xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 6d8b79cfca39399ef9115fb65dde85993455c9a3)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40 
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 
44 /*
45  * The inode lookup is done in batches to keep the amount of lock traffic and
46  * radix tree lookups to a minimum. The batch size is a trade off between
47  * lookup reduction and stack usage. This is in the reclaim path, so we can't
48  * be too greedy.
49  */
50 #define XFS_LOOKUP_BATCH	32
51 
52 STATIC int
53 xfs_inode_ag_walk_grab(
54 	struct xfs_inode	*ip)
55 {
56 	struct inode		*inode = VFS_I(ip);
57 
58 	ASSERT(rcu_read_lock_held());
59 
60 	/*
61 	 * check for stale RCU freed inode
62 	 *
63 	 * If the inode has been reallocated, it doesn't matter if it's not in
64 	 * the AG we are walking - we are walking for writeback, so if it
65 	 * passes all the "valid inode" checks and is dirty, then we'll write
66 	 * it back anyway.  If it has been reallocated and still being
67 	 * initialised, the XFS_INEW check below will catch it.
68 	 */
69 	spin_lock(&ip->i_flags_lock);
70 	if (!ip->i_ino)
71 		goto out_unlock_noent;
72 
73 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 		goto out_unlock_noent;
76 	spin_unlock(&ip->i_flags_lock);
77 
78 	/* nothing to sync during shutdown */
79 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 		return EFSCORRUPTED;
81 
82 	/* If we can't grab the inode, it must on it's way to reclaim. */
83 	if (!igrab(inode))
84 		return ENOENT;
85 
86 	if (is_bad_inode(inode)) {
87 		IRELE(ip);
88 		return ENOENT;
89 	}
90 
91 	/* inode is valid */
92 	return 0;
93 
94 out_unlock_noent:
95 	spin_unlock(&ip->i_flags_lock);
96 	return ENOENT;
97 }
98 
99 STATIC int
100 xfs_inode_ag_walk(
101 	struct xfs_mount	*mp,
102 	struct xfs_perag	*pag,
103 	int			(*execute)(struct xfs_inode *ip,
104 					   struct xfs_perag *pag, int flags),
105 	int			flags)
106 {
107 	uint32_t		first_index;
108 	int			last_error = 0;
109 	int			skipped;
110 	int			done;
111 	int			nr_found;
112 
113 restart:
114 	done = 0;
115 	skipped = 0;
116 	first_index = 0;
117 	nr_found = 0;
118 	do {
119 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120 		int		error = 0;
121 		int		i;
122 
123 		rcu_read_lock();
124 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125 					(void **)batch, first_index,
126 					XFS_LOOKUP_BATCH);
127 		if (!nr_found) {
128 			rcu_read_unlock();
129 			break;
130 		}
131 
132 		/*
133 		 * Grab the inodes before we drop the lock. if we found
134 		 * nothing, nr == 0 and the loop will be skipped.
135 		 */
136 		for (i = 0; i < nr_found; i++) {
137 			struct xfs_inode *ip = batch[i];
138 
139 			if (done || xfs_inode_ag_walk_grab(ip))
140 				batch[i] = NULL;
141 
142 			/*
143 			 * Update the index for the next lookup. Catch
144 			 * overflows into the next AG range which can occur if
145 			 * we have inodes in the last block of the AG and we
146 			 * are currently pointing to the last inode.
147 			 *
148 			 * Because we may see inodes that are from the wrong AG
149 			 * due to RCU freeing and reallocation, only update the
150 			 * index if it lies in this AG. It was a race that lead
151 			 * us to see this inode, so another lookup from the
152 			 * same index will not find it again.
