1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_log_format.h" 38 #include "xfs_trans_resv.h" 39 #include "xfs_sb.h" 40 #include "xfs_ag.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 static struct workqueue_struct *xfslogd_workqueue; 48 49 #ifdef XFS_BUF_LOCK_TRACKING 50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 53 #else 54 # define XB_SET_OWNER(bp) do { } while (0) 55 # define XB_CLEAR_OWNER(bp) do { } while (0) 56 # define XB_GET_OWNER(bp) do { } while (0) 57 #endif 58 59 #define xb_to_gfp(flags) \ 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 61 62 63 static inline int 64 xfs_buf_is_vmapped( 65 struct xfs_buf *bp) 66 { 67 /* 68 * Return true if the buffer is vmapped. 69 * 70 * b_addr is null if the buffer is not mapped, but the code is clever 71 * enough to know it doesn't have to map a single page, so the check has 72 * to be both for b_addr and bp->b_page_count > 1. 73 */ 74 return bp->b_addr && bp->b_page_count > 1; 75 } 76 77 static inline int 78 xfs_buf_vmap_len( 79 struct xfs_buf *bp) 80 { 81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 82 } 83 84 /* 85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 86 * b_lru_ref count so that the buffer is freed immediately when the buffer 87 * reference count falls to zero. If the buffer is already on the LRU, we need 88 * to remove the reference that LRU holds on the buffer. 89 * 90 * This prevents build-up of stale buffers on the LRU. 91 */ 92 void 93 xfs_buf_stale( 94 struct xfs_buf *bp) 95 { 96 ASSERT(xfs_buf_islocked(bp)); 97 98 bp->b_flags |= XBF_STALE; 99 100 /* 101 * Clear the delwri status so that a delwri queue walker will not 102 * flush this buffer to disk now that it is stale. The delwri queue has 103 * a reference to the buffer, so this is safe to do. 104 */ 105 bp->b_flags &= ~_XBF_DELWRI_Q; 106 107 spin_lock(&bp->b_lock); 108 atomic_set(&bp->b_lru_ref, 0); 109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 111 atomic_dec(&bp->b_hold); 112 113 ASSERT(atomic_read(&bp->b_hold) >= 1); 114 spin_unlock(&bp->b_lock); 115 } 116 117 static int 118 xfs_buf_get_maps( 119 struct xfs_buf *bp, 120 int map_count) 121 { 122 ASSERT(bp->b_maps == NULL); 123 bp->b_map_count = map_count; 124 125 if (map_count == 1) { 126 bp->b_maps = &bp->__b_map; 127 return 0; 128 } 129 130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 131 KM_NOFS); 132 if (!bp->b_maps) 133 return -ENOMEM; 134 return 0; 135 } 136 137 /* 138 * Frees b_pages if it was allocated. 139 */ 140 static void 141 xfs_buf_free_maps( 142 struct xfs_buf *bp) 143 { 144 if (bp->b_maps != &bp->__b_map) { 145 kmem_free(bp->b_maps); 146 bp->b_maps = NULL; 147 } 148 } 149 150 struct xfs_buf * 151 _xfs_buf_alloc( 152 struct xfs_buftarg *target, 153 struct xfs_buf_map *map, 154 int nmaps, 155 xfs_buf_flags_t flags) 156 { 157 struct xfs_buf *bp; 158 int error; 159 int i; 160 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 162 if (unlikely(!bp)) 163 return NULL; 164 165 /* 166 * We don't want certain flags to appear in b_flags unless they are 167 * specifically set by later operations on the buffer. 168 */ 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 170 171 atomic_set(&bp->b_hold, 1); 172 atomic_set(&bp->b_lru_ref, 1); 173 init_completion(&bp->b_iowait); 174 INIT_LIST_HEAD(&bp->b_lru); 175 INIT_LIST_HEAD(&bp->b_list); 176 RB_CLEAR_NODE(&bp->b_rbnode); 177 sema_init(&bp->b_sema, 0); /* held, no waiters */ 178 spin_lock_init(&bp->b_lock); 179 XB_SET_OWNER(bp); 180 bp->b_target = target; 181 bp->b_flags = flags; 182 183 /* 184 * Set length and io_length to the same value initially. 185 * I/O routines should use io_length, which will be the same in 186 * most cases but may be reset (e.g. XFS recovery). 187 */ 188 error = xfs_buf_get_maps(bp, nmaps); 189 if (error) { 190 kmem_zone_free(xfs_buf_zone, bp); 191 return NULL; 192 } 193 194 bp->b_bn = map[0].bm_bn; 195 bp->b_length = 0; 196 for (i = 0; i < nmaps; i++) { 197 bp->b_maps[i].bm_bn = map[i].bm_bn; 198 bp->b_maps[i].bm_len = map[i].bm_len; 199 bp->b_length += map[i].bm_len; 200 } 201 bp->b_io_length = bp->b_length; 202 203 atomic_set(&bp->b_pin_count, 0); 204 init_waitqueue_head(&bp->b_waiters); 205 206 XFS_STATS_INC(xb_create); 207 trace_xfs_buf_init(bp, _RET_IP_); 208 209 return bp; 210 } 211 212 /* 213 * Allocate a page array capable of holding a specified number 214 * of pages, and point the page buf at it. 215 */ 216 STATIC int 217 _xfs_buf_get_pages( 218 xfs_buf_t *bp, 219 int page_count) 220 { 221 /* Make sure that we have a page list */ 222 if (bp->b_pages == NULL) { 223 bp->b_page_count = page_count; 224 if (page_count <= XB_PAGES) { 225 bp->b_pages = bp->b_page_array; 226 } else { 227 bp->b_pages = kmem_alloc(sizeof(struct page *) * 228 page_count, KM_NOFS); 229 if (bp->b_pages == NULL) 230 return -ENOMEM; 231 } 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 233 } 234 return 0; 235 } 236 237 /* 238 * Frees b_pages if it was allocated. 239 */ 240 STATIC void 241 _xfs_buf_free_pages( 242 xfs_buf_t *bp) 243 { 244 if (bp->b_pages != bp->b_page_array) { 245 kmem_free(bp->b_pages); 246 bp->b_pages = NULL; 247 } 248 } 249 250 /* 251 * Releases the specified buffer. 252 * 253 * The modification state of any associated pages is left unchanged. 254 * The buffer must not be on any hash - use xfs_buf_rele instead for 255 * hashed and refcounted buffers 256 */ 257 void 258 xfs_buf_free( 259 xfs_buf_t *bp) 260 { 261 trace_xfs_buf_free(bp, _RET_IP_); 262 263 ASSERT(list_empty(&bp->b_lru)); 264 265 if (bp->b_flags & _XBF_PAGES) { 266 uint i; 267 268 if (xfs_buf_is_vmapped(bp)) 269 vm_unmap_ram(bp->b_addr - bp->b_offset, 270 bp->b_page_count); 271 272 for (i = 0; i < bp->b_page_count; i++) { 273 struct page *page = bp->b_pages[i]; 274 275 __free_page(page); 276 } 277 } else if (bp->b_flags & _XBF_KMEM) 278 kmem_free(bp->b_addr); 279 _xfs_buf_free_pages(bp); 280 xfs_buf_free_maps(bp); 281 kmem_zone_free(xfs_buf_zone, bp); 282 } 283 284 /* 285 * Allocates all the pages for buffer in question and builds it's page list. 286 */ 287 STATIC int 288 xfs_buf_allocate_memory( 289 xfs_buf_t *bp, 290 uint flags) 291 { 292 size_t size; 293 size_t nbytes, offset; 294 gfp_t gfp_mask = xb_to_gfp(flags); 295 unsigned short page_count, i; 296 xfs_off_t start, end; 297 int error; 298 299 /* 300 * for buffers that are contained within a single page, just allocate 301 * the memory from the heap - there's no need for the complexity of 302 * page arrays to keep allocation down to order 0. 