1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dinode.h" 32 #include "xfs_error.h" 33 #include "xfs_filestream.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_quota.h" 37 #include "xfs_trace.h" 38 #include "xfs_fsops.h" 39 #include "xfs_icache.h" 40 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 45 struct xfs_perag *pag, struct xfs_inode *ip); 46 47 /* 48 * Allocate and initialise an xfs_inode. 49 */ 50 STATIC struct xfs_inode * 51 xfs_inode_alloc( 52 struct xfs_mount *mp, 53 xfs_ino_t ino) 54 { 55 struct xfs_inode *ip; 56 57 /* 58 * if this didn't occur in transactions, we could use 59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 60 * code up to do this anyway. 61 */ 62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 63 if (!ip) 64 return NULL; 65 if (inode_init_always(mp->m_super, VFS_I(ip))) { 66 kmem_zone_free(xfs_inode_zone, ip); 67 return NULL; 68 } 69 70 ASSERT(atomic_read(&ip->i_pincount) == 0); 71 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 72 ASSERT(!xfs_isiflocked(ip)); 73 ASSERT(ip->i_ino == 0); 74 75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 76 77 /* initialise the xfs inode */ 78 ip->i_ino = ino; 79 ip->i_mount = mp; 80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 81 ip->i_afp = NULL; 82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 83 ip->i_flags = 0; 84 ip->i_delayed_blks = 0; 85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 86 87 return ip; 88 } 89 90 STATIC void 91 xfs_inode_free_callback( 92 struct rcu_head *head) 93 { 94 struct inode *inode = container_of(head, struct inode, i_rcu); 95 struct xfs_inode *ip = XFS_I(inode); 96 97 kmem_zone_free(xfs_inode_zone, ip); 98 } 99 100 STATIC void 101 xfs_inode_free( 102 struct xfs_inode *ip) 103 { 104 switch (ip->i_d.di_mode & S_IFMT) { 105 case S_IFREG: 106 case S_IFDIR: 107 case S_IFLNK: 108 xfs_idestroy_fork(ip, XFS_DATA_FORK); 109 break; 110 } 111 112 if (ip->i_afp) 113 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 114 115 if (ip->i_itemp) { 116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 117 xfs_inode_item_destroy(ip); 118 ip->i_itemp = NULL; 119 } 120 121 /* asserts to verify all state is correct here */ 122 ASSERT(atomic_read(&ip->i_pincount) == 0); 123 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 124 ASSERT(!xfs_isiflocked(ip)); 125 126 /* 127 * Because we use RCU freeing we need to ensure the inode always 128 * appears to be reclaimed with an invalid inode number when in the 129 * free state. The ip->i_flags_lock provides the barrier against lookup 130 * races. 131 */ 132 spin_lock(&ip->i_flags_lock); 133 ip->i_flags = XFS_IRECLAIM; 134 ip->i_ino = 0; 135 spin_unlock(&ip->i_flags_lock); 136 137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 138 } 139 140 /* 141 * Check the validity of the inode we just found it the cache 142 */ 143 static int 144 xfs_iget_cache_hit( 145 struct xfs_perag *pag, 146 struct xfs_inode *ip, 147 xfs_ino_t ino, 148 int flags, 149 int lock_flags) __releases(RCU) 150 { 151 struct inode *inode = VFS_I(ip); 152 struct xfs_mount *mp = ip->i_mount; 153 int error; 154 155 /* 156 * check for re-use of an inode within an RCU grace period due to the 157 * radix tree nodes not being updated yet. We monitor for this by 158 * setting the inode number to zero before freeing the inode structure. 159 * If the inode has been reallocated and set up, then the inode number 160 * will not match, so check for that, too. 161 */ 162 spin_lock(&ip->i_flags_lock); 163 if (ip->i_ino != ino) { 164 trace_xfs_iget_skip(ip); 165 XFS_STATS_INC(xs_ig_frecycle); 166 error = EAGAIN; 167 goto out_error; 168 } 169 170 171 /* 172 * If we are racing with another cache hit that is currently 173 * instantiating this inode or currently recycling it out of 174 * reclaimabe state, wait for the initialisation to complete 175 * before continuing. 