xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f736d93d76d3e97d6986c6d26c8eaa32536ccc5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 #include <linux/mount.h>
33 
34 static const struct vm_operations_struct xfs_file_vm_ops;
35 
36 /*
37  * Decide if the given file range is aligned to the size of the fundamental
38  * allocation unit for the file.
39  */
40 static bool
41 xfs_is_falloc_aligned(
42 	struct xfs_inode	*ip,
43 	loff_t			pos,
44 	long long int		len)
45 {
46 	struct xfs_mount	*mp = ip->i_mount;
47 	uint64_t		mask;
48 
49 	if (XFS_IS_REALTIME_INODE(ip)) {
50 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 			u64	rextbytes;
52 			u32	mod;
53 
54 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 			div_u64_rem(pos, rextbytes, &mod);
56 			if (mod)
57 				return false;
58 			div_u64_rem(len, rextbytes, &mod);
59 			return mod == 0;
60 		}
61 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 	} else {
63 		mask = mp->m_sb.sb_blocksize - 1;
64 	}
65 
66 	return !((pos | len) & mask);
67 }
68 
69 int
70 xfs_update_prealloc_flags(
71 	struct xfs_inode	*ip,
72 	enum xfs_prealloc_flags	flags)
73 {
74 	struct xfs_trans	*tp;
75 	int			error;
76 
77 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 			0, 0, 0, &tp);
79 	if (error)
80 		return error;
81 
82 	xfs_ilock(ip, XFS_ILOCK_EXCL);
83 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84 
85 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
86 		VFS_I(ip)->i_mode &= ~S_ISUID;
87 		if (VFS_I(ip)->i_mode & S_IXGRP)
88 			VFS_I(ip)->i_mode &= ~S_ISGID;
89 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 	}
91 
92 	if (flags & XFS_PREALLOC_SET)
93 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
94 	if (flags & XFS_PREALLOC_CLEAR)
95 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
96 
97 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 	if (flags & XFS_PREALLOC_SYNC)
99 		xfs_trans_set_sync(tp);
100 	return xfs_trans_commit(tp);
101 }
102 
103 /*
104  * Fsync operations on directories are much simpler than on regular files,
105  * as there is no file data to flush, and thus also no need for explicit
106  * cache flush operations, and there are no non-transaction metadata updates
107  * on directories either.
108  */
109 STATIC int
110 xfs_dir_fsync(
111 	struct file		*file,
112 	loff_t			start,
113 	loff_t			end,
114 	int			datasync)
115 {
116 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
117 
118 	trace_xfs_dir_fsync(ip);
119 	return xfs_log_force_inode(ip);
120 }
121 
122 STATIC int
123 xfs_file_fsync(
124 	struct file		*file,
125 	loff_t			start,
126 	loff_t			end,
127 	int			datasync)
128 {
129 	struct inode		*inode = file->f_mapping->host;
130 	struct xfs_inode	*ip = XFS_I(inode);
131 	struct xfs_inode_log_item *iip = ip->i_itemp;
132 	struct xfs_mount	*mp = ip->i_mount;
133 	int			error = 0;
134 	int			log_flushed = 0;
135 	xfs_lsn_t		lsn = 0;
136 
137 	trace_xfs_file_fsync(ip);
138 
139 	error = file_write_and_wait_range(file, start, end);
140 	if (error)
141 		return error;
142 
143 	if (XFS_FORCED_SHUTDOWN(mp))
144 		return -EIO;
145 
146 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
147 
148 	/*
149 	 * If we have an RT and/or log subvolume we need to make sure to flush
150 	 * the write cache the device used for file data first.  This is to
151 	 * ensure newly written file data make it to disk before logging the new
152 	 * inode size in case of an extending write.
153 	 */
154 	if (XFS_IS_REALTIME_INODE(ip))
155 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
156 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
157 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
158 
159 	/*
160 	 * All metadata updates are logged, which means that we just have to
161 	 * flush the log up to the latest LSN that touched the inode. If we have
162 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
163 	 * log force before we clear the ili_fsync_fields field. This ensures
164 	 * that we don't get a racing sync operation that does not wait for the
165 	 * metadata to hit the journal before returning. If we race with
166 	 * clearing the ili_fsync_fields, then all that will happen is the log
167 	 * force will do nothing as the lsn will already be on disk. We can't
168 	 * race with setting ili_fsync_fields because that is done under
169 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
170 	 * until after the ili_fsync_fields is cleared.
171 	 */
172 	xfs_ilock(ip, XFS_ILOCK_SHARED);
173 	if (xfs_ipincount(ip)) {
174 		if (!datasync ||
175 		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
176 			lsn = iip->ili_last_lsn;
177 	}
178 
179 	if (lsn) {
180 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
181 		spin_lock(&iip->ili_lock);
182 		iip->ili_fsync_fields = 0;
183 		spin_unlock(&iip->ili_lock);
184 	}
185 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
186 
187 	/*
188 	 * If we only have a single device, and the log force about was
189 	 * a no-op we might have to flush the data device cache here.
190 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
191 	 * an already allocated file and thus do not have any metadata to
192 	 * commit.
