xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 01ea173e103edd5ec41acec65b9261b87e123fc2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 		return ip->i_d.di_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_d.di_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
115 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp &&
128 	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_lock locking order:
148  *
149  * i_rwsem -> page lock -> mmap_lock
150  * mmap_lock -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_lock locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_lock.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	struct xfs_inode	**ips,
445 	int			inodes,
446 	uint			lock_mode)
447 {
448 	int			attempts = 0, i, j, try_lock;
449 	struct xfs_log_item	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = &ips[j]->i_itemp->ili_item;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = &ip0->i_itemp->ili_item;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 STATIC uint
602 _xfs_dic2xflags(
603 	uint16_t		di_flags,
604 	uint64_t		di_flags2,
605 	bool			has_attr)
606 {
607 	uint			flags = 0;
608 
609 	if (di_flags & XFS_DIFLAG_ANY) {
610 		if (di_flags & XFS_DIFLAG_REALTIME)
611 			flags |= FS_XFLAG_REALTIME;
612 		if (di_flags & XFS_DIFLAG_PREALLOC)
613 			flags |= FS_XFLAG_PREALLOC;
614 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
615 			flags |= FS_XFLAG_IMMUTABLE;
616 		if (di_flags & XFS_DIFLAG_APPEND)
617 			flags |= FS_XFLAG_APPEND;
618 		if (di_flags & XFS_DIFLAG_SYNC)
619 			flags |= FS_XFLAG_SYNC;
620 		if (di_flags & XFS_DIFLAG_NOATIME)
621 			flags |= FS_XFLAG_NOATIME;
622 		if (di_flags & XFS_DIFLAG_NODUMP)
623 			flags |= FS_XFLAG_NODUMP;
624 		if (di_flags & XFS_DIFLAG_RTINHERIT)
625 			flags |= FS_XFLAG_RTINHERIT;
626 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
627 			flags |= FS_XFLAG_PROJINHERIT;
628 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
629 			flags |= FS_XFLAG_NOSYMLINKS;
630 		if (di_flags & XFS_DIFLAG_EXTSIZE)
631 			flags |= FS_XFLAG_EXTSIZE;
632 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
633 			flags |= FS_XFLAG_EXTSZINHERIT;
634 		if (di_flags & XFS_DIFLAG_NODEFRAG)
635 			flags |= FS_XFLAG_NODEFRAG;
636 		if (di_flags & XFS_DIFLAG_FILESTREAM)
637 			flags |= FS_XFLAG_FILESTREAM;
638 	}
639 
640 	if (di_flags2 & XFS_DIFLAG2_ANY) {
641 		if (di_flags2 & XFS_DIFLAG2_DAX)
642 			flags |= FS_XFLAG_DAX;
643 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 			flags |= FS_XFLAG_COWEXTSIZE;
645 	}
646 
647 	if (has_attr)
648 		flags |= FS_XFLAG_HASATTR;
649 
650 	return flags;
651 }
652 
653 uint
654 xfs_ip2xflags(
655 	struct xfs_inode	*ip)
656 {
657 	struct xfs_icdinode	*dic = &ip->i_d;
658 
659 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
660 }
661 
662 /*
663  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664  * is allowed, otherwise it has to be an exact match. If a CI match is found,
665  * ci_name->name will point to a the actual name (caller must free) or
666  * will be set to NULL if an exact match is found.
667  */
668 int
669 xfs_lookup(
670 	xfs_inode_t		*dp,
671 	struct xfs_name		*name,
672 	xfs_inode_t		**ipp,
673 	struct xfs_name		*ci_name)
674 {
675 	xfs_ino_t		inum;
676 	int			error;
677 
678 	trace_xfs_lookup(dp, name);
679 
680 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
681 		return -EIO;
682 
683 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
684 	if (error)
685 		goto out_unlock;
686 
687 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 	if (error)
689 		goto out_free_name;
690 
691 	return 0;
692 
693 out_free_name:
694 	if (ci_name)
695 		kmem_free(ci_name->name);
696 out_unlock:
697 	*ipp = NULL;
698 	return error;
699 }
700 
701 /* Propagate di_flags from a parent inode to a child inode. */
702 static void
703 xfs_inode_inherit_flags(
704 	struct xfs_inode	*ip,
705 	const struct xfs_inode	*pip)
706 {
707 	unsigned int		di_flags = 0;
708 	umode_t			mode = VFS_I(ip)->i_mode;
709 
710 	if (S_ISDIR(mode)) {
711 		if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
712 			di_flags |= XFS_DIFLAG_RTINHERIT;
713 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
714 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
715 			ip->i_d.di_extsize = pip->i_d.di_extsize;
716 		}
717 		if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
718 			di_flags |= XFS_DIFLAG_PROJINHERIT;
719 	} else if (S_ISREG(mode)) {
720 		if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) &&
721 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
722 			di_flags |= XFS_DIFLAG_REALTIME;
723 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
724 			di_flags |= XFS_DIFLAG_EXTSIZE;
725 			ip->i_d.di_extsize = pip->i_d.di_extsize;
726 		}
727 	}
728 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
729 	    xfs_inherit_noatime)
730 		di_flags |= XFS_DIFLAG_NOATIME;
731 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
732 	    xfs_inherit_nodump)
733 		di_flags |= XFS_DIFLAG_NODUMP;
734 	if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
735 	    xfs_inherit_sync)
736 		di_flags |= XFS_DIFLAG_SYNC;
737 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
738 	    xfs_inherit_nosymlinks)
739 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
740 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
741 	    xfs_inherit_nodefrag)
742 		di_flags |= XFS_DIFLAG_NODEFRAG;
743 	if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
744 		di_flags |= XFS_DIFLAG_FILESTREAM;
745 
746 	ip->i_d.di_flags |= di_flags;
747 }
748 
749 /* Propagate di_flags2 from a parent inode to a child inode. */
750 static void
751 xfs_inode_inherit_flags2(
752 	struct xfs_inode	*ip,
753 	const struct xfs_inode	*pip)
754 {
755 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 		ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 		ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
758 	}
759 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
760 		ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
761 }
762 
763 /*
764  * Initialise a newly allocated inode and return the in-core inode to the
765  * caller locked exclusively.
766  */
767 static int
768 xfs_init_new_inode(
769 	struct xfs_trans	*tp,
770 	struct xfs_inode	*pip,
771 	xfs_ino_t		ino,
772 	umode_t			mode,
773 	xfs_nlink_t		nlink,
774 	dev_t			rdev,
775 	prid_t			prid,
776 	struct xfs_inode	**ipp)
777 {
778 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
779 	struct xfs_mount	*mp = tp->t_mountp;
780 	struct xfs_inode	*ip;
781 	unsigned int		flags;
782 	int			error;
783 	struct timespec64	tv;
784 	struct inode		*inode;
785 
786 	/*
787 	 * Protect against obviously corrupt allocation btree records. Later
788 	 * xfs_iget checks will catch re-allocation of other active in-memory
789 	 * and on-disk inodes. If we don't catch reallocating the parent inode
790 	 * here we will deadlock in xfs_iget() so we have to do these checks
791 	 * first.
792 	 */
793 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
794 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
795 		return -EFSCORRUPTED;
796 	}
797 
798 	/*
799 	 * Get the in-core inode with the lock held exclusively to prevent
800 	 * others from looking at until we're done.
801 	 */
802 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
803 	if (error)
804 		return error;
805 
806 	ASSERT(ip != NULL);
807 	inode = VFS_I(ip);
808 	set_nlink(inode, nlink);
809 	inode->i_rdev = rdev;
810 	ip->i_d.di_projid = prid;
811 
812 	if (dir && !(dir->i_mode & S_ISGID) &&
813 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
814 		inode->i_uid = current_fsuid();
815 		inode->i_gid = dir->i_gid;
816 		inode->i_mode = mode;
817 	} else {
818 		inode_init_owner(inode, dir, mode);
819 	}
820 
821 	/*
822 	 * If the group ID of the new file does not match the effective group
823 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
824 	 * (and only if the irix_sgid_inherit compatibility variable is set).
825 	 */
826 	if (irix_sgid_inherit &&
827 	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
828 		inode->i_mode &= ~S_ISGID;
829 
830 	ip->i_d.di_size = 0;
831 	ip->i_df.if_nextents = 0;
832 	ASSERT(ip->i_d.di_nblocks == 0);
833 
834 	tv = current_time(inode);
835 	inode->i_mtime = tv;
836 	inode->i_atime = tv;
837 	inode->i_ctime = tv;
838 
839 	ip->i_d.di_extsize = 0;
840 	ip->i_d.di_dmevmask = 0;
841 	ip->i_d.di_dmstate = 0;
842 	ip->i_d.di_flags = 0;
843 
844 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
845 		inode_set_iversion(inode, 1);
846 		ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
847 		ip->i_d.di_cowextsize = 0;
848 		ip->i_d.di_crtime = tv;
849 	}
850 
851 	flags = XFS_ILOG_CORE;
852 	switch (mode & S_IFMT) {
853 	case S_IFIFO:
854 	case S_IFCHR:
855 	case S_IFBLK:
856 	case S_IFSOCK:
857 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
858 		ip->i_df.if_flags = 0;
859 		flags |= XFS_ILOG_DEV;
860 		break;
861 	case S_IFREG:
862 	case S_IFDIR:
863 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY))
864 			xfs_inode_inherit_flags(ip, pip);
865 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY))
866 			xfs_inode_inherit_flags2(ip, pip);
867 		/* FALLTHROUGH */
868 	case S_IFLNK:
869 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
870 		ip->i_df.if_flags = XFS_IFEXTENTS;
871 		ip->i_df.if_bytes = 0;
872 		ip->i_df.if_u1.if_root = NULL;
873 		break;
874 	default:
875 		ASSERT(0);
876 	}
877 
878 	/*
879 	 * Log the new values stuffed into the inode.
880 	 */
881 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
882 	xfs_trans_log_inode(tp, ip, flags);
883 
884 	/* now that we have an i_mode we can setup the inode structure */
885 	xfs_setup_inode(ip);
886 
887 	*ipp = ip;
888 	return 0;
889 }
890 
891 /*
892  * Allocates a new inode from disk and return a pointer to the incore copy. This
893  * routine will internally commit the current transaction and allocate a new one
894  * if we needed to allocate more on-disk free inodes to perform the requested
895  * operation.
896  *
897  * If we are allocating quota inodes, we do not have a parent inode to attach to
898  * or associate with (i.e. dp == NULL) because they are not linked into the
899  * directory structure - they are attached directly to the superblock - and so
900  * have no parent.
901  */
902 int
903 xfs_dir_ialloc(
904 	struct xfs_trans	**tpp,
905 	struct xfs_inode	*dp,
906 	umode_t			mode,
907 	xfs_nlink_t		nlink,
908 	dev_t			rdev,
909 	prid_t			prid,
910 	struct xfs_inode	**ipp)
911 {
912 	struct xfs_buf		*agibp;
913 	xfs_ino_t		parent_ino = dp ? dp->i_ino : 0;
914 	xfs_ino_t		ino;
915 	int			error;
916 
917 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
918 
919 	/*
920 	 * Call the space management code to pick the on-disk inode to be
921 	 * allocated.
922 	 */
923 	error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp);
924 	if (error)
925 		return error;
926 
927 	if (!agibp)
928 		return -ENOSPC;
929 
930 	/* Allocate an inode from the selected AG */
931 	error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino);
932 	if (error)
933 		return error;
934 	ASSERT(ino != NULLFSINO);
935 
936 	return xfs_init_new_inode(*tpp, dp, ino, mode, nlink, rdev, prid, ipp);
937 }
938 
939 /*
940  * Decrement the link count on an inode & log the change.  If this causes the
941  * link count to go to zero, move the inode to AGI unlinked list so that it can
942  * be freed when the last active reference goes away via xfs_inactive().
943  */
944 static int			/* error */
945 xfs_droplink(
946 	xfs_trans_t *tp,
947 	xfs_inode_t *ip)
948 {
949 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
950 
951 	drop_nlink(VFS_I(ip));
952 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
953 
954 	if (VFS_I(ip)->i_nlink)
955 		return 0;
956 
957 	return xfs_iunlink(tp, ip);
958 }
959 
960 /*
961  * Increment the link count on an inode & log the change.
