xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_inum.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_quota.h"
33 #include "xfs_trace.h"
34 #include "xfs_icache.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_dquot_item.h"
37 #include "xfs_dquot.h"
38 
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 
42 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
43 				struct xfs_perag *pag, struct xfs_inode *ip);
44 
45 /*
46  * Allocate and initialise an xfs_inode.
47  */
48 struct xfs_inode *
49 xfs_inode_alloc(
50 	struct xfs_mount	*mp,
51 	xfs_ino_t		ino)
52 {
53 	struct xfs_inode	*ip;
54 
55 	/*
56 	 * if this didn't occur in transactions, we could use
57 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
58 	 * code up to do this anyway.
59 	 */
60 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
61 	if (!ip)
62 		return NULL;
63 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
64 		kmem_zone_free(xfs_inode_zone, ip);
65 		return NULL;
66 	}
67 
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
74 
75 	/* initialise the xfs inode */
76 	ip->i_ino = ino;
77 	ip->i_mount = mp;
78 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
79 	ip->i_afp = NULL;
80 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 	ip->i_flags = 0;
82 	ip->i_delayed_blks = 0;
83 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
84 
85 	return ip;
86 }
87 
88 STATIC void
89 xfs_inode_free_callback(
90 	struct rcu_head		*head)
91 {
92 	struct inode		*inode = container_of(head, struct inode, i_rcu);
93 	struct xfs_inode	*ip = XFS_I(inode);
94 
95 	kmem_zone_free(xfs_inode_zone, ip);
96 }
97 
98 void
99 xfs_inode_free(
100 	struct xfs_inode	*ip)
101 {
102 	switch (ip->i_d.di_mode & S_IFMT) {
103 	case S_IFREG:
104 	case S_IFDIR:
105 	case S_IFLNK:
106 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
107 		break;
108 	}
109 
110 	if (ip->i_afp)
111 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
112 
113 	if (ip->i_itemp) {
114 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
115 		xfs_inode_item_destroy(ip);
116 		ip->i_itemp = NULL;
117 	}
118 
119 	/*
120 	 * Because we use RCU freeing we need to ensure the inode always
121 	 * appears to be reclaimed with an invalid inode number when in the
122 	 * free state. The ip->i_flags_lock provides the barrier against lookup
123 	 * races.
124 	 */
125 	spin_lock(&ip->i_flags_lock);
126 	ip->i_flags = XFS_IRECLAIM;
127 	ip->i_ino = 0;
128 	spin_unlock(&ip->i_flags_lock);
129 
130 	/* asserts to verify all state is correct here */
131 	ASSERT(atomic_read(&ip->i_pincount) == 0);
132 	ASSERT(!xfs_isiflocked(ip));
133 
134 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
135 }
136 
137 /*
138  * Check the validity of the inode we just found it the cache
139  */
140 static int
141 xfs_iget_cache_hit(
142 	struct xfs_perag	*pag,
143 	struct xfs_inode	*ip,
144 	xfs_ino_t		ino,
145 	int			flags,
146 	int			lock_flags) __releases(RCU)
147 {
148 	struct inode		*inode = VFS_I(ip);
149 	struct xfs_mount	*mp = ip->i_mount;
150 	int			error;
151 
152 	/*
153 	 * check for re-use of an inode within an RCU grace period due to the
154 	 * radix tree nodes not being updated yet. We monitor for this by
155 	 * setting the inode number to zero before freeing the inode structure.
156 	 * If the inode has been reallocated and set up, then the inode number
157 	 * will not match, so check for that, too.
158 	 */
159 	spin_lock(&ip->i_flags_lock);
160 	if (ip->i_ino != ino) {
161 		trace_xfs_iget_skip(ip);
162 		XFS_STATS_INC(xs_ig_frecycle);
163 		error = -EAGAIN;
164 		goto out_error;
165 	}
166 
167 
168 	/*
169 	 * If we are racing with another cache hit that is currently
170 	 * instantiating this inode or currently recycling it out of
171 	 * reclaimabe state, wait for the initialisation to complete
172 	 * before continuing.
173 	 *
174 	 * XXX(hch): eventually we should do something equivalent to
175 	 *	     wait_on_inode to wait for these flags to be cleared
176 	 *	     instead of polling for it.
177 	 */
178 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
179 		trace_xfs_iget_skip(ip);
180 		XFS_STATS_INC(xs_ig_frecycle);
181 		error = -EAGAIN;
182 		goto out_error;
183 	}
184 
185 	/*
186 	 * If lookup is racing with unlink return an error immediately.
187 	 */
188 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
189 		error = -ENOENT;
190 		goto out_error;
191 	}
192 
193 	/*
194 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 	 * Need to carefully get it back into useable state.
196 	 */
197 	if (ip->i_flags & XFS_IRECLAIMABLE) {
198 		trace_xfs_iget_reclaim(ip);
199 
200 		/*
201 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 		 * from stomping over us while we recycle the inode.  We can't
203 		 * clear the radix tree reclaimable tag yet as it requires
204 		 * pag_ici_lock to be held exclusive.
205 		 */
206 		ip->i_flags |= XFS_IRECLAIM;
207 
208 		spin_unlock(&ip->i_flags_lock);
209 		rcu_read_unlock();
210 
211 		error = inode_init_always(mp->m_super, inode);
212 		if (error) {
213 			/*
214 			 * Re-initializing the inode failed, and we are in deep
215 			 * trouble.  Try to re-add it to the reclaim list.
