xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kmem_free(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kmem_free(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 STATIC void
70 xfs_efi_item_size(
71 	struct xfs_log_item	*lip,
72 	int			*nvecs,
73 	int			*nbytes)
74 {
75 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76 
77 	*nvecs += 1;
78 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80 
81 /*
82  * This is called to fill in the vector of log iovecs for the
83  * given efi log item. We use only 1 iovec, and we point that
84  * at the efi_log_format structure embedded in the efi item.
85  * It is at this point that we assert that all of the extent
86  * slots in the efi item have been filled.
87  */
88 STATIC void
89 xfs_efi_item_format(
90 	struct xfs_log_item	*lip,
91 	struct xfs_log_vec	*lv)
92 {
93 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94 	struct xfs_log_iovec	*vecp = NULL;
95 
96 	ASSERT(atomic_read(&efip->efi_next_extent) ==
97 				efip->efi_format.efi_nextents);
98 
99 	efip->efi_format.efi_type = XFS_LI_EFI;
100 	efip->efi_format.efi_size = 1;
101 
102 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 			&efip->efi_format,
104 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118 	struct xfs_log_item	*lip,
119 	int			remove)
120 {
121 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122 	xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132 	struct xfs_log_item	*lip)
133 {
134 	xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142 	struct xfs_mount	*mp,
143 	uint			nextents)
144 
145 {
146 	struct xfs_efi_log_item	*efip;
147 
148 	ASSERT(nextents > 0);
149 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 				GFP_KERNEL | __GFP_NOFAIL);
152 	} else {
153 		efip = kmem_cache_zalloc(xfs_efi_cache,
154 					 GFP_KERNEL | __GFP_NOFAIL);
155 	}
156 
157 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 	efip->efi_format.efi_nextents = nextents;
159 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 	atomic_set(&efip->efi_next_extent, 0);
161 	atomic_set(&efip->efi_refcount, 2);
162 
163 	return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 	uint i;
178 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182 	if (buf->i_len == len) {
183 		memcpy(dst_efi_fmt, src_efi_fmt,
184 		       offsetof(struct xfs_efi_log_format, efi_extents));
185 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 			memcpy(&dst_efi_fmt->efi_extents[i],
187 			       &src_efi_fmt->efi_extents[i],
188 			       sizeof(struct xfs_extent));
189 		return 0;
190 	} else if (buf->i_len == len32) {
191 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 			dst_efi_fmt->efi_extents[i].ext_start =
199 				src_efi_fmt_32->efi_extents[i].ext_start;
200 			dst_efi_fmt->efi_extents[i].ext_len =
201 				src_efi_fmt_32->efi_extents[i].ext_len;
202 		}
203 		return 0;
204 	} else if (buf->i_len == len64) {
205 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_64->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_64->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	}
219 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 			buf->i_len);
221 	return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 	return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 	kmem_free(efdp->efd_item.li_lv_shadow);
233 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 		kmem_free(efdp);
235 	else
236 		kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241 	struct xfs_log_item	*lip,
242 	int			*nvecs,
243 	int			*nbytes)
244 {
245 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246 
247 	*nvecs += 1;
248 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260 	struct xfs_log_item	*lip,
261 	struct xfs_log_vec	*lv)
262 {
263 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264 	struct xfs_log_iovec	*vecp = NULL;
265 
266 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268 	efdp->efd_format.efd_type = XFS_LI_EFD;
269 	efdp->efd_format.efd_size = 1;
270 
271 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 			&efdp->efd_format,
273 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282 	struct xfs_log_item	*lip)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 
286 	xfs_efi_release(efdp->efd_efip);
287 	xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292 	struct xfs_log_item	*lip)
293 {
294 	return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 			  XFS_ITEM_INTENT_DONE,
300 	.iop_size	= xfs_efd_item_size,
301 	.iop_format	= xfs_efd_item_format,
302 	.iop_release	= xfs_efd_item_release,
303 	.iop_intent	= xfs_efd_item_intent,
304 };
305 
306 /*
307  * Allocate an "extent free done" log item that will hold nextents worth of
308  * extents.  The caller must use all nextents extents, because we are not
309  * flexible about this at all.