303 */ 304 size = BBTOB(bp->b_length); 305 if (size < PAGE_SIZE) { 306 bp->b_addr = kmem_alloc(size, KM_NOFS); 307 if (!bp->b_addr) { 308 /* low memory - use alloc_page loop instead */ 309 goto use_alloc_page; 310 } 311 312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 313 ((unsigned long)bp->b_addr & PAGE_MASK)) { 314 /* b_addr spans two pages - use alloc_page instead */ 315 kmem_free(bp->b_addr); 316 bp->b_addr = NULL; 317 goto use_alloc_page; 318 } 319 bp->b_offset = offset_in_page(bp->b_addr); 320 bp->b_pages = bp->b_page_array; 321 bp->b_pages[0] = virt_to_page(bp->b_addr); 322 bp->b_page_count = 1; 323 bp->b_flags |= _XBF_KMEM; 324 return 0; 325 } 326 327 use_alloc_page: 328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 330 >> PAGE_SHIFT; 331 page_count = end - start; 332 error = _xfs_buf_get_pages(bp, page_count); 333 if (unlikely(error)) 334 return error; 335 336 offset = bp->b_offset; 337 bp->b_flags |= _XBF_PAGES; 338 339 for (i = 0; i < bp->b_page_count; i++) { 340 struct page *page; 341 uint retries = 0; 342 retry: 343 page = alloc_page(gfp_mask); 344 if (unlikely(page == NULL)) { 345 if (flags & XBF_READ_AHEAD) { 346 bp->b_page_count = i; 347 error = -ENOMEM; 348 goto out_free_pages; 349 } 350 351 /* 352 * This could deadlock. 353 * 354 * But until all the XFS lowlevel code is revamped to 355 * handle buffer allocation failures we can't do much. 356 */ 357 if (!(++retries % 100)) 358 xfs_err(NULL, 359 "possible memory allocation deadlock in %s (mode:0x%x)", 360 __func__, gfp_mask); 361 362 XFS_STATS_INC(xb_page_retries); 363 congestion_wait(BLK_RW_ASYNC, HZ/50); 364 goto retry; 365 } 366 367 XFS_STATS_INC(xb_page_found); 368 369 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 370 size -= nbytes; 371 bp->b_pages[i] = page; 372 offset = 0; 373 } 374 return 0; 375 376 out_free_pages: 377 for (i = 0; i < bp->b_page_count; i++) 378 __free_page(bp->b_pages[i]); 379 return error; 380 } 381 382 /* 383 * Map buffer into kernel address-space if necessary. 384 */ 385 STATIC int 386 _xfs_buf_map_pages( 387 xfs_buf_t *bp, 388 uint flags) 389 { 390 ASSERT(bp->b_flags & _XBF_PAGES); 391 if (bp->b_page_count == 1) { 392 /* A single page buffer is always mappable */ 393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 394 } else if (flags & XBF_UNMAPPED) { 395 bp->b_addr = NULL; 396 } else { 397 int retried = 0; 398 unsigned noio_flag; 399 400 /* 401 * vm_map_ram() will allocate auxillary structures (e.g. 402 * pagetables) with GFP_KERNEL, yet we are likely to be under 403 * GFP_NOFS context here. Hence we need to tell memory reclaim 404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 405 * memory reclaim re-entering the filesystem here and 406 * potentially deadlocking. 407 */ 408 noio_flag = memalloc_noio_save(); 409 do { 410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 411 -1, PAGE_KERNEL); 412 if (bp->b_addr) 413 break; 414 vm_unmap_aliases(); 415 } while (retried++ <= 1); 416 memalloc_noio_restore(noio_flag); 417 418 if (!bp->b_addr) 419 return -ENOMEM; 420 bp->b_addr += bp->b_offset; 421 } 422 423 return 0; 424 } 425 426 /* 427 * Finding and Reading Buffers 428 */ 429 430 /* 431 * Look up, and creates if absent, a lockable buffer for 432 * a given range of an inode. The buffer is returned 433 * locked. No I/O is implied by this call. 434 */ 435 xfs_buf_t * 436 _xfs_buf_find( 437 struct xfs_buftarg *btp, 438 struct xfs_buf_map *map, 439 int nmaps, 440 xfs_buf_flags_t flags, 441 xfs_buf_t *new_bp) 442 { 443 size_t numbytes; 444 struct xfs_perag *pag; 445 struct rb_node **rbp; 446 struct rb_node *parent; 447 xfs_buf_t *bp; 448 xfs_daddr_t blkno = map[0].bm_bn; 449 xfs_daddr_t eofs; 450 int numblks = 0; 451 int i; 452 453 for (i = 0; i < nmaps; i++) 454 numblks += map[i].bm_len; 455 numbytes = BBTOB(numblks); 456 457 /* Check for IOs smaller than the sector size / not sector aligned */ 458 ASSERT(!(numbytes < btp->bt_meta_sectorsize)); 459 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); 460 461 /* 462 * Corrupted block numbers can get through to here, unfortunately, so we 463 * have to check that the buffer falls within the filesystem bounds. 464 */ 465 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 466 if (blkno >= eofs) { 467 /* 468 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 469 * but none of the higher level infrastructure supports 470 * returning a specific error on buffer lookup failures. 471 */ 472 xfs_alert(btp->bt_mount, 473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 474 __func__, blkno, eofs); 475 WARN_ON(1); 476 return NULL; 477 } 478 479 /* get tree root */ 480 pag = xfs_perag_get(btp->bt_mount, 481 xfs_daddr_to_agno(btp->bt_mount, blkno)); 482 483 /* walk tree */ 484 spin_lock(&pag->pag_buf_lock); 485 rbp = &pag->pag_buf_tree.rb_node; 486 parent = NULL; 487 bp = NULL; 488 while (*rbp) { 489 parent = *rbp; 490 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 491 492 if (blkno < bp->b_bn) 493 rbp = &(*rbp)->rb_left; 494 else if (blkno > bp->b_bn) 495 rbp = &(*rbp)->rb_right; 496 else { 497 /* 498 * found a block number match. If the range doesn't 499 * match, the only way this is allowed is if the buffer 500 * in the cache is stale and the transaction that made 501 * it stale has not yet committed. i.e. we are 502 * reallocating a busy extent. Skip this buffer and 503 * continue searching to the right for an exact match. 