193 	 */
194 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
195 	    mp->m_logdev_targp == mp->m_ddev_targp)
196 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 
198 	return error;
199 }
200 
201 STATIC ssize_t
202 xfs_file_dio_aio_read(
203 	struct kiocb		*iocb,
204 	struct iov_iter		*to)
205 {
206 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
207 	size_t			count = iov_iter_count(to);
208 	ssize_t			ret;
209 
210 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
211 
212 	if (!count)
213 		return 0; /* skip atime */
214 
215 	file_accessed(iocb->ki_filp);
216 
217 	if (iocb->ki_flags & IOCB_NOWAIT) {
218 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
219 			return -EAGAIN;
220 	} else {
221 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
222 	}
223 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
224 			is_sync_kiocb(iocb));
225 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
226 
227 	return ret;
228 }
229 
230 static noinline ssize_t
231 xfs_file_dax_read(
232 	struct kiocb		*iocb,
233 	struct iov_iter		*to)
234 {
235 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
236 	size_t			count = iov_iter_count(to);
237 	ssize_t			ret = 0;
238 
239 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
240 
241 	if (!count)
242 		return 0; /* skip atime */
243 
244 	if (iocb->ki_flags & IOCB_NOWAIT) {
245 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
246 			return -EAGAIN;
247 	} else {
248 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
249 	}
250 
251 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
252 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
253 
254 	file_accessed(iocb->ki_filp);
255 	return ret;
256 }
257 
258 STATIC ssize_t
259 xfs_file_buffered_aio_read(
260 	struct kiocb		*iocb,
261 	struct iov_iter		*to)
262 {
263 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
264 	ssize_t			ret;
265 
266 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
267 
268 	if (iocb->ki_flags & IOCB_NOWAIT) {
269 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
270 			return -EAGAIN;
271 	} else {
272 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
273 	}
274 	ret = generic_file_read_iter(iocb, to);
275 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
276 
277 	return ret;
278 }
279 
280 STATIC ssize_t
281 xfs_file_read_iter(
282 	struct kiocb		*iocb,
283 	struct iov_iter		*to)
284 {
285 	struct inode		*inode = file_inode(iocb->ki_filp);
286 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
287 	ssize_t			ret = 0;
288 
289 	XFS_STATS_INC(mp, xs_read_calls);
290 
291 	if (XFS_FORCED_SHUTDOWN(mp))
292 		return -EIO;
293 
294 	if (IS_DAX(inode))
295 		ret = xfs_file_dax_read(iocb, to);
296 	else if (iocb->ki_flags & IOCB_DIRECT)
297 		ret = xfs_file_dio_aio_read(iocb, to);
298 	else
299 		ret = xfs_file_buffered_aio_read(iocb, to);
300 
301 	if (ret > 0)
302 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
303 	return ret;
304 }
305 
306 /*
307  * Common pre-write limit and setup checks.
308  *
309  * Called with the iolocked held either shared and exclusive according to
310  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
311  * if called for a direct write beyond i_size.
312  */
313 STATIC ssize_t
314 xfs_file_aio_write_checks(
315 	struct kiocb		*iocb,
316 	struct iov_iter		*from,
317 	int			*iolock)
318 {
319 	struct file		*file = iocb->ki_filp;
320 	struct inode		*inode = file->f_mapping->host;
321 	struct xfs_inode	*ip = XFS_I(inode);
322 	ssize_t			error = 0;
323 	size_t			count = iov_iter_count(from);
324 	bool			drained_dio = false;
325 	loff_t			isize;
326 
327 restart:
328 	error = generic_write_checks(iocb, from);
329 	if (error <= 0)
330 		return error;
331 
332 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
333 	if (error)
334 		return error;
335 
336 	/*
337 	 * For changing security info in file_remove_privs() we need i_rwsem
338 	 * exclusively.
339 	 */
340 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
341 		xfs_iunlock(ip, *iolock);
342 		*iolock = XFS_IOLOCK_EXCL;
343 		xfs_ilock(ip, *iolock);
344 		goto restart;
345 	}
346 	/*
347 	 * If the offset is beyond the size of the file, we need to zero any
348 	 * blocks that fall between the existing EOF and the start of this
349 	 * write.  If zeroing is needed and we are currently holding the
350 	 * iolock shared, we need to update it to exclusive which implies
351 	 * having to redo all checks before.
352 	 *
353 	 * We need to serialise against EOF updates that occur in IO
354 	 * completions here. We want to make sure that nobody is changing the
355 	 * size while we do this check until we have placed an IO barrier (i.e.
356 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
357 	 * The spinlock effectively forms a memory barrier once we have the
358 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
359 	 * and hence be able to correctly determine if we need to run zeroing.
360 	 */
361 	spin_lock(&ip->i_flags_lock);
362 	isize = i_size_read(inode);
363 	if (iocb->ki_pos > isize) {
364 		spin_unlock(&ip->i_flags_lock);
365 		if (!drained_dio) {
366 			if (*iolock == XFS_IOLOCK_SHARED) {
367 				xfs_iunlock(ip, *iolock);
368 				*iolock = XFS_IOLOCK_EXCL;
369 				xfs_ilock(ip, *iolock);
370 				iov_iter_reexpand(from, count);
371 			}
372 			/*
373 			 * We now have an IO submission barrier in place, but
374 			 * AIO can do EOF updates during IO completion and hence
375 			 * we now need to wait for all of them to drain. Non-AIO
376 			 * DIO will have drained before we are given the
377 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
378 			 * no-op.