310  */
311 static struct xfs_efd_log_item *
312 xfs_trans_get_efd(
313 	struct xfs_trans		*tp,
314 	struct xfs_efi_log_item		*efip,
315 	unsigned int			nextents)
316 {
317 	struct xfs_efd_log_item		*efdp;
318 
319 	ASSERT(nextents > 0);
320 
321 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
322 		efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
323 				GFP_KERNEL | __GFP_NOFAIL);
324 	} else {
325 		efdp = kmem_cache_zalloc(xfs_efd_cache,
326 					GFP_KERNEL | __GFP_NOFAIL);
327 	}
328 
329 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
330 			  &xfs_efd_item_ops);
331 	efdp->efd_efip = efip;
332 	efdp->efd_format.efd_nextents = nextents;
333 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
334 
335 	xfs_trans_add_item(tp, &efdp->efd_item);
336 	return efdp;
337 }
338 
339 /*
340  * Free an extent and log it to the EFD. Note that the transaction is marked
341  * dirty regardless of whether the extent free succeeds or fails to support the
342  * EFI/EFD lifecycle rules.
343  */
344 static int
345 xfs_trans_free_extent(
346 	struct xfs_trans		*tp,
347 	struct xfs_efd_log_item		*efdp,
348 	struct xfs_extent_free_item	*xefi)
349 {
350 	struct xfs_owner_info		oinfo = { };
351 	struct xfs_mount		*mp = tp->t_mountp;
352 	struct xfs_extent		*extp;
353 	uint				next_extent;
354 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
355 							xefi->xefi_startblock);
356 	int				error;
357 
358 	oinfo.oi_owner = xefi->xefi_owner;
359 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
360 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
361 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
362 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
363 
364 	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
365 			agbno, xefi->xefi_blockcount);
366 
367 	error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
368 			xefi->xefi_blockcount, &oinfo, XFS_AG_RESV_NONE,
369 			xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
370 
371 	/*
372 	 * Mark the transaction dirty, even on error. This ensures the
373 	 * transaction is aborted, which:
374 	 *
375 	 * 1.) releases the EFI and frees the EFD
376 	 * 2.) shuts down the filesystem
377 	 */
378 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
379 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
380 
381 	next_extent = efdp->efd_next_extent;
382 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
383 	extp = &(efdp->efd_format.efd_extents[next_extent]);
384 	extp->ext_start = xefi->xefi_startblock;
385 	extp->ext_len = xefi->xefi_blockcount;
386 	efdp->efd_next_extent++;
387 
388 	return error;
389 }
390 
391 /* Sort bmap items by AG. */
392 static int
393 xfs_extent_free_diff_items(
394 	void				*priv,
395 	const struct list_head		*a,
396 	const struct list_head		*b)
397 {
398 	struct xfs_extent_free_item	*ra;
399 	struct xfs_extent_free_item	*rb;
400 
401 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
402 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
403 
404 	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
405 }
406 
407 /* Log a free extent to the intent item. */
408 STATIC void
409 xfs_extent_free_log_item(
410 	struct xfs_trans		*tp,
411 	struct xfs_efi_log_item		*efip,
412 	struct xfs_extent_free_item	*xefi)
413 {
414 	uint				next_extent;
415 	struct xfs_extent		*extp;
416 
417 	tp->t_flags |= XFS_TRANS_DIRTY;
418 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
419 
420 	/*
421 	 * atomic_inc_return gives us the value after the increment;
422 	 * we want to use it as an array index so we need to subtract 1 from
423 	 * it.
