xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_iomap.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_dinode.h"
37 #include <linux/aio.h>
38 #include <linux/gfp.h>
39 #include <linux/mpage.h>
40 #include <linux/pagevec.h>
41 #include <linux/writeback.h>
42 
43 void
44 xfs_count_page_state(
45 	struct page		*page,
46 	int			*delalloc,
47 	int			*unwritten)
48 {
49 	struct buffer_head	*bh, *head;
50 
51 	*delalloc = *unwritten = 0;
52 
53 	bh = head = page_buffers(page);
54 	do {
55 		if (buffer_unwritten(bh))
56 			(*unwritten) = 1;
57 		else if (buffer_delay(bh))
58 			(*delalloc) = 1;
59 	} while ((bh = bh->b_this_page) != head);
60 }
61 
62 STATIC struct block_device *
63 xfs_find_bdev_for_inode(
64 	struct inode		*inode)
65 {
66 	struct xfs_inode	*ip = XFS_I(inode);
67 	struct xfs_mount	*mp = ip->i_mount;
68 
69 	if (XFS_IS_REALTIME_INODE(ip))
70 		return mp->m_rtdev_targp->bt_bdev;
71 	else
72 		return mp->m_ddev_targp->bt_bdev;
73 }
74 
75 /*
76  * We're now finished for good with this ioend structure.
77  * Update the page state via the associated buffer_heads,
78  * release holds on the inode and bio, and finally free
79  * up memory.  Do not use the ioend after this.
80  */
81 STATIC void
82 xfs_destroy_ioend(
83 	xfs_ioend_t		*ioend)
84 {
85 	struct buffer_head	*bh, *next;
86 
87 	for (bh = ioend->io_buffer_head; bh; bh = next) {
88 		next = bh->b_private;
89 		bh->b_end_io(bh, !ioend->io_error);
90 	}
91 
92 	mempool_free(ioend, xfs_ioend_pool);
93 }
94 
95 /*
96  * Fast and loose check if this write could update the on-disk inode size.
97  */
98 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99 {
100 	return ioend->io_offset + ioend->io_size >
101 		XFS_I(ioend->io_inode)->i_d.di_size;
102 }
103 
104 STATIC int
105 xfs_setfilesize_trans_alloc(
106 	struct xfs_ioend	*ioend)
107 {
108 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
109 	struct xfs_trans	*tp;
110 	int			error;
111 
112 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113 
114 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
115 	if (error) {
116 		xfs_trans_cancel(tp, 0);
117 		return error;
118 	}
119 
120 	ioend->io_append_trans = tp;
121 
122 	/*
123 	 * We may pass freeze protection with a transaction.  So tell lockdep
124 	 * we released it.
125 	 */
126 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
127 		      1, _THIS_IP_);
128 	/*
129 	 * We hand off the transaction to the completion thread now, so
130 	 * clear the flag here.
131 	 */
132 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
133 	return 0;
134 }
135 
136 /*
137  * Update on-disk file size now that data has been written to disk.
138  */
139 STATIC int
140 xfs_setfilesize(
141 	struct xfs_ioend	*ioend)
142 {
143 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
144 	struct xfs_trans	*tp = ioend->io_append_trans;
145 	xfs_fsize_t		isize;
146 
147 	/*
148 	 * The transaction may have been allocated in the I/O submission thread,
149 	 * thus we need to mark ourselves as beeing in a transaction manually.
150 	 * Similarly for freeze protection.
151 	 */
152 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
153 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
154 			   0, 1, _THIS_IP_);
155 
156 	xfs_ilock(ip, XFS_ILOCK_EXCL);
157 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
158 	if (!isize) {
159 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
160 		xfs_trans_cancel(tp, 0);
161 		return 0;
162 	}
163 
164 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
165 
166 	ip->i_d.di_size = isize;
167 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 
170 	return xfs_trans_commit(tp, 0);
171 }
172 
173 /*
174  * Schedule IO completion handling on the final put of an ioend.
175  *
176  * If there is no work to do we might as well call it a day and free the
177  * ioend right now.
178  */
179 STATIC void
180 xfs_finish_ioend(
181 	struct xfs_ioend	*ioend)
182 {
183 	if (atomic_dec_and_test(&ioend->io_remaining)) {
184 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
185 
186 		if (ioend->io_type == XFS_IO_UNWRITTEN)
187 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
188 		else if (ioend->io_append_trans ||
189 			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
190 			queue_work(mp->m_data_workqueue, &ioend->io_work);
191 		else
192 			xfs_destroy_ioend(ioend);
193 	}
194 }
195 
196 /*
197  * IO write completion.
198  */
199 STATIC void
200 xfs_end_io(
201 	struct work_struct *work)
202 {
203 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
204 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
205 	int		error = 0;
206 
207 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
208 		ioend->io_error = -EIO;
209 		goto done;
210 	}
211 	if (ioend->io_error)
212 		goto done;
213 
214 	/*
215 	 * For unwritten extents we need to issue transactions to convert a
216 	 * range to normal written extens after the data I/O has finished.
217 	 */
218 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
219 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
220 						  ioend->io_size);
221 	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
222 		/*
223 		 * For direct I/O we do not know if we need to allocate blocks
224 		 * or not so we can't preallocate an append transaction as that
225 		 * results in nested reservations and log space deadlocks. Hence
226 		 * allocate the transaction here. While this is sub-optimal and
227 		 * can block IO completion for some time, we're stuck with doing
228 		 * it this way until we can pass the ioend to the direct IO
229 		 * allocation callbacks and avoid nesting that way.
230 		 */
231 		error = xfs_setfilesize_trans_alloc(ioend);
232 		if (error)
233 			goto done;
234 		error = xfs_setfilesize(ioend);
235 	} else if (ioend->io_append_trans) {
236 		error = xfs_setfilesize(ioend);
237 	} else {
238 		ASSERT(!xfs_ioend_is_append(ioend));
239 	}
240 
241 done:
242 	if (error)
243 		ioend->io_error = error;
244 	xfs_destroy_ioend(ioend);
245 }
246 
247 /*
248  * Call IO completion handling in caller context on the final put of an ioend.
