 * disk. As long as the flush completes before the inode is logged 3484 * again, then both ili_fields and ili_last_fields will be cleared. 3485 */ 3486 error = 0; 3487 flush_out: 3488 spin_lock(&iip->ili_lock); 3489 iip->ili_last_fields = iip->ili_fields; 3490 iip->ili_fields = 0; 3491 iip->ili_fsync_fields = 0; 3492 spin_unlock(&iip->ili_lock); 3493 3494 /* 3495 * Store the current LSN of the inode so that we can tell whether the 3496 * item has moved in the AIL from xfs_buf_inode_iodone(). 3497 */ 3498 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3499 &iip->ili_item.li_lsn); 3500 3501 /* generate the checksum. */ 3502 xfs_dinode_calc_crc(mp, dip); 3503 return error; 3504 } 3505 3506 /* 3507 * Non-blocking flush of dirty inode metadata into the backing buffer. 3508 * 3509 * The caller must have a reference to the inode and hold the cluster buffer 3510 * locked. The function will walk across all the inodes on the cluster buffer it 3511 * can find and lock without blocking, and flush them to the cluster buffer. 3512 * 3513 * On successful flushing of at least one inode, the caller must write out the 3514 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3515 * the caller needs to release the buffer. On failure, the filesystem will be 3516 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3517 * will be returned. 3518 */ 3519 int 3520 xfs_iflush_cluster( 3521 struct xfs_buf *bp) 3522 { 3523 struct xfs_mount *mp = bp->b_mount; 3524 struct xfs_log_item *lip, *n; 3525 struct xfs_inode *ip; 3526 struct xfs_inode_log_item *iip; 3527 int clcount = 0; 3528 int error = 0; 3529 3530 /* 3531 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3532 * can remove itself from the list. 3533 */ 3534 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3535 iip = (struct xfs_inode_log_item *)lip; 3536 ip = iip->ili_inode; 3537 3538 /* 3539 * Quick and dirty check to avoid locks if possible. 3540 */ 3541 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3542 continue; 3543 if (xfs_ipincount(ip)) 3544 continue; 3545 3546 /* 3547 * The inode is still attached to the buffer, which means it is 3548 * dirty but reclaim might try to grab it. Check carefully for 3549 * that, and grab the ilock while still holding the i_flags_lock 3550 * to guarantee reclaim will not be able to reclaim this inode 3551 * once we drop the i_flags_lock. 3552 */ 3553 spin_lock(&ip->i_flags_lock); 3554 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3555 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3556 spin_unlock(&ip->i_flags_lock); 3557 continue; 3558 } 3559 3560 /* 3561 * ILOCK will pin the inode against reclaim and prevent 3562 * concurrent transactions modifying the inode while we are 3563 * flushing the inode. If we get the lock, set the flushing 3564 * state before we drop the i_flags_lock. 3565 */ 3566 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3567 spin_unlock(&ip->i_flags_lock); 3568 continue; 3569 } 3570 __xfs_iflags_set(ip, XFS_IFLUSHING); 3571 spin_unlock(&ip->i_flags_lock); 3572 3573 /* 3574 * Abort flushing this inode if we are shut down because the 3575 * inode may not currently be in the AIL. This can occur when 3576 * log I/O failure unpins the inode without inserting into the 3577 * AIL, leaving a dirty/unpinned inode attached to the buffer 3578 * that otherwise looks like it should be flushed. 