176 * 177 * XXX(hch): eventually we should do something equivalent to 178 * wait_on_inode to wait for these flags to be cleared 179 * instead of polling for it. 180 */ 181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 182 trace_xfs_iget_skip(ip); 183 XFS_STATS_INC(xs_ig_frecycle); 184 error = EAGAIN; 185 goto out_error; 186 } 187 188 /* 189 * If lookup is racing with unlink return an error immediately. 190 */ 191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 192 error = ENOENT; 193 goto out_error; 194 } 195 196 /* 197 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 198 * Need to carefully get it back into useable state. 199 */ 200 if (ip->i_flags & XFS_IRECLAIMABLE) { 201 trace_xfs_iget_reclaim(ip); 202 203 /* 204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 205 * from stomping over us while we recycle the inode. We can't 206 * clear the radix tree reclaimable tag yet as it requires 207 * pag_ici_lock to be held exclusive. 208 */ 209 ip->i_flags |= XFS_IRECLAIM; 210 211 spin_unlock(&ip->i_flags_lock); 212 rcu_read_unlock(); 213 214 error = -inode_init_always(mp->m_super, inode); 215 if (error) { 216 /* 217 * Re-initializing the inode failed, and we are in deep 218 * trouble. Try to re-add it to the reclaim list. 219 */ 220 rcu_read_lock(); 221 spin_lock(&ip->i_flags_lock); 222 223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 225 trace_xfs_iget_reclaim_fail(ip); 226 goto out_error; 227 } 228 229 spin_lock(&pag->pag_ici_lock); 230 spin_lock(&ip->i_flags_lock); 231 232 /* 233 * Clear the per-lifetime state in the inode as we are now 234 * effectively a new inode and need to return to the initial 235 * state before reuse occurs. 236 */ 237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 238 ip->i_flags |= XFS_INEW; 239 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 240 inode->i_state = I_NEW; 241 242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 244 245 spin_unlock(&ip->i_flags_lock); 246 spin_unlock(&pag->pag_ici_lock); 247 } else { 248 /* If the VFS inode is being torn down, pause and try again. */ 249 if (!igrab(inode)) { 250 trace_xfs_iget_skip(ip); 251 error = EAGAIN; 252 goto out_error; 253 } 254 255 /* We've got a live one. */ 256 spin_unlock(&ip->i_flags_lock); 257 rcu_read_unlock(); 258 trace_xfs_iget_hit(ip); 259 } 260 261 if (lock_flags != 0) 262 xfs_ilock(ip, lock_flags); 263 264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 265 XFS_STATS_INC(xs_ig_found); 266 267 return 0; 268 269 out_error: 270 spin_unlock(&ip->i_flags_lock); 271 rcu_read_unlock(); 272 return error; 273 } 274 275 276 static int 277 xfs_iget_cache_miss( 278 struct xfs_mount *mp, 279 struct xfs_perag *pag, 280 xfs_trans_t *tp, 281 xfs_ino_t ino, 282 struct xfs_inode **ipp, 283 int flags, 284 int lock_flags) 285 { 286 struct xfs_inode *ip; 287 int error; 288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 289 int iflags; 290 291 ip = xfs_inode_alloc(mp, ino); 292 if (!ip) 293 return ENOMEM; 294 295 error = xfs_iread(mp, tp, ip, flags); 296 if (error) 297 goto out_destroy; 298 299 trace_xfs_iget_miss(ip); 300 301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 302 error = ENOENT; 303 goto out_destroy; 304 } 305 306 /* 307 * Preload the radix tree so we can insert safely under the 308 * write spinlock. Note that we cannot sleep inside the preload 309 * region. Since we can be called from transaction context, don't 310 * recurse into the file system. 311 */ 312 if (radix_tree_preload(GFP_NOFS)) { 313 error = EAGAIN; 314 goto out_destroy; 315 } 316 317 /* 318 * Because the inode hasn't been added to the radix-tree yet it can't 319 * be found by another thread, so we can do the non-sleeping lock here. 320 */ 321 if (lock_flags) { 322 if (!xfs_ilock_nowait(ip, lock_flags)) 323 BUG(); 324 } 325 326 /* 327 * These values must be set before inserting the inode into the radix 328 * tree as the moment it is inserted a concurrent lookup (allowed by the 329 * RCU locking mechanism) can find it and that lookup must see that this 330 * is an inode currently under construction (i.e. that XFS_INEW is set). 