249  */
250 STATIC void
251 xfs_finish_ioend_sync(
252 	struct xfs_ioend	*ioend)
253 {
254 	if (atomic_dec_and_test(&ioend->io_remaining))
255 		xfs_end_io(&ioend->io_work);
256 }
257 
258 /*
259  * Allocate and initialise an IO completion structure.
260  * We need to track unwritten extent write completion here initially.
261  * We'll need to extend this for updating the ondisk inode size later
262  * (vs. incore size).
263  */
264 STATIC xfs_ioend_t *
265 xfs_alloc_ioend(
266 	struct inode		*inode,
267 	unsigned int		type)
268 {
269 	xfs_ioend_t		*ioend;
270 
271 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272 
273 	/*
274 	 * Set the count to 1 initially, which will prevent an I/O
275 	 * completion callback from happening before we have started
276 	 * all the I/O from calling the completion routine too early.
277 	 */
278 	atomic_set(&ioend->io_remaining, 1);
279 	ioend->io_isdirect = 0;
280 	ioend->io_error = 0;
281 	ioend->io_list = NULL;
282 	ioend->io_type = type;
283 	ioend->io_inode = inode;
284 	ioend->io_buffer_head = NULL;
285 	ioend->io_buffer_tail = NULL;
286 	ioend->io_offset = 0;
287 	ioend->io_size = 0;
288 	ioend->io_append_trans = NULL;
289 
290 	INIT_WORK(&ioend->io_work, xfs_end_io);
291 	return ioend;
292 }
293 
294 STATIC int
295 xfs_map_blocks(
296 	struct inode		*inode,
297 	loff_t			offset,
298 	struct xfs_bmbt_irec	*imap,
299 	int			type,
300 	int			nonblocking)
301 {
302 	struct xfs_inode	*ip = XFS_I(inode);
303 	struct xfs_mount	*mp = ip->i_mount;
304 	ssize_t			count = 1 << inode->i_blkbits;
305 	xfs_fileoff_t		offset_fsb, end_fsb;
306 	int			error = 0;
307 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
308 	int			nimaps = 1;
309 
310 	if (XFS_FORCED_SHUTDOWN(mp))
311 		return -EIO;
312 
313 	if (type == XFS_IO_UNWRITTEN)
314 		bmapi_flags |= XFS_BMAPI_IGSTATE;
315 
316 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
317 		if (nonblocking)
318 			return -EAGAIN;
319 		xfs_ilock(ip, XFS_ILOCK_SHARED);
320 	}
321 
322 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
324 	ASSERT(offset <= mp->m_super->s_maxbytes);
325 
326 	if (offset + count > mp->m_super->s_maxbytes)
327 		count = mp->m_super->s_maxbytes - offset;
328 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
330 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 				imap, &nimaps, bmapi_flags);
332 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
333 
334 	if (error)
335 		return error;
336 
337 	if (type == XFS_IO_DELALLOC &&
338 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
339 		error = xfs_iomap_write_allocate(ip, offset, imap);
340 		if (!error)
341 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
342 		return error;
343 	}
344 
345 #ifdef DEBUG
346 	if (type == XFS_IO_UNWRITTEN) {
347 		ASSERT(nimaps);
348 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 	}
351 #endif
352 	if (nimaps)
353 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 	return 0;
355 }
356 
357 STATIC int
358 xfs_imap_valid(
359 	struct inode		*inode,
360 	struct xfs_bmbt_irec	*imap,
361 	xfs_off_t		offset)
362 {
363 	offset >>= inode->i_blkbits;
364 
365 	return offset >= imap->br_startoff &&
366 		offset < imap->br_startoff + imap->br_blockcount;
367 }
368 
369 /*
370  * BIO completion handler for buffered IO.
371  */
372 STATIC void
373 xfs_end_bio(
374 	struct bio		*bio,
375 	int			error)
376 {
377 	xfs_ioend_t		*ioend = bio->bi_private;
378 
379 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
380 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
381 
382 	/* Toss bio and pass work off to an xfsdatad thread */
383 	bio->bi_private = NULL;
384 	bio->bi_end_io = NULL;
385 	bio_put(bio);
386 
387 	xfs_finish_ioend(ioend);
388 }
389 
390 STATIC void
391 xfs_submit_ioend_bio(
392 	struct writeback_control *wbc,
393 	xfs_ioend_t		*ioend,
394 	struct bio		*bio)
395 {
396 	atomic_inc(&ioend->io_remaining);
397 	bio->bi_private = ioend;
398 	bio->bi_end_io = xfs_end_bio;
399 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
400 }
401 
402 STATIC struct bio *
403 xfs_alloc_ioend_bio(
404 	struct buffer_head	*bh)
405 {
406 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
407 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
408 
409 	ASSERT(bio->bi_private == NULL);
410 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
411 	bio->bi_bdev = bh->b_bdev;
412 	return bio;
413 }
414 
415 STATIC void
416 xfs_start_buffer_writeback(
417 	struct buffer_head	*bh)
418 {
419 	ASSERT(buffer_mapped(bh));
420 	ASSERT(buffer_locked(bh));
421 	ASSERT(!buffer_delay(bh));
422 	ASSERT(!buffer_unwritten(bh));
423 
424 	mark_buffer_async_write(bh);
425 	set_buffer_uptodate(bh);
426 	clear_buffer_dirty(bh);
427 }
428 
429 STATIC void
430 xfs_start_page_writeback(
431 	struct page		*page,
432 	int			clear_dirty,
433 	int			buffers)
434 {
435 	ASSERT(PageLocked(page));
436 	ASSERT(!PageWriteback(page));
437 
438 	/*
439 	 * if the page was not fully cleaned, we need to ensure that the higher
440 	 * layers come back to it correctly. That means we need to keep the page
441 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
442 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
443 	 * write this page in this writeback sweep will be made.