379 			 */
380 			inode_dio_wait(inode);
381 			drained_dio = true;
382 			goto restart;
383 		}
384 
385 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
386 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
387 				NULL, &xfs_buffered_write_iomap_ops);
388 		if (error)
389 			return error;
390 	} else
391 		spin_unlock(&ip->i_flags_lock);
392 
393 	/*
394 	 * Updating the timestamps will grab the ilock again from
395 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
396 	 * lock above.  Eventually we should look into a way to avoid
397 	 * the pointless lock roundtrip.
398 	 */
399 	return file_modified(file);
400 }
401 
402 static int
403 xfs_dio_write_end_io(
404 	struct kiocb		*iocb,
405 	ssize_t			size,
406 	int			error,
407 	unsigned		flags)
408 {
409 	struct inode		*inode = file_inode(iocb->ki_filp);
410 	struct xfs_inode	*ip = XFS_I(inode);
411 	loff_t			offset = iocb->ki_pos;
412 	unsigned int		nofs_flag;
413 
414 	trace_xfs_end_io_direct_write(ip, offset, size);
415 
416 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
417 		return -EIO;
418 
419 	if (error)
420 		return error;
421 	if (!size)
422 		return 0;
423 
424 	/*
425 	 * Capture amount written on completion as we can't reliably account
426 	 * for it on submission.
427 	 */
428 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
429 
430 	/*
431 	 * We can allocate memory here while doing writeback on behalf of
432 	 * memory reclaim.  To avoid memory allocation deadlocks set the
433 	 * task-wide nofs context for the following operations.
434 	 */
435 	nofs_flag = memalloc_nofs_save();
436 
437 	if (flags & IOMAP_DIO_COW) {
438 		error = xfs_reflink_end_cow(ip, offset, size);
439 		if (error)
440 			goto out;
441 	}
442 
443 	/*
444 	 * Unwritten conversion updates the in-core isize after extent
445 	 * conversion but before updating the on-disk size. Updating isize any
446 	 * earlier allows a racing dio read to find unwritten extents before
447 	 * they are converted.
448 	 */
449 	if (flags & IOMAP_DIO_UNWRITTEN) {
450 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
451 		goto out;
452 	}
453 
454 	/*
455 	 * We need to update the in-core inode size here so that we don't end up
456 	 * with the on-disk inode size being outside the in-core inode size. We
457 	 * have no other method of updating EOF for AIO, so always do it here
458 	 * if necessary.
459 	 *
460 	 * We need to lock the test/set EOF update as we can be racing with
461 	 * other IO completions here to update the EOF. Failing to serialise
462 	 * here can result in EOF moving backwards and Bad Things Happen when
463 	 * that occurs.
464 	 */
465 	spin_lock(&ip->i_flags_lock);
466 	if (offset + size > i_size_read(inode)) {
467 		i_size_write(inode, offset + size);
468 		spin_unlock(&ip->i_flags_lock);
469 		error = xfs_setfilesize(ip, offset, size);
470 	} else {
471 		spin_unlock(&ip->i_flags_lock);
472 	}
473 
474 out:
475 	memalloc_nofs_restore(nofs_flag);
476 	return error;
477 }
478 
479 static const struct iomap_dio_ops xfs_dio_write_ops = {
480 	.end_io		= xfs_dio_write_end_io,
481 };
482 
483 /*
484  * xfs_file_dio_aio_write - handle direct IO writes
485  *
486  * Lock the inode appropriately to prepare for and issue a direct IO write.
487  * By separating it from the buffered write path we remove all the tricky to
488  * follow locking changes and looping.
489  *
490  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
491  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
492  * pages are flushed out.
493  *
494  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
495  * allowing them to be done in parallel with reads and other direct IO writes.
496  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
497  * needs to do sub-block zeroing and that requires serialisation against other
498  * direct IOs to the same block. In this case we need to serialise the
499  * submission of the unaligned IOs so that we don't get racing block zeroing in
500  * the dio layer.  To avoid the problem with aio, we also need to wait for
501  * outstanding IOs to complete so that unwritten extent conversion is completed
502  * before we try to map the overlapping block. This is currently implemented by
503  * hitting it with a big hammer (i.e. inode_dio_wait()).
504  *
505  * Returns with locks held indicated by @iolock and errors indicated by
506  * negative return values.
507  */
508 STATIC ssize_t
509 xfs_file_dio_aio_write(
510 	struct kiocb		*iocb,
511 	struct iov_iter		*from)
512 {
513 	struct file		*file = iocb->ki_filp;
514 	struct address_space	*mapping = file->f_mapping;
515 	struct inode		*inode = mapping->host;
516 	struct xfs_inode	*ip = XFS_I(inode);
517 	struct xfs_mount	*mp = ip->i_mount;
518 	ssize_t			ret = 0;
519 	int			unaligned_io = 0;
520 	int			iolock;
521 	size_t			count = iov_iter_count(from);
522 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
523 
524 	/* DIO must be aligned to device logical sector size */
525 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
526 		return -EINVAL;
527 
528 	/*
529 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
530 	 * the file system block size.  We don't need to consider the EOF
531 	 * extension case here because xfs_file_aio_write_checks() will relock
532 	 * the inode as necessary for EOF zeroing cases and fill out the new
533 	 * inode size as appropriate.
534 	 */
535 	if ((iocb->ki_pos & mp->m_blockmask) ||
536 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
537 		unaligned_io = 1;
538 
539 		/*
540 		 * We can't properly handle unaligned direct I/O to reflink
541 		 * files yet, as we can't unshare a partial block.