962  */
963 static void
964 xfs_bumplink(
965 	xfs_trans_t *tp,
966 	xfs_inode_t *ip)
967 {
968 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
969 
970 	inc_nlink(VFS_I(ip));
971 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
972 }
973 
974 int
975 xfs_create(
976 	xfs_inode_t		*dp,
977 	struct xfs_name		*name,
978 	umode_t			mode,
979 	dev_t			rdev,
980 	xfs_inode_t		**ipp)
981 {
982 	int			is_dir = S_ISDIR(mode);
983 	struct xfs_mount	*mp = dp->i_mount;
984 	struct xfs_inode	*ip = NULL;
985 	struct xfs_trans	*tp = NULL;
986 	int			error;
987 	bool                    unlock_dp_on_error = false;
988 	prid_t			prid;
989 	struct xfs_dquot	*udqp = NULL;
990 	struct xfs_dquot	*gdqp = NULL;
991 	struct xfs_dquot	*pdqp = NULL;
992 	struct xfs_trans_res	*tres;
993 	uint			resblks;
994 
995 	trace_xfs_create(dp, name);
996 
997 	if (XFS_FORCED_SHUTDOWN(mp))
998 		return -EIO;
999 
1000 	prid = xfs_get_initial_prid(dp);
1001 
1002 	/*
1003 	 * Make sure that we have allocated dquot(s) on disk.
1004 	 */
1005 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1006 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1007 					&udqp, &gdqp, &pdqp);
1008 	if (error)
1009 		return error;
1010 
1011 	if (is_dir) {
1012 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1013 		tres = &M_RES(mp)->tr_mkdir;
1014 	} else {
1015 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1016 		tres = &M_RES(mp)->tr_create;
1017 	}
1018 
1019 	/*
1020 	 * Initially assume that the file does not exist and
1021 	 * reserve the resources for that case.  If that is not
1022 	 * the case we'll drop the one we have and get a more
1023 	 * appropriate transaction later.
1024 	 */
1025 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1026 	if (error == -ENOSPC) {
1027 		/* flush outstanding delalloc blocks and retry */
1028 		xfs_flush_inodes(mp);
1029 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1030 	}
1031 	if (error)
1032 		goto out_release_inode;
1033 
1034 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1035 	unlock_dp_on_error = true;
1036 
1037 	/*
1038 	 * Reserve disk quota and the inode.
1039 	 */
1040 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1041 						pdqp, resblks, 1, 0);
1042 	if (error)
1043 		goto out_trans_cancel;
1044 
1045 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1046 			XFS_IEXT_DIR_MANIP_CNT(mp));
1047 	if (error)
1048 		goto out_trans_cancel;
1049 
1050 	/*
1051 	 * A newly created regular or special file just has one directory
1052 	 * entry pointing to them, but a directory also the "." entry
1053 	 * pointing to itself.
1054 	 */
1055 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1056 	if (error)
1057 		goto out_trans_cancel;
1058 
1059 	/*
1060 	 * Now we join the directory inode to the transaction.  We do not do it
1061 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1062 	 * (and release all the locks).  An error from here on will result in
1063 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1064 	 * error path.
1065 	 */
1066 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1067 	unlock_dp_on_error = false;
1068 
1069 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1070 					resblks - XFS_IALLOC_SPACE_RES(mp));
1071 	if (error) {
1072 		ASSERT(error != -ENOSPC);
1073 		goto out_trans_cancel;
1074 	}
1075 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1076 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1077 
1078 	if (is_dir) {
1079 		error = xfs_dir_init(tp, ip, dp);
1080 		if (error)
1081 			goto out_trans_cancel;
1082 
1083 		xfs_bumplink(tp, dp);
1084 	}
1085 
1086 	/*
1087 	 * If this is a synchronous mount, make sure that the
1088 	 * create transaction goes to disk before returning to
1089 	 * the user.
1090 	 */
1091 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1092 		xfs_trans_set_sync(tp);
1093 
1094 	/*
1095 	 * Attach the dquot(s) to the inodes and modify them incore.
1096 	 * These ids of the inode couldn't have changed since the new
1097 	 * inode has been locked ever since it was created.
1098 	 */
1099 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1100 
1101 	error = xfs_trans_commit(tp);
1102 	if (error)
1103 		goto out_release_inode;
1104 
1105 	xfs_qm_dqrele(udqp);
1106 	xfs_qm_dqrele(gdqp);
1107 	xfs_qm_dqrele(pdqp);
1108 
1109 	*ipp = ip;
1110 	return 0;
1111 
1112  out_trans_cancel:
1113 	xfs_trans_cancel(tp);
1114  out_release_inode:
1115 	/*
1116 	 * Wait until after the current transaction is aborted to finish the
1117 	 * setup of the inode and release the inode.  This prevents recursive
1118 	 * transactions and deadlocks from xfs_inactive.
1119 	 */
1120 	if (ip) {
1121 		xfs_finish_inode_setup(ip);
1122 		xfs_irele(ip);
1123 	}
1124 
1125 	xfs_qm_dqrele(udqp);
1126 	xfs_qm_dqrele(gdqp);
1127 	xfs_qm_dqrele(pdqp);
1128 
1129 	if (unlock_dp_on_error)
1130 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1131 	return error;
1132 }
1133 
1134 int
1135 xfs_create_tmpfile(
1136 	struct xfs_inode	*dp,
1137 	umode_t			mode,
1138 	struct xfs_inode	**ipp)
1139 {
1140 	struct xfs_mount	*mp = dp->i_mount;
1141 	struct xfs_inode	*ip = NULL;
1142 	struct xfs_trans	*tp = NULL;
1143 	int			error;
1144 	prid_t                  prid;
1145 	struct xfs_dquot	*udqp = NULL;
1146 	struct xfs_dquot	*gdqp = NULL;
1147 	struct xfs_dquot	*pdqp = NULL;
1148 	struct xfs_trans_res	*tres;
1149 	uint			resblks;
1150 
1151 	if (XFS_FORCED_SHUTDOWN(mp))
1152 		return -EIO;
1153 
1154 	prid = xfs_get_initial_prid(dp);
1155 
1156 	/*
1157 	 * Make sure that we have allocated dquot(s) on disk.
1158 	 */
1159 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1160 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1161 				&udqp, &gdqp, &pdqp);
1162 	if (error)
1163 		return error;
1164 
1165 	resblks = XFS_IALLOC_SPACE_RES(mp);
1166 	tres = &M_RES(mp)->tr_create_tmpfile;
1167 
1168 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1169 	if (error)
1170 		goto out_release_inode;
1171 
1172 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1173 						pdqp, resblks, 1, 0);
1174 	if (error)
1175 		goto out_trans_cancel;
1176 
1177 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1178 	if (error)
1179 		goto out_trans_cancel;
1180 
1181 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1182 		xfs_trans_set_sync(tp);
1183 
1184 	/*
1185 	 * Attach the dquot(s) to the inodes and modify them incore.
1186 	 * These ids of the inode couldn't have changed since the new
1187 	 * inode has been locked ever since it was created.
1188 	 */
1189 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1190 
1191 	error = xfs_iunlink(tp, ip);
1192 	if (error)
1193 		goto out_trans_cancel;
1194 
1195 	error = xfs_trans_commit(tp);
1196 	if (error)
1197 		goto out_release_inode;
1198 
1199 	xfs_qm_dqrele(udqp);
1200 	xfs_qm_dqrele(gdqp);
1201 	xfs_qm_dqrele(pdqp);
1202 
1203 	*ipp = ip;
1204 	return 0;
1205 
1206  out_trans_cancel:
1207 	xfs_trans_cancel(tp);
1208  out_release_inode:
1209 	/*
1210 	 * Wait until after the current transaction is aborted to finish the
1211 	 * setup of the inode and release the inode.  This prevents recursive
1212 	 * transactions and deadlocks from xfs_inactive.
1213 	 */
1214 	if (ip) {
1215 		xfs_finish_inode_setup(ip);
1216 		xfs_irele(ip);
1217 	}
1218 
1219 	xfs_qm_dqrele(udqp);
1220 	xfs_qm_dqrele(gdqp);
1221 	xfs_qm_dqrele(pdqp);
1222 
1223 	return error;
1224 }
1225 
1226 int
1227 xfs_link(
1228 	xfs_inode_t		*tdp,
1229 	xfs_inode_t		*sip,
1230 	struct xfs_name		*target_name)
1231 {
1232 	xfs_mount_t		*mp = tdp->i_mount;
1233 	xfs_trans_t		*tp;
1234 	int			error;
1235 	int			resblks;
1236 
1237 	trace_xfs_link(tdp, target_name);
1238 
1239 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1240 
1241 	if (XFS_FORCED_SHUTDOWN(mp))
1242 		return -EIO;
1243 
1244 	error = xfs_qm_dqattach(sip);
1245 	if (error)
1246 		goto std_return;
1247 
1248 	error = xfs_qm_dqattach(tdp);
1249 	if (error)
1250 		goto std_return;
1251 
1252 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1253 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1254 	if (error == -ENOSPC) {
1255 		resblks = 0;
1256 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1257 	}
1258 	if (error)
1259 		goto std_return;
1260 
1261 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1262 
1263 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1264 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1265 
1266 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1267 			XFS_IEXT_DIR_MANIP_CNT(mp));
1268 	if (error)
1269 		goto error_return;
1270 
1271 	/*
1272 	 * If we are using project inheritance, we only allow hard link
1273 	 * creation in our tree when the project IDs are the same; else
1274 	 * the tree quota mechanism could be circumvented.
1275 	 */
1276 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1277 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1278 		error = -EXDEV;
1279 		goto error_return;
1280 	}
1281 
1282 	if (!resblks) {
1283 		error = xfs_dir_canenter(tp, tdp, target_name);
1284 		if (error)
1285 			goto error_return;
1286 	}
1287 
1288 	/*
1289 	 * Handle initial link state of O_TMPFILE inode
1290 	 */
1291 	if (VFS_I(sip)->i_nlink == 0) {
1292 		error = xfs_iunlink_remove(tp, sip);
1293 		if (error)
1294 			goto error_return;
1295 	}
1296 
1297 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1298 				   resblks);
1299 	if (error)
1300 		goto error_return;
1301 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1302 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1303 
1304 	xfs_bumplink(tp, sip);
1305 
1306 	/*
1307 	 * If this is a synchronous mount, make sure that the
1308 	 * link transaction goes to disk before returning to
1309 	 * the user.
1310 	 */
1311 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1312 		xfs_trans_set_sync(tp);
1313 
1314 	return xfs_trans_commit(tp);
1315 
1316  error_return:
1317 	xfs_trans_cancel(tp);
1318  std_return:
1319 	return error;
1320 }
1321 
1322 /* Clear the reflink flag and the cowblocks tag if possible. */
1323 static void
1324 xfs_itruncate_clear_reflink_flags(
1325 	struct xfs_inode	*ip)
1326 {
1327 	struct xfs_ifork	*dfork;
1328 	struct xfs_ifork	*cfork;
1329 
1330 	if (!xfs_is_reflink_inode(ip))
1331 		return;
1332 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1333 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1334 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1335 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1336 	if (cfork->if_bytes == 0)
1337 		xfs_inode_clear_cowblocks_tag(ip);
1338 }
1339 
1340 /*
1341  * Free up the underlying blocks past new_size.  The new size must be smaller
1342  * than the current size.  This routine can be used both for the attribute and
1343  * data fork, and does not modify the inode size, which is left to the caller.
1344  *
1345  * The transaction passed to this routine must have made a permanent log
1346  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1347  * given transaction and start new ones, so make sure everything involved in
1348  * the transaction is tidy before calling here.  Some transaction will be
1349  * returned to the caller to be committed.  The incoming transaction must
1350  * already include the inode, and both inode locks must be held exclusively.
1351  * The inode must also be "held" within the transaction.  On return the inode
1352  * will be "held" within the returned transaction.  This routine does NOT
1353  * require any disk space to be reserved for it within the transaction.
1354  *
1355  * If we get an error, we must return with the inode locked and linked into the
1356  * current transaction. This keeps things simple for the higher level code,
1357  * because it always knows that the inode is locked and held in the transaction
1358  * that returns to it whether errors occur or not.  We don't mark the inode
1359  * dirty on error so that transactions can be easily aborted if possible.