444 	 */
445 	if (clear_dirty) {
446 		clear_page_dirty_for_io(page);
447 		set_page_writeback(page);
448 	} else
449 		set_page_writeback_keepwrite(page);
450 
451 	unlock_page(page);
452 
453 	/* If no buffers on the page are to be written, finish it here */
454 	if (!buffers)
455 		end_page_writeback(page);
456 }
457 
458 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
459 {
460 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
461 }
462 
463 /*
464  * Submit all of the bios for all of the ioends we have saved up, covering the
465  * initial writepage page and also any probed pages.
466  *
467  * Because we may have multiple ioends spanning a page, we need to start
468  * writeback on all the buffers before we submit them for I/O. If we mark the
469  * buffers as we got, then we can end up with a page that only has buffers
470  * marked async write and I/O complete on can occur before we mark the other
471  * buffers async write.
472  *
473  * The end result of this is that we trip a bug in end_page_writeback() because
474  * we call it twice for the one page as the code in end_buffer_async_write()
475  * assumes that all buffers on the page are started at the same time.
476  *
477  * The fix is two passes across the ioend list - one to start writeback on the
478  * buffer_heads, and then submit them for I/O on the second pass.
479  *
480  * If @fail is non-zero, it means that we have a situation where some part of
481  * the submission process has failed after we have marked paged for writeback
482  * and unlocked them. In this situation, we need to fail the ioend chain rather
483  * than submit it to IO. This typically only happens on a filesystem shutdown.
484  */
485 STATIC void
486 xfs_submit_ioend(
487 	struct writeback_control *wbc,
488 	xfs_ioend_t		*ioend,
489 	int			fail)
490 {
491 	xfs_ioend_t		*head = ioend;
492 	xfs_ioend_t		*next;
493 	struct buffer_head	*bh;
494 	struct bio		*bio;
495 	sector_t		lastblock = 0;
496 
497 	/* Pass 1 - start writeback */
498 	do {
499 		next = ioend->io_list;
500 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
501 			xfs_start_buffer_writeback(bh);
502 	} while ((ioend = next) != NULL);
503 
504 	/* Pass 2 - submit I/O */
505 	ioend = head;
506 	do {
507 		next = ioend->io_list;
508 		bio = NULL;
509 
510 		/*
511 		 * If we are failing the IO now, just mark the ioend with an
512 		 * error and finish it. This will run IO completion immediately
513 		 * as there is only one reference to the ioend at this point in
514 		 * time.
515 		 */
516 		if (fail) {
517 			ioend->io_error = fail;
518 			xfs_finish_ioend(ioend);
519 			continue;
520 		}
521 
522 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
523 
524 			if (!bio) {
525  retry:
526 				bio = xfs_alloc_ioend_bio(bh);
527 			} else if (bh->b_blocknr != lastblock + 1) {
528 				xfs_submit_ioend_bio(wbc, ioend, bio);
529 				goto retry;
530 			}
531 
532 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
533 				xfs_submit_ioend_bio(wbc, ioend, bio);
534 				goto retry;
535 			}
536 
537 			lastblock = bh->b_blocknr;
538 		}
539 		if (bio)
540 			xfs_submit_ioend_bio(wbc, ioend, bio);
541 		xfs_finish_ioend(ioend);
542 	} while ((ioend = next) != NULL);
543 }
544 
545 /*
546  * Cancel submission of all buffer_heads so far in this endio.
547  * Toss the endio too.  Only ever called for the initial page
548  * in a writepage request, so only ever one page.
549  */
550 STATIC void
551 xfs_cancel_ioend(
552 	xfs_ioend_t		*ioend)
553 {
554 	xfs_ioend_t		*next;
555 	struct buffer_head	*bh, *next_bh;
556 
557 	do {
558 		next = ioend->io_list;
559 		bh = ioend->io_buffer_head;
560 		do {
561 			next_bh = bh->b_private;
562 			clear_buffer_async_write(bh);
563 			/*
564 			 * The unwritten flag is cleared when added to the
565 			 * ioend. We're not submitting for I/O so mark the
566 			 * buffer unwritten again for next time around.
567 			 */
568 			if (ioend->io_type == XFS_IO_UNWRITTEN)
569 				set_buffer_unwritten(bh);
570 			unlock_buffer(bh);
571 		} while ((bh = next_bh) != NULL);
572 
573 		mempool_free(ioend, xfs_ioend_pool);
574 	} while ((ioend = next) != NULL);
575 }
576 
577 /*
578  * Test to see if we've been building up a completion structure for
579  * earlier buffers -- if so, we try to append to this ioend if we
580  * can, otherwise we finish off any current ioend and start another.
581  * Return true if we've finished the given ioend.
582  */
583 STATIC void
584 xfs_add_to_ioend(
585 	struct inode		*inode,
586 	struct buffer_head	*bh,
587 	xfs_off_t		offset,
588 	unsigned int		type,
589 	xfs_ioend_t		**result,
590 	int			need_ioend)
591 {
592 	xfs_ioend_t		*ioend = *result;
593 
594 	if (!ioend || need_ioend || type != ioend->io_type) {
595 		xfs_ioend_t	*previous = *result;
596 
597 		ioend = xfs_alloc_ioend(inode, type);
598 		ioend->io_offset = offset;
599 		ioend->io_buffer_head = bh;
600 		ioend->io_buffer_tail = bh;
601 		if (previous)
602 			previous->io_list = ioend;
603 		*result = ioend;
604 	} else {
605 		ioend->io_buffer_tail->b_private = bh;
606 		ioend->io_buffer_tail = bh;
607 	}
608 
609 	bh->b_private = NULL;
610 	ioend->io_size += bh->b_size;
611 }
612 
613 STATIC void
614 xfs_map_buffer(
615 	struct inode		*inode,
616 	struct buffer_head	*bh,
617 	struct xfs_bmbt_irec	*imap,
618 	xfs_off_t		offset)
619 {
620 	sector_t		bn;
621 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
622 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
623 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
624 
625 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
627 
628 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
629 	      ((offset - iomap_offset) >> inode->i_blkbits);
630 
631 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
632 
633 	bh->b_blocknr = bn;
634 	set_buffer_mapped(bh);
635 }
636 
637 STATIC void
638 xfs_map_at_offset(
639 	struct inode		*inode,
640 	struct buffer_head	*bh,
641 	struct xfs_bmbt_irec	*imap,
642 	xfs_off_t		offset)
643 {
644 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
645 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
646 
647 	xfs_map_buffer(inode, bh, imap, offset);
648 	set_buffer_mapped(bh);
649 	clear_buffer_delay(bh);
650 	clear_buffer_unwritten(bh);
651 }
652 
653 /*
654  * Test if a given page contains at least one buffer of a given @type.