542 		 */
543 		if (xfs_is_cow_inode(ip)) {
544 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
545 			return -ENOTBLK;
546 		}
547 		iolock = XFS_IOLOCK_EXCL;
548 	} else {
549 		iolock = XFS_IOLOCK_SHARED;
550 	}
551 
552 	if (iocb->ki_flags & IOCB_NOWAIT) {
553 		/* unaligned dio always waits, bail */
554 		if (unaligned_io)
555 			return -EAGAIN;
556 		if (!xfs_ilock_nowait(ip, iolock))
557 			return -EAGAIN;
558 	} else {
559 		xfs_ilock(ip, iolock);
560 	}
561 
562 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
563 	if (ret)
564 		goto out;
565 	count = iov_iter_count(from);
566 
567 	/*
568 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
569 	 * in-flight at the same time or we risk data corruption. Wait for all
570 	 * other IO to drain before we submit. If the IO is aligned, demote the
571 	 * iolock if we had to take the exclusive lock in
572 	 * xfs_file_aio_write_checks() for other reasons.
573 	 */
574 	if (unaligned_io) {
575 		inode_dio_wait(inode);
576 	} else if (iolock == XFS_IOLOCK_EXCL) {
577 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
578 		iolock = XFS_IOLOCK_SHARED;
579 	}
580 
581 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
582 	/*
583 	 * If unaligned, this is the only IO in-flight. Wait on it before we
584 	 * release the iolock to prevent subsequent overlapping IO.
585 	 */
586 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
587 			   &xfs_dio_write_ops,
588 			   is_sync_kiocb(iocb) || unaligned_io);
589 out:
590 	xfs_iunlock(ip, iolock);
591 
592 	/*
593 	 * No fallback to buffered IO after short writes for XFS, direct I/O
594 	 * will either complete fully or return an error.
595 	 */
596 	ASSERT(ret < 0 || ret == count);
597 	return ret;
598 }
599 
600 static noinline ssize_t
601 xfs_file_dax_write(
602 	struct kiocb		*iocb,
603 	struct iov_iter		*from)
604 {
605 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
606 	struct xfs_inode	*ip = XFS_I(inode);
607 	int			iolock = XFS_IOLOCK_EXCL;
608 	ssize_t			ret, error = 0;
609 	size_t			count;
610 	loff_t			pos;
611 
612 	if (iocb->ki_flags & IOCB_NOWAIT) {
613 		if (!xfs_ilock_nowait(ip, iolock))
614 			return -EAGAIN;
615 	} else {
616 		xfs_ilock(ip, iolock);
617 	}
618 
619 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
620 	if (ret)
621 		goto out;
622 
623 	pos = iocb->ki_pos;
624 	count = iov_iter_count(from);
625 
626 	trace_xfs_file_dax_write(ip, count, pos);
627 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
628 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
629 		i_size_write(inode, iocb->ki_pos);
630 		error = xfs_setfilesize(ip, pos, ret);
631 	}
632 out:
633 	xfs_iunlock(ip, iolock);
634 	if (error)
635 		return error;
636 
637 	if (ret > 0) {
638 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
639 
640 		/* Handle various SYNC-type writes */
641 		ret = generic_write_sync(iocb, ret);
642 	}
643 	return ret;
644 }
645 
646 STATIC ssize_t
647 xfs_file_buffered_aio_write(
648 	struct kiocb		*iocb,
649 	struct iov_iter		*from)
650 {
651 	struct file		*file = iocb->ki_filp;
652 	struct address_space	*mapping = file->f_mapping;
653 	struct inode		*inode = mapping->host;
654 	struct xfs_inode	*ip = XFS_I(inode);
655 	ssize_t			ret;
656 	int			enospc = 0;
657 	int			iolock;
658 
659 	if (iocb->ki_flags & IOCB_NOWAIT)
660 		return -EOPNOTSUPP;
661 
662 write_retry:
663 	iolock = XFS_IOLOCK_EXCL;
664 	xfs_ilock(ip, iolock);
665 
666 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
667 	if (ret)
668 		goto out;
669 
670 	/* We can write back this queue in page reclaim */
671 	current->backing_dev_info = inode_to_bdi(inode);
672 
673 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
674 	ret = iomap_file_buffered_write(iocb, from,
675 			&xfs_buffered_write_iomap_ops);
676 	if (likely(ret >= 0))
677 		iocb->ki_pos += ret;
678 
679 	/*
680 	 * If we hit a space limit, try to free up some lingering preallocated
681 	 * space before returning an error. In the case of ENOSPC, first try to
682 	 * write back all dirty inodes to free up some of the excess reserved
683 	 * metadata space. This reduces the chances that the eofblocks scan
684 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
685 	 * also behaves as a filter to prevent too many eofblocks scans from
686 	 * running at the same time.