424 	 */
425 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
426 	ASSERT(next_extent < efip->efi_format.efi_nextents);
427 	extp = &efip->efi_format.efi_extents[next_extent];
428 	extp->ext_start = xefi->xefi_startblock;
429 	extp->ext_len = xefi->xefi_blockcount;
430 }
431 
432 static struct xfs_log_item *
433 xfs_extent_free_create_intent(
434 	struct xfs_trans		*tp,
435 	struct list_head		*items,
436 	unsigned int			count,
437 	bool				sort)
438 {
439 	struct xfs_mount		*mp = tp->t_mountp;
440 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
441 	struct xfs_extent_free_item	*xefi;
442 
443 	ASSERT(count > 0);
444 
445 	xfs_trans_add_item(tp, &efip->efi_item);
446 	if (sort)
447 		list_sort(mp, items, xfs_extent_free_diff_items);
448 	list_for_each_entry(xefi, items, xefi_list)
449 		xfs_extent_free_log_item(tp, efip, xefi);
450 	return &efip->efi_item;
451 }
452 
453 /* Get an EFD so we can process all the free extents. */
454 static struct xfs_log_item *
455 xfs_extent_free_create_done(
456 	struct xfs_trans		*tp,
457 	struct xfs_log_item		*intent,
458 	unsigned int			count)
459 {
460 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
461 }
462 
463 /* Take a passive ref to the AG containing the space we're freeing. */
464 void
465 xfs_extent_free_get_group(
466 	struct xfs_mount		*mp,
467 	struct xfs_extent_free_item	*xefi)
468 {
469 	xfs_agnumber_t			agno;
470 
471 	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
472 	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
473 }
474 
475 /* Release a passive AG ref after some freeing work. */
476 static inline void
477 xfs_extent_free_put_group(
478 	struct xfs_extent_free_item	*xefi)
479 {
480 	xfs_perag_intent_put(xefi->xefi_pag);
481 }
482 
483 /* Process a free extent. */
484 STATIC int
485 xfs_extent_free_finish_item(
486 	struct xfs_trans		*tp,
487 	struct xfs_log_item		*done,
488 	struct list_head		*item,
489 	struct xfs_btree_cur		**state)
490 {
491 	struct xfs_extent_free_item	*xefi;
492 	int				error;
493 
494 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
495 
496 	error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
497 
498 	xfs_extent_free_put_group(xefi);
499 	kmem_cache_free(xfs_extfree_item_cache, xefi);
500 	return error;
501 }
502 
503 /* Abort all pending EFIs. */
504 STATIC void
505 xfs_extent_free_abort_intent(
506 	struct xfs_log_item		*intent)
507 {
508 	xfs_efi_release(EFI_ITEM(intent));
509 }
510 
511 /* Cancel a free extent. */
512 STATIC void
513 xfs_extent_free_cancel_item(
514 	struct list_head		*item)
515 {
516 	struct xfs_extent_free_item	*xefi;
517 
518 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
519 
520 	xfs_extent_free_put_group(xefi);
521 	kmem_cache_free(xfs_extfree_item_cache, xefi);
522 }
523 
524 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
525 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
526 	.create_intent	= xfs_extent_free_create_intent,
527 	.abort_intent	= xfs_extent_free_abort_intent,
528 	.create_done	= xfs_extent_free_create_done,
529 	.finish_item	= xfs_extent_free_finish_item,
530 	.cancel_item	= xfs_extent_free_cancel_item,
531 };
532 
533 /*
534  * AGFL blocks are accounted differently in the reserve pools and are not
535  * inserted into the busy extent list.