655  * If @check_all_buffers is true, then we walk all the buffers in the page to
656  * try to find one of the type passed in. If it is not set, then the caller only
657  * needs to check the first buffer on the page for a match.
658  */
659 STATIC bool
660 xfs_check_page_type(
661 	struct page		*page,
662 	unsigned int		type,
663 	bool			check_all_buffers)
664 {
665 	struct buffer_head	*bh;
666 	struct buffer_head	*head;
667 
668 	if (PageWriteback(page))
669 		return false;
670 	if (!page->mapping)
671 		return false;
672 	if (!page_has_buffers(page))
673 		return false;
674 
675 	bh = head = page_buffers(page);
676 	do {
677 		if (buffer_unwritten(bh)) {
678 			if (type == XFS_IO_UNWRITTEN)
679 				return true;
680 		} else if (buffer_delay(bh)) {
681 			if (type == XFS_IO_DELALLOC)
682 				return true;
683 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
684 			if (type == XFS_IO_OVERWRITE)
685 				return true;
686 		}
687 
688 		/* If we are only checking the first buffer, we are done now. */
689 		if (!check_all_buffers)
690 			break;
691 	} while ((bh = bh->b_this_page) != head);
692 
693 	return false;
694 }
695 
696 /*
697  * Allocate & map buffers for page given the extent map. Write it out.
698  * except for the original page of a writepage, this is called on
699  * delalloc/unwritten pages only, for the original page it is possible
700  * that the page has no mapping at all.
701  */
702 STATIC int
703 xfs_convert_page(
704 	struct inode		*inode,
705 	struct page		*page,
706 	loff_t			tindex,
707 	struct xfs_bmbt_irec	*imap,
708 	xfs_ioend_t		**ioendp,
709 	struct writeback_control *wbc)
710 {
711 	struct buffer_head	*bh, *head;
712 	xfs_off_t		end_offset;
713 	unsigned long		p_offset;
714 	unsigned int		type;
715 	int			len, page_dirty;
716 	int			count = 0, done = 0, uptodate = 1;
717  	xfs_off_t		offset = page_offset(page);
718 
719 	if (page->index != tindex)
720 		goto fail;
721 	if (!trylock_page(page))
722 		goto fail;
723 	if (PageWriteback(page))
724 		goto fail_unlock_page;
725 	if (page->mapping != inode->i_mapping)
726 		goto fail_unlock_page;
727 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
728 		goto fail_unlock_page;
729 
730 	/*
731 	 * page_dirty is initially a count of buffers on the page before
732 	 * EOF and is decremented as we move each into a cleanable state.
733 	 *
734 	 * Derivation:
735 	 *
736 	 * End offset is the highest offset that this page should represent.
737 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
738 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
739 	 * hence give us the correct page_dirty count. On any other page,
740 	 * it will be zero and in that case we need page_dirty to be the
741 	 * count of buffers on the page.
742 	 */
743 	end_offset = min_t(unsigned long long,
744 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
745 			i_size_read(inode));
746 
747 	/*
748 	 * If the current map does not span the entire page we are about to try
749 	 * to write, then give up. The only way we can write a page that spans
750 	 * multiple mappings in a single writeback iteration is via the
751 	 * xfs_vm_writepage() function. Data integrity writeback requires the
752 	 * entire page to be written in a single attempt, otherwise the part of
753 	 * the page we don't write here doesn't get written as part of the data
754 	 * integrity sync.
755 	 *
756 	 * For normal writeback, we also don't attempt to write partial pages
757 	 * here as it simply means that write_cache_pages() will see it under
758 	 * writeback and ignore the page until some point in the future, at
759 	 * which time this will be the only page in the file that needs
760 	 * writeback.  Hence for more optimal IO patterns, we should always
761 	 * avoid partial page writeback due to multiple mappings on a page here.
762 	 */
763 	if (!xfs_imap_valid(inode, imap, end_offset))
764 		goto fail_unlock_page;
765 
766 	len = 1 << inode->i_blkbits;
767 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
768 					PAGE_CACHE_SIZE);
769 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
770 	page_dirty = p_offset / len;
771 
772 	/*
773 	 * The moment we find a buffer that doesn't match our current type
774 	 * specification or can't be written, abort the loop and start
775 	 * writeback. As per the above xfs_imap_valid() check, only
776 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
777 	 * limited here to the buffers that are contiguous with the current
778 	 * ioend, and hence a buffer we can't write breaks that contiguity and
779 	 * we have to defer the rest of the IO to xfs_vm_writepage().
780 	 */
781 	bh = head = page_buffers(page);
782 	do {
783 		if (offset >= end_offset)
784 			break;
785 		if (!buffer_uptodate(bh))
786 			uptodate = 0;
787 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
788 			done = 1;
789 			break;
790 		}
791 
792 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
793 		    buffer_mapped(bh)) {
794 			if (buffer_unwritten(bh))
795 				type = XFS_IO_UNWRITTEN;
796 			else if (buffer_delay(bh))
797 				type = XFS_IO_DELALLOC;
798 			else
799 				type = XFS_IO_OVERWRITE;
800 
801 			/*
802 			 * imap should always be valid because of the above
803 			 * partial page end_offset check on the imap.