1360  */
1361 int
1362 xfs_itruncate_extents_flags(
1363 	struct xfs_trans	**tpp,
1364 	struct xfs_inode	*ip,
1365 	int			whichfork,
1366 	xfs_fsize_t		new_size,
1367 	int			flags)
1368 {
1369 	struct xfs_mount	*mp = ip->i_mount;
1370 	struct xfs_trans	*tp = *tpp;
1371 	xfs_fileoff_t		first_unmap_block;
1372 	xfs_filblks_t		unmap_len;
1373 	int			error = 0;
1374 
1375 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1376 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1377 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1378 	ASSERT(new_size <= XFS_ISIZE(ip));
1379 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1380 	ASSERT(ip->i_itemp != NULL);
1381 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1382 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1383 
1384 	trace_xfs_itruncate_extents_start(ip, new_size);
1385 
1386 	flags |= xfs_bmapi_aflag(whichfork);
1387 
1388 	/*
1389 	 * Since it is possible for space to become allocated beyond
1390 	 * the end of the file (in a crash where the space is allocated
1391 	 * but the inode size is not yet updated), simply remove any
1392 	 * blocks which show up between the new EOF and the maximum
1393 	 * possible file size.
1394 	 *
1395 	 * We have to free all the blocks to the bmbt maximum offset, even if
1396 	 * the page cache can't scale that far.
1397 	 */
1398 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1399 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1400 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1401 		return 0;
1402 	}
1403 
1404 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1405 	while (unmap_len > 0) {
1406 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1407 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1408 				flags, XFS_ITRUNC_MAX_EXTENTS);
1409 		if (error)
1410 			goto out;
1411 
1412 		/* free the just unmapped extents */
1413 		error = xfs_defer_finish(&tp);
1414 		if (error)
1415 			goto out;
1416 	}
1417 
1418 	if (whichfork == XFS_DATA_FORK) {
1419 		/* Remove all pending CoW reservations. */
1420 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1421 				first_unmap_block, XFS_MAX_FILEOFF, true);
1422 		if (error)
1423 			goto out;
1424 
1425 		xfs_itruncate_clear_reflink_flags(ip);
1426 	}
1427 
1428 	/*
1429 	 * Always re-log the inode so that our permanent transaction can keep
1430 	 * on rolling it forward in the log.
1431 	 */
1432 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1433 
1434 	trace_xfs_itruncate_extents_end(ip, new_size);
1435 
1436 out:
1437 	*tpp = tp;
1438 	return error;
1439 }
1440 
1441 int
1442 xfs_release(
1443 	xfs_inode_t	*ip)
1444 {
1445 	xfs_mount_t	*mp = ip->i_mount;
1446 	int		error;
1447 
1448 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1449 		return 0;
1450 
1451 	/* If this is a read-only mount, don't do this (would generate I/O) */
1452 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1453 		return 0;
1454 
1455 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1456 		int truncated;
1457 
1458 		/*
1459 		 * If we previously truncated this file and removed old data
1460 		 * in the process, we want to initiate "early" writeout on
1461 		 * the last close.  This is an attempt to combat the notorious
1462 		 * NULL files problem which is particularly noticeable from a
1463 		 * truncate down, buffered (re-)write (delalloc), followed by
1464 		 * a crash.  What we are effectively doing here is
1465 		 * significantly reducing the time window where we'd otherwise
1466 		 * be exposed to that problem.
1467 		 */
1468 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1469 		if (truncated) {
1470 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1471 			if (ip->i_delayed_blks > 0) {
1472 				error = filemap_flush(VFS_I(ip)->i_mapping);
1473 				if (error)
1474 					return error;
1475 			}
1476 		}
1477 	}
1478 
1479 	if (VFS_I(ip)->i_nlink == 0)
1480 		return 0;
1481 
1482 	if (xfs_can_free_eofblocks(ip, false)) {
1483 
1484 		/*
1485 		 * Check if the inode is being opened, written and closed
1486 		 * frequently and we have delayed allocation blocks outstanding
1487 		 * (e.g. streaming writes from the NFS server), truncating the
1488 		 * blocks past EOF will cause fragmentation to occur.
1489 		 *
1490 		 * In this case don't do the truncation, but we have to be
1491 		 * careful how we detect this case. Blocks beyond EOF show up as
1492 		 * i_delayed_blks even when the inode is clean, so we need to
1493 		 * truncate them away first before checking for a dirty release.
1494 		 * Hence on the first dirty close we will still remove the
1495 		 * speculative allocation, but after that we will leave it in
1496 		 * place.
1497 		 */
1498 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1499 			return 0;
1500 		/*
1501 		 * If we can't get the iolock just skip truncating the blocks
1502 		 * past EOF because we could deadlock with the mmap_lock
1503 		 * otherwise. We'll get another chance to drop them once the
1504 		 * last reference to the inode is dropped, so we'll never leak
1505 		 * blocks permanently.
1506 		 */
1507 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1508 			error = xfs_free_eofblocks(ip);
1509 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1510 			if (error)
1511 				return error;
1512 		}
1513 
1514 		/* delalloc blocks after truncation means it really is dirty */
1515 		if (ip->i_delayed_blks)
1516 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1517 	}
1518 	return 0;
1519 }
1520 
1521 /*
1522  * xfs_inactive_truncate
1523  *
1524  * Called to perform a truncate when an inode becomes unlinked.
1525  */
1526 STATIC int
1527 xfs_inactive_truncate(
1528 	struct xfs_inode *ip)
1529 {
1530 	struct xfs_mount	*mp = ip->i_mount;
1531 	struct xfs_trans	*tp;
1532 	int			error;
1533 
1534 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1535 	if (error) {
1536 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1537 		return error;
1538 	}
1539 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1540 	xfs_trans_ijoin(tp, ip, 0);
1541 
1542 	/*
1543 	 * Log the inode size first to prevent stale data exposure in the event
1544 	 * of a system crash before the truncate completes. See the related
1545 	 * comment in xfs_vn_setattr_size() for details.
1546 	 */
1547 	ip->i_d.di_size = 0;
1548 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1549 
1550 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1551 	if (error)
1552 		goto error_trans_cancel;
1553 
1554 	ASSERT(ip->i_df.if_nextents == 0);
1555 
1556 	error = xfs_trans_commit(tp);
1557 	if (error)
1558 		goto error_unlock;
1559 
1560 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1561 	return 0;
1562 
1563 error_trans_cancel:
1564 	xfs_trans_cancel(tp);
1565 error_unlock:
1566 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1567 	return error;
1568 }
1569 
1570 /*
1571  * xfs_inactive_ifree()
1572  *
1573  * Perform the inode free when an inode is unlinked.
1574  */
1575 STATIC int
1576 xfs_inactive_ifree(
1577 	struct xfs_inode *ip)
1578 {
1579 	struct xfs_mount	*mp = ip->i_mount;
1580 	struct xfs_trans	*tp;
1581 	int			error;
1582 
1583 	/*
1584 	 * We try to use a per-AG reservation for any block needed by the finobt
1585 	 * tree, but as the finobt feature predates the per-AG reservation
1586 	 * support a degraded file system might not have enough space for the
1587 	 * reservation at mount time.  In that case try to dip into the reserved
1588 	 * pool and pray.
1589 	 *
1590 	 * Send a warning if the reservation does happen to fail, as the inode
1591 	 * now remains allocated and sits on the unlinked list until the fs is
1592 	 * repaired.
1593 	 */
1594 	if (unlikely(mp->m_finobt_nores)) {
1595 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1596 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1597 				&tp);
1598 	} else {
1599 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1600 	}
1601 	if (error) {
1602 		if (error == -ENOSPC) {
1603 			xfs_warn_ratelimited(mp,
1604 			"Failed to remove inode(s) from unlinked list. "
1605 			"Please free space, unmount and run xfs_repair.");
1606 		} else {
1607 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1608 		}
1609 		return error;
1610 	}
1611 
1612 	/*
1613 	 * We do not hold the inode locked across the entire rolling transaction
1614 	 * here. We only need to hold it for the first transaction that
1615 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1616 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1617 	 * here breaks the relationship between cluster buffer invalidation and
1618 	 * stale inode invalidation on cluster buffer item journal commit
1619 	 * completion, and can result in leaving dirty stale inodes hanging
1620 	 * around in memory.
1621 	 *
1622 	 * We have no need for serialising this inode operation against other
1623 	 * operations - we freed the inode and hence reallocation is required
1624 	 * and that will serialise on reallocating the space the deferops need
1625 	 * to free. Hence we can unlock the inode on the first commit of
1626 	 * the transaction rather than roll it right through the deferops. This
1627 	 * avoids relogging the XFS_ISTALE inode.
1628 	 *
1629 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1630 	 * by asserting that the inode is still locked when it returns.
1631 	 */
1632 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1633 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1634 
1635 	error = xfs_ifree(tp, ip);
1636 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1637 	if (error) {
1638 		/*
1639 		 * If we fail to free the inode, shut down.  The cancel
1640 		 * might do that, we need to make sure.  Otherwise the
1641 		 * inode might be lost for a long time or forever.
1642 		 */
1643 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1644 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1645 				__func__, error);
1646 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1647 		}
1648 		xfs_trans_cancel(tp);
1649 		return error;
1650 	}
1651 
1652 	/*
1653 	 * Credit the quota account(s). The inode is gone.
1654 	 */
1655 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1656 
1657 	/*
1658 	 * Just ignore errors at this point.  There is nothing we can do except
1659 	 * to try to keep going. Make sure it's not a silent error.
1660 	 */
1661 	error = xfs_trans_commit(tp);
1662 	if (error)
1663 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1664 			__func__, error);
1665 
1666 	return 0;
1667 }
1668 
1669 /*
1670  * xfs_inactive
1671  *
1672  * This is called when the vnode reference count for the vnode
1673  * goes to zero.  If the file has been unlinked, then it must
1674  * now be truncated.  Also, we clear all of the read-ahead state
1675  * kept for the inode here since the file is now closed.
1676  */
1677 void
1678 xfs_inactive(
1679 	xfs_inode_t	*ip)
1680 {
1681 	struct xfs_mount	*mp;
1682 	int			error;
1683 	int			truncate = 0;
1684 
1685 	/*
1686 	 * If the inode is already free, then there can be nothing
1687 	 * to clean up here.
1688 	 */
1689 	if (VFS_I(ip)->i_mode == 0) {
1690 		ASSERT(ip->i_df.if_broot_bytes == 0);
1691 		return;
1692 	}
1693 
1694 	mp = ip->i_mount;
1695 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1696 
1697 	/* If this is a read-only mount, don't do this (would generate I/O) */
1698 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1699 		return;
1700 
1701 	/* Try to clean out the cow blocks if there are any. */
1702 	if (xfs_inode_has_cow_data(ip))
1703 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1704 
1705 	if (VFS_I(ip)->i_nlink != 0) {
1706 		/*
1707 		 * force is true because we are evicting an inode from the
1708 		 * cache. Post-eof blocks must be freed, lest we end up with
1709 		 * broken free space accounting.
1710 		 *
1711 		 * Note: don't bother with iolock here since lockdep complains
1712 		 * about acquiring it in reclaim context. We have the only
1713 		 * reference to the inode at this point anyways.
1714 		 */
1715 		if (xfs_can_free_eofblocks(ip, true))
1716 			xfs_free_eofblocks(ip);
1717 
1718 		return;
1719 	}
1720 
1721 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1722 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1723 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1724 		truncate = 1;
1725 
1726 	error = xfs_qm_dqattach(ip);
1727 	if (error)
1728 		return;
1729 
1730 	if (S_ISLNK(VFS_I(ip)->i_mode))
1731 		error = xfs_inactive_symlink(ip);
1732 	else if (truncate)
1733 		error = xfs_inactive_truncate(ip);
1734 	if (error)
1735 		return;
1736 
1737 	/*
1738 	 * If there are attributes associated with the file then blow them away
1739 	 * now.  The code calls a routine that recursively deconstructs the
1740 	 * attribute fork. If also blows away the in-core attribute fork.
1741 	 */
1742 	if (XFS_IFORK_Q(ip)) {
1743 		error = xfs_attr_inactive(ip);
1744 		if (error)
1745 			return;
1746 	}
1747 
1748 	ASSERT(!ip->i_afp);
1749 	ASSERT(ip->i_d.di_forkoff == 0);
1750 
1751 	/*
1752 	 * Free the inode.
1753 	 */
1754 	error = xfs_inactive_ifree(ip);
1755 	if (error)
1756 		return;
1757 
1758 	/*
1759 	 * Release the dquots held by inode, if any.