504 */ 505 if (bp->b_length != numblks) { 506 ASSERT(bp->b_flags & XBF_STALE); 507 rbp = &(*rbp)->rb_right; 508 continue; 509 } 510 atomic_inc(&bp->b_hold); 511 goto found; 512 } 513 } 514 515 /* No match found */ 516 if (new_bp) { 517 rb_link_node(&new_bp->b_rbnode, parent, rbp); 518 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 519 /* the buffer keeps the perag reference until it is freed */ 520 new_bp->b_pag = pag; 521 spin_unlock(&pag->pag_buf_lock); 522 } else { 523 XFS_STATS_INC(xb_miss_locked); 524 spin_unlock(&pag->pag_buf_lock); 525 xfs_perag_put(pag); 526 } 527 return new_bp; 528 529 found: 530 spin_unlock(&pag->pag_buf_lock); 531 xfs_perag_put(pag); 532 533 if (!xfs_buf_trylock(bp)) { 534 if (flags & XBF_TRYLOCK) { 535 xfs_buf_rele(bp); 536 XFS_STATS_INC(xb_busy_locked); 537 return NULL; 538 } 539 xfs_buf_lock(bp); 540 XFS_STATS_INC(xb_get_locked_waited); 541 } 542 543 /* 544 * if the buffer is stale, clear all the external state associated with 545 * it. We need to keep flags such as how we allocated the buffer memory 546 * intact here. 547 */ 548 if (bp->b_flags & XBF_STALE) { 549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 550 ASSERT(bp->b_iodone == NULL); 551 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 552 bp->b_ops = NULL; 553 } 554 555 trace_xfs_buf_find(bp, flags, _RET_IP_); 556 XFS_STATS_INC(xb_get_locked); 557 return bp; 558 } 559 560 /* 561 * Assembles a buffer covering the specified range. The code is optimised for 562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 563 * more hits than misses. 564 */ 565 struct xfs_buf * 566 xfs_buf_get_map( 567 struct xfs_buftarg *target, 568 struct xfs_buf_map *map, 569 int nmaps, 570 xfs_buf_flags_t flags) 571 { 572 struct xfs_buf *bp; 573 struct xfs_buf *new_bp; 574 int error = 0; 575 576 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 577 if (likely(bp)) 578 goto found; 579 580 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 581 if (unlikely(!new_bp)) 582 return NULL; 583 584 error = xfs_buf_allocate_memory(new_bp, flags); 585 if (error) { 586 xfs_buf_free(new_bp); 587 return NULL; 588 } 589 590 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 591 if (!bp) { 592 xfs_buf_free(new_bp); 593 return NULL; 594 } 595 596 if (bp != new_bp) 597 xfs_buf_free(new_bp); 598 599 found: 600 if (!bp->b_addr) { 601 error = _xfs_buf_map_pages(bp, flags); 602 if (unlikely(error)) { 603 xfs_warn(target->bt_mount, 604 "%s: failed to map pagesn", __func__); 605 xfs_buf_relse(bp); 606 return NULL; 607 } 608 } 609 610 XFS_STATS_INC(xb_get); 611 trace_xfs_buf_get(bp, flags, _RET_IP_); 612 return bp; 613 } 614 615 STATIC int 616 _xfs_buf_read( 617 xfs_buf_t *bp, 618 xfs_buf_flags_t flags) 619 { 620 ASSERT(!(flags & XBF_WRITE)); 621 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 622 623 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 624 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 625 626 if (flags & XBF_ASYNC) { 627 xfs_buf_submit(bp); 628 return 0; 629 } 630 return xfs_buf_submit_wait(bp); 631 } 632 633 xfs_buf_t * 634 xfs_buf_read_map( 635 struct xfs_buftarg *target, 636 struct xfs_buf_map *map, 637 int nmaps, 638 xfs_buf_flags_t flags, 639 const struct xfs_buf_ops *ops) 640 { 641 struct xfs_buf *bp; 642 643 flags |= XBF_READ; 644 645 bp = xfs_buf_get_map(target, map, nmaps, flags); 646 if (bp) { 647 trace_xfs_buf_read(bp, flags, _RET_IP_); 648 649 if (!XFS_BUF_ISDONE(bp)) { 650 XFS_STATS_INC(xb_get_read); 651 bp->b_ops = ops; 652 _xfs_buf_read(bp, flags); 653 } else if (flags & XBF_ASYNC) { 654 /* 655 * Read ahead call which is already satisfied, 656 * drop the buffer 657 */ 658 xfs_buf_relse(bp); 659 return NULL; 660 } else { 661 /* We do not want read in the flags */ 662 bp->b_flags &= ~XBF_READ; 663 } 664 } 665 666 return bp; 667 } 668 669 /* 670 * If we are not low on memory then do the readahead in a deadlock 671 * safe manner. 672 */ 673 void 674 xfs_buf_readahead_map( 675 struct xfs_buftarg *target, 676 struct xfs_buf_map *map, 677 int nmaps, 678 const struct xfs_buf_ops *ops) 679 { 680 if (bdi_read_congested(target->bt_bdi)) 681 return; 682 683 xfs_buf_read_map(target, map, nmaps, 684 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 685 } 686 687 /* 688 * Read an uncached buffer from disk. Allocates and returns a locked 689 * buffer containing the disk contents or nothing. 690 */ 691 int 692 xfs_buf_read_uncached( 693 struct xfs_buftarg *target, 694 xfs_daddr_t daddr, 695 size_t numblks, 696 int flags, 697 struct xfs_buf **bpp, 698 const struct xfs_buf_ops *ops) 699 { 700 struct xfs_buf *bp; 701 702 *bpp = NULL; 703 704 bp = xfs_buf_get_uncached(target, numblks, flags); 705 if (!bp) 706 return -ENOMEM; 707 708 /* set up the buffer for a read IO */ 709 ASSERT(bp->b_map_count == 1); 710 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 711 bp->b_maps[0].bm_bn = daddr; 712 bp->b_flags |= XBF_READ; 713 bp->b_ops = ops; 714 715 xfs_buf_submit_wait(bp); 716 if (bp->b_error) { 717 int error = bp->b_error; 718 xfs_buf_relse(bp); 719 return error; 720 } 721 722 *bpp = bp; 723 return 0; 724 } 725 726 /* 727 * Return a buffer allocated as an empty buffer and associated to external 728 * memory via xfs_buf_associate_memory() back to it's empty state. 729 */ 730 void 731 xfs_buf_set_empty( 732 struct xfs_buf *bp, 733 size_t numblks) 734 { 735 if (bp->b_pages) 736 _xfs_buf_free_pages(bp); 737 738 bp->b_pages = NULL; 739 bp->b_page_count = 0; 740 bp->b_addr = NULL; 741 bp->b_length = numblks; 742 bp->b_io_length = numblks; 743 744 ASSERT(bp->b_map_count == 1); 745 bp->b_bn = XFS_BUF_DADDR_NULL; 746 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 747 bp->b_maps[0].bm_len = bp->b_length; 748 } 749 750 static inline struct page * 751 mem_to_page( 752 void *addr) 753 { 754 if ((!is_vmalloc_addr(addr))) { 755 return virt_to_page(addr); 756 } else { 757 return vmalloc_to_page(addr); 758 } 759 } 760 761 int 762 xfs_buf_associate_memory( 763 xfs_buf_t *bp, 764 void *mem, 765 size_t len) 766 { 767 int rval; 768 int i = 0; 769 unsigned long pageaddr; 770 unsigned long offset; 771 size_t buflen; 772 int page_count; 773 774 pageaddr = (unsigned long)mem & PAGE_MASK; 775 offset = (unsigned long)mem - pageaddr; 776 buflen = PAGE_ALIGN(len + offset); 777 page_count = buflen >> PAGE_SHIFT; 778 779 /* Free any previous set of page pointers */ 780 if (bp->b_pages) 781 _xfs_buf_free_pages(bp); 782 783 bp->b_pages = NULL; 784 bp->b_addr = mem; 785 786 rval = _xfs_buf_get_pages(bp, page_count); 787 if (rval) 788 return rval; 789 790 bp->b_offset = offset; 791 792 for (i = 0; i < bp->b_page_count; i++) { 793 bp->b_pages[i] = mem_to_page((void *)pageaddr); 794 pageaddr += PAGE_SIZE; 795 } 796 797 bp->b_io_length = BTOBB(len); 798 bp->b_length = BTOBB(buflen); 799 800 return 0; 801 } 802 803 xfs_buf_t * 804 xfs_buf_get_uncached( 805 struct xfs_buftarg *target, 806 size_t numblks, 807 int flags) 808 { 809 unsigned long page_count; 810 int error, i; 811 struct xfs_buf *bp; 812 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 813 814 bp = _xfs_buf_alloc(target, &map, 1, 0); 815 if (unlikely(bp == NULL)) 816 goto fail; 817 818 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 819 error = _xfs_buf_get_pages(bp, page_count); 820 if (error) 821 goto fail_free_buf; 822 823 for (i = 0; i < page_count; i++) { 824 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 825 if (!bp->b_pages[i]) 826 goto fail_free_mem; 827 } 828 bp->b_flags |= _XBF_PAGES; 829 830 error = _xfs_buf_map_pages(bp, 0); 831 if (unlikely(error)) { 832 xfs_warn(target->bt_mount, 833 "%s: failed to map pages", __func__); 834 goto fail_free_mem; 835 } 836 837 trace_xfs_buf_get_uncached(bp, _RET_IP_); 838 return bp; 839 840 fail_free_mem: 841 while (--i >= 0) 842 __free_page(bp->b_pages[i]); 843 _xfs_buf_free_pages(bp); 844 fail_free_buf: 845 xfs_buf_free_maps(bp); 846 kmem_zone_free(xfs_buf_zone, bp); 847 fail: 848 return NULL; 849 } 850 851 /* 852 * Increment reference count on buffer, to hold the buffer concurrently 853 * with another thread which may release (free) the buffer asynchronously. 854 * Must hold the buffer already to call this function. 855 */ 856 void 857 xfs_buf_hold( 858 xfs_buf_t *bp) 859 { 860 trace_xfs_buf_hold(bp, _RET_IP_); 861 atomic_inc(&bp->b_hold); 862 } 863 864 /* 865 * Releases a hold on the specified buffer. If the 866 * the hold count is 1, calls xfs_buf_free. 867 */ 868 void 869 xfs_buf_rele( 870 xfs_buf_t *bp) 871 { 872 struct xfs_perag *pag = bp->b_pag; 873 874 trace_xfs_buf_rele(bp, _RET_IP_); 875 876 if (!pag) { 877 ASSERT(list_empty(&bp->b_lru)); 878 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 879 if (atomic_dec_and_test(&bp->b_hold)) 880 xfs_buf_free(bp); 881 return; 882 } 883 884 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 885 886 ASSERT(atomic_read(&bp->b_hold) > 0); 887 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 888 spin_lock(&bp->b_lock); 889 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 890 /* 891 * If the buffer is added to the LRU take a new 892 * reference to the buffer for the LRU and clear the 893 * (now stale) dispose list state flag 894 */ 895 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 896 bp->b_state &= ~XFS_BSTATE_DISPOSE; 897 atomic_inc(&bp->b_hold); 898 } 899 spin_unlock(&bp->b_lock); 900 spin_unlock(&pag->pag_buf_lock); 901 } else { 902 /* 903 * most of the time buffers will already be removed from 904 * the LRU, so optimise that case by checking for the 905 * XFS_BSTATE_DISPOSE flag indicating the last list the 906 * buffer was on was the disposal list 907 */ 908 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 909 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 910 } else { 911 ASSERT(list_empty(&bp->b_lru)); 912 } 913 spin_unlock(&bp->b_lock); 914 915 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 916 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 917 spin_unlock(&pag->pag_buf_lock); 918 xfs_perag_put(pag); 919 xfs_buf_free(bp); 920 } 921 } 922 } 923 924 925 /* 926 * Lock a buffer object, if it is not already locked. 927 * 928 * If we come across a stale, pinned, locked buffer, we know that we are 929 * being asked to lock a buffer that has been reallocated. Because it is 930 * pinned, we know that the log has not been pushed to disk and hence it 931 * will still be locked. Rather than continuing to have trylock attempts 932 * fail until someone else pushes the log, push it ourselves before 933 * returning. This means that the xfsaild will not get stuck trying 934 * to push on stale inode buffers. 935 */ 936 int 937 xfs_buf_trylock( 938 struct xfs_buf *bp) 939 { 940 int locked; 941 942 locked = down_trylock(&bp->b_sema) == 0; 943 if (locked) 944 XB_SET_OWNER(bp); 945 946 trace_xfs_buf_trylock(bp, _RET_IP_); 947 return locked; 948 } 949 950 /* 951 * Lock a buffer object. 952 * 953 * If we come across a stale, pinned, locked buffer, we know that we 954 * are being asked to lock a buffer that has been reallocated. Because 955 * it is pinned, we know that the log has not been pushed to disk and 956 * hence it will still be locked. Rather than sleeping until someone 957 * else pushes the log, push it ourselves before trying to get the lock. 958 */ 959 void 960 xfs_buf_lock( 961 struct xfs_buf *bp) 962 { 963 trace_xfs_buf_lock(bp, _RET_IP_); 964 965 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 966 xfs_log_force(bp->b_target->bt_mount, 0); 967 down(&bp->b_sema); 968 XB_SET_OWNER(bp); 969 970 trace_xfs_buf_lock_done(bp, _RET_IP_); 971 } 972 973 void 974 xfs_buf_unlock( 975 struct xfs_buf *bp) 976 { 977 XB_CLEAR_OWNER(bp); 978 up(&bp->b_sema); 979 980 trace_xfs_buf_unlock(bp, _RET_IP_); 981 } 982 983 STATIC void 984 xfs_buf_wait_unpin( 985 xfs_buf_t *bp) 986 { 987 DECLARE_WAITQUEUE (wait, current); 988 989 if (atomic_read(&bp->b_pin_count) == 0) 990 return; 991 992 add_wait_queue(&bp->b_waiters, &wait); 993 for (;;) { 994 set_current_state(TASK_UNINTERRUPTIBLE); 995 if (atomic_read(&bp->b_pin_count) == 0) 996 break; 997 io_schedule(); 998 } 999 remove_wait_queue(&bp->b_waiters, &wait); 1000 set_current_state(TASK_RUNNING); 1001 } 1002 1003 /* 1004 * Buffer Utility Routines 1005 */ 1006 1007 void 1008 xfs_buf_ioend( 1009 struct xfs_buf *bp) 1010 { 1011 bool read = bp->b_flags & XBF_READ; 1012 1013 trace_xfs_buf_iodone(bp, _RET_IP_); 1014 1015 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1016 1017 /* 1018 * Pull in IO completion errors now. We are guaranteed to be running 1019 * single threaded, so we don't need the lock to read b_io_error. 