804 			 */
805 			ASSERT(xfs_imap_valid(inode, imap, offset));
806 
807 			lock_buffer(bh);
808 			if (type != XFS_IO_OVERWRITE)
809 				xfs_map_at_offset(inode, bh, imap, offset);
810 			xfs_add_to_ioend(inode, bh, offset, type,
811 					 ioendp, done);
812 
813 			page_dirty--;
814 			count++;
815 		} else {
816 			done = 1;
817 			break;
818 		}
819 	} while (offset += len, (bh = bh->b_this_page) != head);
820 
821 	if (uptodate && bh == head)
822 		SetPageUptodate(page);
823 
824 	if (count) {
825 		if (--wbc->nr_to_write <= 0 &&
826 		    wbc->sync_mode == WB_SYNC_NONE)
827 			done = 1;
828 	}
829 	xfs_start_page_writeback(page, !page_dirty, count);
830 
831 	return done;
832  fail_unlock_page:
833 	unlock_page(page);
834  fail:
835 	return 1;
836 }
837 
838 /*
839  * Convert & write out a cluster of pages in the same extent as defined
840  * by mp and following the start page.
841  */
842 STATIC void
843 xfs_cluster_write(
844 	struct inode		*inode,
845 	pgoff_t			tindex,
846 	struct xfs_bmbt_irec	*imap,
847 	xfs_ioend_t		**ioendp,
848 	struct writeback_control *wbc,
849 	pgoff_t			tlast)
850 {
851 	struct pagevec		pvec;
852 	int			done = 0, i;
853 
854 	pagevec_init(&pvec, 0);
855 	while (!done && tindex <= tlast) {
856 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
857 
858 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
859 			break;
860 
861 		for (i = 0; i < pagevec_count(&pvec); i++) {
862 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
863 					imap, ioendp, wbc);
864 			if (done)
865 				break;
866 		}
867 
868 		pagevec_release(&pvec);
869 		cond_resched();
870 	}
871 }
872 
873 STATIC void
874 xfs_vm_invalidatepage(
875 	struct page		*page,
876 	unsigned int		offset,
877 	unsigned int		length)
878 {
879 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
880 				 length);
881 	block_invalidatepage(page, offset, length);
882 }
883 
884 /*
885  * If the page has delalloc buffers on it, we need to punch them out before we
886  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
887  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
888  * is done on that same region - the delalloc extent is returned when none is
889  * supposed to be there.
890  *
891  * We prevent this by truncating away the delalloc regions on the page before
892  * invalidating it. Because they are delalloc, we can do this without needing a
893  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
894  * truncation without a transaction as there is no space left for block
895  * reservation (typically why we see a ENOSPC in writeback).
896  *
897  * This is not a performance critical path, so for now just do the punching a
898  * buffer head at a time.
899  */
900 STATIC void
901 xfs_aops_discard_page(
902 	struct page		*page)
903 {
904 	struct inode		*inode = page->mapping->host;
905 	struct xfs_inode	*ip = XFS_I(inode);
906 	struct buffer_head	*bh, *head;
907 	loff_t			offset = page_offset(page);
908 
909 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
910 		goto out_invalidate;
911 
912 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
913 		goto out_invalidate;
914 
915 	xfs_alert(ip->i_mount,
916 		"page discard on page %p, inode 0x%llx, offset %llu.",
917 			page, ip->i_ino, offset);
918 
919 	xfs_ilock(ip, XFS_ILOCK_EXCL);
920 	bh = head = page_buffers(page);
921 	do {
922 		int		error;
923 		xfs_fileoff_t	start_fsb;
924 
925 		if (!buffer_delay(bh))
926 			goto next_buffer;
927 
928 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
929 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
930 		if (error) {
931 			/* something screwed, just bail */
932 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
933 				xfs_alert(ip->i_mount,
934 			"page discard unable to remove delalloc mapping.");
935 			}
936 			break;
937 		}
938 next_buffer:
939 		offset += 1 << inode->i_blkbits;
940 
941 	} while ((bh = bh->b_this_page) != head);
942 
943 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
944 out_invalidate:
945 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
946 	return;
947 }
948 
949 /*
950  * Write out a dirty page.
951  *
952  * For delalloc space on the page we need to allocate space and flush it.
953  * For unwritten space on the page we need to start the conversion to
954  * regular allocated space.
955  * For any other dirty buffer heads on the page we should flush them.
956  */
957 STATIC int
958 xfs_vm_writepage(
959 	struct page		*page,
960 	struct writeback_control *wbc)
961 {
962 	struct inode		*inode = page->mapping->host;
963 	struct buffer_head	*bh, *head;
964 	struct xfs_bmbt_irec	imap;
965 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
966 	loff_t			offset;
967 	unsigned int		type;
968 	__uint64_t              end_offset;
969 	pgoff_t                 end_index, last_index;
970 	ssize_t			len;
971 	int			err, imap_valid = 0, uptodate = 1;
972 	int			count = 0;
973 	int			nonblocking = 0;
974 
975 	trace_xfs_writepage(inode, page, 0, 0);
976 
977 	ASSERT(page_has_buffers(page));
978 
979 	/*
980 	 * Refuse to write the page out if we are called from reclaim context.
981 	 *
982 	 * This avoids stack overflows when called from deeply used stacks in
983 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
984 	 * allow reclaim from kswapd as the stack usage there is relatively low.
985 	 *
986 	 * This should never happen except in the case of a VM regression so
987 	 * warn about it.
988 	 */
989 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
990 			PF_MEMALLOC))
991 		goto redirty;
992 
993 	/*
994 	 * Given that we do not allow direct reclaim to call us, we should
995 	 * never be called while in a filesystem transaction.
996 	 */
997 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
998 		goto redirty;
999 
1000 	/* Is this page beyond the end of the file? */
1001 	offset = i_size_read(inode);
1002 	end_index = offset >> PAGE_CACHE_SHIFT;
1003 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1004 
1005 	/*
1006 	 * The page index is less than the end_index, adjust the end_offset
1007 	 * to the highest offset that this page should represent.