153 			 */
154 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 				continue;
156 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 				done = 1;
159 		}
160 
161 		/* unlock now we've grabbed the inodes. */
162 		rcu_read_unlock();
163 
164 		for (i = 0; i < nr_found; i++) {
165 			if (!batch[i])
166 				continue;
167 			error = execute(batch[i], pag, flags);
168 			IRELE(batch[i]);
169 			if (error == EAGAIN) {
170 				skipped++;
171 				continue;
172 			}
173 			if (error && last_error != EFSCORRUPTED)
174 				last_error = error;
175 		}
176 
177 		/* bail out if the filesystem is corrupted.  */
178 		if (error == EFSCORRUPTED)
179 			break;
180 
181 		cond_resched();
182 
183 	} while (nr_found && !done);
184 
185 	if (skipped) {
186 		delay(1);
187 		goto restart;
188 	}
189 	return last_error;
190 }
191 
192 int
193 xfs_inode_ag_iterator(
194 	struct xfs_mount	*mp,
195 	int			(*execute)(struct xfs_inode *ip,
196 					   struct xfs_perag *pag, int flags),
197 	int			flags)
198 {
199 	struct xfs_perag	*pag;
200 	int			error = 0;
201 	int			last_error = 0;
202 	xfs_agnumber_t		ag;
203 
204 	ag = 0;
205 	while ((pag = xfs_perag_get(mp, ag))) {
206 		ag = pag->pag_agno + 1;
207 		error = xfs_inode_ag_walk(mp, pag, execute, flags);
208 		xfs_perag_put(pag);
209 		if (error) {
210 			last_error = error;
211 			if (error == EFSCORRUPTED)
212 				break;
213 		}
214 	}
215 	return XFS_ERROR(last_error);
216 }
217 
218 /*
219  * Queue a new inode reclaim pass if there are reclaimable inodes and there
220  * isn't a reclaim pass already in progress. By default it runs every 5s based
221  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
222  * tunable, but that can be done if this method proves to be ineffective or too
223  * aggressive.
224  */
225 static void
226 xfs_reclaim_work_queue(
227 	struct xfs_mount        *mp)
228 {
229 
230 	rcu_read_lock();
231 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
232 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
233 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
234 	}
235 	rcu_read_unlock();
236 }
237 
238 /*
239  * This is a fast pass over the inode cache to try to get reclaim moving on as
240  * many inodes as possible in a short period of time. It kicks itself every few
241  * seconds, as well as being kicked by the inode cache shrinker when memory
242  * goes low. It scans as quickly as possible avoiding locked inodes or those
243  * already being flushed, and once done schedules a future pass.
244  */
245 void
246 xfs_reclaim_worker(
247 	struct work_struct *work)
248 {
249 	struct xfs_mount *mp = container_of(to_delayed_work(work),
250 					struct xfs_mount, m_reclaim_work);
251 
252 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
253 	xfs_reclaim_work_queue(mp);
254 }
255 
256 void
257 __xfs_inode_set_reclaim_tag(
258 	struct xfs_perag	*pag,
259 	struct xfs_inode	*ip)
260 {
261 	radix_tree_tag_set(&pag->pag_ici_root,
262 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
263 			   XFS_ICI_RECLAIM_TAG);
264 
265 	if (!pag->pag_ici_reclaimable) {
266 		/* propagate the reclaim tag up into the perag radix tree */
267 		spin_lock(&ip->i_mount->m_perag_lock);
268 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
269 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
270 				XFS_ICI_RECLAIM_TAG);
271 		spin_unlock(&ip->i_mount->m_perag_lock);
272 
273 		/* schedule periodic background inode reclaim */
274 		xfs_reclaim_work_queue(ip->i_mount);
275 
276 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
277 							-1, _RET_IP_);
278 	}
279 	pag->pag_ici_reclaimable++;
280 }
281 
282 /*
283  * We set the inode flag atomically with the radix tree tag.
284  * Once we get tag lookups on the radix tree, this inode flag
285  * can go away.
286  */
287 void
288 xfs_inode_set_reclaim_tag(
289 	xfs_inode_t	*ip)
290 {
291 	struct xfs_mount *mp = ip->i_mount;
292 	struct xfs_perag *pag;
293 
294 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
295 	spin_lock(&pag->pag_ici_lock);
296 	spin_lock(&ip->i_flags_lock);
297 	__xfs_inode_set_reclaim_tag(pag, ip);
298 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
299 	spin_unlock(&ip->i_flags_lock);
300 	spin_unlock(&pag->pag_ici_lock);
301 	xfs_perag_put(pag);
302 }
303 
304 STATIC void
305 __xfs_inode_clear_reclaim(
306 	xfs_perag_t	*pag,
307 	xfs_inode_t	*ip)
308 {
309 	pag->pag_ici_reclaimable--;
310 	if (!pag->pag_ici_reclaimable) {
311 		/* clear the reclaim tag from the perag radix tree */
312 		spin_lock(&ip->i_mount->m_perag_lock);
313 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
314 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
315 				XFS_ICI_RECLAIM_TAG);
316 		spin_unlock(&ip->i_mount->m_perag_lock);
317 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
318 							-1, _RET_IP_);
319 	}
320 }
321 
322 void
323 __xfs_inode_clear_reclaim_tag(
324 	xfs_mount_t	*mp,
325 	xfs_perag_t	*pag,
326 	xfs_inode_t	*ip)
327 {
328 	radix_tree_tag_clear(&pag->pag_ici_root,
329 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
330 	__xfs_inode_clear_reclaim(pag, ip);
331 }
332 
333 /*
334  * Grab the inode for reclaim exclusively.