687 	 */
688 	if (ret == -EDQUOT && !enospc) {
689 		xfs_iunlock(ip, iolock);
690 		enospc = xfs_inode_free_quota_eofblocks(ip);
691 		if (enospc)
692 			goto write_retry;
693 		enospc = xfs_inode_free_quota_cowblocks(ip);
694 		if (enospc)
695 			goto write_retry;
696 		iolock = 0;
697 	} else if (ret == -ENOSPC && !enospc) {
698 		struct xfs_eofblocks eofb = {0};
699 
700 		enospc = 1;
701 		xfs_flush_inodes(ip->i_mount);
702 
703 		xfs_iunlock(ip, iolock);
704 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
705 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
706 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
707 		goto write_retry;
708 	}
709 
710 	current->backing_dev_info = NULL;
711 out:
712 	if (iolock)
713 		xfs_iunlock(ip, iolock);
714 
715 	if (ret > 0) {
716 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
717 		/* Handle various SYNC-type writes */
718 		ret = generic_write_sync(iocb, ret);
719 	}
720 	return ret;
721 }
722 
723 STATIC ssize_t
724 xfs_file_write_iter(
725 	struct kiocb		*iocb,
726 	struct iov_iter		*from)
727 {
728 	struct file		*file = iocb->ki_filp;
729 	struct address_space	*mapping = file->f_mapping;
730 	struct inode		*inode = mapping->host;
731 	struct xfs_inode	*ip = XFS_I(inode);
732 	ssize_t			ret;
733 	size_t			ocount = iov_iter_count(from);
734 
735 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
736 
737 	if (ocount == 0)
738 		return 0;
739 
740 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
741 		return -EIO;
742 
743 	if (IS_DAX(inode))
744 		return xfs_file_dax_write(iocb, from);
745 
746 	if (iocb->ki_flags & IOCB_DIRECT) {
747 		/*
748 		 * Allow a directio write to fall back to a buffered
749 		 * write *only* in the case that we're doing a reflink
750 		 * CoW.  In all other directio scenarios we do not
751 		 * allow an operation to fall back to buffered mode.
752 		 */
753 		ret = xfs_file_dio_aio_write(iocb, from);
754 		if (ret != -ENOTBLK)
755 			return ret;
756 	}
757 
758 	return xfs_file_buffered_aio_write(iocb, from);
759 }
760 
761 static void
762 xfs_wait_dax_page(
763 	struct inode		*inode)
764 {
765 	struct xfs_inode        *ip = XFS_I(inode);
766 
767 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
768 	schedule();
769 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
770 }
771 
772 static int
773 xfs_break_dax_layouts(
774 	struct inode		*inode,
775 	bool			*retry)
776 {
777 	struct page		*page;
778 
779 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
780 
781 	page = dax_layout_busy_page(inode->i_mapping);
782 	if (!page)
783 		return 0;
784 
785 	*retry = true;
786 	return ___wait_var_event(&page->_refcount,
787 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
788 			0, 0, xfs_wait_dax_page(inode));
789 }
790 
791 int
792 xfs_break_layouts(
793 	struct inode		*inode,
794 	uint			*iolock,
795 	enum layout_break_reason reason)
796 {
797 	bool			retry;
798 	int			error;
799 
800 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
801 
802 	do {
803 		retry = false;
804 		switch (reason) {
805 		case BREAK_UNMAP:
806 			error = xfs_break_dax_layouts(inode, &retry);
807 			if (error || retry)
808 				break;
809 			/* fall through */
810 		case BREAK_WRITE:
811 			error = xfs_break_leased_layouts(inode, iolock, &retry);
812 			break;
813 		default:
814 			WARN_ON_ONCE(1);
815 			error = -EINVAL;
816 		}
817 	} while (error == 0 && retry);
818 
819 	return error;
820 }
821 
822 #define	XFS_FALLOC_FL_SUPPORTED						\
823 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
824 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
825 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
826 
827 STATIC long
828 xfs_file_fallocate(
829 	struct file		*file,
830 	int			mode,
831 	loff_t			offset,
832 	loff_t			len)
833 {
834 	struct inode		*inode = file_inode(file);
835 	struct xfs_inode	*ip = XFS_I(inode);
836 	long			error;
837 	enum xfs_prealloc_flags	flags = 0;
838 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
839 	loff_t			new_size = 0;
840 	bool			do_file_insert = false;
841 
842 	if (!S_ISREG(inode->i_mode))
843 		return -EINVAL;
844 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
845 		return -EOPNOTSUPP;
846 
847 	xfs_ilock(ip, iolock);
848 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
849 	if (error)
850 		goto out_unlock;
851 
852 	/*
853 	 * Must wait for all AIO to complete before we continue as AIO can
854 	 * change the file size on completion without holding any locks we
855 	 * currently hold. We must do this first because AIO can update both
856 	 * the on disk and in memory inode sizes, and the operations that follow
857 	 * require the in-memory size to be fully up-to-date.
858 	 */
859 	inode_dio_wait(inode);
860 
861 	/*
862 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
863 	 * the cached range over the first operation we are about to run.
864 	 *
865 	 * We care about zero and collapse here because they both run a hole
866 	 * punch over the range first. Because that can zero data, and the range
867 	 * of invalidation for the shift operations is much larger, we still do
868 	 * the required flush for collapse in xfs_prepare_shift().
869 	 *
870 	 * Insert has the same range requirements as collapse, and we extend the
871 	 * file first which can zero data. Hence insert has the same
872 	 * flush/invalidate requirements as collapse and so they are both
873 	 * handled at the right time by xfs_prepare_shift().