331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 332 * memory barrier that ensures this detection works correctly at lookup 333 * time. 334 */ 335 iflags = XFS_INEW; 336 if (flags & XFS_IGET_DONTCACHE) 337 iflags |= XFS_IDONTCACHE; 338 ip->i_udquot = ip->i_gdquot = NULL; 339 xfs_iflags_set(ip, iflags); 340 341 /* insert the new inode */ 342 spin_lock(&pag->pag_ici_lock); 343 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 344 if (unlikely(error)) { 345 WARN_ON(error != -EEXIST); 346 XFS_STATS_INC(xs_ig_dup); 347 error = EAGAIN; 348 goto out_preload_end; 349 } 350 spin_unlock(&pag->pag_ici_lock); 351 radix_tree_preload_end(); 352 353 *ipp = ip; 354 return 0; 355 356 out_preload_end: 357 spin_unlock(&pag->pag_ici_lock); 358 radix_tree_preload_end(); 359 if (lock_flags) 360 xfs_iunlock(ip, lock_flags); 361 out_destroy: 362 __destroy_inode(VFS_I(ip)); 363 xfs_inode_free(ip); 364 return error; 365 } 366 367 /* 368 * Look up an inode by number in the given file system. 369 * The inode is looked up in the cache held in each AG. 370 * If the inode is found in the cache, initialise the vfs inode 371 * if necessary. 372 * 373 * If it is not in core, read it in from the file system's device, 374 * add it to the cache and initialise the vfs inode. 375 * 376 * The inode is locked according to the value of the lock_flags parameter. 377 * This flag parameter indicates how and if the inode's IO lock and inode lock 378 * should be taken. 379 * 380 * mp -- the mount point structure for the current file system. It points 381 * to the inode hash table. 382 * tp -- a pointer to the current transaction if there is one. This is 383 * simply passed through to the xfs_iread() call. 384 * ino -- the number of the inode desired. This is the unique identifier 385 * within the file system for the inode being requested. 386 * lock_flags -- flags indicating how to lock the inode. See the comment 387 * for xfs_ilock() for a list of valid values. 388 */ 389 int 390 xfs_iget( 391 xfs_mount_t *mp, 392 xfs_trans_t *tp, 393 xfs_ino_t ino, 394 uint flags, 395 uint lock_flags, 396 xfs_inode_t **ipp) 397 { 398 xfs_inode_t *ip; 399 int error; 400 xfs_perag_t *pag; 401 xfs_agino_t agino; 402 403 /* 404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 405 * doesn't get freed while it's being referenced during a 406 * radix tree traversal here. It assumes this function 407 * aqcuires only the ILOCK (and therefore it has no need to 408 * involve the IOLOCK in this synchronization). 409 */ 410 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 411 412 /* reject inode numbers outside existing AGs */ 413 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 414 return EINVAL; 415 416 /* get the perag structure and ensure that it's inode capable */ 417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 418 agino = XFS_INO_TO_AGINO(mp, ino); 419 420 again: 421 error = 0; 422 rcu_read_lock(); 423 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 424 425 if (ip) { 426 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 427 if (error) 428 goto out_error_or_again; 429 } else { 430 rcu_read_unlock(); 431 XFS_STATS_INC(xs_ig_missed); 432 433 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 434 flags, lock_flags); 435 if (error) 436 goto out_error_or_again; 437 } 438 xfs_perag_put(pag); 439 440 *ipp = ip; 441 442 /* 443 * If we have a real type for an on-disk inode, we can set ops(&unlock) 444 * now. If it's a new inode being created, xfs_ialloc will handle it. 445 */ 446 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 447 xfs_setup_inode(ip); 448 return 0; 449 450 out_error_or_again: 451 if (error == EAGAIN) { 452 delay(1); 453 goto again; 454 } 455 xfs_perag_put(pag); 456 return error; 457 } 458 459 /* 460 * The inode lookup is done in batches to keep the amount of lock traffic and 461 * radix tree lookups to a minimum. The batch size is a trade off between 462 * lookup reduction and stack usage. This is in the reclaim path, so we can't 463 * be too greedy. 