3579 */ 3580 if (XFS_FORCED_SHUTDOWN(mp)) { 3581 xfs_iunpin_wait(ip); 3582 xfs_iflush_abort(ip); 3583 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3584 error = -EIO; 3585 continue; 3586 } 3587 3588 /* don't block waiting on a log force to unpin dirty inodes */ 3589 if (xfs_ipincount(ip)) { 3590 xfs_iflags_clear(ip, XFS_IFLUSHING); 3591 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3592 continue; 3593 } 3594 3595 if (!xfs_inode_clean(ip)) 3596 error = xfs_iflush(ip, bp); 3597 else 3598 xfs_iflags_clear(ip, XFS_IFLUSHING); 3599 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3600 if (error) 3601 break; 3602 clcount++; 3603 } 3604 3605 if (error) { 3606 bp->b_flags |= XBF_ASYNC; 3607 xfs_buf_ioend_fail(bp); 3608 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3609 return error; 3610 } 3611 3612 if (!clcount) 3613 return -EAGAIN; 3614 3615 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3616 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3617 return 0; 3618 3619 } 3620 3621 /* Release an inode. */ 3622 void 3623 xfs_irele( 3624 struct xfs_inode *ip) 3625 { 3626 trace_xfs_irele(ip, _RET_IP_); 3627 iput(VFS_I(ip)); 3628 } 3629 3630 /* 3631 * Ensure all commited transactions touching the inode are written to the log. 3632 */ 3633 int 3634 xfs_log_force_inode( 3635 struct xfs_inode *ip) 3636 { 3637 xfs_lsn_t lsn = 0; 3638 3639 xfs_ilock(ip, XFS_ILOCK_SHARED); 3640 if (xfs_ipincount(ip)) 3641 lsn = ip->i_itemp->ili_last_lsn; 3642 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3643 3644 if (!lsn) 3645 return 0; 3646 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3647 } 3648 3649 /* 3650 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3651 * abide vfs locking order (lowest pointer value goes first) and breaking the 3652 * layout leases before proceeding. The loop is needed because we cannot call 3653 * the blocking break_layout() with the iolocks held, and therefore have to 3654 * back out both locks. 3655 */ 3656 static int 3657 xfs_iolock_two_inodes_and_break_layout( 3658 struct inode *src, 3659 struct inode *dest) 3660 { 3661 int error; 3662 3663 if (src > dest) 3664 swap(src, dest); 3665 3666 retry: 3667 /* Wait to break both inodes' layouts before we start locking. */ 3668 error = break_layout(src, true); 3669 if (error) 3670 return error; 3671 if (src != dest) { 3672 error = break_layout(dest, true); 3673 if (error) 3674 return error; 3675 } 3676 3677 /* Lock one inode and make sure nobody got in and leased it. */ 3678 inode_lock(src); 3679 error = break_layout(src, false); 3680 if (error) { 3681 inode_unlock(src); 3682 if (error == -EWOULDBLOCK) 3683 goto retry; 3684 return error; 3685 } 3686 3687 if (src == dest) 3688 return 0; 3689 3690 /* Lock the other inode and make sure nobody got in and leased it. */ 3691 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3692 error = break_layout(dest, false); 3693 if (error) { 3694 inode_unlock(src); 3695 inode_unlock(dest); 3696 if (error == -EWOULDBLOCK) 3697 goto retry; 3698 return error; 3699 } 3700 3701 return 0; 3702 } 3703 3704 /* 3705 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3706 * mmap activity. 3707 */ 3708 int 3709 xfs_ilock2_io_mmap( 3710 struct xfs_inode *ip1, 3711 struct xfs_inode *ip2) 3712 { 3713 int ret; 3714 3715 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3716 if (ret) 3717 return ret; 3718 if (ip1 == ip2) 3719 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3720 else 3721 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3722 ip2, XFS_MMAPLOCK_EXCL); 3723 return 0; 3724 } 3725 3726 /* Unlock both inodes to allow IO and mmap activity. */ 3727 void 3728 xfs_iunlock2_io_mmap( 3729 struct xfs_inode *ip1, 3730 struct xfs_inode *ip2) 3731 { 3732 bool same_inode = (ip1 == ip2); 3733 3734 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3735 if (!same_inode) 3736 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3737 inode_unlock(VFS_I(ip2)); 3738 if (!same_inode) 3739 inode_unlock(VFS_I(ip1)); 3740 } 3741