216 			 */
217 			rcu_read_lock();
218 			spin_lock(&ip->i_flags_lock);
219 
220 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
221 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
222 			trace_xfs_iget_reclaim_fail(ip);
223 			goto out_error;
224 		}
225 
226 		spin_lock(&pag->pag_ici_lock);
227 		spin_lock(&ip->i_flags_lock);
228 
229 		/*
230 		 * Clear the per-lifetime state in the inode as we are now
231 		 * effectively a new inode and need to return to the initial
232 		 * state before reuse occurs.
233 		 */
234 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
235 		ip->i_flags |= XFS_INEW;
236 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
237 		inode->i_state = I_NEW;
238 
239 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
240 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
241 
242 		spin_unlock(&ip->i_flags_lock);
243 		spin_unlock(&pag->pag_ici_lock);
244 	} else {
245 		/* If the VFS inode is being torn down, pause and try again. */
246 		if (!igrab(inode)) {
247 			trace_xfs_iget_skip(ip);
248 			error = -EAGAIN;
249 			goto out_error;
250 		}
251 
252 		/* We've got a live one. */
253 		spin_unlock(&ip->i_flags_lock);
254 		rcu_read_unlock();
255 		trace_xfs_iget_hit(ip);
256 	}
257 
258 	if (lock_flags != 0)
259 		xfs_ilock(ip, lock_flags);
260 
261 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
262 	XFS_STATS_INC(xs_ig_found);
263 
264 	return 0;
265 
266 out_error:
267 	spin_unlock(&ip->i_flags_lock);
268 	rcu_read_unlock();
269 	return error;
270 }
271 
272 
273 static int
274 xfs_iget_cache_miss(
275 	struct xfs_mount	*mp,
276 	struct xfs_perag	*pag,
277 	xfs_trans_t		*tp,
278 	xfs_ino_t		ino,
279 	struct xfs_inode	**ipp,
280 	int			flags,
281 	int			lock_flags)
282 {
283 	struct xfs_inode	*ip;
284 	int			error;
285 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
286 	int			iflags;
287 
288 	ip = xfs_inode_alloc(mp, ino);
289 	if (!ip)
290 		return -ENOMEM;
291 
292 	error = xfs_iread(mp, tp, ip, flags);
293 	if (error)
294 		goto out_destroy;
295 
296 	trace_xfs_iget_miss(ip);
297 
298 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
299 		error = -ENOENT;
300 		goto out_destroy;
301 	}
302 
303 	/*
304 	 * Preload the radix tree so we can insert safely under the
305 	 * write spinlock. Note that we cannot sleep inside the preload
306 	 * region. Since we can be called from transaction context, don't
307 	 * recurse into the file system.
308 	 */
309 	if (radix_tree_preload(GFP_NOFS)) {
310 		error = -EAGAIN;
311 		goto out_destroy;
312 	}
313 
314 	/*
315 	 * Because the inode hasn't been added to the radix-tree yet it can't
316 	 * be found by another thread, so we can do the non-sleeping lock here.
317 	 */
318 	if (lock_flags) {
319 		if (!xfs_ilock_nowait(ip, lock_flags))
320 			BUG();
321 	}
322 
323 	/*
324 	 * These values must be set before inserting the inode into the radix
325 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
326 	 * RCU locking mechanism) can find it and that lookup must see that this
327 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
328 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
329 	 * memory barrier that ensures this detection works correctly at lookup
330 	 * time.
331 	 */
332 	iflags = XFS_INEW;
333 	if (flags & XFS_IGET_DONTCACHE)
334 		iflags |= XFS_IDONTCACHE;
335 	ip->i_udquot = NULL;
336 	ip->i_gdquot = NULL;
337 	ip->i_pdquot = NULL;
338 	xfs_iflags_set(ip, iflags);
339 
340 	/* insert the new inode */
341 	spin_lock(&pag->pag_ici_lock);
342 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
343 	if (unlikely(error)) {
344 		WARN_ON(error != -EEXIST);
345 		XFS_STATS_INC(xs_ig_dup);
346 		error = -EAGAIN;
347 		goto out_preload_end;
348 	}
349 	spin_unlock(&pag->pag_ici_lock);
350 	radix_tree_preload_end();
351 
352 	*ipp = ip;
353 	return 0;
354 
355 out_preload_end:
356 	spin_unlock(&pag->pag_ici_lock);
357 	radix_tree_preload_end();
358 	if (lock_flags)
359 		xfs_iunlock(ip, lock_flags);
360 out_destroy:
361 	__destroy_inode(VFS_I(ip));
362 	xfs_inode_free(ip);
363 	return error;
364 }
365 
366 /*
367  * Look up an inode by number in the given file system.
368  * The inode is looked up in the cache held in each AG.
369  * If the inode is found in the cache, initialise the vfs inode
370  * if necessary.
371  *
372  * If it is not in core, read it in from the file system's device,
373  * add it to the cache and initialise the vfs inode.
374  *
375  * The inode is locked according to the value of the lock_flags parameter.
376  * This flag parameter indicates how and if the inode's IO lock and inode lock
377  * should be taken.
378  *
379  * mp -- the mount point structure for the current file system.  It points
380  *       to the inode hash table.
381  * tp -- a pointer to the current transaction if there is one.  This is
382  *       simply passed through to the xfs_iread() call.
383  * ino -- the number of the inode desired.  This is the unique identifier
384  *        within the file system for the inode being requested.