464 */ 465 #define XFS_LOOKUP_BATCH 32 466 467 STATIC int 468 xfs_inode_ag_walk_grab( 469 struct xfs_inode *ip) 470 { 471 struct inode *inode = VFS_I(ip); 472 473 ASSERT(rcu_read_lock_held()); 474 475 /* 476 * check for stale RCU freed inode 477 * 478 * If the inode has been reallocated, it doesn't matter if it's not in 479 * the AG we are walking - we are walking for writeback, so if it 480 * passes all the "valid inode" checks and is dirty, then we'll write 481 * it back anyway. If it has been reallocated and still being 482 * initialised, the XFS_INEW check below will catch it. 483 */ 484 spin_lock(&ip->i_flags_lock); 485 if (!ip->i_ino) 486 goto out_unlock_noent; 487 488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 489 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 490 goto out_unlock_noent; 491 spin_unlock(&ip->i_flags_lock); 492 493 /* nothing to sync during shutdown */ 494 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 495 return EFSCORRUPTED; 496 497 /* If we can't grab the inode, it must on it's way to reclaim. */ 498 if (!igrab(inode)) 499 return ENOENT; 500 501 if (is_bad_inode(inode)) { 502 IRELE(ip); 503 return ENOENT; 504 } 505 506 /* inode is valid */ 507 return 0; 508 509 out_unlock_noent: 510 spin_unlock(&ip->i_flags_lock); 511 return ENOENT; 512 } 513 514 STATIC int 515 xfs_inode_ag_walk( 516 struct xfs_mount *mp, 517 struct xfs_perag *pag, 518 int (*execute)(struct xfs_inode *ip, 519 struct xfs_perag *pag, int flags), 520 int flags) 521 { 522 uint32_t first_index; 523 int last_error = 0; 524 int skipped; 525 int done; 526 int nr_found; 527 528 restart: 529 done = 0; 530 skipped = 0; 531 first_index = 0; 532 nr_found = 0; 533 do { 534 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 535 int error = 0; 536 int i; 537 538 rcu_read_lock(); 539 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 540 (void **)batch, first_index, 541 XFS_LOOKUP_BATCH); 542 if (!nr_found) { 543 rcu_read_unlock(); 544 break; 545 } 546 547 /* 548 * Grab the inodes before we drop the lock. if we found 549 * nothing, nr == 0 and the loop will be skipped. 550 */ 551 for (i = 0; i < nr_found; i++) { 552 struct xfs_inode *ip = batch[i]; 553 554 if (done || xfs_inode_ag_walk_grab(ip)) 555 batch[i] = NULL; 556 557 /* 558 * Update the index for the next lookup. Catch 559 * overflows into the next AG range which can occur if 560 * we have inodes in the last block of the AG and we 561 * are currently pointing to the last inode. 562 * 563 * Because we may see inodes that are from the wrong AG 564 * due to RCU freeing and reallocation, only update the 565 * index if it lies in this AG. It was a race that lead 566 * us to see this inode, so another lookup from the 567 * same index will not find it again. 568 */ 569 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 570 continue; 571 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 572 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 573 done = 1; 574 } 575 576 /* unlock now we've grabbed the inodes. */ 577 rcu_read_unlock(); 578 579 for (i = 0; i < nr_found; i++) { 580 if (!batch[i]) 581 continue; 582 error = execute(batch[i], pag, flags); 583 IRELE(batch[i]); 584 if (error == EAGAIN) { 585 skipped++; 586 continue; 587 } 588 if (error && last_error != EFSCORRUPTED) 589 last_error = error; 590 } 591 592 /* bail out if the filesystem is corrupted. */ 593 if (error == EFSCORRUPTED) 594 break; 595 596 cond_resched(); 597 598 } while (nr_found && !done); 599 600 if (skipped) { 601 delay(1); 602 goto restart; 603 } 604 return last_error; 605 } 606 607 int 608 xfs_inode_ag_iterator( 609 struct xfs_mount *mp, 610 int (*execute)(struct