874 	 */
875 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
876 		    FALLOC_FL_COLLAPSE_RANGE)) {
877 		error = xfs_flush_unmap_range(ip, offset, len);
878 		if (error)
879 			goto out_unlock;
880 	}
881 
882 	if (mode & FALLOC_FL_PUNCH_HOLE) {
883 		error = xfs_free_file_space(ip, offset, len);
884 		if (error)
885 			goto out_unlock;
886 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
887 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
888 			error = -EINVAL;
889 			goto out_unlock;
890 		}
891 
892 		/*
893 		 * There is no need to overlap collapse range with EOF,
894 		 * in which case it is effectively a truncate operation
895 		 */
896 		if (offset + len >= i_size_read(inode)) {
897 			error = -EINVAL;
898 			goto out_unlock;
899 		}
900 
901 		new_size = i_size_read(inode) - len;
902 
903 		error = xfs_collapse_file_space(ip, offset, len);
904 		if (error)
905 			goto out_unlock;
906 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
907 		loff_t		isize = i_size_read(inode);
908 
909 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
910 			error = -EINVAL;
911 			goto out_unlock;
912 		}
913 
914 		/*
915 		 * New inode size must not exceed ->s_maxbytes, accounting for
916 		 * possible signed overflow.
917 		 */
918 		if (inode->i_sb->s_maxbytes - isize < len) {
919 			error = -EFBIG;
920 			goto out_unlock;
921 		}
922 		new_size = isize + len;
923 
924 		/* Offset should be less than i_size */
925 		if (offset >= isize) {
926 			error = -EINVAL;
927 			goto out_unlock;
928 		}
929 		do_file_insert = true;
930 	} else {
931 		flags |= XFS_PREALLOC_SET;
932 
933 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
934 		    offset + len > i_size_read(inode)) {
935 			new_size = offset + len;
936 			error = inode_newsize_ok(inode, new_size);
937 			if (error)
938 				goto out_unlock;
939 		}
940 
941 		if (mode & FALLOC_FL_ZERO_RANGE) {
942 			/*
943 			 * Punch a hole and prealloc the range.  We use a hole
944 			 * punch rather than unwritten extent conversion for two
945 			 * reasons:
946 			 *
947 			 *   1.) Hole punch handles partial block zeroing for us.
948 			 *   2.) If prealloc returns ENOSPC, the file range is
949 			 *       still zero-valued by virtue of the hole punch.
950 			 */
951 			unsigned int blksize = i_blocksize(inode);
952 
953 			trace_xfs_zero_file_space(ip);
954 
955 			error = xfs_free_file_space(ip, offset, len);
956 			if (error)
957 				goto out_unlock;
958 
959 			len = round_up(offset + len, blksize) -
960 			      round_down(offset, blksize);
961 			offset = round_down(offset, blksize);
962 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
963 			error = xfs_reflink_unshare(ip, offset, len);
964 			if (error)
965 				goto out_unlock;
966 		} else {
967 			/*
968 			 * If always_cow mode we can't use preallocations and
969 			 * thus should not create them.
970 			 */
971 			if (xfs_is_always_cow_inode(ip)) {
972 				error = -EOPNOTSUPP;
973 				goto out_unlock;
974 			}
975 		}
976 
977 		if (!xfs_is_always_cow_inode(ip)) {
978 			error = xfs_alloc_file_space(ip, offset, len,
979 						     XFS_BMAPI_PREALLOC);
980 			if (error)
981 				goto out_unlock;
982 		}
983 	}
984 
985 	if (file->f_flags & O_DSYNC)
986 		flags |= XFS_PREALLOC_SYNC;
987 
988 	error = xfs_update_prealloc_flags(ip, flags);
989 	if (error)
990 		goto out_unlock;
991 
992 	/* Change file size if needed */
993 	if (new_size) {
994 		struct iattr iattr;
995 
996 		iattr.ia_valid = ATTR_SIZE;
997 		iattr.ia_size = new_size;
998 		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
999 					    file_dentry(file), &iattr);
1000 		if (error)
1001 			goto out_unlock;
1002 	}
1003 
1004 	/*
1005 	 * Perform hole insertion now that the file size has been
1006 	 * updated so that if we crash during the operation we don't
1007 	 * leave shifted extents past EOF and hence losing access to
1008 	 * the data that is contained within them.
1009 	 */
1010 	if (do_file_insert)
1011 		error = xfs_insert_file_space(ip, offset, len);
1012 
1013 out_unlock:
1014 	xfs_iunlock(ip, iolock);
1015 	return error;
1016 }
1017 
1018 STATIC int
1019 xfs_file_fadvise(
1020 	struct file	*file,
1021 	loff_t		start,
1022 	loff_t		end,
1023 	int		advice)
1024 {
1025 	struct xfs_inode *ip = XFS_I(file_inode(file));
1026 	int ret;
1027 	int lockflags = 0;
1028 
1029 	/*
1030 	 * Operations creating pages in page cache need protection from hole
1031 	 * punching and similar ops
1032 	 */
1033 	if (advice == POSIX_FADV_WILLNEED) {
1034 		lockflags = XFS_IOLOCK_SHARED;
1035 		xfs_ilock(ip, lockflags);
1036 	}
1037 	ret = generic_fadvise(file, start, end, advice);
1038 	if (lockflags)
1039 		xfs_iunlock(ip, lockflags);
1040 	return ret;
1041 }
1042 
1043 /* Does this file, inode, or mount want synchronous writes? */
1044 static inline bool xfs_file_sync_writes(struct file *filp)
1045 {
1046 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1047 
1048 	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1049 		return true;
1050 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1051 		return true;
1052 	if (IS_SYNC(file_inode(filp)))
1053 		return true;
1054 
1055 	return false;
1056 }
1057 
1058 STATIC loff_t
1059 xfs_file_remap_range(
1060 	struct file		*file_in,
1061 	loff_t			pos_in,
1062 	struct file		*file_out,
1063 	loff_t			pos_out,
1064 	loff_t			len,
1065 	unsigned int		remap_flags)
1066 {
1067 	struct inode		*inode_in = file_inode(file_in);
1068 	struct xfs_inode	*src = XFS_I(inode_in);
1069 	struct inode		*inode_out = file_inode(file_out);
1070 	struct xfs_inode	*dest = XFS_I(inode_out);
1071 	struct xfs_mount	*mp = src->i_mount;
1072 	loff_t			remapped = 0;
1073 	xfs_extlen_t		cowextsize;
1074 	int			ret;
1075 
1076 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1077 		return -EINVAL;
1078 
1079 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1080 		return -EOPNOTSUPP;
1081 
1082 	if (XFS_FORCED_SHUTDOWN(mp))
1083 		return -EIO;
1084 
1085 	/* Prepare and then clone file data. */
1086 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1087 			&len, remap_flags);
1088 	if (ret || len == 0)
1089 		return ret;
1090 
1091 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1092 
1093 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1094 			&remapped);
1095 	if (ret)
1096 		goto out_unlock;
1097 
1098 	/*
1099 	 * Carry the cowextsize hint from src to dest if we're sharing the
1100 	 * entire source file to the entire destination file, the source file
1101 	 * has a cowextsize hint, and the destination file does not.