385  * lock_flags -- flags indicating how to lock the inode.  See the comment
386  *		 for xfs_ilock() for a list of valid values.
387  */
388 int
389 xfs_iget(
390 	xfs_mount_t	*mp,
391 	xfs_trans_t	*tp,
392 	xfs_ino_t	ino,
393 	uint		flags,
394 	uint		lock_flags,
395 	xfs_inode_t	**ipp)
396 {
397 	xfs_inode_t	*ip;
398 	int		error;
399 	xfs_perag_t	*pag;
400 	xfs_agino_t	agino;
401 
402 	/*
403 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
404 	 * doesn't get freed while it's being referenced during a
405 	 * radix tree traversal here.  It assumes this function
406 	 * aqcuires only the ILOCK (and therefore it has no need to
407 	 * involve the IOLOCK in this synchronization).
408 	 */
409 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
410 
411 	/* reject inode numbers outside existing AGs */
412 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
413 		return -EINVAL;
414 
415 	/* get the perag structure and ensure that it's inode capable */
416 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
417 	agino = XFS_INO_TO_AGINO(mp, ino);
418 
419 again:
420 	error = 0;
421 	rcu_read_lock();
422 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
423 
424 	if (ip) {
425 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
426 		if (error)
427 			goto out_error_or_again;
428 	} else {
429 		rcu_read_unlock();
430 		XFS_STATS_INC(xs_ig_missed);
431 
432 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
433 							flags, lock_flags);
434 		if (error)
435 			goto out_error_or_again;
436 	}
437 	xfs_perag_put(pag);
438 
439 	*ipp = ip;
440 
441 	/*
442 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
443 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
444 	 */
445 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
446 		xfs_setup_inode(ip);
447 	return 0;
448 
449 out_error_or_again:
450 	if (error == -EAGAIN) {
451 		delay(1);
452 		goto again;
453 	}
454 	xfs_perag_put(pag);
455 	return error;
456 }
457 
458 /*
459  * The inode lookup is done in batches to keep the amount of lock traffic and
460  * radix tree lookups to a minimum. The batch size is a trade off between
461  * lookup reduction and stack usage. This is in the reclaim path, so we can't
462  * be too greedy.
463  */
464 #define XFS_LOOKUP_BATCH	32
465 
466 STATIC int
467 xfs_inode_ag_walk_grab(
468 	struct xfs_inode	*ip)
469 {
470 	struct inode		*inode = VFS_I(ip);
471 
472 	ASSERT(rcu_read_lock_held());
473 
474 	/*
475 	 * check for stale RCU freed inode
476 	 *
477 	 * If the inode has been reallocated, it doesn't matter if it's not in
478 	 * the AG we are walking - we are walking for writeback, so if it
479 	 * passes all the "valid inode" checks and is dirty, then we'll write
480 	 * it back anyway.  If it has been reallocated and still being
481 	 * initialised, the XFS_INEW check below will catch it.
482 	 */
483 	spin_lock(&ip->i_flags_lock);
484 	if (!ip->i_ino)
485 		goto out_unlock_noent;
486 
487 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
488 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
489 		goto out_unlock_noent;
490 	spin_unlock(&ip->i_flags_lock);
491 
492 	/* nothing to sync during shutdown */
493 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
494 		return -EFSCORRUPTED;
495 
496 	/* If we can't grab the inode, it must on it's way to reclaim. */
497 	if (!igrab(inode))
498 		return -ENOENT;
499 
500 	/* inode is valid */
501 	return 0;
502 
503 out_unlock_noent:
504 	spin_unlock(&ip->i_flags_lock);
505 	return -ENOENT;
506 }
507 
508 STATIC int
509 xfs_inode_ag_walk(
510 	struct xfs_mount	*mp,
511 	struct xfs_perag	*pag,
512 	int			(*execute)(struct xfs_inode *ip, int flags,
513 					   void *args),
514 	int			flags,
515 	void			*args,
516 	int			tag)
517 {
518 	uint32_t		first_index;
519 	int			last_error = 0;
520 	int			skipped;
521 	int			done;
522 	int			nr_found;
523 
524 restart:
525 	done = 0;
526 	skipped = 0;
527 	first_index = 0;
528 	nr_found = 0;
529 	do {
530 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
531 		int		error = 0;
532 		int		i;
533 
534 		rcu_read_lock();
535 
536 		if (tag == -1)
537 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
538 					(void **)batch, first_index,
539 					XFS_LOOKUP_BATCH);
540 		else
541 			nr_found = radix_tree_gang_lookup_tag(
542 					&pag->pag_ici_root,
543 					(void **) batch, first_index,
544 					XFS_LOOKUP_BATCH, tag);
545 
546 		if (!nr_found) {
547 			rcu_read_unlock();
548 			break;
549 		}
550 
551 		/*
552 		 * Grab the inodes before we drop the lock. if we found
553 		 * nothing, nr == 0 and the loop will be skipped.
554 		 */
555 		for (i = 0; i < nr_found; i++) {
556 			struct xfs_inode *ip = batch[i];
557 
558 			if (done || xfs_inode_ag_walk_grab(ip))
559 				batch[i] = NULL;
560 
561 			/*
562 			 * Update the index for the next lookup. Catch
563 			 * overflows into the next AG range which can occur if
564 			 * we have inodes in the last block of the AG and we
565 			 * are currently pointing to the last inode.