1020 */ 1021 if (!bp->b_error && bp->b_io_error) 1022 xfs_buf_ioerror(bp, bp->b_io_error); 1023 1024 /* Only validate buffers that were read without errors */ 1025 if (read && !bp->b_error && bp->b_ops) { 1026 ASSERT(!bp->b_iodone); 1027 bp->b_ops->verify_read(bp); 1028 } 1029 1030 if (!bp->b_error) 1031 bp->b_flags |= XBF_DONE; 1032 1033 if (bp->b_iodone) 1034 (*(bp->b_iodone))(bp); 1035 else if (bp->b_flags & XBF_ASYNC) 1036 xfs_buf_relse(bp); 1037 else 1038 complete(&bp->b_iowait); 1039 } 1040 1041 static void 1042 xfs_buf_ioend_work( 1043 struct work_struct *work) 1044 { 1045 struct xfs_buf *bp = 1046 container_of(work, xfs_buf_t, b_iodone_work); 1047 1048 xfs_buf_ioend(bp); 1049 } 1050 1051 void 1052 xfs_buf_ioend_async( 1053 struct xfs_buf *bp) 1054 { 1055 INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work); 1056 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1057 } 1058 1059 void 1060 xfs_buf_ioerror( 1061 xfs_buf_t *bp, 1062 int error) 1063 { 1064 ASSERT(error <= 0 && error >= -1000); 1065 bp->b_error = error; 1066 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1067 } 1068 1069 void 1070 xfs_buf_ioerror_alert( 1071 struct xfs_buf *bp, 1072 const char *func) 1073 { 1074 xfs_alert(bp->b_target->bt_mount, 1075 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1076 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1077 } 1078 1079 int 1080 xfs_bwrite( 1081 struct xfs_buf *bp) 1082 { 1083 int error; 1084 1085 ASSERT(xfs_buf_islocked(bp)); 1086 1087 bp->b_flags |= XBF_WRITE; 1088 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1089 XBF_WRITE_FAIL | XBF_DONE); 1090 1091 error = xfs_buf_submit_wait(bp); 1092 if (error) { 1093 xfs_force_shutdown(bp->b_target->bt_mount, 1094 SHUTDOWN_META_IO_ERROR); 1095 } 1096 return error; 1097 } 1098 1099 STATIC void 1100 xfs_buf_bio_end_io( 1101 struct bio *bio, 1102 int error) 1103 { 1104 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1105 1106 /* 1107 * don't overwrite existing errors - otherwise we can lose errors on 1108 * buffers that require multiple bios to complete. 1109 */ 1110 if (error) { 1111 spin_lock(&bp->b_lock); 1112 if (!bp->b_io_error) 1113 bp->b_io_error = error; 1114 spin_unlock(&bp->b_lock); 1115 } 1116 1117 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1118 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1119 1120 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1121 xfs_buf_ioend_async(bp); 1122 bio_put(bio); 1123 } 1124 1125 static void 1126 xfs_buf_ioapply_map( 1127 struct xfs_buf *bp, 1128 int map, 1129 int *buf_offset, 1130 int *count, 1131 int rw) 1132 { 1133 int page_index; 1134 int total_nr_pages = bp->b_page_count; 1135 int nr_pages; 1136 struct bio *bio; 1137 sector_t sector = bp->b_maps[map].bm_bn; 1138 int size; 1139 int offset; 1140 1141 total_nr_pages = bp->b_page_count; 1142 1143 /* skip the pages in the buffer before the start offset */ 1144 page_index = 0; 1145 offset = *buf_offset; 1146 while (offset >= PAGE_SIZE) { 1147 page_index++; 1148 offset -= PAGE_SIZE; 1149 } 1150 1151 /* 1152 * Limit the IO size to the length of the current vector, and update the 1153 * remaining IO count for the next time around. 1154 */ 1155 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1156 *count -= size; 1157 *buf_offset += size; 1158 1159 next_chunk: 1160 atomic_inc(&bp->b_io_remaining); 1161 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1162 if (nr_pages > total_nr_pages) 1163 nr_pages = total_nr_pages; 1164 1165 bio = bio_alloc(GFP_NOIO, nr_pages); 1166 bio->bi_bdev = bp->b_target->bt_bdev; 1167 bio->bi_iter.bi_sector = sector; 1168 bio->bi_end_io = xfs_buf_bio_end_io; 1169 bio->bi_private = bp; 1170 1171 1172 for (; size && nr_pages; nr_pages--, page_index++) { 1173 int rbytes, nbytes = PAGE_SIZE - offset; 1174 1175 if (nbytes > size) 1176 nbytes = size; 1177 1178 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1179 offset); 1180 if (rbytes < nbytes) 1181 break; 1182 1183 offset = 0; 1184 sector += BTOBB(nbytes); 1185 size -= nbytes; 1186 total_nr_pages--; 1187 } 1188 1189 if (likely(bio->bi_iter.bi_size)) { 1190 if (xfs_buf_is_vmapped(bp)) { 1191 flush_kernel_vmap_range(bp->b_addr, 1192 xfs_buf_vmap_len(bp)); 1193 } 1194 submit_bio(rw, bio); 1195 if (size) 1196 goto next_chunk; 1197 } else { 1198 /* 1199 * This is guaranteed not to be the last io reference count 1200 * because the caller (xfs_buf_submit) holds a count itself. 1201 */ 1202 atomic_dec(&bp->b_io_remaining); 1203 xfs_buf_ioerror(bp, -EIO); 1204 bio_put(bio); 1205 } 1206 1207 } 1208 1209 STATIC void 1210 _xfs_buf_ioapply( 1211 struct xfs_buf *bp) 1212 { 1213 struct blk_plug plug; 1214 int rw; 1215 int offset; 1216 int size; 1217 int i; 1218 1219 /* 1220 * Make sure we capture only current IO errors rather than stale errors 1221 * left over from previous use of the buffer (e.g. failed readahead). 1222 */ 1223 bp->b_error = 0; 1224 1225 if (bp->b_flags & XBF_WRITE) { 1226 if (bp->b_flags & XBF_SYNCIO) 1227 rw = WRITE_SYNC; 1228 else 1229 rw = WRITE; 1230 if (bp->b_flags & XBF_FUA) 1231 rw |= REQ_FUA; 1232 if (bp->b_flags & XBF_FLUSH) 1233 rw |= REQ_FLUSH; 1234 1235 /* 1236 * Run the write verifier callback function if it exists. If 1237 * this function fails it will mark the buffer with an error and 1238 * the IO should not be dispatched. 1239 */ 1240 if (bp->b_ops) { 1241 bp->b_ops->verify_write(bp); 1242 if (bp->b_error) { 1243 xfs_force_shutdown(bp->b_target->bt_mount, 1244 SHUTDOWN_CORRUPT_INCORE); 1245 return; 1246 } 1247 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1248 struct xfs_mount *mp = bp->b_target->bt_mount; 1249 1250 /* 1251 * non-crc filesystems don't attach verifiers during 1252 * log recovery, so don't warn for such filesystems. 