xfs_inode *ip, 611 struct xfs_perag *pag, int flags), 612 int flags) 613 { 614 struct xfs_perag *pag; 615 int error = 0; 616 int last_error = 0; 617 xfs_agnumber_t ag; 618 619 ag = 0; 620 while ((pag = xfs_perag_get(mp, ag))) { 621 ag = pag->pag_agno + 1; 622 error = xfs_inode_ag_walk(mp, pag, execute, flags); 623 xfs_perag_put(pag); 624 if (error) { 625 last_error = error; 626 if (error == EFSCORRUPTED) 627 break; 628 } 629 } 630 return XFS_ERROR(last_error); 631 } 632 633 /* 634 * Queue a new inode reclaim pass if there are reclaimable inodes and there 635 * isn't a reclaim pass already in progress. By default it runs every 5s based 636 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 637 * tunable, but that can be done if this method proves to be ineffective or too 638 * aggressive. 639 */ 640 static void 641 xfs_reclaim_work_queue( 642 struct xfs_mount *mp) 643 { 644 645 rcu_read_lock(); 646 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 647 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 648 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 649 } 650 rcu_read_unlock(); 651 } 652 653 /* 654 * This is a fast pass over the inode cache to try to get reclaim moving on as 655 * many inodes as possible in a short period of time. It kicks itself every few 656 * seconds, as well as being kicked by the inode cache shrinker when memory 657 * goes low. It scans as quickly as possible avoiding locked inodes or those 658 * already being flushed, and once done schedules a future pass. 659 */ 660 void 661 xfs_reclaim_worker( 662 struct work_struct *work) 663 { 664 struct xfs_mount *mp = container_of(to_delayed_work(work), 665 struct xfs_mount, m_reclaim_work); 666 667 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 668 xfs_reclaim_work_queue(mp); 669 } 670 671 static void 672 __xfs_inode_set_reclaim_tag( 673 struct xfs_perag *pag, 674 struct xfs_inode *ip) 675 { 676 radix_tree_tag_set(&pag->pag_ici_root, 677 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 678 XFS_ICI_RECLAIM_TAG); 679 680 if (!pag->pag_ici_reclaimable) { 681 /* propagate the reclaim tag up into the perag radix tree */ 682 spin_lock(&ip->i_mount->m_perag_lock); 683 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 684 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 685 XFS_ICI_RECLAIM_TAG); 686 spin_unlock(&ip->i_mount->m_perag_lock); 687 688 /* schedule periodic background inode reclaim */ 689 xfs_reclaim_work_queue(ip->i_mount); 690 691 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 692 -1, _RET_IP_); 693 } 694 pag->pag_ici_reclaimable++; 695 } 696 697 /* 698 * We set the inode flag atomically with the radix tree tag. 699 * Once we get tag lookups on the radix tree, this inode flag 700 * can go away. 701 */ 702 void 703 xfs_inode_set_reclaim_tag( 704 xfs_inode_t *ip) 705 { 706 struct xfs_mount *mp = ip->i_mount; 707 struct xfs_perag *pag; 708 709 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 710 spin_lock(&pag->pag_ici_lock); 711 spin_lock(&ip->i_flags_lock); 712 __xfs_inode_set_reclaim_tag(pag, ip); 713 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 714 spin_unlock(&ip->i_flags_lock); 715 spin_unlock(&pag->pag_ici_lock); 716 xfs_perag_put(pag); 717 } 718 719 STATIC void 720 __xfs_inode_clear_reclaim( 721 xfs_perag_t *pag, 722 xfs_inode_t *ip) 723 { 724 pag->pag_ici_reclaimable--; 725 if (!pag->pag_ici_reclaimable) { 726 /* clear the reclaim tag from the perag radix tree */ 727 spin_lock(&ip->i_mount->m_perag_lock); 728 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 729 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 730 XFS_ICI_RECLAIM_TAG); 731 spin_unlock(&ip->i_mount->m_perag_lock); 732 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 733 -1, _RET_IP_); 734 } 735 } 736 737 STATIC void 738 __xfs_inode_clear_reclaim_tag( 739 xfs_mount_t *mp, 740 xfs_perag_t *pag, 741 xfs_inode_t *ip) 742 { 743 radix_tree_tag_clear(&pag->pag_ici_root, 744 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 745 __xfs_inode_clear_reclaim(pag, ip); 746 } 747 748 /* 749 * Grab the inode for reclaim exclusively. 