536  */
537 STATIC int
538 xfs_agfl_free_finish_item(
539 	struct xfs_trans		*tp,
540 	struct xfs_log_item		*done,
541 	struct list_head		*item,
542 	struct xfs_btree_cur		**state)
543 {
544 	struct xfs_owner_info		oinfo = { };
545 	struct xfs_mount		*mp = tp->t_mountp;
546 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
547 	struct xfs_extent_free_item	*xefi;
548 	struct xfs_extent		*extp;
549 	struct xfs_buf			*agbp;
550 	int				error;
551 	xfs_agblock_t			agbno;
552 	uint				next_extent;
553 
554 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
555 	ASSERT(xefi->xefi_blockcount == 1);
556 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
557 	oinfo.oi_owner = xefi->xefi_owner;
558 
559 	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
560 			xefi->xefi_blockcount);
561 
562 	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
563 	if (!error)
564 		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
565 				agbno, agbp, &oinfo);
566 
567 	/*
568 	 * Mark the transaction dirty, even on error. This ensures the
569 	 * transaction is aborted, which:
570 	 *
571 	 * 1.) releases the EFI and frees the EFD
572 	 * 2.) shuts down the filesystem
573 	 */
574 	tp->t_flags |= XFS_TRANS_DIRTY;
575 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
576 
577 	next_extent = efdp->efd_next_extent;
578 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
579 	extp = &(efdp->efd_format.efd_extents[next_extent]);
580 	extp->ext_start = xefi->xefi_startblock;
581 	extp->ext_len = xefi->xefi_blockcount;
582 	efdp->efd_next_extent++;
583 
584 	xfs_extent_free_put_group(xefi);
585 	kmem_cache_free(xfs_extfree_item_cache, xefi);
586 	return error;
587 }
588 
589 /* sub-type with special handling for AGFL deferred frees */
590 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
591 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
592 	.create_intent	= xfs_extent_free_create_intent,
593 	.abort_intent	= xfs_extent_free_abort_intent,
594 	.create_done	= xfs_extent_free_create_done,
595 	.finish_item	= xfs_agfl_free_finish_item,
596 	.cancel_item	= xfs_extent_free_cancel_item,
597 };
598 
599 /* Is this recovered EFI ok? */
600 static inline bool
601 xfs_efi_validate_ext(
602 	struct xfs_mount		*mp,
603 	struct xfs_extent		*extp)
604 {
605 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
606 }
607 
608 /*
609  * Process an extent free intent item that was recovered from
610  * the log.  We need to free the extents that it describes.
611  */
612 STATIC int
613 xfs_efi_item_recover(
614 	struct xfs_log_item		*lip,
615 	struct list_head		*capture_list)
616 {
617 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
618 	struct xfs_mount		*mp = lip->li_log->l_mp;
619 	struct xfs_efd_log_item		*efdp;
620 	struct xfs_trans		*tp;
621 	int				i;
622 	int				error = 0;
623 
624 	/*
625 	 * First check the validity of the extents described by the
626 	 * EFI.  If any are bad, then assume that all are bad and
627 	 * just toss the EFI.
628 	 */
629 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
630 		if (!xfs_efi_validate_ext(mp,
631 					&efip->efi_format.efi_extents[i])) {
632 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
633 					&efip->efi_format,
634 					sizeof(efip->efi_format));
635 			return -EFSCORRUPTED;
636 		}
637 	}
638 
639 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
640 	if (error)
641 		return error;
642 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
643 
644 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
645 		struct xfs_extent_free_item	fake = {
646 			.xefi_owner		= XFS_RMAP_OWN_UNKNOWN,
647 		};
648 		struct xfs_extent		*extp;
649 
650 		extp = &efip->efi_format.efi_extents[i];
651 
652 		fake.xefi_startblock = extp->ext_start;
653 		fake.xefi_blockcount = extp->ext_len;
654 
655 		xfs_extent_free_get_group(mp, &fake);
656 		error = xfs_trans_free_extent(tp, efdp, &fake);
657 		xfs_extent_free_put_group(&fake);
658 		if (error == -EFSCORRUPTED)
659 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
660 					extp, sizeof(*extp));
661 		if (error)
662 			goto abort_error;
663 
664 	}
665 
666 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
667 
668 abort_error:
669 	xfs_trans_cancel(tp);
670 	return error;
671 }
672 
673 STATIC bool
674 xfs_efi_item_match(
675 	struct xfs_log_item	*lip,
676 	uint64_t		intent_id)
677 {