1253 */ 1254 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1255 xfs_warn(mp, 1256 "%s: no ops on block 0x%llx/0x%x", 1257 __func__, bp->b_bn, bp->b_length); 1258 xfs_hex_dump(bp->b_addr, 64); 1259 dump_stack(); 1260 } 1261 } 1262 } else if (bp->b_flags & XBF_READ_AHEAD) { 1263 rw = READA; 1264 } else { 1265 rw = READ; 1266 } 1267 1268 /* we only use the buffer cache for meta-data */ 1269 rw |= REQ_META; 1270 1271 /* 1272 * Walk all the vectors issuing IO on them. Set up the initial offset 1273 * into the buffer and the desired IO size before we start - 1274 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1275 * subsequent call. 1276 */ 1277 offset = bp->b_offset; 1278 size = BBTOB(bp->b_io_length); 1279 blk_start_plug(&plug); 1280 for (i = 0; i < bp->b_map_count; i++) { 1281 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1282 if (bp->b_error) 1283 break; 1284 if (size <= 0) 1285 break; /* all done */ 1286 } 1287 blk_finish_plug(&plug); 1288 } 1289 1290 /* 1291 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1292 * the current reference to the IO. It is not safe to reference the buffer after 1293 * a call to this function unless the caller holds an additional reference 1294 * itself. 1295 */ 1296 void 1297 xfs_buf_submit( 1298 struct xfs_buf *bp) 1299 { 1300 trace_xfs_buf_submit(bp, _RET_IP_); 1301 1302 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1303 ASSERT(bp->b_flags & XBF_ASYNC); 1304 1305 /* on shutdown we stale and complete the buffer immediately */ 1306 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1307 xfs_buf_ioerror(bp, -EIO); 1308 bp->b_flags &= ~XBF_DONE; 1309 xfs_buf_stale(bp); 1310 xfs_buf_ioend(bp); 1311 return; 1312 } 1313 1314 if (bp->b_flags & XBF_WRITE) 1315 xfs_buf_wait_unpin(bp); 1316 1317 /* clear the internal error state to avoid spurious errors */ 1318 bp->b_io_error = 0; 1319 1320 /* 1321 * The caller's reference is released during I/O completion. 1322 * This occurs some time after the last b_io_remaining reference is 1323 * released, so after we drop our Io reference we have to have some 1324 * other reference to ensure the buffer doesn't go away from underneath 1325 * us. Take a direct reference to ensure we have safe access to the 1326 * buffer until we are finished with it. 1327 */ 1328 xfs_buf_hold(bp); 1329 1330 /* 1331 * Set the count to 1 initially, this will stop an I/O completion 1332 * callout which happens before we have started all the I/O from calling 1333 * xfs_buf_ioend too early. 1334 */ 1335 atomic_set(&bp->b_io_remaining, 1); 1336 _xfs_buf_ioapply(bp); 1337 1338 /* 1339 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1340 * reference we took above. If we drop it to zero, run completion so 1341 * that we don't return to the caller with completion still pending. 1342 */ 1343 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1344 if (bp->b_error) 1345 xfs_buf_ioend(bp); 1346 else 1347 xfs_buf_ioend_async(bp); 1348 } 1349 1350 xfs_buf_rele(bp); 1351 /* Note: it is not safe to reference bp now we've dropped our ref */ 1352 } 1353 1354 /* 1355 * Synchronous buffer IO submission path, read or write. 1356 */ 1357 int 1358 xfs_buf_submit_wait( 1359 struct xfs_buf *bp) 1360 { 1361 int error; 1362 1363 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1364 1365 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1366 1367 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1368 xfs_buf_ioerror(bp, -EIO); 1369 xfs_buf_stale(bp); 1370 bp->b_flags &= ~XBF_DONE; 1371 return -EIO; 1372 } 1373 1374 if (bp->b_flags & XBF_WRITE) 1375 xfs_buf_wait_unpin(bp); 1376 1377 /* clear the internal error state to avoid spurious errors */ 1378 bp->b_io_error = 0; 1379 1380 /* 1381 * For synchronous IO, the IO does not inherit the submitters reference 1382 * count, nor the buffer lock. Hence we cannot release the reference we 1383 * are about to take until we've waited for all IO completion to occur, 1384 * including any xfs_buf_ioend_async() work that may be pending. 1385 */ 1386 xfs_buf_hold(bp); 1387 1388 /* 1389 * Set the count to 1 initially, this will stop an I/O completion 1390 * callout which happens before we have started all the I/O from calling 1391 * xfs_buf_ioend too early. 1392 */ 1393 atomic_set(&bp->b_io_remaining, 1); 1394 _xfs_buf_ioapply(bp); 1395 1396 /* 1397 * make sure we run completion synchronously if it raced with us and is 1398 * already complete. 1399 */ 1400 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1401 xfs_buf_ioend(bp); 1402 1403 /* wait for completion before gathering the error from the buffer */ 1404 trace_xfs_buf_iowait(bp, _RET_IP_); 1405 wait_for_completion(&bp->b_iowait); 1406 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1407 error = bp->b_error; 1408 1409 /* 1410 * all done now, we can release the hold that keeps the buffer 1411 * referenced for the entire IO. 1412 */ 1413 xfs_buf_rele(bp); 1414 return error; 1415 } 1416 1417 xfs_caddr_t 1418 xfs_buf_offset( 1419 xfs_buf_t *bp, 1420 size_t offset) 1421 { 1422 struct page *page; 1423 1424 if (bp->b_addr) 1425 return bp->b_addr + offset; 1426 1427 offset += bp->b_offset; 1428 page = bp->b_pages[offset >> PAGE_SHIFT]; 1429 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1430 } 1431 1432 /* 1433 * Move data into or out of a buffer. 1434 */ 1435 void 1436 xfs_buf_iomove( 1437 xfs_buf_t *bp, /* buffer to process */ 1438 size_t boff, /* starting buffer offset */ 1439 size_t bsize, /* length to copy */ 1440 void *data, /* data address */ 1441 xfs_buf_rw_t mode) /* read/write/zero flag */ 1442 { 1443 size_t bend; 1444 1445 bend = boff + bsize; 1446 while (boff < bend) { 1447 struct page *page; 1448 int page_index, page_offset, csize; 1449 1450 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1451 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1452 page = bp->b_pages[page_index]; 1453 csize = min_t(size_t, PAGE_SIZE - page_offset, 1454 BBTOB(bp->b_io_length) - boff); 1455 1456 ASSERT((csize + page_offset) <= PAGE_SIZE); 1457 1458 switch (mode) { 1459 case XBRW_ZERO: 1460 memset(page_address(page) + page_offset, 0, csize); 1461 break; 1462 case XBRW_READ: 1463 memcpy(data, page_address(page) + page_offset, csize); 1464 break; 1465 case XBRW_WRITE: 1466 memcpy(page_address(page) + page_offset, data, csize); 1467 } 1468 1469 boff += csize; 1470 data += csize; 1471 } 1472 } 1473 1474 /* 1475 * Handling of buffer targets (buftargs). 