750 * Return 0 if we grabbed it, non-zero otherwise. 751 */ 752 STATIC int 753 xfs_reclaim_inode_grab( 754 struct xfs_inode *ip, 755 int flags) 756 { 757 ASSERT(rcu_read_lock_held()); 758 759 /* quick check for stale RCU freed inode */ 760 if (!ip->i_ino) 761 return 1; 762 763 /* 764 * If we are asked for non-blocking operation, do unlocked checks to 765 * see if the inode already is being flushed or in reclaim to avoid 766 * lock traffic. 767 */ 768 if ((flags & SYNC_TRYLOCK) && 769 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 770 return 1; 771 772 /* 773 * The radix tree lock here protects a thread in xfs_iget from racing 774 * with us starting reclaim on the inode. Once we have the 775 * XFS_IRECLAIM flag set it will not touch us. 776 * 777 * Due to RCU lookup, we may find inodes that have been freed and only 778 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 779 * aren't candidates for reclaim at all, so we must check the 780 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 781 */ 782 spin_lock(&ip->i_flags_lock); 783 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 784 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 785 /* not a reclaim candidate. */ 786 spin_unlock(&ip->i_flags_lock); 787 return 1; 788 } 789 __xfs_iflags_set(ip, XFS_IRECLAIM); 790 spin_unlock(&ip->i_flags_lock); 791 return 0; 792 } 793 794 /* 795 * Inodes in different states need to be treated differently. The following 796 * table lists the inode states and the reclaim actions necessary: 797 * 798 * inode state iflush ret required action 799 * --------------- ---------- --------------- 800 * bad - reclaim 801 * shutdown EIO unpin and reclaim 802 * clean, unpinned 0 reclaim 803 * stale, unpinned 0 reclaim 804 * clean, pinned(*) 0 requeue 805 * stale, pinned EAGAIN requeue 806 * dirty, async - requeue 807 * dirty, sync 0 reclaim 808 * 809 * (*) dgc: I don't think the clean, pinned state is possible but it gets 810 * handled anyway given the order of checks implemented. 811 * 812 * Also, because we get the flush lock first, we know that any inode that has 813 * been flushed delwri has had the flush completed by the time we check that 814 * the inode is clean. 815 * 816 * Note that because the inode is flushed delayed write by AIL pushing, the 817 * flush lock may already be held here and waiting on it can result in very 818 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 819 * the caller should push the AIL first before trying to reclaim inodes to 820 * minimise the amount of time spent waiting. For background relaim, we only 821 * bother to reclaim clean inodes anyway. 822 * 823 * Hence the order of actions after gaining the locks should be: 824 * bad => reclaim 825 * shutdown => unpin and reclaim 826 * pinned, async => requeue 827 * pinned, sync => unpin 828 * stale => reclaim 829 * clean => reclaim 830 * dirty, async => requeue 831 * dirty, sync => flush, wait and reclaim 832 */ 833 STATIC int 834 xfs_reclaim_inode( 835 struct xfs_inode *ip, 836 struct xfs_perag *pag, 837 int sync_mode) 838 { 839 struct xfs_buf *bp = NULL; 840 int error; 841 842 restart: 843 error = 0; 844 xfs_ilock(ip, XFS_ILOCK_EXCL); 845 if (!xfs_iflock_nowait(ip)) { 846 if (!(sync_mode & SYNC_WAIT)) 847 goto out; 848 xfs_iflock(ip); 849 } 850 851 if (is_bad_inode(VFS_I(ip))) 852 goto reclaim; 853 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 854 xfs_iunpin_wait(ip); 855 xfs_iflush_abort(ip, false); 856 goto reclaim; 857 } 858 if (xfs_ipincount(ip)) { 859 if (!(sync_mode & SYNC_WAIT)) 860 goto out_ifunlock; 861 xfs_iunpin_wait(ip); 862 } 863 if (xfs_iflags_test(ip, XFS_ISTALE)) 864 goto reclaim; 865 if (xfs_inode_clean(ip)) 866 goto reclaim; 867 868 /* 869 * Never flush out dirty data during non-blocking reclaim, as it would 870 * just contend with AIL pushing trying to do the same job. 871 */ 872 if (!