678 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
679 }
680 
681 /* Relog an intent item to push the log tail forward. */
682 static struct xfs_log_item *
683 xfs_efi_item_relog(
684 	struct xfs_log_item		*intent,
685 	struct xfs_trans		*tp)
686 {
687 	struct xfs_efd_log_item		*efdp;
688 	struct xfs_efi_log_item		*efip;
689 	struct xfs_extent		*extp;
690 	unsigned int			count;
691 
692 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
693 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
694 
695 	tp->t_flags |= XFS_TRANS_DIRTY;
696 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
697 	efdp->efd_next_extent = count;
698 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
699 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
700 
701 	efip = xfs_efi_init(tp->t_mountp, count);
702 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
703 	atomic_set(&efip->efi_next_extent, count);
704 	xfs_trans_add_item(tp, &efip->efi_item);
705 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
706 	return &efip->efi_item;
707 }
708 
709 static const struct xfs_item_ops xfs_efi_item_ops = {
710 	.flags		= XFS_ITEM_INTENT,
711 	.iop_size	= xfs_efi_item_size,
712 	.iop_format	= xfs_efi_item_format,
713 	.iop_unpin	= xfs_efi_item_unpin,
714 	.iop_release	= xfs_efi_item_release,
715 	.iop_recover	= xfs_efi_item_recover,
716 	.iop_match	= xfs_efi_item_match,
717 	.iop_relog	= xfs_efi_item_relog,
718 };
719 
720 /*
721  * This routine is called to create an in-core extent free intent
722  * item from the efi format structure which was logged on disk.
723  * It allocates an in-core efi, copies the extents from the format
724  * structure into it, and adds the efi to the AIL with the given
725  * LSN.
726  */
727 STATIC int
728 xlog_recover_efi_commit_pass2(
729 	struct xlog			*log,
730 	struct list_head		*buffer_list,
731 	struct xlog_recover_item	*item,
732 	xfs_lsn_t			lsn)
733 {
734 	struct xfs_mount		*mp = log->l_mp;
735 	struct xfs_efi_log_item		*efip;
736 	struct xfs_efi_log_format	*efi_formatp;
737 	int				error;
738 
739 	efi_formatp = item->ri_buf[0].i_addr;
740 
741 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
742 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
743 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
744 		return -EFSCORRUPTED;
745 	}
746 
747 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
748 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
749 	if (error) {
750 		xfs_efi_item_free(efip);
751 		return error;
752 	}
753 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
754 	/*
755 	 * Insert the intent into the AIL directly and drop one reference so
756 	 * that finishing or canceling the work will drop the other.
757 	 */
758 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
759 	xfs_efi_release(efip);
760 	return 0;
761 }
762 
763 const struct xlog_recover_item_ops xlog_efi_item_ops = {
764 	.item_type		= XFS_LI_EFI,
765 	.commit_pass2		= xlog_recover_efi_commit_pass2,
766 };
767 
768 /*
769  * This routine is called when an EFD format structure is found in a committed
770  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
771  * was still in the log. To do this it searches the AIL for the EFI with an id
772  * equal to that in the EFD format structure. If we find it we drop the EFD
773  * reference, which removes the EFI from the AIL and frees it.
774  */
775 STATIC int
776 xlog_recover_efd_commit_pass2(
777 	struct xlog			*log,
778 	struct list_head		*buffer_list,
779 	struct xlog_recover_item	*item,
780 	xfs_lsn_t			lsn)
781 {
782 	struct xfs_efd_log_format	*efd_formatp;
783 	int				buflen = item->ri_buf[0].i_len;
784 
785 	efd_formatp = item->ri_buf[0].i_addr;
786 
787 	if (buflen < sizeof(struct xfs_efd_log_format)) {
788 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
789 				efd_formatp, buflen);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
794 						efd_formatp->efd_nextents) &&
795 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
796 						efd_formatp->efd_nextents)) {
797 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
798 				efd_formatp, buflen);
799 		return -EFSCORRUPTED;
800 	}
801 
802 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
803 	return 0;
804 }
805 
806 const struct xlog_recover_item_ops xlog_efd_item_ops = {
807 	.item_type		= XFS_LI_EFD,
808 	.commit_pass2		= xlog_recover_efd_commit_pass2,
809 };
810