1102 	 */
1103 	cowextsize = 0;
1104 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1105 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1106 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1107 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1108 		cowextsize = src->i_d.di_cowextsize;
1109 
1110 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1111 			remap_flags);
1112 	if (ret)
1113 		goto out_unlock;
1114 
1115 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1116 		xfs_log_force_inode(dest);
1117 out_unlock:
1118 	xfs_iunlock2_io_mmap(src, dest);
1119 	if (ret)
1120 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1121 	return remapped > 0 ? remapped : ret;
1122 }
1123 
1124 STATIC int
1125 xfs_file_open(
1126 	struct inode	*inode,
1127 	struct file	*file)
1128 {
1129 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1130 		return -EFBIG;
1131 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1132 		return -EIO;
1133 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1134 	return 0;
1135 }
1136 
1137 STATIC int
1138 xfs_dir_open(
1139 	struct inode	*inode,
1140 	struct file	*file)
1141 {
1142 	struct xfs_inode *ip = XFS_I(inode);
1143 	int		mode;
1144 	int		error;
1145 
1146 	error = xfs_file_open(inode, file);
1147 	if (error)
1148 		return error;
1149 
1150 	/*
1151 	 * If there are any blocks, read-ahead block 0 as we're almost
1152 	 * certain to have the next operation be a read there.
1153 	 */
1154 	mode = xfs_ilock_data_map_shared(ip);
1155 	if (ip->i_df.if_nextents > 0)
1156 		error = xfs_dir3_data_readahead(ip, 0, 0);
1157 	xfs_iunlock(ip, mode);
1158 	return error;
1159 }
1160 
1161 STATIC int
1162 xfs_file_release(
1163 	struct inode	*inode,
1164 	struct file	*filp)
1165 {
1166 	return xfs_release(XFS_I(inode));
1167 }
1168 
1169 STATIC int
1170 xfs_file_readdir(
1171 	struct file	*file,
1172 	struct dir_context *ctx)
1173 {
1174 	struct inode	*inode = file_inode(file);
1175 	xfs_inode_t	*ip = XFS_I(inode);
1176 	size_t		bufsize;
1177 
1178 	/*
1179 	 * The Linux API doesn't pass down the total size of the buffer
1180 	 * we read into down to the filesystem.  With the filldir concept
1181 	 * it's not needed for correct information, but the XFS dir2 leaf
1182 	 * code wants an estimate of the buffer size to calculate it's
1183 	 * readahead window and size the buffers used for mapping to
1184 	 * physical blocks.
1185 	 *
1186 	 * Try to give it an estimate that's good enough, maybe at some
1187 	 * point we can change the ->readdir prototype to include the
1188 	 * buffer size.  For now we use the current glibc buffer size.
1189 	 */
1190 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1191 
1192 	return xfs_readdir(NULL, ip, ctx, bufsize);
1193 }
1194 
1195 STATIC loff_t
1196 xfs_file_llseek(
1197 	struct file	*file,
1198 	loff_t		offset,
1199 	int		whence)
1200 {
1201 	struct inode		*inode = file->f_mapping->host;
1202 
1203 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1204 		return -EIO;
1205 
1206 	switch (whence) {
1207 	default:
1208 		return generic_file_llseek(file, offset, whence);
1209 	case SEEK_HOLE:
1210 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1211 		break;
1212 	case SEEK_DATA:
1213 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1214 		break;
1215 	}
1216 
1217 	if (offset < 0)
1218 		return offset;
1219 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1220 }
1221 
1222 /*
1223  * Locking for serialisation of IO during page faults. This results in a lock
1224  * ordering of:
1225  *
1226  * mmap_lock (MM)
1227  *   sb_start_pagefault(vfs, freeze)
1228  *     i_mmaplock (XFS - truncate serialisation)
1229  *       page_lock (MM)
1230  *         i_lock (XFS - extent map serialisation)
1231  */
1232 static vm_fault_t
1233 __xfs_filemap_fault(
1234 	struct vm_fault		*vmf,
1235 	enum page_entry_size	pe_size,
1236 	bool			write_fault)
1237 {
1238 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1239 	struct xfs_inode	*ip = XFS_I(inode);
1240 	vm_fault_t		ret;
1241 
1242 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1243 
1244 	if (write_fault) {
1245 		sb_start_pagefault(inode->i_sb);
1246 		file_update_time(vmf->vma->vm_file);
1247 	}
1248 
1249 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1250 	if (IS_DAX(inode)) {
1251 		pfn_t pfn;
1252 
1253 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1254 				(write_fault && !vmf->cow_page) ?