1760 	 */
1761 	xfs_qm_dqdetach(ip);
1762 }
1763 
1764 /*
1765  * In-Core Unlinked List Lookups
1766  * =============================
1767  *
1768  * Every inode is supposed to be reachable from some other piece of metadata
1769  * with the exception of the root directory.  Inodes with a connection to a
1770  * file descriptor but not linked from anywhere in the on-disk directory tree
1771  * are collectively known as unlinked inodes, though the filesystem itself
1772  * maintains links to these inodes so that on-disk metadata are consistent.
1773  *
1774  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1775  * header contains a number of buckets that point to an inode, and each inode
1776  * record has a pointer to the next inode in the hash chain.  This
1777  * singly-linked list causes scaling problems in the iunlink remove function
1778  * because we must walk that list to find the inode that points to the inode
1779  * being removed from the unlinked hash bucket list.
1780  *
1781  * What if we modelled the unlinked list as a collection of records capturing
1782  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1783  * have a fast way to look up unlinked list predecessors, which avoids the
1784  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1785  * rhashtable.
1786  *
1787  * Because this is a backref cache, we ignore operational failures since the
1788  * iunlink code can fall back to the slow bucket walk.  The only errors that
1789  * should bubble out are for obviously incorrect situations.
1790  *
1791  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1792  * access or have otherwise provided for concurrency control.
1793  */
1794 
1795 /* Capture a "X.next_unlinked = Y" relationship. */
1796 struct xfs_iunlink {
1797 	struct rhash_head	iu_rhash_head;
1798 	xfs_agino_t		iu_agino;		/* X */
1799 	xfs_agino_t		iu_next_unlinked;	/* Y */
1800 };
1801 
1802 /* Unlinked list predecessor lookup hashtable construction */
1803 static int
1804 xfs_iunlink_obj_cmpfn(
1805 	struct rhashtable_compare_arg	*arg,
1806 	const void			*obj)
1807 {
1808 	const xfs_agino_t		*key = arg->key;
1809 	const struct xfs_iunlink	*iu = obj;
1810 
1811 	if (iu->iu_next_unlinked != *key)
1812 		return 1;
1813 	return 0;
1814 }
1815 
1816 static const struct rhashtable_params xfs_iunlink_hash_params = {
1817 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1818 	.key_len		= sizeof(xfs_agino_t),
1819 	.key_offset		= offsetof(struct xfs_iunlink,
1820 					   iu_next_unlinked),
1821 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1822 	.automatic_shrinking	= true,
1823 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1824 };
1825 
1826 /*
1827  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1828  * relation is found.
1829  */
1830 static xfs_agino_t
1831 xfs_iunlink_lookup_backref(
1832 	struct xfs_perag	*pag,
1833 	xfs_agino_t		agino)
1834 {
1835 	struct xfs_iunlink	*iu;
1836 
1837 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1838 			xfs_iunlink_hash_params);
1839 	return iu ? iu->iu_agino : NULLAGINO;
1840 }
1841 
1842 /*
1843  * Take ownership of an iunlink cache entry and insert it into the hash table.
1844  * If successful, the entry will be owned by the cache; if not, it is freed.
1845  * Either way, the caller does not own @iu after this call.
1846  */
1847 static int
1848 xfs_iunlink_insert_backref(
1849 	struct xfs_perag	*pag,
1850 	struct xfs_iunlink	*iu)
1851 {
1852 	int			error;
1853 
1854 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1855 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1856 	/*
1857 	 * Fail loudly if there already was an entry because that's a sign of
1858 	 * corruption of in-memory data.  Also fail loudly if we see an error
1859 	 * code we didn't anticipate from the rhashtable code.  Currently we
1860 	 * only anticipate ENOMEM.
1861 	 */
1862 	if (error) {
1863 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1864 		kmem_free(iu);
1865 	}
1866 	/*
1867 	 * Absorb any runtime errors that aren't a result of corruption because
1868 	 * this is a cache and we can always fall back to bucket list scanning.
1869 	 */
1870 	if (error != 0 && error != -EEXIST)
1871 		error = 0;
1872 	return error;
1873 }
1874 
1875 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1876 static int
1877 xfs_iunlink_add_backref(
1878 	struct xfs_perag	*pag,
1879 	xfs_agino_t		prev_agino,
1880 	xfs_agino_t		this_agino)
1881 {
1882 	struct xfs_iunlink	*iu;
1883 
1884 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1885 		return 0;
1886 
1887 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1888 	iu->iu_agino = prev_agino;
1889 	iu->iu_next_unlinked = this_agino;
1890 
1891 	return xfs_iunlink_insert_backref(pag, iu);
1892 }
1893 
1894 /*
1895  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1896  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1897  * wasn't any such entry then we don't bother.
1898  */
1899 static int
1900 xfs_iunlink_change_backref(
1901 	struct xfs_perag	*pag,
1902 	xfs_agino_t		agino,
1903 	xfs_agino_t		next_unlinked)
1904 {
1905 	struct xfs_iunlink	*iu;
1906 	int			error;
1907 
1908 	/* Look up the old entry; if there wasn't one then exit. */
1909 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1910 			xfs_iunlink_hash_params);
1911 	if (!iu)
1912 		return 0;
1913 
1914 	/*
1915 	 * Remove the entry.  This shouldn't ever return an error, but if we
1916 	 * couldn't remove the old entry we don't want to add it again to the
1917 	 * hash table, and if the entry disappeared on us then someone's
1918 	 * violated the locking rules and we need to fail loudly.  Either way
1919 	 * we cannot remove the inode because internal state is or would have
1920 	 * been corrupt.
1921 	 */
1922 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1923 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1924 	if (error)
1925 		return error;
1926 
1927 	/* If there is no new next entry just free our item and return. */
1928 	if (next_unlinked == NULLAGINO) {
1929 		kmem_free(iu);
1930 		return 0;
1931 	}
1932 
1933 	/* Update the entry and re-add it to the hash table. */
1934 	iu->iu_next_unlinked = next_unlinked;
1935 	return xfs_iunlink_insert_backref(pag, iu);
1936 }
1937 
1938 /* Set up the in-core predecessor structures. */
1939 int
1940 xfs_iunlink_init(
1941 	struct xfs_perag	*pag)
1942 {
1943 	return rhashtable_init(&pag->pagi_unlinked_hash,
1944 			&xfs_iunlink_hash_params);
1945 }
1946 
1947 /* Free the in-core predecessor structures. */
1948 static void
1949 xfs_iunlink_free_item(
1950 	void			*ptr,
1951 	void			*arg)
1952 {
1953 	struct xfs_iunlink	*iu = ptr;
1954 	bool			*freed_anything = arg;
1955 
1956 	*freed_anything = true;
1957 	kmem_free(iu);
1958 }
1959 
1960 void
1961 xfs_iunlink_destroy(
1962 	struct xfs_perag	*pag)
1963 {
1964 	bool			freed_anything = false;
1965 
1966 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1967 			xfs_iunlink_free_item, &freed_anything);
1968 
1969 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1970 }
1971 
1972 /*
1973  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1974  * is responsible for validating the old value.
1975  */
1976 STATIC int
1977 xfs_iunlink_update_bucket(
1978 	struct xfs_trans	*tp,
1979 	xfs_agnumber_t		agno,
1980 	struct xfs_buf		*agibp,
1981 	unsigned int		bucket_index,
1982 	xfs_agino_t		new_agino)
1983 {
1984 	struct xfs_agi		*agi = agibp->b_addr;
1985 	xfs_agino_t		old_value;
1986 	int			offset;
1987 
1988 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
1989 
1990 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1991 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
1992 			old_value, new_agino);
1993 
1994 	/*
1995 	 * We should never find the head of the list already set to the value
1996 	 * passed in because either we're adding or removing ourselves from the
1997 	 * head of the list.
1998 	 */
1999 	if (old_value == new_agino) {
2000 		xfs_buf_mark_corrupt(agibp);
2001 		return -EFSCORRUPTED;
2002 	}
2003 
2004 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2005 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2006 			(sizeof(xfs_agino_t) * bucket_index);
2007 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2008 	return 0;
2009 }
2010 
2011 /* Set an on-disk inode's next_unlinked pointer. */
2012 STATIC void
2013 xfs_iunlink_update_dinode(
2014 	struct xfs_trans	*tp,
2015 	xfs_agnumber_t		agno,
2016 	xfs_agino_t		agino,
2017 	struct xfs_buf		*ibp,
2018 	struct xfs_dinode	*dip,
2019 	struct xfs_imap		*imap,
2020 	xfs_agino_t		next_agino)
2021 {
2022 	struct xfs_mount	*mp = tp->t_mountp;
2023 	int			offset;
2024 
2025 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2026 
2027 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2028 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2029 
2030 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2031 	offset = imap->im_boffset +
2032 			offsetof(struct xfs_dinode, di_next_unlinked);
2033 
2034 	/* need to recalc the inode CRC if appropriate */
2035 	xfs_dinode_calc_crc(mp, dip);
2036 	xfs_trans_inode_buf(tp, ibp);
2037 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2038 }
2039 
2040 /* Set an in-core inode's unlinked pointer and return the old value. */
2041 STATIC int
2042 xfs_iunlink_update_inode(
2043 	struct xfs_trans	*tp,
2044 	struct xfs_inode	*ip,
2045 	xfs_agnumber_t		agno,
2046 	xfs_agino_t		next_agino,
2047 	xfs_agino_t		*old_next_agino)
2048 {
2049 	struct xfs_mount	*mp = tp->t_mountp;
2050 	struct xfs_dinode	*dip;
2051 	struct xfs_buf		*ibp;
2052 	xfs_agino_t		old_value;
2053 	int			error;
2054 
2055 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2056 
2057 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2058 	if (error)
2059 		return error;
2060 
2061 	/* Make sure the old pointer isn't garbage. */
2062 	old_value = be32_to_cpu(dip->di_next_unlinked);
2063 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2064 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2065 				sizeof(*dip), __this_address);
2066 		error = -EFSCORRUPTED;
2067 		goto out;
2068 	}
2069 
2070 	/*
2071 	 * Since we're updating a linked list, we should never find that the
2072 	 * current pointer is the same as the new value, unless we're
2073 	 * terminating the list.
2074 	 */
2075 	*old_next_agino = old_value;
2076 	if (old_value == next_agino) {
2077 		if (next_agino != NULLAGINO) {
2078 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2079 					dip, sizeof(*dip), __this_address);
2080 			error = -EFSCORRUPTED;
2081 		}
2082 		goto out;
2083 	}
2084 
2085 	/* Ok, update the new pointer. */
2086 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2087 			ibp, dip, &ip->i_imap, next_agino);
2088 	return 0;
2089 out:
2090 	xfs_trans_brelse(tp, ibp);
2091 	return error;
2092 }
2093 
2094 /*
2095  * This is called when the inode's link count has gone to 0 or we are creating
2096  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2097  *
2098  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2099  * list when the inode is freed.
2100  */
2101 STATIC int
2102 xfs_iunlink(
2103 	struct xfs_trans	*tp,
2104 	struct xfs_inode	*ip)
2105 {
2106 	struct xfs_mount	*mp = tp->t_mountp;
2107 	struct xfs_agi		*agi;
2108 	struct xfs_buf		*agibp;
2109 	xfs_agino_t		next_agino;
2110 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2111 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2112 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2113 	int			error;
2114 
2115 	ASSERT(VFS_I(ip)->i_nlink == 0);
2116 	ASSERT(VFS_I(ip)->i_mode != 0);
2117 	trace_xfs_iunlink(ip);
2118 
2119 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2120 	error = xfs_read_agi(mp, tp, agno, &agibp);
2121 	if (error)
2122 		return error;
2123 	agi = agibp->b_addr;
2124 
2125 	/*
2126 	 * Get the index into the agi hash table for the list this inode will
2127 	 * go on.  Make sure the pointer isn't garbage and that this inode
2128 	 * isn't already on the list.
2129 	 */
2130 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2131 	if (next_agino == agino ||
2132 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2133 		xfs_buf_mark_corrupt(agibp);
2134 		return -EFSCORRUPTED;
2135 	}
2136 
2137 	if (next_agino != NULLAGINO) {
2138 		xfs_agino_t		old_agino;
2139 
2140 		/*
2141 		 * There is already another inode in the bucket, so point this
2142 		 * inode to the current head of the list.