335  * Return 0 if we grabbed it, non-zero otherwise.
336  */
337 STATIC int
338 xfs_reclaim_inode_grab(
339 	struct xfs_inode	*ip,
340 	int			flags)
341 {
342 	ASSERT(rcu_read_lock_held());
343 
344 	/* quick check for stale RCU freed inode */
345 	if (!ip->i_ino)
346 		return 1;
347 
348 	/*
349 	 * If we are asked for non-blocking operation, do unlocked checks to
350 	 * see if the inode already is being flushed or in reclaim to avoid
351 	 * lock traffic.
352 	 */
353 	if ((flags & SYNC_TRYLOCK) &&
354 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
355 		return 1;
356 
357 	/*
358 	 * The radix tree lock here protects a thread in xfs_iget from racing
359 	 * with us starting reclaim on the inode.  Once we have the
360 	 * XFS_IRECLAIM flag set it will not touch us.
361 	 *
362 	 * Due to RCU lookup, we may find inodes that have been freed and only
363 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
364 	 * aren't candidates for reclaim at all, so we must check the
365 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
366 	 */
367 	spin_lock(&ip->i_flags_lock);
368 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
369 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
370 		/* not a reclaim candidate. */
371 		spin_unlock(&ip->i_flags_lock);
372 		return 1;
373 	}
374 	__xfs_iflags_set(ip, XFS_IRECLAIM);
375 	spin_unlock(&ip->i_flags_lock);
376 	return 0;
377 }
378 
379 /*
380  * Inodes in different states need to be treated differently. The following
381  * table lists the inode states and the reclaim actions necessary:
382  *
383  *	inode state	     iflush ret		required action
384  *      ---------------      ----------         ---------------
385  *	bad			-		reclaim
386  *	shutdown		EIO		unpin and reclaim
387  *	clean, unpinned		0		reclaim
388  *	stale, unpinned		0		reclaim
389  *	clean, pinned(*)	0		requeue
390  *	stale, pinned		EAGAIN		requeue
391  *	dirty, async		-		requeue
392  *	dirty, sync		0		reclaim
393  *
394  * (*) dgc: I don't think the clean, pinned state is possible but it gets
395  * handled anyway given the order of checks implemented.
396  *
397  * Also, because we get the flush lock first, we know that any inode that has
398  * been flushed delwri has had the flush completed by the time we check that
399  * the inode is clean.
400  *
401  * Note that because the inode is flushed delayed write by AIL pushing, the
402  * flush lock may already be held here and waiting on it can result in very
403  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
404  * the caller should push the AIL first before trying to reclaim inodes to
405  * minimise the amount of time spent waiting.  For background relaim, we only
406  * bother to reclaim clean inodes anyway.
407  *
408  * Hence the order of actions after gaining the locks should be:
409  *	bad		=> reclaim
410  *	shutdown	=> unpin and reclaim
411  *	pinned, async	=> requeue
412  *	pinned, sync	=> unpin
413  *	stale		=> reclaim
414  *	clean		=> reclaim
415  *	dirty, async	=> requeue
416  *	dirty, sync	=> flush, wait and reclaim
417  */
418 STATIC int
419 xfs_reclaim_inode(
420 	struct xfs_inode	*ip,
421 	struct xfs_perag	*pag,
422 	int			sync_mode)
423 {
424 	struct xfs_buf		*bp = NULL;
425 	int			error;
426 
427 restart:
428 	error = 0;
429 	xfs_ilock(ip, XFS_ILOCK_EXCL);
430 	if (!xfs_iflock_nowait(ip)) {
431 		if (!(sync_mode & SYNC_WAIT))
432 			goto out;
433 		xfs_iflock(ip);
434 	}
435 
436 	if (is_bad_inode(VFS_I(ip)))
437 		goto reclaim;
438 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
439 		xfs_iunpin_wait(ip);
440 		xfs_iflush_abort(ip, false);
441 		goto reclaim;
442 	}
443 	if (xfs_ipincount(ip)) {
444 		if (!(sync_mode & SYNC_WAIT))
445 			goto out_ifunlock;
446 		xfs_iunpin_wait(ip);
447 	}
448 	if (xfs_iflags_test(ip, XFS_ISTALE))
449 		goto reclaim;
450 	if (xfs_inode_clean(ip))
451 		goto reclaim;
452 
453 	/*
454 	 * Never flush out dirty data during non-blocking reclaim, as it would
455 	 * just contend with AIL pushing trying to do the same job.