566 			 *
567 			 * Because we may see inodes that are from the wrong AG
568 			 * due to RCU freeing and reallocation, only update the
569 			 * index if it lies in this AG. It was a race that lead
570 			 * us to see this inode, so another lookup from the
571 			 * same index will not find it again.
572 			 */
573 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
574 				continue;
575 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
576 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
577 				done = 1;
578 		}
579 
580 		/* unlock now we've grabbed the inodes. */
581 		rcu_read_unlock();
582 
583 		for (i = 0; i < nr_found; i++) {
584 			if (!batch[i])
585 				continue;
586 			error = execute(batch[i], flags, args);
587 			IRELE(batch[i]);
588 			if (error == -EAGAIN) {
589 				skipped++;
590 				continue;
591 			}
592 			if (error && last_error != -EFSCORRUPTED)
593 				last_error = error;
594 		}
595 
596 		/* bail out if the filesystem is corrupted.  */
597 		if (error == -EFSCORRUPTED)
598 			break;
599 
600 		cond_resched();
601 
602 	} while (nr_found && !done);
603 
604 	if (skipped) {
605 		delay(1);
606 		goto restart;
607 	}
608 	return last_error;
609 }
610 
611 /*
612  * Background scanning to trim post-EOF preallocated space. This is queued
613  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
614  */
615 STATIC void
616 xfs_queue_eofblocks(
617 	struct xfs_mount *mp)
618 {
619 	rcu_read_lock();
620 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
621 		queue_delayed_work(mp->m_eofblocks_workqueue,
622 				   &mp->m_eofblocks_work,
623 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
624 	rcu_read_unlock();
625 }
626 
627 void
628 xfs_eofblocks_worker(
629 	struct work_struct *work)
630 {
631 	struct xfs_mount *mp = container_of(to_delayed_work(work),
632 				struct xfs_mount, m_eofblocks_work);
633 	xfs_icache_free_eofblocks(mp, NULL);
634 	xfs_queue_eofblocks(mp);
635 }
636 
637 int
638 xfs_inode_ag_iterator(
639 	struct xfs_mount	*mp,
640 	int			(*execute)(struct xfs_inode *ip, int flags,
641 					   void *args),
642 	int			flags,
643 	void			*args)
644 {
645 	struct xfs_perag	*pag;
646 	int			error = 0;
647 	int			last_error = 0;
648 	xfs_agnumber_t		ag;
649 
650 	ag = 0;
651 	while ((pag = xfs_perag_get(mp, ag))) {
652 		ag = pag->pag_agno + 1;
653 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
654 		xfs_perag_put(pag);
655 		if (error) {
656 			last_error = error;
657 			if (error == -EFSCORRUPTED)
658 				break;
659 		}
660 	}
661 	return last_error;
662 }
663 
664 int
665 xfs_inode_ag_iterator_tag(
666 	struct xfs_mount	*mp,
667 	int			(*execute)(struct xfs_inode *ip, int flags,
668 					   void *args),
669 	int			flags,
670 	void			*args,
671 	int			tag)
672 {
673 	struct xfs_perag	*pag;
674 	int			error = 0;
675 	int			last_error = 0;
676 	xfs_agnumber_t		ag;
677 
678 	ag = 0;
679 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
680 		ag = pag->pag_agno + 1;
681 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
682 		xfs_perag_put(pag);
683 		if (error) {
684 			last_error = error;
685 			if (error == -EFSCORRUPTED)
686 				break;
687 		}
688 	}
689 	return last_error;
690 }
691 
692 /*
693  * Queue a new inode reclaim pass if there are reclaimable inodes and there
694  * isn't a reclaim pass already in progress. By default it runs every 5s based
695  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
696  * tunable, but that can be done if this method proves to be ineffective or too
697  * aggressive.
698  */
699 static void
700 xfs_reclaim_work_queue(
701 	struct xfs_mount        *mp)
702 {
703 
704 	rcu_read_lock();
705 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
706 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
707 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
708 	}
709 	rcu_read_unlock();
710 }
711 
712 /*
713  * This is a fast pass over the inode cache to try to get reclaim moving on as
714  * many inodes as possible in a short period of time. It kicks itself every few
715  * seconds, as well as being kicked by the inode cache shrinker when memory
716  * goes low. It scans as quickly as possible avoiding locked inodes or those
717  * already being flushed, and once done schedules a future pass.
718  */
719 void
720 xfs_reclaim_worker(
721 	struct work_struct *work)
722 {
723 	struct xfs_mount *mp = container_of(to_delayed_work(work),
724 					struct xfs_mount, m_reclaim_work);
725 
726 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
727 	xfs_reclaim_work_queue(mp);
728 }
729 
730 static void
731 __xfs_inode_set_reclaim_tag(
732 	struct xfs_perag	*pag,
733 	struct xfs_inode	*ip)
734 {
735 	radix_tree_tag_set(&pag->pag_ici_root,
736 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
737 			   XFS_ICI_RECLAIM_TAG);
738 
739 	if (!pag->pag_ici_reclaimable) {
740 		/* propagate the reclaim tag up into the perag radix tree */
741 		spin_lock(&ip->i_mount->m_perag_lock);
742 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
743 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
744 				XFS_ICI_RECLAIM_TAG);
745 		spin_unlock(&ip->i_mount->m_perag_lock);
746 
747 		/* schedule periodic background inode reclaim */
748 		xfs_reclaim_work_queue(ip->i_mount);
749 
750 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
751 							-1, _RET_IP_);
752 	}
753 	pag->pag_ici_reclaimable++;
754 }
755 
756 /*
757  * We set the inode flag atomically with the radix tree tag.