2143 		 */
2144 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2145 				&old_agino);
2146 		if (error)
2147 			return error;
2148 		ASSERT(old_agino == NULLAGINO);
2149 
2150 		/*
2151 		 * agino has been unlinked, add a backref from the next inode
2152 		 * back to agino.
2153 		 */
2154 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2155 		if (error)
2156 			return error;
2157 	}
2158 
2159 	/* Point the head of the list to point to this inode. */
2160 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2161 }
2162 
2163 /* Return the imap, dinode pointer, and buffer for an inode. */
2164 STATIC int
2165 xfs_iunlink_map_ino(
2166 	struct xfs_trans	*tp,
2167 	xfs_agnumber_t		agno,
2168 	xfs_agino_t		agino,
2169 	struct xfs_imap		*imap,
2170 	struct xfs_dinode	**dipp,
2171 	struct xfs_buf		**bpp)
2172 {
2173 	struct xfs_mount	*mp = tp->t_mountp;
2174 	int			error;
2175 
2176 	imap->im_blkno = 0;
2177 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2178 	if (error) {
2179 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2180 				__func__, error);
2181 		return error;
2182 	}
2183 
2184 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2185 	if (error) {
2186 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2187 				__func__, error);
2188 		return error;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Walk the unlinked chain from @head_agino until we find the inode that
2196  * points to @target_agino.  Return the inode number, map, dinode pointer,
2197  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198  *
2199  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200  * @agino, @imap, @dipp, and @bpp are all output parameters.
2201  *
2202  * Do not call this function if @target_agino is the head of the list.
2203  */
2204 STATIC int
2205 xfs_iunlink_map_prev(
2206 	struct xfs_trans	*tp,
2207 	xfs_agnumber_t		agno,
2208 	xfs_agino_t		head_agino,
2209 	xfs_agino_t		target_agino,
2210 	xfs_agino_t		*agino,
2211 	struct xfs_imap		*imap,
2212 	struct xfs_dinode	**dipp,
2213 	struct xfs_buf		**bpp,
2214 	struct xfs_perag	*pag)
2215 {
2216 	struct xfs_mount	*mp = tp->t_mountp;
2217 	xfs_agino_t		next_agino;
2218 	int			error;
2219 
2220 	ASSERT(head_agino != target_agino);
2221 	*bpp = NULL;
2222 
2223 	/* See if our backref cache can find it faster. */
2224 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2225 	if (*agino != NULLAGINO) {
2226 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2227 		if (error)
2228 			return error;
2229 
2230 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231 			return 0;
2232 
2233 		/*
2234 		 * If we get here the cache contents were corrupt, so drop the
2235 		 * buffer and fall back to walking the bucket list.
2236 		 */
2237 		xfs_trans_brelse(tp, *bpp);
2238 		*bpp = NULL;
2239 		WARN_ON_ONCE(1);
2240 	}
2241 
2242 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2243 
2244 	/* Otherwise, walk the entire bucket until we find it. */
2245 	next_agino = head_agino;
2246 	while (next_agino != target_agino) {
2247 		xfs_agino_t	unlinked_agino;
2248 
2249 		if (*bpp)
2250 			xfs_trans_brelse(tp, *bpp);
2251 
2252 		*agino = next_agino;
2253 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2254 				bpp);
2255 		if (error)
2256 			return error;
2257 
2258 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259 		/*
2260 		 * Make sure this pointer is valid and isn't an obvious
2261 		 * infinite loop.
2262 		 */
2263 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2264 		    next_agino == unlinked_agino) {
2265 			XFS_CORRUPTION_ERROR(__func__,
2266 					XFS_ERRLEVEL_LOW, mp,
2267 					*dipp, sizeof(**dipp));
2268 			error = -EFSCORRUPTED;
2269 			return error;
2270 		}
2271 		next_agino = unlinked_agino;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Pull the on-disk inode from the AGI unlinked list.
2279  */
2280 STATIC int
2281 xfs_iunlink_remove(
2282 	struct xfs_trans	*tp,
2283 	struct xfs_inode	*ip)
2284 {
2285 	struct xfs_mount	*mp = tp->t_mountp;
2286 	struct xfs_agi		*agi;
2287 	struct xfs_buf		*agibp;
2288 	struct xfs_buf		*last_ibp;
2289 	struct xfs_dinode	*last_dip = NULL;
2290 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2291 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292 	xfs_agino_t		next_agino;
2293 	xfs_agino_t		head_agino;
2294 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295 	int			error;
2296 
2297 	trace_xfs_iunlink_remove(ip);
2298 
2299 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2300 	error = xfs_read_agi(mp, tp, agno, &agibp);
2301 	if (error)
2302 		return error;
2303 	agi = agibp->b_addr;
2304 
2305 	/*
2306 	 * Get the index into the agi hash table for the list this inode will
2307 	 * go on.  Make sure the head pointer isn't garbage.
2308 	 */
2309 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2311 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312 				agi, sizeof(*agi));
2313 		return -EFSCORRUPTED;
2314 	}
2315 
2316 	/*
2317 	 * Set our inode's next_unlinked pointer to NULL and then return
2318 	 * the old pointer value so that we can update whatever was previous
2319 	 * to us in the list to point to whatever was next in the list.
2320 	 */
2321 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2322 	if (error)
2323 		return error;
2324 
2325 	/*
2326 	 * If there was a backref pointing from the next inode back to this
2327 	 * one, remove it because we've removed this inode from the list.
2328 	 *
2329 	 * Later, if this inode was in the middle of the list we'll update
2330 	 * this inode's backref to point from the next inode.
2331 	 */
2332 	if (next_agino != NULLAGINO) {
2333 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2334 				NULLAGINO);
2335 		if (error)
2336 			return error;
2337 	}
2338 
2339 	if (head_agino != agino) {
2340 		struct xfs_imap	imap;
2341 		xfs_agino_t	prev_agino;
2342 
2343 		/* We need to search the list for the inode being freed. */
2344 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2345 				&prev_agino, &imap, &last_dip, &last_ibp,
2346 				agibp->b_pag);
2347 		if (error)
2348 			return error;
2349 
2350 		/* Point the previous inode on the list to the next inode. */
2351 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2352 				last_dip, &imap, next_agino);
2353 
2354 		/*
2355 		 * Now we deal with the backref for this inode.  If this inode
2356 		 * pointed at a real inode, change the backref that pointed to
2357 		 * us to point to our old next.  If this inode was the end of
2358 		 * the list, delete the backref that pointed to us.  Note that
2359 		 * change_backref takes care of deleting the backref if
2360 		 * next_agino is NULLAGINO.
2361 		 */
2362 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2363 				next_agino);
2364 	}
2365 
2366 	/* Point the head of the list to the next unlinked inode. */
2367 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2368 			next_agino);
2369 }
2370 
2371 /*
2372  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2373  * mark it stale. We should only find clean inodes in this lookup that aren't
2374  * already stale.
2375  */
2376 static void
2377 xfs_ifree_mark_inode_stale(
2378 	struct xfs_buf		*bp,
2379 	struct xfs_inode	*free_ip,
2380 	xfs_ino_t		inum)
2381 {
2382 	struct xfs_mount	*mp = bp->b_mount;
2383 	struct xfs_perag	*pag = bp->b_pag;
2384 	struct xfs_inode_log_item *iip;
2385 	struct xfs_inode	*ip;
2386 
2387 retry:
2388 	rcu_read_lock();
2389 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2390 
2391 	/* Inode not in memory, nothing to do */
2392 	if (!ip) {
2393 		rcu_read_unlock();
2394 		return;
2395 	}
2396 
2397 	/*
2398 	 * because this is an RCU protected lookup, we could find a recently
2399 	 * freed or even reallocated inode during the lookup. We need to check
2400 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2401 	 * valid, the wrong inode or stale.
2402 	 */
2403 	spin_lock(&ip->i_flags_lock);
2404 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2405 		goto out_iflags_unlock;
2406 
2407 	/*
2408 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2409 	 * other inodes that we did not find in the list attached to the buffer
2410 	 * and are not already marked stale. If we can't lock it, back off and
2411 	 * retry.
2412 	 */
2413 	if (ip != free_ip) {
2414 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2415 			spin_unlock(&ip->i_flags_lock);
2416 			rcu_read_unlock();
2417 			delay(1);
2418 			goto retry;
2419 		}
2420 	}
2421 	ip->i_flags |= XFS_ISTALE;
2422 
2423 	/*
2424 	 * If the inode is flushing, it is already attached to the buffer.  All
2425 	 * we needed to do here is mark the inode stale so buffer IO completion
2426 	 * will remove it from the AIL.
2427 	 */
2428 	iip = ip->i_itemp;
2429 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2430 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2431 		ASSERT(iip->ili_last_fields);
2432 		goto out_iunlock;
2433 	}
2434 
2435 	/*
2436 	 * Inodes not attached to the buffer can be released immediately.
2437 	 * Everything else has to go through xfs_iflush_abort() on journal
2438 	 * commit as the flock synchronises removal of the inode from the
2439 	 * cluster buffer against inode reclaim.
2440 	 */
2441 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2442 		goto out_iunlock;
2443 
2444 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2445 	spin_unlock(&ip->i_flags_lock);
2446 	rcu_read_unlock();
2447 
2448 	/* we have a dirty inode in memory that has not yet been flushed. */
2449 	spin_lock(&iip->ili_lock);
2450 	iip->ili_last_fields = iip->ili_fields;
2451 	iip->ili_fields = 0;
2452 	iip->ili_fsync_fields = 0;
2453 	spin_unlock(&iip->ili_lock);
2454 	ASSERT(iip->ili_last_fields);
2455 
2456 	if (ip != free_ip)
2457 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2458 	return;
2459 
2460 out_iunlock:
2461 	if (ip != free_ip)
2462 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2463 out_iflags_unlock:
2464 	spin_unlock(&ip->i_flags_lock);
2465 	rcu_read_unlock();
2466 }
2467 
2468 /*
2469  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2470  * inodes that are in memory - they all must be marked stale and attached to
2471  * the cluster buffer.
2472  */
2473 STATIC int
2474 xfs_ifree_cluster(
2475 	struct xfs_inode	*free_ip,
2476 	struct xfs_trans	*tp,
2477 	struct xfs_icluster	*xic)
2478 {
2479 	struct xfs_mount	*mp = free_ip->i_mount;
2480 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2481 	struct xfs_buf		*bp;
2482 	xfs_daddr_t		blkno;
2483 	xfs_ino_t		inum = xic->first_ino;
2484 	int			nbufs;
2485 	int			i, j;
2486 	int			ioffset;
2487 	int			error;
2488 
2489 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2490 
2491 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2492 		/*
2493 		 * The allocation bitmap tells us which inodes of the chunk were
2494 		 * physically allocated. Skip the cluster if an inode falls into
2495 		 * a sparse region.
2496 		 */
2497 		ioffset = inum - xic->first_ino;
2498 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2499 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2500 			continue;
2501 		}
2502 
2503 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2504 					 XFS_INO_TO_AGBNO(mp, inum));
2505 
2506 		/*
2507 		 * We obtain and lock the backing buffer first in the process
2508 		 * here to ensure dirty inodes attached to the buffer remain in
2509 		 * the flushing state while we mark them stale.
2510 		 *
2511 		 * If we scan the in-memory inodes first, then buffer IO can
2512 		 * complete before we get a lock on it, and hence we may fail
2513 		 * to mark all the active inodes on the buffer stale.
2514 		 */
2515 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2516 				mp->m_bsize * igeo->blocks_per_cluster,
2517 				XBF_UNMAPPED, &bp);
2518 		if (error)
2519 			return error;
2520 
2521 		/*
2522 		 * This buffer may not have been correctly initialised as we
2523 		 * didn't read it from disk. That's not important because we are
2524 		 * only using to mark the buffer as stale in the log, and to
2525 		 * attach stale cached inodes on it. That means it will never be
2526 		 * dispatched for IO. If it is, we want to know about it, and we
2527 		 * want it to fail. We can acheive this by adding a write
2528 		 * verifier to the buffer.
2529 		 */
2530 		bp->b_ops = &xfs_inode_buf_ops;
2531 
2532 		/*
2533 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2534 		 * too. This requires lookups, and will skip inodes that we've
2535 		 * already marked XFS_ISTALE.