456 	 */
457 	if (!(sync_mode & SYNC_WAIT))
458 		goto out_ifunlock;
459 
460 	/*
461 	 * Now we have an inode that needs flushing.
462 	 *
463 	 * Note that xfs_iflush will never block on the inode buffer lock, as
464 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
465 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
466 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
467 	 * result in an ABBA deadlock with xfs_ifree_cluster().
468 	 *
469 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
470 	 * cache to mark them stale, if we hit this case we don't actually want
471 	 * to do IO here - we want the inode marked stale so we can simply
472 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
473 	 * inode, back off and try again.  Hopefully the next pass through will
474 	 * see the stale flag set on the inode.
475 	 */
476 	error = xfs_iflush(ip, &bp);
477 	if (error == EAGAIN) {
478 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
479 		/* backoff longer than in xfs_ifree_cluster */
480 		delay(2);
481 		goto restart;
482 	}
483 
484 	if (!error) {
485 		error = xfs_bwrite(bp);
486 		xfs_buf_relse(bp);
487 	}
488 
489 	xfs_iflock(ip);
490 reclaim:
491 	xfs_ifunlock(ip);
492 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
493 
494 	XFS_STATS_INC(xs_ig_reclaims);
495 	/*
496 	 * Remove the inode from the per-AG radix tree.
497 	 *
498 	 * Because radix_tree_delete won't complain even if the item was never
499 	 * added to the tree assert that it's been there before to catch
500 	 * problems with the inode life time early on.
501 	 */
502 	spin_lock(&pag->pag_ici_lock);
503 	if (!radix_tree_delete(&pag->pag_ici_root,
504 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
505 		ASSERT(0);
506 	__xfs_inode_clear_reclaim(pag, ip);
507 	spin_unlock(&pag->pag_ici_lock);
508 
509 	/*
510 	 * Here we do an (almost) spurious inode lock in order to coordinate
511 	 * with inode cache radix tree lookups.  This is because the lookup
512 	 * can reference the inodes in the cache without taking references.
513 	 *
514 	 * We make that OK here by ensuring that we wait until the inode is
515 	 * unlocked after the lookup before we go ahead and free it.
516 	 */
517 	xfs_ilock(ip, XFS_ILOCK_EXCL);
518 	xfs_qm_dqdetach(ip);
519 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
520 
521 	xfs_inode_free(ip);
522 	return error;
523 
524 out_ifunlock:
525 	xfs_ifunlock(ip);
526 out:
527 	xfs_iflags_clear(ip, XFS_IRECLAIM);
528 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
529 	/*
530 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
531 	 * a short while. However, this just burns CPU time scanning the tree
532 	 * waiting for IO to complete and the reclaim work never goes back to
533 	 * the idle state. Instead, return 0 to let the next scheduled
534 	 * background reclaim attempt to reclaim the inode again.
535 	 */
536 	return 0;
537 }
538 
539 /*
540  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
541  * corrupted, we still want to try to reclaim all the inodes. If we don't,
542  * then a shut down during filesystem unmount reclaim walk leak all the
543  * unreclaimed inodes.
544  */
545 int
546 xfs_reclaim_inodes_ag(
547 	struct xfs_mount	*mp,
548 	int			flags,
549 	int			*nr_to_scan)
550 {
551 	struct xfs_perag	*pag;
552 	int			error = 0;
553 	int			last_error = 0;
554 	xfs_agnumber_t		ag;
555 	int			trylock = flags & SYNC_TRYLOCK;
556 	int			skipped;
557 
558 restart:
559 	ag = 0;
560 	skipped = 0;
561 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
562 		unsigned long	first_index = 0;
563 		int		done = 0;
564 		int		nr_found = 0;
565 
566 		ag = pag->pag_agno + 1;
567 
568 		if (trylock) {
569 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
570 				skipped++;
571 				xfs_perag_put(pag);
572 				continue;
573 			}
574 			first_index = pag->pag_ici_reclaim_cursor;
575 		} else
576 			mutex_lock(&pag->pag_ici_reclaim_lock);
577 
578 		do {
579 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
580 			int	i;
581 
582 			rcu_read_lock();
583 			nr_found = radix_tree_gang_lookup_tag(
584 					&pag->pag_ici_root,
585 					(void **)batch, first_index,
586 					XFS_LOOKUP_BATCH,
587 					XFS_ICI_RECLAIM_TAG);
588 			if (!nr_found) {
589 				done = 1;
590 				rcu_read_unlock();
591 				break;
592 			}
593 
594 			/*
595 			 * Grab the inodes before we drop the lock. if we found
596 			 * nothing, nr == 0 and the loop will be skipped.