758  * Once we get tag lookups on the radix tree, this inode flag
759  * can go away.
760  */
761 void
762 xfs_inode_set_reclaim_tag(
763 	xfs_inode_t	*ip)
764 {
765 	struct xfs_mount *mp = ip->i_mount;
766 	struct xfs_perag *pag;
767 
768 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
769 	spin_lock(&pag->pag_ici_lock);
770 	spin_lock(&ip->i_flags_lock);
771 	__xfs_inode_set_reclaim_tag(pag, ip);
772 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
773 	spin_unlock(&ip->i_flags_lock);
774 	spin_unlock(&pag->pag_ici_lock);
775 	xfs_perag_put(pag);
776 }
777 
778 STATIC void
779 __xfs_inode_clear_reclaim(
780 	xfs_perag_t	*pag,
781 	xfs_inode_t	*ip)
782 {
783 	pag->pag_ici_reclaimable--;
784 	if (!pag->pag_ici_reclaimable) {
785 		/* clear the reclaim tag from the perag radix tree */
786 		spin_lock(&ip->i_mount->m_perag_lock);
787 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
788 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
789 				XFS_ICI_RECLAIM_TAG);
790 		spin_unlock(&ip->i_mount->m_perag_lock);
791 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
792 							-1, _RET_IP_);
793 	}
794 }
795 
796 STATIC void
797 __xfs_inode_clear_reclaim_tag(
798 	xfs_mount_t	*mp,
799 	xfs_perag_t	*pag,
800 	xfs_inode_t	*ip)
801 {
802 	radix_tree_tag_clear(&pag->pag_ici_root,
803 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
804 	__xfs_inode_clear_reclaim(pag, ip);
805 }
806 
807 /*
808  * Grab the inode for reclaim exclusively.
809  * Return 0 if we grabbed it, non-zero otherwise.
810  */
811 STATIC int
812 xfs_reclaim_inode_grab(
813 	struct xfs_inode	*ip,
814 	int			flags)
815 {
816 	ASSERT(rcu_read_lock_held());
817 
818 	/* quick check for stale RCU freed inode */
819 	if (!ip->i_ino)
820 		return 1;
821 
822 	/*
823 	 * If we are asked for non-blocking operation, do unlocked checks to
824 	 * see if the inode already is being flushed or in reclaim to avoid
825 	 * lock traffic.
826 	 */
827 	if ((flags & SYNC_TRYLOCK) &&
828 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
829 		return 1;
830 
831 	/*
832 	 * The radix tree lock here protects a thread in xfs_iget from racing
833 	 * with us starting reclaim on the inode.  Once we have the
834 	 * XFS_IRECLAIM flag set it will not touch us.
835 	 *
836 	 * Due to RCU lookup, we may find inodes that have been freed and only
837 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
838 	 * aren't candidates for reclaim at all, so we must check the
839 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
840 	 */
841 	spin_lock(&ip->i_flags_lock);
842 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
843 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
844 		/* not a reclaim candidate. */
845 		spin_unlock(&ip->i_flags_lock);
846 		return 1;
847 	}
848 	__xfs_iflags_set(ip, XFS_IRECLAIM);
849 	spin_unlock(&ip->i_flags_lock);
850 	return 0;
851 }
852 
853 /*
854  * Inodes in different states need to be treated differently. The following
855  * table lists the inode states and the reclaim actions necessary:
856  *
857  *	inode state	     iflush ret		required action
858  *      ---------------      ----------         ---------------
859  *	bad			-		reclaim
860  *	shutdown		EIO		unpin and reclaim
861  *	clean, unpinned		0		reclaim
862  *	stale, unpinned		0		reclaim
863  *	clean, pinned(*)	0		requeue
864  *	stale, pinned		EAGAIN		requeue
865  *	dirty, async		-		requeue
866  *	dirty, sync		0		reclaim
867  *
868  * (*) dgc: I don't think the clean, pinned state is possible but it gets
869  * handled anyway given the order of checks implemented.
870  *
871  * Also, because we get the flush lock first, we know that any inode that has
872  * been flushed delwri has had the flush completed by the time we check that
873  * the inode is clean.
874  *
875  * Note that because the inode is flushed delayed write by AIL pushing, the
876  * flush lock may already be held here and waiting on it can result in very
877  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
878  * the caller should push the AIL first before trying to reclaim inodes to
879  * minimise the amount of time spent waiting.  For background relaim, we only
880  * bother to reclaim clean inodes anyway.