2536 		 */
2537 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2538 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2539 
2540 		xfs_trans_stale_inode_buf(tp, bp);
2541 		xfs_trans_binval(tp, bp);
2542 	}
2543 	return 0;
2544 }
2545 
2546 /*
2547  * This is called to return an inode to the inode free list.
2548  * The inode should already be truncated to 0 length and have
2549  * no pages associated with it.  This routine also assumes that
2550  * the inode is already a part of the transaction.
2551  *
2552  * The on-disk copy of the inode will have been added to the list
2553  * of unlinked inodes in the AGI. We need to remove the inode from
2554  * that list atomically with respect to freeing it here.
2555  */
2556 int
2557 xfs_ifree(
2558 	struct xfs_trans	*tp,
2559 	struct xfs_inode	*ip)
2560 {
2561 	int			error;
2562 	struct xfs_icluster	xic = { 0 };
2563 	struct xfs_inode_log_item *iip = ip->i_itemp;
2564 
2565 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566 	ASSERT(VFS_I(ip)->i_nlink == 0);
2567 	ASSERT(ip->i_df.if_nextents == 0);
2568 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569 	ASSERT(ip->i_d.di_nblocks == 0);
2570 
2571 	/*
2572 	 * Pull the on-disk inode from the AGI unlinked list.
2573 	 */
2574 	error = xfs_iunlink_remove(tp, ip);
2575 	if (error)
2576 		return error;
2577 
2578 	error = xfs_difree(tp, ip->i_ino, &xic);
2579 	if (error)
2580 		return error;
2581 
2582 	/*
2583 	 * Free any local-format data sitting around before we reset the
2584 	 * data fork to extents format.  Note that the attr fork data has
2585 	 * already been freed by xfs_attr_inactive.
2586 	 */
2587 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2588 		kmem_free(ip->i_df.if_u1.if_data);
2589 		ip->i_df.if_u1.if_data = NULL;
2590 		ip->i_df.if_bytes = 0;
2591 	}
2592 
2593 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2594 	ip->i_d.di_flags = 0;
2595 	ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2596 	ip->i_d.di_dmevmask = 0;
2597 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2598 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2599 
2600 	/* Don't attempt to replay owner changes for a deleted inode */
2601 	spin_lock(&iip->ili_lock);
2602 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2603 	spin_unlock(&iip->ili_lock);
2604 
2605 	/*
2606 	 * Bump the generation count so no one will be confused
2607 	 * by reincarnations of this inode.
2608 	 */
2609 	VFS_I(ip)->i_generation++;
2610 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2611 
2612 	if (xic.deleted)
2613 		error = xfs_ifree_cluster(ip, tp, &xic);
2614 
2615 	return error;
2616 }
2617 
2618 /*
2619  * This is called to unpin an inode.  The caller must have the inode locked
2620  * in at least shared mode so that the buffer cannot be subsequently pinned
2621  * once someone is waiting for it to be unpinned.
2622  */
2623 static void
2624 xfs_iunpin(
2625 	struct xfs_inode	*ip)
2626 {
2627 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2628 
2629 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2630 
2631 	/* Give the log a push to start the unpinning I/O */
2632 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2633 
2634 }
2635 
2636 static void
2637 __xfs_iunpin_wait(
2638 	struct xfs_inode	*ip)
2639 {
2640 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2641 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2642 
2643 	xfs_iunpin(ip);
2644 
2645 	do {
2646 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2647 		if (xfs_ipincount(ip))
2648 			io_schedule();
2649 	} while (xfs_ipincount(ip));
2650 	finish_wait(wq, &wait.wq_entry);
2651 }
2652 
2653 void
2654 xfs_iunpin_wait(
2655 	struct xfs_inode	*ip)
2656 {
2657 	if (xfs_ipincount(ip))
2658 		__xfs_iunpin_wait(ip);
2659 }
2660 
2661 /*
2662  * Removing an inode from the namespace involves removing the directory entry
2663  * and dropping the link count on the inode. Removing the directory entry can
2664  * result in locking an AGF (directory blocks were freed) and removing a link
2665  * count can result in placing the inode on an unlinked list which results in
2666  * locking an AGI.
2667  *
2668  * The big problem here is that we have an ordering constraint on AGF and AGI
2669  * locking - inode allocation locks the AGI, then can allocate a new extent for
2670  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2671  * removes the inode from the unlinked list, requiring that we lock the AGI
2672  * first, and then freeing the inode can result in an inode chunk being freed
2673  * and hence freeing disk space requiring that we lock an AGF.
2674  *
2675  * Hence the ordering that is imposed by other parts of the code is AGI before
2676  * AGF. This means we cannot remove the directory entry before we drop the inode
2677  * reference count and put it on the unlinked list as this results in a lock
2678  * order of AGF then AGI, and this can deadlock against inode allocation and
2679  * freeing. Therefore we must drop the link counts before we remove the
2680  * directory entry.
2681  *
2682  * This is still safe from a transactional point of view - it is not until we
2683  * get to xfs_defer_finish() that we have the possibility of multiple
2684  * transactions in this operation. Hence as long as we remove the directory
2685  * entry and drop the link count in the first transaction of the remove
2686  * operation, there are no transactional constraints on the ordering here.
2687  */
2688 int
2689 xfs_remove(
2690 	xfs_inode_t             *dp,
2691 	struct xfs_name		*name,
2692 	xfs_inode_t		*ip)
2693 {
2694 	xfs_mount_t		*mp = dp->i_mount;
2695 	xfs_trans_t             *tp = NULL;
2696 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2697 	int                     error = 0;
2698 	uint			resblks;
2699 
2700 	trace_xfs_remove(dp, name);
2701 
2702 	if (XFS_FORCED_SHUTDOWN(mp))
2703 		return -EIO;
2704 
2705 	error = xfs_qm_dqattach(dp);
2706 	if (error)
2707 		goto std_return;
2708 
2709 	error = xfs_qm_dqattach(ip);
2710 	if (error)
2711 		goto std_return;
2712 
2713 	/*
2714 	 * We try to get the real space reservation first,
2715 	 * allowing for directory btree deletion(s) implying
2716 	 * possible bmap insert(s).  If we can't get the space
2717 	 * reservation then we use 0 instead, and avoid the bmap
2718 	 * btree insert(s) in the directory code by, if the bmap
2719 	 * insert tries to happen, instead trimming the LAST
2720 	 * block from the directory.
2721 	 */
2722 	resblks = XFS_REMOVE_SPACE_RES(mp);
2723 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2724 	if (error == -ENOSPC) {
2725 		resblks = 0;
2726 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2727 				&tp);
2728 	}
2729 	if (error) {
2730 		ASSERT(error != -ENOSPC);
2731 		goto std_return;
2732 	}
2733 
2734 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2735 
2736 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2737 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2738 
2739 	/*
2740 	 * If we're removing a directory perform some additional validation.
2741 	 */
2742 	if (is_dir) {
2743 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2744 		if (VFS_I(ip)->i_nlink != 2) {
2745 			error = -ENOTEMPTY;
2746 			goto out_trans_cancel;
2747 		}
2748 		if (!xfs_dir_isempty(ip)) {
2749 			error = -ENOTEMPTY;
2750 			goto out_trans_cancel;
2751 		}
2752 
2753 		/* Drop the link from ip's "..".  */
2754 		error = xfs_droplink(tp, dp);
2755 		if (error)
2756 			goto out_trans_cancel;
2757 
2758 		/* Drop the "." link from ip to self.  */
2759 		error = xfs_droplink(tp, ip);
2760 		if (error)
2761 			goto out_trans_cancel;
2762 	} else {
2763 		/*
2764 		 * When removing a non-directory we need to log the parent
2765 		 * inode here.  For a directory this is done implicitly
2766 		 * by the xfs_droplink call for the ".." entry.
2767 		 */
2768 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2769 	}
2770 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2771 
2772 	/* Drop the link from dp to ip. */
2773 	error = xfs_droplink(tp, ip);
2774 	if (error)
2775 		goto out_trans_cancel;
2776 
2777 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2778 	if (error) {
2779 		ASSERT(error != -ENOENT);
2780 		goto out_trans_cancel;
2781 	}
2782 
2783 	/*
2784 	 * If this is a synchronous mount, make sure that the
2785 	 * remove transaction goes to disk before returning to
2786 	 * the user.
2787 	 */
2788 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2789 		xfs_trans_set_sync(tp);
2790 
2791 	error = xfs_trans_commit(tp);
2792 	if (error)
2793 		goto std_return;
2794 
2795 	if (is_dir && xfs_inode_is_filestream(ip))
2796 		xfs_filestream_deassociate(ip);
2797 
2798 	return 0;
2799 
2800  out_trans_cancel:
2801 	xfs_trans_cancel(tp);
2802  std_return:
2803 	return error;
2804 }
2805 
2806 /*
2807  * Enter all inodes for a rename transaction into a sorted array.
2808  */
2809 #define __XFS_SORT_INODES	5
2810 STATIC void
2811 xfs_sort_for_rename(
2812 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2813 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2814 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2815 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2816 	struct xfs_inode	*wip,	/* in: whiteout inode */
2817 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2818 	int			*num_inodes)  /* in/out: inodes in array */
2819 {
2820 	int			i, j;
2821 
2822 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2823 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2824 
2825 	/*
2826 	 * i_tab contains a list of pointers to inodes.  We initialize
2827 	 * the table here & we'll sort it.  We will then use it to
2828 	 * order the acquisition of the inode locks.
2829 	 *
2830 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2831 	 */
2832 	i = 0;
2833 	i_tab[i++] = dp1;
2834 	i_tab[i++] = dp2;
2835 	i_tab[i++] = ip1;
2836 	if (ip2)
2837 		i_tab[i++] = ip2;
2838 	if (wip)
2839 		i_tab[i++] = wip;
2840 	*num_inodes = i;
2841 
2842 	/*
2843 	 * Sort the elements via bubble sort.  (Remember, there are at
2844 	 * most 5 elements to sort, so this is adequate.)
2845 	 */
2846 	for (i = 0; i < *num_inodes; i++) {
2847 		for (j = 1; j < *num_inodes; j++) {
2848 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2849 				struct xfs_inode *temp = i_tab[j];
2850 				i_tab[j] = i_tab[j-1];
2851 				i_tab[j-1] = temp;
2852 			}
2853 		}
2854 	}
2855 }
2856 
2857 static int
2858 xfs_finish_rename(
2859 	struct xfs_trans	*tp)
2860 {
2861 	/*
2862 	 * If this is a synchronous mount, make sure that the rename transaction
2863 	 * goes to disk before returning to the user.
2864 	 */
2865 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2866 		xfs_trans_set_sync(tp);
2867 
2868 	return xfs_trans_commit(tp);
2869 }
2870 
2871 /*
2872  * xfs_cross_rename()
2873  *
2874  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2875  */
2876 STATIC int
2877 xfs_cross_rename(
2878 	struct xfs_trans	*tp,
2879 	struct xfs_inode	*dp1,
2880 	struct xfs_name		*name1,
2881 	struct xfs_inode	*ip1,
2882 	struct xfs_inode	*dp2,
2883 	struct xfs_name		*name2,
2884 	struct xfs_inode	*ip2,
2885 	int			spaceres)
2886 {
2887 	int		error = 0;
2888 	int		ip1_flags = 0;
2889 	int		ip2_flags = 0;
2890 	int		dp2_flags = 0;
2891 
2892 	/* Swap inode number for dirent in first parent */
2893 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2894 	if (error)
2895 		goto out_trans_abort;
2896 
2897 	/* Swap inode number for dirent in second parent */
2898 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2899 	if (error)
2900 		goto out_trans_abort;
2901 
2902 	/*
2903 	 * If we're renaming one or more directories across different parents,
2904 	 * update the respective ".." entries (and link counts) to match the new
2905 	 * parents.