1008 	 * -----------------------------------------------------
1009 	 * |			file mapping	       | <EOF> |
1010 	 * -----------------------------------------------------
1011 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1012 	 * ^--------------------------------^----------|--------
1013 	 * |     desired writeback range    |      see else    |
1014 	 * ---------------------------------^------------------|
1015 	 */
1016 	if (page->index < end_index)
1017 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1018 	else {
1019 		/*
1020 		 * Check whether the page to write out is beyond or straddles
1021 		 * i_size or not.
1022 		 * -------------------------------------------------------
1023 		 * |		file mapping		        | <EOF>  |
1024 		 * -------------------------------------------------------
1025 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1026 		 * ^--------------------------------^-----------|---------
1027 		 * |				    |      Straddles     |
1028 		 * ---------------------------------^-----------|--------|
1029 		 */
1030 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1031 
1032 		/*
1033 		 * Skip the page if it is fully outside i_size, e.g. due to a
1034 		 * truncate operation that is in progress. We must redirty the
1035 		 * page so that reclaim stops reclaiming it. Otherwise
1036 		 * xfs_vm_releasepage() is called on it and gets confused.
1037 		 *
1038 		 * Note that the end_index is unsigned long, it would overflow
1039 		 * if the given offset is greater than 16TB on 32-bit system
1040 		 * and if we do check the page is fully outside i_size or not
1041 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1042 		 * will be evaluated to 0.  Hence this page will be redirtied
1043 		 * and be written out repeatedly which would result in an
1044 		 * infinite loop, the user program that perform this operation
1045 		 * will hang.  Instead, we can verify this situation by checking
1046 		 * if the page to write is totally beyond the i_size or if it's
1047 		 * offset is just equal to the EOF.
1048 		 */
1049 		if (page->index > end_index ||
1050 		    (page->index == end_index && offset_into_page == 0))
1051 			goto redirty;
1052 
1053 		/*
1054 		 * The page straddles i_size.  It must be zeroed out on each
1055 		 * and every writepage invocation because it may be mmapped.
1056 		 * "A file is mapped in multiples of the page size.  For a file
1057 		 * that is not a multiple of the page size, the remaining
1058 		 * memory is zeroed when mapped, and writes to that region are
1059 		 * not written out to the file."
1060 		 */
1061 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1062 
1063 		/* Adjust the end_offset to the end of file */
1064 		end_offset = offset;
1065 	}
1066 
1067 	len = 1 << inode->i_blkbits;
1068 
1069 	bh = head = page_buffers(page);
1070 	offset = page_offset(page);
1071 	type = XFS_IO_OVERWRITE;
1072 
1073 	if (wbc->sync_mode == WB_SYNC_NONE)
1074 		nonblocking = 1;
1075 
1076 	do {
1077 		int new_ioend = 0;
1078 
1079 		if (offset >= end_offset)
1080 			break;
1081 		if (!buffer_uptodate(bh))
1082 			uptodate = 0;
1083 
1084 		/*
1085 		 * set_page_dirty dirties all buffers in a page, independent
1086 		 * of their state.  The dirty state however is entirely
1087 		 * meaningless for holes (!mapped && uptodate), so skip
1088 		 * buffers covering holes here.
1089 		 */
1090 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1091 			imap_valid = 0;
1092 			continue;
1093 		}
1094 
1095 		if (buffer_unwritten(bh)) {
1096 			if (type != XFS_IO_UNWRITTEN) {
1097 				type = XFS_IO_UNWRITTEN;
1098 				imap_valid = 0;
1099 			}
1100 		} else if (buffer_delay(bh)) {
1101 			if (type != XFS_IO_DELALLOC) {
1102 				type = XFS_IO_DELALLOC;
1103 				imap_valid = 0;
1104 			}
1105 		} else if (buffer_uptodate(bh)) {
1106 			if (type != XFS_IO_OVERWRITE) {
1107 				type = XFS_IO_OVERWRITE;
1108 				imap_valid = 0;
1109 			}
1110 		} else {
1111 			if (PageUptodate(page))
1112 				ASSERT(buffer_mapped(bh));
1113 			/*
1114 			 * This buffer is not uptodate and will not be
1115 			 * written to disk.  Ensure that we will put any
1116 			 * subsequent writeable buffers into a new
1117 			 * ioend.
1118 			 */
1119 			imap_valid = 0;
1120 			continue;
1121 		}
1122 
1123 		if (imap_valid)
1124 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1125 		if (!imap_valid) {
1126 			/*
1127 			 * If we didn't have a valid mapping then we need to
1128 			 * put the new mapping into a separate ioend structure.
1129 			 * This ensures non-contiguous extents always have
1130 			 * separate ioends, which is particularly important
1131 			 * for unwritten extent conversion at I/O completion
1132 			 * time.
1133 			 */
1134 			new_ioend = 1;
1135 			err = xfs_map_blocks(inode, offset, &imap, type,
1136 					     nonblocking);
1137 			if (err)
1138 				goto error;
1139 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1140 		}
1141 		if (imap_valid) {
1142 			lock_buffer(bh);
1143 			if (type != XFS_IO_OVERWRITE)
1144 				xfs_map_at_offset(inode, bh, &imap, offset);
1145 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1146 					 new_ioend);
1147 			count++;
1148 		}
1149 
1150 		if (!iohead)
1151 			iohead = ioend;
1152 
1153 	} while (offset += len, ((bh = bh->b_this_page) != head));
1154 
1155 	if (uptodate && bh == head)
1156 		SetPageUptodate(page);
1157 
1158 	xfs_start_page_writeback(page, 1, count);
1159 
1160 	/* if there is no IO to be submitted for this page, we are done */
1161 	if (!ioend)
1162 		return 0;
1163 
1164 	ASSERT(iohead);
1165 
1166 	/*
1167 	 * Any errors from this point onwards need tobe reported through the IO
1168 	 * completion path as we have marked the initial page as under writeback
1169 	 * and unlocked it.