881  *
882  * Hence the order of actions after gaining the locks should be:
883  *	bad		=> reclaim
884  *	shutdown	=> unpin and reclaim
885  *	pinned, async	=> requeue
886  *	pinned, sync	=> unpin
887  *	stale		=> reclaim
888  *	clean		=> reclaim
889  *	dirty, async	=> requeue
890  *	dirty, sync	=> flush, wait and reclaim
891  */
892 STATIC int
893 xfs_reclaim_inode(
894 	struct xfs_inode	*ip,
895 	struct xfs_perag	*pag,
896 	int			sync_mode)
897 {
898 	struct xfs_buf		*bp = NULL;
899 	int			error;
900 
901 restart:
902 	error = 0;
903 	xfs_ilock(ip, XFS_ILOCK_EXCL);
904 	if (!xfs_iflock_nowait(ip)) {
905 		if (!(sync_mode & SYNC_WAIT))
906 			goto out;
907 		xfs_iflock(ip);
908 	}
909 
910 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
911 		xfs_iunpin_wait(ip);
912 		xfs_iflush_abort(ip, false);
913 		goto reclaim;
914 	}
915 	if (xfs_ipincount(ip)) {
916 		if (!(sync_mode & SYNC_WAIT))
917 			goto out_ifunlock;
918 		xfs_iunpin_wait(ip);
919 	}
920 	if (xfs_iflags_test(ip, XFS_ISTALE))
921 		goto reclaim;
922 	if (xfs_inode_clean(ip))
923 		goto reclaim;
924 
925 	/*
926 	 * Never flush out dirty data during non-blocking reclaim, as it would
927 	 * just contend with AIL pushing trying to do the same job.
928 	 */
929 	if (!(sync_mode & SYNC_WAIT))
930 		goto out_ifunlock;
931 
932 	/*
933 	 * Now we have an inode that needs flushing.
934 	 *
935 	 * Note that xfs_iflush will never block on the inode buffer lock, as
936 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
937 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
938 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
939 	 * result in an ABBA deadlock with xfs_ifree_cluster().
940 	 *
941 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
942 	 * cache to mark them stale, if we hit this case we don't actually want
943 	 * to do IO here - we want the inode marked stale so we can simply
944 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
945 	 * inode, back off and try again.  Hopefully the next pass through will
946 	 * see the stale flag set on the inode.
947 	 */
948 	error = xfs_iflush(ip, &bp);
949 	if (error == -EAGAIN) {
950 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
951 		/* backoff longer than in xfs_ifree_cluster */
952 		delay(2);
953 		goto restart;
954 	}
955 
956 	if (!error) {
957 		error = xfs_bwrite(bp);
958 		xfs_buf_relse(bp);
959 	}
960 
961 	xfs_iflock(ip);
962 reclaim:
963 	xfs_ifunlock(ip);
964 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
965 
966 	XFS_STATS_INC(xs_ig_reclaims);
967 	/*
968 	 * Remove the inode from the per-AG radix tree.
969 	 *
970 	 * Because radix_tree_delete won't complain even if the item was never
971 	 * added to the tree assert that it's been there before to catch
972 	 * problems with the inode life time early on.
973 	 */
974 	spin_lock(&pag->pag_ici_lock);
975 	if (!radix_tree_delete(&pag->pag_ici_root,
976 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
977 		ASSERT(0);
978 	__xfs_inode_clear_reclaim(pag, ip);
979 	spin_unlock(&pag->pag_ici_lock);
980 
981 	/*
982 	 * Here we do an (almost) spurious inode lock in order to coordinate
983 	 * with inode cache radix tree lookups.  This is because the lookup
984 	 * can reference the inodes in the cache without taking references.
985 	 *
986 	 * We make that OK here by ensuring that we wait until the inode is
987 	 * unlocked after the lookup before we go ahead and free it.
988 	 */
989 	xfs_ilock(ip, XFS_ILOCK_EXCL);
990 	xfs_qm_dqdetach(ip);
991 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
992 
993 	xfs_inode_free(ip);
994 	return error;
995 
996 out_ifunlock:
997 	xfs_ifunlock(ip);
998 out:
999 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1000 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1001 	/*
1002 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1003 	 * a short while. However, this just burns CPU time scanning the tree
1004 	 * waiting for IO to complete and the reclaim work never goes back to
1005 	 * the idle state. Instead, return 0 to let the next scheduled
1006 	 * background reclaim attempt to reclaim the inode again.
1007 	 */
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1013  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1014  * then a shut down during filesystem unmount reclaim walk leak all the
1015  * unreclaimed inodes.
1016  */
1017 STATIC int
1018 xfs_reclaim_inodes_ag(
1019 	struct xfs_mount	*mp,
1020 	int			flags,
1021 	int			*nr_to_scan)
1022 {
1023 	struct xfs_perag	*pag;
1024 	int			error = 0;
1025 	int			last_error = 0;
1026 	xfs_agnumber_t		ag;
1027 	int			trylock = flags & SYNC_TRYLOCK;
1028 	int			skipped;
1029 
1030 restart:
1031 	ag = 0;
1032 	skipped = 0;
1033 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1034 		unsigned long	first_index = 0;
1035 		int		done = 0;
1036 		int		nr_found = 0;
1037 
1038 		ag = pag->pag_agno + 1;
1039 
1040 		if (trylock) {
1041 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1042 				skipped++;
1043 				xfs_perag_put(pag);
1044 				continue;
1045 			}
1046 			first_index = pag->pag_ici_reclaim_cursor;
1047 		} else
1048 			mutex_lock(&pag->pag_ici_reclaim_lock);
1049 
1050 		do {
1051 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1052 			int	i;
1053 
1054 			rcu_read_lock();
1055 			nr_found = radix_tree_gang_lookup_tag(
1056 					&pag->pag_ici_root,
1057 					(void **)batch, first_index,
1058 					XFS_LOOKUP_BATCH,
1059 					XFS_ICI_RECLAIM_TAG);
1060 			if (!nr_found) {
1061 				done = 1;
1062 				rcu_read_unlock();
1063 				break;
1064 			}
1065 
1066 			/*
1067 			 * Grab the inodes before we drop the lock. if we found
1068 			 * nothing, nr == 0 and the loop will be skipped.