2906 	 */
2907 	if (dp1 != dp2) {
2908 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2909 
2910 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2911 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2912 						dp1->i_ino, spaceres);
2913 			if (error)
2914 				goto out_trans_abort;
2915 
2916 			/* transfer ip2 ".." reference to dp1 */
2917 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2918 				error = xfs_droplink(tp, dp2);
2919 				if (error)
2920 					goto out_trans_abort;
2921 				xfs_bumplink(tp, dp1);
2922 			}
2923 
2924 			/*
2925 			 * Although ip1 isn't changed here, userspace needs
2926 			 * to be warned about the change, so that applications
2927 			 * relying on it (like backup ones), will properly
2928 			 * notify the change
2929 			 */
2930 			ip1_flags |= XFS_ICHGTIME_CHG;
2931 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2932 		}
2933 
2934 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2935 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2936 						dp2->i_ino, spaceres);
2937 			if (error)
2938 				goto out_trans_abort;
2939 
2940 			/* transfer ip1 ".." reference to dp2 */
2941 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2942 				error = xfs_droplink(tp, dp1);
2943 				if (error)
2944 					goto out_trans_abort;
2945 				xfs_bumplink(tp, dp2);
2946 			}
2947 
2948 			/*
2949 			 * Although ip2 isn't changed here, userspace needs
2950 			 * to be warned about the change, so that applications
2951 			 * relying on it (like backup ones), will properly
2952 			 * notify the change
2953 			 */
2954 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2955 			ip2_flags |= XFS_ICHGTIME_CHG;
2956 		}
2957 	}
2958 
2959 	if (ip1_flags) {
2960 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2961 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2962 	}
2963 	if (ip2_flags) {
2964 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2965 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2966 	}
2967 	if (dp2_flags) {
2968 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2969 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2970 	}
2971 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2972 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2973 	return xfs_finish_rename(tp);
2974 
2975 out_trans_abort:
2976 	xfs_trans_cancel(tp);
2977 	return error;
2978 }
2979 
2980 /*
2981  * xfs_rename_alloc_whiteout()
2982  *
2983  * Return a referenced, unlinked, unlocked inode that can be used as a
2984  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2985  * crash between allocating the inode and linking it into the rename transaction
2986  * recovery will free the inode and we won't leak it.
2987  */
2988 static int
2989 xfs_rename_alloc_whiteout(
2990 	struct xfs_inode	*dp,
2991 	struct xfs_inode	**wip)
2992 {
2993 	struct xfs_inode	*tmpfile;
2994 	int			error;
2995 
2996 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2997 	if (error)
2998 		return error;
2999 
3000 	/*
3001 	 * Prepare the tmpfile inode as if it were created through the VFS.
3002 	 * Complete the inode setup and flag it as linkable.  nlink is already
3003 	 * zero, so we can skip the drop_nlink.
3004 	 */
3005 	xfs_setup_iops(tmpfile);
3006 	xfs_finish_inode_setup(tmpfile);
3007 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3008 
3009 	*wip = tmpfile;
3010 	return 0;
3011 }
3012 
3013 /*
3014  * xfs_rename
3015  */
3016 int
3017 xfs_rename(
3018 	struct xfs_inode	*src_dp,
3019 	struct xfs_name		*src_name,
3020 	struct xfs_inode	*src_ip,
3021 	struct xfs_inode	*target_dp,
3022 	struct xfs_name		*target_name,
3023 	struct xfs_inode	*target_ip,
3024 	unsigned int		flags)
3025 {
3026 	struct xfs_mount	*mp = src_dp->i_mount;
3027 	struct xfs_trans	*tp;
3028 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3029 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3030 	int			i;
3031 	int			num_inodes = __XFS_SORT_INODES;
3032 	bool			new_parent = (src_dp != target_dp);
3033 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3034 	int			spaceres;
3035 	int			error;
3036 
3037 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3038 
3039 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3040 		return -EINVAL;
3041 
3042 	/*
3043 	 * If we are doing a whiteout operation, allocate the whiteout inode
3044 	 * we will be placing at the target and ensure the type is set
3045 	 * appropriately.
3046 	 */
3047 	if (flags & RENAME_WHITEOUT) {
3048 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3049 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3050 		if (error)
3051 			return error;
3052 
3053 		/* setup target dirent info as whiteout */
3054 		src_name->type = XFS_DIR3_FT_CHRDEV;
3055 	}
3056 
3057 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3058 				inodes, &num_inodes);
3059 
3060 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3061 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3062 	if (error == -ENOSPC) {
3063 		spaceres = 0;
3064 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3065 				&tp);
3066 	}
3067 	if (error)
3068 		goto out_release_wip;
3069 
3070 	/*
3071 	 * Attach the dquots to the inodes
3072 	 */
3073 	error = xfs_qm_vop_rename_dqattach(inodes);
3074 	if (error)
3075 		goto out_trans_cancel;
3076 
3077 	/*
3078 	 * Lock all the participating inodes. Depending upon whether
3079 	 * the target_name exists in the target directory, and
3080 	 * whether the target directory is the same as the source
3081 	 * directory, we can lock from 2 to 4 inodes.
3082 	 */
3083 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3084 
3085 	/*
3086 	 * Join all the inodes to the transaction. From this point on,
3087 	 * we can rely on either trans_commit or trans_cancel to unlock
3088 	 * them.
3089 	 */
3090 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3091 	if (new_parent)
3092 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3093 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3094 	if (target_ip)
3095 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3096 	if (wip)
3097 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3098 
3099 	/*
3100 	 * If we are using project inheritance, we only allow renames
3101 	 * into our tree when the project IDs are the same; else the
3102 	 * tree quota mechanism would be circumvented.
3103 	 */
3104 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3105 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3106 		error = -EXDEV;
3107 		goto out_trans_cancel;
3108 	}
3109 
3110 	/* RENAME_EXCHANGE is unique from here on. */
3111 	if (flags & RENAME_EXCHANGE)
3112 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3113 					target_dp, target_name, target_ip,
3114 					spaceres);
3115 
3116 	/*
3117 	 * Check for expected errors before we dirty the transaction
3118 	 * so we can return an error without a transaction abort.
3119 	 *
3120 	 * Extent count overflow check:
3121 	 *
3122 	 * From the perspective of src_dp, a rename operation is essentially a
3123 	 * directory entry remove operation. Hence the only place where we check
3124 	 * for extent count overflow for src_dp is in
3125 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3126 	 * -ENOSPC when it detects a possible extent count overflow and in
3127 	 * response, the higher layers of directory handling code do the
3128 	 * following:
3129 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3130 	 *    future remove operation removes them.
3131 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3132 	 *    Leaf space and unmaps the last block.
3133 	 *
3134 	 * For target_dp, there are two cases depending on whether the
3135 	 * destination directory entry exists or not.
3136 	 *
3137 	 * When destination directory entry does not exist (i.e. target_ip ==
3138 	 * NULL), extent count overflow check is performed only when transaction
3139 	 * has a non-zero sized space reservation associated with it.  With a
3140 	 * zero-sized space reservation, XFS allows a rename operation to
3141 	 * continue only when the directory has sufficient free space in its
3142 	 * data/leaf/free space blocks to hold the new entry.
3143 	 *
3144 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3145 	 * we need to do is change the inode number associated with the already
3146 	 * existing entry. Hence there is no need to perform an extent count
3147 	 * overflow check.
3148 	 */
3149 	if (target_ip == NULL) {
3150 		/*
3151 		 * If there's no space reservation, check the entry will
3152 		 * fit before actually inserting it.
3153 		 */
3154 		if (!spaceres) {
3155 			error = xfs_dir_canenter(tp, target_dp, target_name);
3156 			if (error)
3157 				goto out_trans_cancel;
3158 		} else {
3159 			error = xfs_iext_count_may_overflow(target_dp,
3160 					XFS_DATA_FORK,
3161 					XFS_IEXT_DIR_MANIP_CNT(mp));
3162 			if (error)
3163 				goto out_trans_cancel;
3164 		}
3165 	} else {
3166 		/*
3167 		 * If target exists and it's a directory, check that whether
3168 		 * it can be destroyed.
3169 		 */
3170 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3171 		    (!xfs_dir_isempty(target_ip) ||
3172 		     (VFS_I(target_ip)->i_nlink > 2))) {
3173 			error = -EEXIST;
3174 			goto out_trans_cancel;
3175 		}
3176 	}
3177 
3178 	/*
3179 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3180 	 * whiteout inode off the unlinked list and to handle dropping the
3181 	 * nlink of the target inode.  Per locking order rules, do this in
3182 	 * increasing AG order and before directory block allocation tries to
3183 	 * grab AGFs because we grab AGIs before AGFs.
3184 	 *
3185 	 * The (vfs) caller must ensure that if src is a directory then
3186 	 * target_ip is either null or an empty directory.
3187 	 */
3188 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3189 		if (inodes[i] == wip ||
3190 		    (inodes[i] == target_ip &&
3191 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3192 			struct xfs_buf	*bp;
3193 			xfs_agnumber_t	agno;
3194 
3195 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3196 			error = xfs_read_agi(mp, tp, agno, &bp);
3197 			if (error)
3198 				goto out_trans_cancel;
3199 		}
3200 	}
3201 
3202 	/*
3203 	 * Directory entry creation below may acquire the AGF. Remove
3204 	 * the whiteout from the unlinked list first to preserve correct
3205 	 * AGI/AGF locking order. This dirties the transaction so failures
3206 	 * after this point will abort and log recovery will clean up the
3207 	 * mess.
3208 	 *
3209 	 * For whiteouts, we need to bump the link count on the whiteout
3210 	 * inode. After this point, we have a real link, clear the tmpfile
3211 	 * state flag from the inode so it doesn't accidentally get misused
3212 	 * in future.
3213 	 */
3214 	if (wip) {
3215 		ASSERT(VFS_I(wip)->i_nlink == 0);
3216 		error = xfs_iunlink_remove(tp, wip);
3217 		if (error)
3218 			goto out_trans_cancel;
3219 
3220 		xfs_bumplink(tp, wip);
3221 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3222 	}
3223 
3224 	/*
3225 	 * Set up the target.
3226 	 */
3227 	if (target_ip == NULL) {
3228 		/*
3229 		 * If target does not exist and the rename crosses
3230 		 * directories, adjust the target directory link count
3231 		 * to account for the ".." reference from the new entry.
3232 		 */
3233 		error = xfs_dir_createname(tp, target_dp, target_name,
3234 					   src_ip->i_ino, spaceres);
3235 		if (error)
3236 			goto out_trans_cancel;
3237 
3238 		xfs_trans_ichgtime(tp, target_dp,
3239 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3240 
3241 		if (new_parent && src_is_directory) {
3242 			xfs_bumplink(tp, target_dp);
3243 		}
3244 	} else { /* target_ip != NULL */
3245 		/*
3246 		 * Link the source inode under the target name.
3247 		 * If the source inode is a directory and we are moving
3248 		 * it across directories, its ".." entry will be
3249 		 * inconsistent until we replace that down below.
3250 		 *
3251 		 * In case there is already an entry with the same
3252 		 * name at the destination directory, remove it first.
3253 		 */
3254 		error = xfs_dir_replace(tp, target_dp, target_name,
3255 					src_ip->i_ino, spaceres);
3256 		if (error)
3257 			goto out_trans_cancel;
3258 
3259 		xfs_trans_ichgtime(tp, target_dp,
3260 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3261 
3262 		/*
3263 		 * Decrement the link count on the target since the target
3264 		 * dir no longer points to it.
3265 		 */
3266 		error = xfs_droplink(tp, target_ip);
3267 		if (error)
3268 			goto out_trans_cancel;
3269 
3270 		if (src_is_directory) {
3271 			/*
3272 			 * Drop the link from the old "." entry.
3273 			 */
3274 			error = xfs_droplink(tp, target_ip);
3275 			if (error)
3276 				goto out_trans_cancel;
3277 		}
3278 	} /* target_ip != NULL */
3279 
3280 	/*
3281 	 * Remove the source.
3282 	 */
3283 	if (new_parent && src_is_directory) {
3284 		/*
3285 		 * Rewrite the ".." entry to point to the new
3286 		 * directory.
3287 		 */
3288 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3289 					target_dp->i_ino, spaceres);
3290 		ASSERT(error != -EEXIST);
3291 		if (error)
3292 			goto out_trans_cancel;
3293 	}
3294 
3295 	/*
3296 	 * We always want to hit the ctime on the source inode.
3297 	 *
3298 	 * This isn't strictly required by the standards since the source
3299 	 * inode isn't really being changed, but old unix file systems did
3300 	 * it and some incremental backup programs won't work without it.
3301 	 */
3302 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3303 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3304 
3305 	/*
3306 	 * Adjust the link count on src_dp.  This is necessary when
3307 	 * renaming a directory, either within one parent when
3308 	 * the target existed, or across two parent directories.
3309 	 */
3310 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3311 
3312 		/*
3313 		 * Decrement link count on src_directory since the
3314 		 * entry that's moved no longer points to it.