597 			 */
598 			for (i = 0; i < nr_found; i++) {
599 				struct xfs_inode *ip = batch[i];
600 
601 				if (done || xfs_reclaim_inode_grab(ip, flags))
602 					batch[i] = NULL;
603 
604 				/*
605 				 * Update the index for the next lookup. Catch
606 				 * overflows into the next AG range which can
607 				 * occur if we have inodes in the last block of
608 				 * the AG and we are currently pointing to the
609 				 * last inode.
610 				 *
611 				 * Because we may see inodes that are from the
612 				 * wrong AG due to RCU freeing and
613 				 * reallocation, only update the index if it
614 				 * lies in this AG. It was a race that lead us
615 				 * to see this inode, so another lookup from
616 				 * the same index will not find it again.
617 				 */
618 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
619 								pag->pag_agno)
620 					continue;
621 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
622 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
623 					done = 1;
624 			}
625 
626 			/* unlock now we've grabbed the inodes. */
627 			rcu_read_unlock();
628 
629 			for (i = 0; i < nr_found; i++) {
630 				if (!batch[i])
631 					continue;
632 				error = xfs_reclaim_inode(batch[i], pag, flags);
633 				if (error && last_error != EFSCORRUPTED)
634 					last_error = error;
635 			}
636 
637 			*nr_to_scan -= XFS_LOOKUP_BATCH;
638 
639 			cond_resched();
640 
641 		} while (nr_found && !done && *nr_to_scan > 0);
642 
643 		if (trylock && !done)
644 			pag->pag_ici_reclaim_cursor = first_index;
645 		else
646 			pag->pag_ici_reclaim_cursor = 0;
647 		mutex_unlock(&pag->pag_ici_reclaim_lock);
648 		xfs_perag_put(pag);
649 	}
650 
651 	/*
652 	 * if we skipped any AG, and we still have scan count remaining, do
653 	 * another pass this time using blocking reclaim semantics (i.e
654 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
655 	 * ensure that when we get more reclaimers than AGs we block rather
656 	 * than spin trying to execute reclaim.
657 	 */
658 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
659 		trylock = 0;
660 		goto restart;
661 	}
662 	return XFS_ERROR(last_error);
663 }
664 
665 int
666 xfs_reclaim_inodes(
667 	xfs_mount_t	*mp,
668 	int		mode)
669 {
670 	int		nr_to_scan = INT_MAX;
671 
672 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
673 }
674 
675 /*
676  * Scan a certain number of inodes for reclaim.
677  *
678  * When called we make sure that there is a background (fast) inode reclaim in
679  * progress, while we will throttle the speed of reclaim via doing synchronous
680  * reclaim of inodes. That means if we come across dirty inodes, we wait for
681  * them to be cleaned, which we hope will not be very long due to the
682  * background walker having already kicked the IO off on those dirty inodes.
683  */
684 void
685 xfs_reclaim_inodes_nr(
686 	struct xfs_mount	*mp,
687 	int			nr_to_scan)
688 {
689 	/* kick background reclaimer and push the AIL */
690 	xfs_reclaim_work_queue(mp);
691 	xfs_ail_push_all(mp->m_ail);
692 
693 	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
694 }
695 
696 /*
697  * Return the number of reclaimable inodes in the filesystem for
698  * the shrinker to determine how much to reclaim.
699  */
700 int
701 xfs_reclaim_inodes_count(
702 	struct xfs_mount	*mp)
703 {
704 	struct xfs_perag	*pag;
705 	xfs_agnumber_t		ag = 0;
706 	int			reclaimable = 0;
707 
708 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
709 		ag = pag->pag_agno + 1;
710 		reclaimable += pag->pag_ici_reclaimable;
711 		xfs_perag_put(pag);
712 	}
713 	return reclaimable;
714 }
715 
716