1069 			 */
1070 			for (i = 0; i < nr_found; i++) {
1071 				struct xfs_inode *ip = batch[i];
1072 
1073 				if (done || xfs_reclaim_inode_grab(ip, flags))
1074 					batch[i] = NULL;
1075 
1076 				/*
1077 				 * Update the index for the next lookup. Catch
1078 				 * overflows into the next AG range which can
1079 				 * occur if we have inodes in the last block of
1080 				 * the AG and we are currently pointing to the
1081 				 * last inode.
1082 				 *
1083 				 * Because we may see inodes that are from the
1084 				 * wrong AG due to RCU freeing and
1085 				 * reallocation, only update the index if it
1086 				 * lies in this AG. It was a race that lead us
1087 				 * to see this inode, so another lookup from
1088 				 * the same index will not find it again.
1089 				 */
1090 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1091 								pag->pag_agno)
1092 					continue;
1093 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1094 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1095 					done = 1;
1096 			}
1097 
1098 			/* unlock now we've grabbed the inodes. */
1099 			rcu_read_unlock();
1100 
1101 			for (i = 0; i < nr_found; i++) {
1102 				if (!batch[i])
1103 					continue;
1104 				error = xfs_reclaim_inode(batch[i], pag, flags);
1105 				if (error && last_error != -EFSCORRUPTED)
1106 					last_error = error;
1107 			}
1108 
1109 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1110 
1111 			cond_resched();
1112 
1113 		} while (nr_found && !done && *nr_to_scan > 0);
1114 
1115 		if (trylock && !done)
1116 			pag->pag_ici_reclaim_cursor = first_index;
1117 		else
1118 			pag->pag_ici_reclaim_cursor = 0;
1119 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1120 		xfs_perag_put(pag);
1121 	}
1122 
1123 	/*
1124 	 * if we skipped any AG, and we still have scan count remaining, do
1125 	 * another pass this time using blocking reclaim semantics (i.e
1126 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1127 	 * ensure that when we get more reclaimers than AGs we block rather
1128 	 * than spin trying to execute reclaim.
1129 	 */
1130 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1131 		trylock = 0;
1132 		goto restart;
1133 	}
1134 	return last_error;
1135 }
1136 
1137 int
1138 xfs_reclaim_inodes(
1139 	xfs_mount_t	*mp,
1140 	int		mode)
1141 {
1142 	int		nr_to_scan = INT_MAX;
1143 
1144 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1145 }
1146 
1147 /*
1148  * Scan a certain number of inodes for reclaim.
1149  *
1150  * When called we make sure that there is a background (fast) inode reclaim in
1151  * progress, while we will throttle the speed of reclaim via doing synchronous
1152  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1153  * them to be cleaned, which we hope will not be very long due to the
1154  * background walker having already kicked the IO off on those dirty inodes.
1155  */
1156 long
1157 xfs_reclaim_inodes_nr(
1158 	struct xfs_mount	*mp,
1159 	int			nr_to_scan)
1160 {
1161 	/* kick background reclaimer and push the AIL */
1162 	xfs_reclaim_work_queue(mp);
1163 	xfs_ail_push_all(mp->m_ail);
1164 
1165 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1166 }
1167 
1168 /*
1169  * Return the number of reclaimable inodes in the filesystem for
1170  * the shrinker to determine how much to reclaim.
1171  */
1172 int
1173 xfs_reclaim_inodes_count(
1174 	struct xfs_mount	*mp)
1175 {
1176 	struct xfs_perag	*pag;
1177 	xfs_agnumber_t		ag = 0;
1178 	int			reclaimable = 0;
1179 
1180 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1181 		ag = pag->pag_agno + 1;
1182 		reclaimable += pag->pag_ici_reclaimable;
1183 		xfs_perag_put(pag);
1184 	}
1185 	return reclaimable;
1186 }
1187 
1188 STATIC int
1189 xfs_inode_match_id(
1190 	struct xfs_inode	*ip,
1191 	struct xfs_eofblocks	*eofb)
1192 {
1193 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1194 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1195 		return 0;
1196 
1197 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1198 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1199 		return 0;
1200 
1201 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1202 	    xfs_get_projid(ip) != eofb->eof_prid)
1203 		return 0;
1204 
1205 	return 1;
1206 }
1207 
1208 /*
1209  * A union-based inode filtering algorithm. Process the inode if any of the
1210  * criteria match. This is for global/internal scans only.
1211  */
1212 STATIC int
1213 xfs_inode_match_id_union(
1214 	struct xfs_inode	*ip,
1215 	struct xfs_eofblocks	*eofb)
1216 {
1217 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1218 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1219 		return 1;
1220 
1221 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1222 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1223 		return 1;
1224 
1225 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1226 	    xfs_get_projid(ip) == eofb->eof_prid)
1227 		return 1;
1228 
1229 	return 0;
1230 }
1231 
1232 STATIC int
1233 xfs_inode_free_eofblocks(
1234 	struct xfs_inode	*ip,
1235 	int			flags,
1236 	void			*args)
1237 {
1238 	int ret;
1239 	struct xfs_eofblocks *eofb = args;
1240 	bool need_iolock = true;
1241 	int match;
1242 
1243 	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1244 
1245 	if (!xfs_can_free_eofblocks(ip, false)) {
1246 		/* inode could be preallocated or append-only */
1247 		trace_xfs_inode_free_eofblocks_invalid(ip);
1248 		xfs_inode_clear_eofblocks_tag(ip);
1249 		return 0;
1250 	}
1251 
1252 	/*
1253 	 * If the mapping is dirty the operation can block and wait for some
1254 	 * time. Unless we are waiting, skip it.