3315 		 */
3316 		error = xfs_droplink(tp, src_dp);
3317 		if (error)
3318 			goto out_trans_cancel;
3319 	}
3320 
3321 	/*
3322 	 * For whiteouts, we only need to update the source dirent with the
3323 	 * inode number of the whiteout inode rather than removing it
3324 	 * altogether.
3325 	 */
3326 	if (wip) {
3327 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3328 					spaceres);
3329 	} else {
3330 		/*
3331 		 * NOTE: We don't need to check for extent count overflow here
3332 		 * because the dir remove name code will leave the dir block in
3333 		 * place if the extent count would overflow.
3334 		 */
3335 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3336 					   spaceres);
3337 	}
3338 
3339 	if (error)
3340 		goto out_trans_cancel;
3341 
3342 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3344 	if (new_parent)
3345 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3346 
3347 	error = xfs_finish_rename(tp);
3348 	if (wip)
3349 		xfs_irele(wip);
3350 	return error;
3351 
3352 out_trans_cancel:
3353 	xfs_trans_cancel(tp);
3354 out_release_wip:
3355 	if (wip)
3356 		xfs_irele(wip);
3357 	return error;
3358 }
3359 
3360 static int
3361 xfs_iflush(
3362 	struct xfs_inode	*ip,
3363 	struct xfs_buf		*bp)
3364 {
3365 	struct xfs_inode_log_item *iip = ip->i_itemp;
3366 	struct xfs_dinode	*dip;
3367 	struct xfs_mount	*mp = ip->i_mount;
3368 	int			error;
3369 
3370 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3371 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3372 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3373 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3374 	ASSERT(iip->ili_item.li_buf == bp);
3375 
3376 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3377 
3378 	/*
3379 	 * We don't flush the inode if any of the following checks fail, but we
3380 	 * do still update the log item and attach to the backing buffer as if
3381 	 * the flush happened. This is a formality to facilitate predictable
3382 	 * error handling as the caller will shutdown and fail the buffer.
3383 	 */
3384 	error = -EFSCORRUPTED;
3385 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3386 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3387 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3388 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3389 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3390 		goto flush_out;
3391 	}
3392 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3393 		if (XFS_TEST_ERROR(
3394 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3395 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3396 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3397 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3398 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3399 				__func__, ip->i_ino, ip);
3400 			goto flush_out;
3401 		}
3402 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3403 		if (XFS_TEST_ERROR(
3404 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3405 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3406 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3407 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3408 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3409 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3410 				__func__, ip->i_ino, ip);
3411 			goto flush_out;
3412 		}
3413 	}
3414 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3415 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3416 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3417 			"%s: detected corrupt incore inode %Lu, "
3418 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3419 			__func__, ip->i_ino,
3420 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3421 			ip->i_d.di_nblocks, ip);
3422 		goto flush_out;
3423 	}
3424 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3425 				mp, XFS_ERRTAG_IFLUSH_6)) {
3426 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3427 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3428 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3429 		goto flush_out;
3430 	}
3431 
3432 	/*
3433 	 * Inode item log recovery for v2 inodes are dependent on the
3434 	 * di_flushiter count for correct sequencing. We bump the flush
3435 	 * iteration count so we can detect flushes which postdate a log record
3436 	 * during recovery. This is redundant as we now log every change and
3437 	 * hence this can't happen but we need to still do it to ensure
3438 	 * backwards compatibility with old kernels that predate logging all
3439 	 * inode changes.
3440 	 */
3441 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3442 		ip->i_d.di_flushiter++;
3443 
3444 	/*
3445 	 * If there are inline format data / attr forks attached to this inode,
3446 	 * make sure they are not corrupt.
3447 	 */
3448 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3449 	    xfs_ifork_verify_local_data(ip))
3450 		goto flush_out;
3451 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3452 	    xfs_ifork_verify_local_attr(ip))
3453 		goto flush_out;
3454 
3455 	/*
3456 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3457 	 * copy out the core of the inode, because if the inode is dirty at all
3458 	 * the core must be.
3459 	 */
3460 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3461 
3462 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3463 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3464 		ip->i_d.di_flushiter = 0;
3465 
3466 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3467 	if (XFS_IFORK_Q(ip))
3468 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3469 
3470 	/*
3471 	 * We've recorded everything logged in the inode, so we'd like to clear
3472 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3473 	 * However, we can't stop logging all this information until the data
3474 	 * we've copied into the disk buffer is written to disk.  If we did we
3475 	 * might overwrite the copy of the inode in the log with all the data
3476 	 * after re-logging only part of it, and in the face of a crash we
3477 	 * wouldn't have all the data we need to recover.
3478 	 *
3479 	 * What we do is move the bits to the ili_last_fields field.  When
3480 	 * logging the inode, these bits are moved back to the ili_fields field.
3481 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3482 	 * we know that the information those bits represent is permanently on
3483 	 * disk.  As long as the flush completes before the inode is logged
3484 	 * again, then both ili_fields and ili_last_fields will be cleared.
3485 	 */
3486 	error = 0;
3487 flush_out:
3488 	spin_lock(&iip->ili_lock);
3489 	iip->ili_last_fields = iip->ili_fields;
3490 	iip->ili_fields = 0;
3491 	iip->ili_fsync_fields = 0;
3492 	spin_unlock(&iip->ili_lock);
3493 
3494 	/*
3495 	 * Store the current LSN of the inode so that we can tell whether the
3496 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3497 	 */
3498 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3499 				&iip->ili_item.li_lsn);
3500 
3501 	/* generate the checksum. */
3502 	xfs_dinode_calc_crc(mp, dip);
3503 	return error;
3504 }
3505 
3506 /*
3507  * Non-blocking flush of dirty inode metadata into the backing buffer.
3508  *
3509  * The caller must have a reference to the inode and hold the cluster buffer
3510  * locked. The function will walk across all the inodes on the cluster buffer it
3511  * can find and lock without blocking, and flush them to the cluster buffer.
3512  *
3513  * On successful flushing of at least one inode, the caller must write out the
3514  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3515  * the caller needs to release the buffer. On failure, the filesystem will be
3516  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3517  * will be returned.
3518  */
3519 int
3520 xfs_iflush_cluster(
3521 	struct xfs_buf		*bp)
3522 {
3523 	struct xfs_mount	*mp = bp->b_mount;
3524 	struct xfs_log_item	*lip, *n;
3525 	struct xfs_inode	*ip;
3526 	struct xfs_inode_log_item *iip;
3527 	int			clcount = 0;
3528 	int			error = 0;
3529 
3530 	/*
3531 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3532 	 * can remove itself from the list.
3533 	 */
3534 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3535 		iip = (struct xfs_inode_log_item *)lip;
3536 		ip = iip->ili_inode;
3537 
3538 		/*
3539 		 * Quick and dirty check to avoid locks if possible.
3540 		 */
3541 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3542 			continue;
3543 		if (xfs_ipincount(ip))
3544 			continue;
3545 
3546 		/*
3547 		 * The inode is still attached to the buffer, which means it is
3548 		 * dirty but reclaim might try to grab it. Check carefully for
3549 		 * that, and grab the ilock while still holding the i_flags_lock
3550 		 * to guarantee reclaim will not be able to reclaim this inode
3551 		 * once we drop the i_flags_lock.
3552 		 */
3553 		spin_lock(&ip->i_flags_lock);
3554 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3555 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3556 			spin_unlock(&ip->i_flags_lock);
3557 			continue;
3558 		}
3559 
3560 		/*
3561 		 * ILOCK will pin the inode against reclaim and prevent
3562 		 * concurrent transactions modifying the inode while we are
3563 		 * flushing the inode. If we get the lock, set the flushing
3564 		 * state before we drop the i_flags_lock.
3565 		 */
3566 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3567 			spin_unlock(&ip->i_flags_lock);
3568 			continue;
3569 		}
3570 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3571 		spin_unlock(&ip->i_flags_lock);
3572 
3573 		/*
3574 		 * Abort flushing this inode if we are shut down because the
3575 		 * inode may not currently be in the AIL. This can occur when
3576 		 * log I/O failure unpins the inode without inserting into the
3577 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3578 		 * that otherwise looks like it should be flushed.
3579 		 */
3580 		if (XFS_FORCED_SHUTDOWN(mp)) {
3581 			xfs_iunpin_wait(ip);
3582 			xfs_iflush_abort(ip);
3583 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3584 			error = -EIO;
3585 			continue;
3586 		}
3587 
3588 		/* don't block waiting on a log force to unpin dirty inodes */
3589 		if (xfs_ipincount(ip)) {
3590 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3591 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3592 			continue;
3593 		}
3594 
3595 		if (!xfs_inode_clean(ip))
3596 			error = xfs_iflush(ip, bp);
3597 		else
3598 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3599 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3600 		if (error)
3601 			break;
3602 		clcount++;
3603 	}
3604 
3605 	if (error) {
3606 		bp->b_flags |= XBF_ASYNC;
3607 		xfs_buf_ioend_fail(bp);
3608 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3609 		return error;
3610 	}
3611 
3612 	if (!clcount)
3613 		return -EAGAIN;
3614 
3615 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3616 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3617 	return 0;
3618 
3619 }
3620 
3621 /* Release an inode. */
3622 void
3623 xfs_irele(
3624 	struct xfs_inode	*ip)
3625 {
3626 	trace_xfs_irele(ip, _RET_IP_);
3627 	iput(VFS_I(ip));
3628 }
3629 
3630 /*
3631  * Ensure all commited transactions touching the inode are written to the log.
3632  */
3633 int
3634 xfs_log_force_inode(
3635 	struct xfs_inode	*ip)
3636 {
3637 	xfs_lsn_t		lsn = 0;
3638 
3639 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3640 	if (xfs_ipincount(ip))
3641 		lsn = ip->i_itemp->ili_last_lsn;
3642 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3643 
3644 	if (!lsn)
3645 		return 0;
3646 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3647 }
3648 
3649 /*
3650  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3651  * abide vfs locking order (lowest pointer value goes first) and breaking the
3652  * layout leases before proceeding.  The loop is needed because we cannot call
3653  * the blocking break_layout() with the iolocks held, and therefore have to
3654  * back out both locks.
3655  */
3656 static int
3657 xfs_iolock_two_inodes_and_break_layout(
3658 	struct inode		*src,
3659 	struct inode		*dest)
3660 {
3661 	int			error;
3662 
3663 	if (src > dest)
3664 		swap(src, dest);
3665 
3666 retry:
3667 	/* Wait to break both inodes' layouts before we start locking. */
3668 	error = break_layout(src, true);
3669 	if (error)
3670 		return error;
3671 	if (src != dest) {
3672 		error = break_layout(dest, true);
3673 		if (error)
3674 			return error;
3675 	}
3676 
3677 	/* Lock one inode and make sure nobody got in and leased it. */
3678 	inode_lock(src);
3679 	error = break_layout(src, false);
3680 	if (error) {
3681 		inode_unlock(src);
3682 		if (error == -EWOULDBLOCK)
3683 			goto retry;
3684 		return error;
3685 	}
3686 
3687 	if (src == dest)
3688 		return 0;
3689 
3690 	/* Lock the other inode and make sure nobody got in and leased it. */
3691 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3692 	error = break_layout(dest, false);
3693 	if (error) {
3694 		inode_unlock(src);
3695 		inode_unlock(dest);
3696 		if (error == -EWOULDBLOCK)
3697 			goto retry;
3698 		return error;
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 /*
3705  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3706  * mmap activity.
3707  */
3708 int
3709 xfs_ilock2_io_mmap(
3710 	struct xfs_inode	*ip1,
3711 	struct xfs_inode	*ip2)
3712 {
3713 	int			ret;
3714 
3715 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3716 	if (ret)
3717 		return ret;
3718 	if (ip1 == ip2)
3719 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3720 	else
3721 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3722 				    ip2, XFS_MMAPLOCK_EXCL);
3723 	return 0;
3724 }
3725 
3726 /* Unlock both inodes to allow IO and mmap activity. */
3727 void
3728 xfs_iunlock2_io_mmap(
3729 	struct xfs_inode	*ip1,
3730 	struct xfs_inode	*ip2)
3731 {
3732 	bool			same_inode = (ip1 == ip2);
3733 
3734 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3735 	if (!same_inode)
3736 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3737 	inode_unlock(VFS_I(ip2));
3738 	if (!same_inode)
3739 		inode_unlock(VFS_I(ip1));
3740 }
3741