(sync_mode & SYNC_WAIT)) 873 goto out_ifunlock; 874 875 /* 876 * Now we have an inode that needs flushing. 877 * 878 * Note that xfs_iflush will never block on the inode buffer lock, as 879 * xfs_ifree_cluster() can lock the inode buffer before it locks the 880 * ip->i_lock, and we are doing the exact opposite here. As a result, 881 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 882 * result in an ABBA deadlock with xfs_ifree_cluster(). 883 * 884 * As xfs_ifree_cluser() must gather all inodes that are active in the 885 * cache to mark them stale, if we hit this case we don't actually want 886 * to do IO here - we want the inode marked stale so we can simply 887 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 888 * inode, back off and try again. Hopefully the next pass through will 889 * see the stale flag set on the inode. 890 */ 891 error = xfs_iflush(ip, &bp); 892 if (error == EAGAIN) { 893 xfs_iunlock(ip, XFS_ILOCK_EXCL); 894 /* backoff longer than in xfs_ifree_cluster */ 895 delay(2); 896 goto restart; 897 } 898 899 if (!error) { 900 error = xfs_bwrite(bp); 901 xfs_buf_relse(bp); 902 } 903 904 xfs_iflock(ip); 905 reclaim: 906 xfs_ifunlock(ip); 907 xfs_iunlock(ip, XFS_ILOCK_EXCL); 908 909 XFS_STATS_INC(xs_ig_reclaims); 910 /* 911 * Remove the inode from the per-AG radix tree. 912 * 913 * Because radix_tree_delete won't complain even if the item was never 914 * added to the tree assert that it's been there before to catch 915 * problems with the inode life time early on. 916 */ 917 spin_lock(&pag->pag_ici_lock); 918 if (!radix_tree_delete(&pag->pag_ici_root, 919 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 920 ASSERT(0); 921 __xfs_inode_clear_reclaim(pag, ip); 922 spin_unlock(&pag->pag_ici_lock); 923 924 /* 925 * Here we do an (almost) spurious inode lock in order to coordinate 926 * with inode cache radix tree lookups. This is because the lookup 927 * can reference the inodes in the cache without taking references. 928 * 929 * We make that OK here by ensuring that we wait until the inode is 930 * unlocked after the lookup before we go ahead and free it. 931 */ 932 xfs_ilock(ip, XFS_ILOCK_EXCL); 933 xfs_qm_dqdetach(ip); 934 xfs_iunlock(ip, XFS_ILOCK_EXCL); 935 936 xfs_inode_free(ip); 937 return error; 938 939 out_ifunlock: 940 xfs_ifunlock(ip); 941 out: 942 xfs_iflags_clear(ip, XFS_IRECLAIM); 943 xfs_iunlock(ip, XFS_ILOCK_EXCL); 944 /* 945 * We could return EAGAIN here to make reclaim rescan the inode tree in 946 * a short while. However, this just burns CPU time scanning the tree 947 * waiting for IO to complete and the reclaim work never goes back to 948 * the idle state. Instead, return 0 to let the next scheduled 949 * background reclaim attempt to reclaim the inode again. 950 */ 951 return 0; 952 } 953 954 /* 955 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 956 * corrupted, we still want to try to reclaim all the inodes. If we don't, 957 * then a shut down during filesystem unmount reclaim walk leak all the 958 * unreclaimed inodes. 959 */ 960 STATIC int 961 xfs_reclaim_inodes_ag( 962 struct xfs_mount *mp, 963 int flags, 964 int *nr_to_scan) 965 { 966 struct xfs_perag *pag; 967 int error = 0; 968 int last_error = 0; 969 xfs_agnumber_t ag; 970 int trylock = flags & SYNC_TRYLOCK; 971 int skipped; 972 973 restart: 974 ag = 0; 975 skipped = 0; 976 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 977 unsigned long first_index = 0; 978 int done = 0; 979 int nr_found = 0; 980 981 ag = pag->pag_agno + 1; 982 983 if (trylock) { 984 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 985 skipped++; 986 xfs_perag_put(pag); 987 continue; 988 } 989 first_index = pag->pag_ici_reclaim_cursor; 990 } else 991 mutex_lock(&pag->pag_ici_reclaim_lock); 992 993 do { 994 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 995 int i; 996 997 rcu_read_lock(); 998 nr_found = radix_tree_gang_lookup_tag( 999 &pag->pag_ici_root, 1000 (void **)batch, first_index, 1001 XFS_LOOKUP_BATCH, 1002 XFS_ICI_RECLAIM_TAG); 1003 if (!nr_found) { 1004 done = 1; 1005 rcu_read_unlock(); 1006 break; 1007 } 1008 1009 /* 1010 * Grab the inodes before we drop the lock. if we found 1011 * nothing, nr == 0 and the loop will be skipped. 