1170 	 */
1171 	if (imap_valid) {
1172 		xfs_off_t		end_index;
1173 
1174 		end_index = imap.br_startoff + imap.br_blockcount;
1175 
1176 		/* to bytes */
1177 		end_index <<= inode->i_blkbits;
1178 
1179 		/* to pages */
1180 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1181 
1182 		/* check against file size */
1183 		if (end_index > last_index)
1184 			end_index = last_index;
1185 
1186 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1187 				  wbc, end_index);
1188 	}
1189 
1190 
1191 	/*
1192 	 * Reserve log space if we might write beyond the on-disk inode size.
1193 	 */
1194 	err = 0;
1195 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1196 		err = xfs_setfilesize_trans_alloc(ioend);
1197 
1198 	xfs_submit_ioend(wbc, iohead, err);
1199 
1200 	return 0;
1201 
1202 error:
1203 	if (iohead)
1204 		xfs_cancel_ioend(iohead);
1205 
1206 	if (err == -EAGAIN)
1207 		goto redirty;
1208 
1209 	xfs_aops_discard_page(page);
1210 	ClearPageUptodate(page);
1211 	unlock_page(page);
1212 	return err;
1213 
1214 redirty:
1215 	redirty_page_for_writepage(wbc, page);
1216 	unlock_page(page);
1217 	return 0;
1218 }
1219 
1220 STATIC int
1221 xfs_vm_writepages(
1222 	struct address_space	*mapping,
1223 	struct writeback_control *wbc)
1224 {
1225 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1226 	return generic_writepages(mapping, wbc);
1227 }
1228 
1229 /*
1230  * Called to move a page into cleanable state - and from there
1231  * to be released. The page should already be clean. We always
1232  * have buffer heads in this call.
1233  *
1234  * Returns 1 if the page is ok to release, 0 otherwise.
1235  */
1236 STATIC int
1237 xfs_vm_releasepage(
1238 	struct page		*page,
1239 	gfp_t			gfp_mask)
1240 {
1241 	int			delalloc, unwritten;
1242 
1243 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1244 
1245 	xfs_count_page_state(page, &delalloc, &unwritten);
1246 
1247 	if (WARN_ON_ONCE(delalloc))
1248 		return 0;
1249 	if (WARN_ON_ONCE(unwritten))
1250 		return 0;
1251 
1252 	return try_to_free_buffers(page);
1253 }
1254 
1255 STATIC int
1256 __xfs_get_blocks(
1257 	struct inode		*inode,
1258 	sector_t		iblock,
1259 	struct buffer_head	*bh_result,
1260 	int			create,
1261 	int			direct)
1262 {
1263 	struct xfs_inode	*ip = XFS_I(inode);
1264 	struct xfs_mount	*mp = ip->i_mount;
1265 	xfs_fileoff_t		offset_fsb, end_fsb;
1266 	int			error = 0;
1267 	int			lockmode = 0;
1268 	struct xfs_bmbt_irec	imap;
1269 	int			nimaps = 1;
1270 	xfs_off_t		offset;
1271 	ssize_t			size;
1272 	int			new = 0;
1273 
1274 	if (XFS_FORCED_SHUTDOWN(mp))
1275 		return -EIO;
1276 
1277 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1278 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1279 	size = bh_result->b_size;
1280 
1281 	if (!create && direct && offset >= i_size_read(inode))
1282 		return 0;
1283 
1284 	/*
1285 	 * Direct I/O is usually done on preallocated files, so try getting
1286 	 * a block mapping without an exclusive lock first.  For buffered
1287 	 * writes we already have the exclusive iolock anyway, so avoiding
1288 	 * a lock roundtrip here by taking the ilock exclusive from the
1289 	 * beginning is a useful micro optimization.
1290 	 */
1291 	if (create && !direct) {
1292 		lockmode = XFS_ILOCK_EXCL;
1293 		xfs_ilock(ip, lockmode);
1294 	} else {
1295 		lockmode = xfs_ilock_data_map_shared(ip);
1296 	}
1297 
1298 	ASSERT(offset <= mp->m_super->s_maxbytes);
1299 	if (offset + size > mp->m_super->s_maxbytes)
1300 		size = mp->m_super->s_maxbytes - offset;
1301 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1302 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1303 
1304 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1305 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1306 	if (error)
1307 		goto out_unlock;
1308 
1309 	if (create &&
1310 	    (!nimaps ||
1311 	     (imap.br_startblock == HOLESTARTBLOCK ||
1312 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1313 		if (direct || xfs_get_extsz_hint(ip)) {
1314 			/*
1315 			 * Drop the ilock in preparation for starting the block
1316 			 * allocation transaction.  It will be retaken
1317 			 * exclusively inside xfs_iomap_write_direct for the
1318 			 * actual allocation.
1319 			 */
1320 			xfs_iunlock(ip, lockmode);
1321 			error = xfs_iomap_write_direct(ip, offset, size,
1322 						       &imap, nimaps);
1323 			if (error)
1324 				return error;
1325 			new = 1;
1326 		} else {
1327 			/*
1328 			 * Delalloc reservations do not require a transaction,
1329 			 * we can go on without dropping the lock here. If we
1330 			 * are allocating a new delalloc block, make sure that
1331 			 * we set the new flag so that we mark the buffer new so
1332 			 * that we know that it is newly allocated if the write
1333 			 * fails.
1334 			 */
1335 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1336 				new = 1;
1337 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1338 			if (error)
1339 				goto out_unlock;
1340 
1341 			xfs_iunlock(ip, lockmode);
1342 		}
1343 
1344 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1345 	} else if (nimaps) {
1346 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1347 		xfs_iunlock(ip, lockmode);
1348 	} else {
1349 		trace_xfs_get_blocks_notfound(ip, offset, size);
1350 		goto out_unlock;
1351 	}
1352 
1353 	if (imap.br_startblock != HOLESTARTBLOCK &&
1354 	    imap.br_startblock != DELAYSTARTBLOCK) {
1355 		/*
1356 		 * For unwritten extents do not report a disk address on
1357 		 * the read case (treat as if we're reading into a hole).