1476 */ 1477 1478 /* 1479 * Wait for any bufs with callbacks that have been submitted but have not yet 1480 * returned. These buffers will have an elevated hold count, so wait on those 1481 * while freeing all the buffers only held by the LRU. 1482 */ 1483 static enum lru_status 1484 xfs_buftarg_wait_rele( 1485 struct list_head *item, 1486 spinlock_t *lru_lock, 1487 void *arg) 1488 1489 { 1490 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1491 struct list_head *dispose = arg; 1492 1493 if (atomic_read(&bp->b_hold) > 1) { 1494 /* need to wait, so skip it this pass */ 1495 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1496 return LRU_SKIP; 1497 } 1498 if (!spin_trylock(&bp->b_lock)) 1499 return LRU_SKIP; 1500 1501 /* 1502 * clear the LRU reference count so the buffer doesn't get 1503 * ignored in xfs_buf_rele(). 1504 */ 1505 atomic_set(&bp->b_lru_ref, 0); 1506 bp->b_state |= XFS_BSTATE_DISPOSE; 1507 list_move(item, dispose); 1508 spin_unlock(&bp->b_lock); 1509 return LRU_REMOVED; 1510 } 1511 1512 void 1513 xfs_wait_buftarg( 1514 struct xfs_buftarg *btp) 1515 { 1516 LIST_HEAD(dispose); 1517 int loop = 0; 1518 1519 /* loop until there is nothing left on the lru list. */ 1520 while (list_lru_count(&btp->bt_lru)) { 1521 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1522 &dispose, LONG_MAX); 1523 1524 while (!list_empty(&dispose)) { 1525 struct xfs_buf *bp; 1526 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1527 list_del_init(&bp->b_lru); 1528 if (bp->b_flags & XBF_WRITE_FAIL) { 1529 xfs_alert(btp->bt_mount, 1530 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n" 1531 "Please run xfs_repair to determine the extent of the problem.", 1532 (long long)bp->b_bn); 1533 } 1534 xfs_buf_rele(bp); 1535 } 1536 if (loop++ != 0) 1537 delay(100); 1538 } 1539 } 1540 1541 static enum lru_status 1542 xfs_buftarg_isolate( 1543 struct list_head *item, 1544 spinlock_t *lru_lock, 1545 void *arg) 1546 { 1547 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1548 struct list_head *dispose = arg; 1549 1550 /* 1551 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1552 * If we fail to get the lock, just skip it. 1553 */ 1554 if (!spin_trylock(&bp->b_lock)) 1555 return LRU_SKIP; 1556 /* 1557 * Decrement the b_lru_ref count unless the value is already 1558 * zero. If the value is already zero, we need to reclaim the 1559 * buffer, otherwise it gets another trip through the LRU. 1560 */ 1561 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1562 spin_unlock(&bp->b_lock); 1563 return LRU_ROTATE; 1564 } 1565 1566 bp->b_state |= XFS_BSTATE_DISPOSE; 1567 list_move(item, dispose); 1568 spin_unlock(&bp->b_lock); 1569 return LRU_REMOVED; 1570 } 1571 1572 static unsigned long 1573 xfs_buftarg_shrink_scan( 1574 struct shrinker *shrink, 1575 struct shrink_control *sc) 1576 { 1577 struct xfs_buftarg *btp = container_of(shrink, 1578 struct xfs_buftarg, bt_shrinker); 1579 LIST_HEAD(dispose); 1580 unsigned long freed; 1581 unsigned long nr_to_scan = sc->nr_to_scan; 1582 1583 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate, 1584 &dispose, &nr_to_scan); 1585 1586 while (!list_empty(&dispose)) { 1587 struct xfs_buf *bp; 1588 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1589 list_del_init(&bp->b_lru); 1590 xfs_buf_rele(bp); 1591 } 1592 1593 return freed; 1594 } 1595 1596 static unsigned long 1597 xfs_buftarg_shrink_count( 1598 struct shrinker *shrink, 1599 struct shrink_control *sc) 1600 { 1601 struct xfs_buftarg *btp = container_of(shrink, 1602 struct xfs_buftarg, bt_shrinker); 1603 return list_lru_count_node(&btp->bt_lru, sc->nid); 1604 } 1605 1606 void 1607 xfs_free_buftarg( 1608 struct xfs_mount *mp, 1609 struct xfs_buftarg *btp) 1610 { 1611 unregister_shrinker(&btp->bt_shrinker); 1612 list_lru_destroy(&btp->bt_lru); 1613 1614 if (mp->m_flags & XFS_MOUNT_BARRIER) 1615 xfs_blkdev_issue_flush(btp); 1616 1617 kmem_free(btp); 1618 } 1619 1620 int 1621 xfs_setsize_buftarg( 1622 xfs_buftarg_t *btp, 1623 unsigned int sectorsize) 1624 { 1625 /* Set up metadata sector size info */ 1626 btp->bt_meta_sectorsize = sectorsize; 1627 btp->bt_meta_sectormask = sectorsize - 1; 1628 1629 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1630 char name[BDEVNAME_SIZE]; 1631 1632 bdevname(btp->bt_bdev, name); 1633 1634 xfs_warn(btp->bt_mount, 1635 "Cannot set_blocksize to %u on device %s", 1636 sectorsize, name); 1637 return -EINVAL; 1638 } 1639 1640 /* Set up device logical sector size mask */ 1641 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1642 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * When allocating the initial buffer target we have not yet 1649 * read in the superblock, so don't know what sized sectors 1650 * are being used at this early stage. Play safe. 1651 */ 1652 STATIC int 1653 xfs_setsize_buftarg_early( 1654 xfs_buftarg_t *btp, 1655 struct block_device *bdev) 1656 { 1657 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1658 } 1659 1660 xfs_buftarg_t * 1661 xfs_alloc_buftarg( 1662 struct xfs_mount *mp, 1663 struct block_device *bdev) 1664 { 1665 xfs_buftarg_t *btp; 1666 1667 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1668 1669 btp->bt_mount = mp; 1670 btp->bt_dev = bdev->bd_dev; 1671 btp->bt_bdev = bdev; 1672 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1673 1674 if (xfs_setsize_buftarg_early(btp, bdev)) 1675 goto error; 1676 1677 if (list_lru_init(&btp->bt_lru)) 1678 goto error; 1679 1680 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1681 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1682 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1683 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1684 register_shrinker(&btp->bt_shrinker); 1685 return btp; 1686 1687 error: 1688 kmem_free(btp); 1689 return NULL; 1690 } 1691 1692 /* 1693 * Add a buffer to the delayed write list. 1694 * 1695 * This queues a buffer for writeout if it hasn't already been. Note that 1696 * neither this routine nor the buffer list submission functions perform 1697 * any internal synchronization. It is expected that the lists are thread-local 1698 * to the callers. 