1012 */ 1013 for (i = 0; i < nr_found; i++) { 1014 struct xfs_inode *ip = batch[i]; 1015 1016 if (done || xfs_reclaim_inode_grab(ip, flags)) 1017 batch[i] = NULL; 1018 1019 /* 1020 * Update the index for the next lookup. Catch 1021 * overflows into the next AG range which can 1022 * occur if we have inodes in the last block of 1023 * the AG and we are currently pointing to the 1024 * last inode. 1025 * 1026 * Because we may see inodes that are from the 1027 * wrong AG due to RCU freeing and 1028 * reallocation, only update the index if it 1029 * lies in this AG. It was a race that lead us 1030 * to see this inode, so another lookup from 1031 * the same index will not find it again. 1032 */ 1033 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1034 pag->pag_agno) 1035 continue; 1036 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1037 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1038 done = 1; 1039 } 1040 1041 /* unlock now we've grabbed the inodes. */ 1042 rcu_read_unlock(); 1043 1044 for (i = 0; i < nr_found; i++) { 1045 if (!batch[i]) 1046 continue; 1047 error = xfs_reclaim_inode(batch[i], pag, flags); 1048 if (error && last_error != EFSCORRUPTED) 1049 last_error = error; 1050 } 1051 1052 *nr_to_scan -= XFS_LOOKUP_BATCH; 1053 1054 cond_resched(); 1055 1056 } while (nr_found && !done && *nr_to_scan > 0); 1057 1058 if (trylock && !done) 1059 pag->pag_ici_reclaim_cursor = first_index; 1060 else 1061 pag->pag_ici_reclaim_cursor = 0; 1062 mutex_unlock(&pag->pag_ici_reclaim_lock); 1063 xfs_perag_put(pag); 1064 } 1065 1066 /* 1067 * if we skipped any AG, and we still have scan count remaining, do 1068 * another pass this time using blocking reclaim semantics (i.e 1069 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1070 * ensure that when we get more reclaimers than AGs we block rather 1071 * than spin trying to execute reclaim. 1072 */ 1073 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1074 trylock = 0; 1075 goto restart; 1076 } 1077 return XFS_ERROR(last_error); 1078 } 1079 1080 int 1081 xfs_reclaim_inodes( 1082 xfs_mount_t *mp, 1083 int mode) 1084 { 1085 int nr_to_scan = INT_MAX; 1086 1087 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1088 } 1089 1090 /* 1091 * Scan a certain number of inodes for reclaim. 1092 * 1093 * When called we make sure that there is a background (fast) inode reclaim in 1094 * progress, while we will throttle the speed of reclaim via doing synchronous 1095 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1096 * them to be cleaned, which we hope will not be very long due to the 1097 * background walker having already kicked the IO off on those dirty inodes. 1098 */ 1099 void 1100 xfs_reclaim_inodes_nr( 1101 struct xfs_mount *mp, 1102 int nr_to_scan) 1103 { 1104 /* kick background reclaimer and push the AIL */ 1105 xfs_reclaim_work_queue(mp); 1106 xfs_ail_push_all(mp->m_ail); 1107 1108 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1109 } 1110 1111 /* 1112 * Return the number of reclaimable inodes in the filesystem for 1113 * the shrinker to determine how much to reclaim. 1114 */ 1115 int 1116 xfs_reclaim_inodes_count( 1117 struct xfs_mount *mp) 1118 { 1119 struct xfs_perag *pag; 1120 xfs_agnumber_t ag = 0; 1121 int reclaimable = 0; 1122 1123 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1124 ag = pag->pag_agno + 1; 1125 reclaimable += pag->pag_ici_reclaimable; 1126 xfs_perag_put(pag); 1127 } 1128 return reclaimable; 1129 } 1130 1131