1255 				 &xfs_direct_write_iomap_ops :
1256 				 &xfs_read_iomap_ops);
1257 		if (ret & VM_FAULT_NEEDDSYNC)
1258 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1259 	} else {
1260 		if (write_fault)
1261 			ret = iomap_page_mkwrite(vmf,
1262 					&xfs_buffered_write_iomap_ops);
1263 		else
1264 			ret = filemap_fault(vmf);
1265 	}
1266 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1267 
1268 	if (write_fault)
1269 		sb_end_pagefault(inode->i_sb);
1270 	return ret;
1271 }
1272 
1273 static inline bool
1274 xfs_is_write_fault(
1275 	struct vm_fault		*vmf)
1276 {
1277 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1278 	       (vmf->vma->vm_flags & VM_SHARED);
1279 }
1280 
1281 static vm_fault_t
1282 xfs_filemap_fault(
1283 	struct vm_fault		*vmf)
1284 {
1285 	/* DAX can shortcut the normal fault path on write faults! */
1286 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1287 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1288 			xfs_is_write_fault(vmf));
1289 }
1290 
1291 static vm_fault_t
1292 xfs_filemap_huge_fault(
1293 	struct vm_fault		*vmf,
1294 	enum page_entry_size	pe_size)
1295 {
1296 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1297 		return VM_FAULT_FALLBACK;
1298 
1299 	/* DAX can shortcut the normal fault path on write faults! */
1300 	return __xfs_filemap_fault(vmf, pe_size,
1301 			xfs_is_write_fault(vmf));
1302 }
1303 
1304 static vm_fault_t
1305 xfs_filemap_page_mkwrite(
1306 	struct vm_fault		*vmf)
1307 {
1308 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1309 }
1310 
1311 /*
1312  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1313  * on write faults. In reality, it needs to serialise against truncate and
1314  * prepare memory for writing so handle is as standard write fault.
1315  */
1316 static vm_fault_t
1317 xfs_filemap_pfn_mkwrite(
1318 	struct vm_fault		*vmf)
1319 {
1320 
1321 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1322 }
1323 
1324 static void
1325 xfs_filemap_map_pages(
1326 	struct vm_fault		*vmf,
1327 	pgoff_t			start_pgoff,
1328 	pgoff_t			end_pgoff)
1329 {
1330 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1331 
1332 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1333 	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1334 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1335 }
1336 
1337 static const struct vm_operations_struct xfs_file_vm_ops = {
1338 	.fault		= xfs_filemap_fault,
1339 	.huge_fault	= xfs_filemap_huge_fault,
1340 	.map_pages	= xfs_filemap_map_pages,
1341 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1342 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1343 };
1344 
1345 STATIC int
1346 xfs_file_mmap(
1347 	struct file		*file,
1348 	struct vm_area_struct	*vma)
1349 {
1350 	struct inode		*inode = file_inode(file);
1351 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1352 
1353 	/*
1354 	 * We don't support synchronous mappings for non-DAX files and
1355 	 * for DAX files if underneath dax_device is not synchronous.
1356 	 */
1357 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1358 		return -EOPNOTSUPP;
1359 
1360 	file_accessed(file);
1361 	vma->vm_ops = &xfs_file_vm_ops;
1362 	if (IS_DAX(inode))
1363 		vma->vm_flags |= VM_HUGEPAGE;
1364 	return 0;
1365 }
1366 
1367 const struct file_operations xfs_file_operations = {
1368 	.llseek		= xfs_file_llseek,
1369 	.read_iter	= xfs_file_read_iter,
1370 	.write_iter	= xfs_file_write_iter,
1371 	.splice_read	= generic_file_splice_read,
1372 	.splice_write	= iter_file_splice_write,
1373 	.iopoll		= iomap_dio_iopoll,
1374 	.unlocked_ioctl	= xfs_file_ioctl,
1375 #ifdef CONFIG_COMPAT
1376 	.compat_ioctl	= xfs_file_compat_ioctl,
1377 #endif
1378 	.mmap		= xfs_file_mmap,
1379 	.mmap_supported_flags = MAP_SYNC,
1380 	.open		= xfs_file_open,
1381 	.release	= xfs_file_release,
1382 	.fsync		= xfs_file_fsync,
1383 	.get_unmapped_area = thp_get_unmapped_area,
1384 	.fallocate	= xfs_file_fallocate,
1385 	.fadvise	= xfs_file_fadvise,
1386 	.remap_file_range = xfs_file_remap_range,
1387 };
1388 
1389 const struct file_operations xfs_dir_file_operations = {
1390 	.open		= xfs_dir_open,
1391 	.read		= generic_read_dir,
1392 	.iterate_shared	= xfs_file_readdir,
1393 	.llseek		= generic_file_llseek,
1394 	.unlocked_ioctl	= xfs_file_ioctl,
1395 #ifdef CONFIG_COMPAT
1396 	.compat_ioctl	= xfs_file_compat_ioctl,
1397 #endif
1398 	.fsync		= xfs_dir_fsync,
1399 };
1400