1699 * 1700 * Returns true if we queued up the buffer, or false if it already had 1701 * been on the buffer list. 1702 */ 1703 bool 1704 xfs_buf_delwri_queue( 1705 struct xfs_buf *bp, 1706 struct list_head *list) 1707 { 1708 ASSERT(xfs_buf_islocked(bp)); 1709 ASSERT(!(bp->b_flags & XBF_READ)); 1710 1711 /* 1712 * If the buffer is already marked delwri it already is queued up 1713 * by someone else for imediate writeout. Just ignore it in that 1714 * case. 1715 */ 1716 if (bp->b_flags & _XBF_DELWRI_Q) { 1717 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1718 return false; 1719 } 1720 1721 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1722 1723 /* 1724 * If a buffer gets written out synchronously or marked stale while it 1725 * is on a delwri list we lazily remove it. To do this, the other party 1726 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1727 * It remains referenced and on the list. In a rare corner case it 1728 * might get readded to a delwri list after the synchronous writeout, in 1729 * which case we need just need to re-add the flag here. 1730 */ 1731 bp->b_flags |= _XBF_DELWRI_Q; 1732 if (list_empty(&bp->b_list)) { 1733 atomic_inc(&bp->b_hold); 1734 list_add_tail(&bp->b_list, list); 1735 } 1736 1737 return true; 1738 } 1739 1740 /* 1741 * Compare function is more complex than it needs to be because 1742 * the return value is only 32 bits and we are doing comparisons 1743 * on 64 bit values 1744 */ 1745 static int 1746 xfs_buf_cmp( 1747 void *priv, 1748 struct list_head *a, 1749 struct list_head *b) 1750 { 1751 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1752 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1753 xfs_daddr_t diff; 1754 1755 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1756 if (diff < 0) 1757 return -1; 1758 if (diff > 0) 1759 return 1; 1760 return 0; 1761 } 1762 1763 static int 1764 __xfs_buf_delwri_submit( 1765 struct list_head *buffer_list, 1766 struct list_head *io_list, 1767 bool wait) 1768 { 1769 struct blk_plug plug; 1770 struct xfs_buf *bp, *n; 1771 int pinned = 0; 1772 1773 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1774 if (!wait) { 1775 if (xfs_buf_ispinned(bp)) { 1776 pinned++; 1777 continue; 1778 } 1779 if (!xfs_buf_trylock(bp)) 1780 continue; 1781 } else { 1782 xfs_buf_lock(bp); 1783 } 1784 1785 /* 1786 * Someone else might have written the buffer synchronously or 1787 * marked it stale in the meantime. In that case only the 1788 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1789 * reference and remove it from the list here. 1790 */ 1791 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1792 list_del_init(&bp->b_list); 1793 xfs_buf_relse(bp); 1794 continue; 1795 } 1796 1797 list_move_tail(&bp->b_list, io_list); 1798 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1799 } 1800 1801 list_sort(NULL, io_list, xfs_buf_cmp); 1802 1803 blk_start_plug(&plug); 1804 list_for_each_entry_safe(bp, n, io_list, b_list) { 1805 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL); 1806 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1807 1808 /* 1809 * we do all Io submission async. This means if we need to wait 1810 * for IO completion we need to take an extra reference so the 1811 * buffer is still valid on the other side. 1812 */ 1813 if (wait) 1814 xfs_buf_hold(bp); 1815 else 1816 list_del_init(&bp->b_list); 1817 1818 xfs_buf_submit(bp); 1819 } 1820 blk_finish_plug(&plug); 1821 1822 return pinned; 1823 } 1824 1825 /* 1826 * Write out a buffer list asynchronously. 1827 * 1828 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1829 * out and not wait for I/O completion on any of the buffers. This interface 1830 * is only safely useable for callers that can track I/O completion by higher 1831 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1832 * function. 1833 */ 1834 int 1835 xfs_buf_delwri_submit_nowait( 1836 struct list_head *buffer_list) 1837 { 1838 LIST_HEAD (io_list); 1839 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1840 } 1841 1842 /* 1843 * Write out a buffer list synchronously. 1844 * 1845 * This will take the @buffer_list, write all buffers out and wait for I/O 1846 * completion on all of the buffers. @buffer_list is consumed by the function, 1847 * so callers must have some other way of tracking buffers if they require such 1848 * functionality. 1849 */ 1850 int 1851 xfs_buf_delwri_submit( 1852 struct list_head *buffer_list) 1853 { 1854 LIST_HEAD (io_list); 1855 int error = 0, error2; 1856 struct xfs_buf *bp; 1857 1858 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1859 1860 /* Wait for IO to complete. */ 1861 while (!list_empty(&io_list)) { 1862 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1863 1864 list_del_init(&bp->b_list); 1865 1866 /* locking the buffer will wait for async IO completion. */ 1867 xfs_buf_lock(bp); 1868 error2 = bp->b_error; 1869 xfs_buf_relse(bp); 1870 if (!error) 1871 error = error2; 1872 } 1873 1874 return error; 1875 } 1876 1877 int __init 1878 xfs_buf_init(void) 1879 { 1880 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1881 KM_ZONE_HWALIGN, NULL); 1882 if (!xfs_buf_zone) 1883 goto out; 1884 1885 xfslogd_workqueue = alloc_workqueue("xfslogd", 1886 WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_FREEZABLE, 1); 1887 if (!xfslogd_workqueue) 1888 goto out_free_buf_zone; 1889 1890 return 0; 1891 1892 out_free_buf_zone: 1893 kmem_zone_destroy(xfs_buf_zone); 1894 out: 1895 return -ENOMEM; 1896 } 1897 1898 void 1899 xfs_buf_terminate(void) 1900 { 1901 destroy_workqueue(xfslogd_workqueue); 1902 kmem_zone_destroy(xfs_buf_zone); 1903 } 1904