1255 	 */
1256 	if (!(flags & SYNC_WAIT) &&
1257 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1258 		return 0;
1259 
1260 	if (eofb) {
1261 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1262 			match = xfs_inode_match_id_union(ip, eofb);
1263 		else
1264 			match = xfs_inode_match_id(ip, eofb);
1265 		if (!match)
1266 			return 0;
1267 
1268 		/* skip the inode if the file size is too small */
1269 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1270 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1271 			return 0;
1272 
1273 		/*
1274 		 * A scan owner implies we already hold the iolock. Skip it in
1275 		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1276 		 * the possibility of EAGAIN being returned.
1277 		 */
1278 		if (eofb->eof_scan_owner == ip->i_ino)
1279 			need_iolock = false;
1280 	}
1281 
1282 	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1283 
1284 	/* don't revisit the inode if we're not waiting */
1285 	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1286 		ret = 0;
1287 
1288 	return ret;
1289 }
1290 
1291 int
1292 xfs_icache_free_eofblocks(
1293 	struct xfs_mount	*mp,
1294 	struct xfs_eofblocks	*eofb)
1295 {
1296 	int flags = SYNC_TRYLOCK;
1297 
1298 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1299 		flags = SYNC_WAIT;
1300 
1301 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1302 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1303 }
1304 
1305 /*
1306  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1307  * multiple quotas, we don't know exactly which quota caused an allocation
1308  * failure. We make a best effort by including each quota under low free space
1309  * conditions (less than 1% free space) in the scan.
1310  */
1311 int
1312 xfs_inode_free_quota_eofblocks(
1313 	struct xfs_inode *ip)
1314 {
1315 	int scan = 0;
1316 	struct xfs_eofblocks eofb = {0};
1317 	struct xfs_dquot *dq;
1318 
1319 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1320 
1321 	/*
1322 	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1323 	 * can repeatedly trylock on the inode we're currently processing. We
1324 	 * run a sync scan to increase effectiveness and use the union filter to
1325 	 * cover all applicable quotas in a single scan.
1326 	 */
1327 	eofb.eof_scan_owner = ip->i_ino;
1328 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1329 
1330 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1331 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1332 		if (dq && xfs_dquot_lowsp(dq)) {
1333 			eofb.eof_uid = VFS_I(ip)->i_uid;
1334 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1335 			scan = 1;
1336 		}
1337 	}
1338 
1339 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1340 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1341 		if (dq && xfs_dquot_lowsp(dq)) {
1342 			eofb.eof_gid = VFS_I(ip)->i_gid;
1343 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1344 			scan = 1;
1345 		}
1346 	}
1347 
1348 	if (scan)
1349 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1350 
1351 	return scan;
1352 }
1353 
1354 void
1355 xfs_inode_set_eofblocks_tag(
1356 	xfs_inode_t	*ip)
1357 {
1358 	struct xfs_mount *mp = ip->i_mount;
1359 	struct xfs_perag *pag;
1360 	int tagged;
1361 
1362 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1363 	spin_lock(&pag->pag_ici_lock);
1364 	trace_xfs_inode_set_eofblocks_tag(ip);
1365 
1366 	tagged = radix_tree_tagged(&pag->pag_ici_root,
1367 				   XFS_ICI_EOFBLOCKS_TAG);
1368 	radix_tree_tag_set(&pag->pag_ici_root,
1369 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1370 			   XFS_ICI_EOFBLOCKS_TAG);
1371 	if (!tagged) {
1372 		/* propagate the eofblocks tag up into the perag radix tree */
1373 		spin_lock(&ip->i_mount->m_perag_lock);
1374 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1375 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1376 				   XFS_ICI_EOFBLOCKS_TAG);
1377 		spin_unlock(&ip->i_mount->m_perag_lock);
1378 
1379 		/* kick off background trimming */
1380 		xfs_queue_eofblocks(ip->i_mount);
1381 
1382 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1383 					      -1, _RET_IP_);
1384 	}
1385 
1386 	spin_unlock(&pag->pag_ici_lock);
1387 	xfs_perag_put(pag);
1388 }
1389 
1390 void
1391 xfs_inode_clear_eofblocks_tag(
1392 	xfs_inode_t	*ip)
1393 {
1394 	struct xfs_mount *mp = ip->i_mount;
1395 	struct xfs_perag *pag;
1396 
1397 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1398 	spin_lock(&pag->pag_ici_lock);
1399 	trace_xfs_inode_clear_eofblocks_tag(ip);
1400 
1401 	radix_tree_tag_clear(&pag->pag_ici_root,
1402 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403 			     XFS_ICI_EOFBLOCKS_TAG);
1404 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1405 		/* clear the eofblocks tag from the perag radix tree */
1406 		spin_lock(&ip->i_mount->m_perag_lock);
1407 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1408 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409 				     XFS_ICI_EOFBLOCKS_TAG);
1410 		spin_unlock(&ip->i_mount->m_perag_lock);
1411 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1412 					       -1, _RET_IP_);
1413 	}
1414 
1415 	spin_unlock(&pag->pag_ici_lock);
1416 	xfs_perag_put(pag);
1417 }
1418 
1419