1358 		 */
1359 		if (create || !ISUNWRITTEN(&imap))
1360 			xfs_map_buffer(inode, bh_result, &imap, offset);
1361 		if (create && ISUNWRITTEN(&imap)) {
1362 			if (direct) {
1363 				bh_result->b_private = inode;
1364 				set_buffer_defer_completion(bh_result);
1365 			}
1366 			set_buffer_unwritten(bh_result);
1367 		}
1368 	}
1369 
1370 	/*
1371 	 * If this is a realtime file, data may be on a different device.
1372 	 * to that pointed to from the buffer_head b_bdev currently.
1373 	 */
1374 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1375 
1376 	/*
1377 	 * If we previously allocated a block out beyond eof and we are now
1378 	 * coming back to use it then we will need to flag it as new even if it
1379 	 * has a disk address.
1380 	 *
1381 	 * With sub-block writes into unwritten extents we also need to mark
1382 	 * the buffer as new so that the unwritten parts of the buffer gets
1383 	 * correctly zeroed.
1384 	 */
1385 	if (create &&
1386 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1387 	     (offset >= i_size_read(inode)) ||
1388 	     (new || ISUNWRITTEN(&imap))))
1389 		set_buffer_new(bh_result);
1390 
1391 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1392 		BUG_ON(direct);
1393 		if (create) {
1394 			set_buffer_uptodate(bh_result);
1395 			set_buffer_mapped(bh_result);
1396 			set_buffer_delay(bh_result);
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * If this is O_DIRECT or the mpage code calling tell them how large
1402 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1403 	 *
1404 	 * If the mapping spans EOF, then we have to break the mapping up as the
1405 	 * mapping for blocks beyond EOF must be marked new so that sub block
1406 	 * regions can be correctly zeroed. We can't do this for mappings within
1407 	 * EOF unless the mapping was just allocated or is unwritten, otherwise
1408 	 * the callers would overwrite existing data with zeros. Hence we have
1409 	 * to split the mapping into a range up to and including EOF, and a
1410 	 * second mapping for beyond EOF.
1411 	 */
1412 	if (direct || size > (1 << inode->i_blkbits)) {
1413 		xfs_off_t		mapping_size;
1414 
1415 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1416 		mapping_size <<= inode->i_blkbits;
1417 
1418 		ASSERT(mapping_size > 0);
1419 		if (mapping_size > size)
1420 			mapping_size = size;
1421 		if (offset < i_size_read(inode) &&
1422 		    offset + mapping_size >= i_size_read(inode)) {
1423 			/* limit mapping to block that spans EOF */
1424 			mapping_size = roundup_64(i_size_read(inode) - offset,
1425 						  1 << inode->i_blkbits);
1426 		}
1427 		if (mapping_size > LONG_MAX)
1428 			mapping_size = LONG_MAX;
1429 
1430 		bh_result->b_size = mapping_size;
1431 	}
1432 
1433 	return 0;
1434 
1435 out_unlock:
1436 	xfs_iunlock(ip, lockmode);
1437 	return error;
1438 }
1439 
1440 int
1441 xfs_get_blocks(
1442 	struct inode		*inode,
1443 	sector_t		iblock,
1444 	struct buffer_head	*bh_result,
1445 	int			create)
1446 {
1447 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1448 }
1449 
1450 STATIC int
1451 xfs_get_blocks_direct(
1452 	struct inode		*inode,
1453 	sector_t		iblock,
1454 	struct buffer_head	*bh_result,
1455 	int			create)
1456 {
1457 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1458 }
1459 
1460 /*
1461  * Complete a direct I/O write request.
1462  *
1463  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1464  * need to issue a transaction to convert the range from unwritten to written
1465  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1466  * to do this and we are done.  But in case this was a successful AIO
1467  * request this handler is called from interrupt context, from which we
1468  * can't start transactions.  In that case offload the I/O completion to
1469  * the workqueues we also use for buffered I/O completion.
1470  */
1471 STATIC void
1472 xfs_end_io_direct_write(
1473 	struct kiocb		*iocb,
1474 	loff_t			offset,
1475 	ssize_t			size,
1476 	void			*private)
1477 {
1478 	struct xfs_ioend	*ioend = iocb->private;
1479 
1480 	/*
1481 	 * While the generic direct I/O code updates the inode size, it does
1482 	 * so only after the end_io handler is called, which means our
1483 	 * end_io handler thinks the on-disk size is outside the in-core
1484 	 * size.  To prevent this just update it a little bit earlier here.
1485 	 */
1486 	if (offset + size > i_size_read(ioend->io_inode))
1487 		i_size_write(ioend->io_inode, offset + size);
1488 
1489 	/*
1490 	 * blockdev_direct_IO can return an error even after the I/O
1491 	 * completion handler was called.  Thus we need to protect
1492 	 * against double-freeing.
1493 	 */
1494 	iocb->private = NULL;
1495 
1496 	ioend->io_offset = offset;
1497 	ioend->io_size = size;
1498 	if (private && size > 0)
1499 		ioend->io_type = XFS_IO_UNWRITTEN;
1500 
1501 	xfs_finish_ioend_sync(ioend);
1502 }
1503 
1504 STATIC ssize_t
1505 xfs_vm_direct_IO(
1506 	int			rw,
1507 	struct kiocb		*iocb,
1508 	struct iov_iter		*iter,
1509 	loff_t			offset)
1510 {
1511 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1512 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1513 	struct xfs_ioend	*ioend = NULL;
1514 	ssize_t			ret;
1515 
1516 	if (rw & WRITE) {
1517 		size_t size = iov_iter_count(iter);
1518 
1519 		/*
1520 		 * We cannot preallocate a size update transaction here as we
1521 		 * don't know whether allocation is necessary or not. Hence we
1522 		 * can only tell IO completion that one is necessary if we are
1523 		 * not doing unwritten extent conversion.
1524 		 */
1525 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1526 		if (offset + size > XFS_I(inode)->i_d.di_size)
1527 			ioend->io_isdirect = 1;
1528 
1529 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1530 					    offset, xfs_get_blocks_direct,
1531 					    xfs_end_io_direct_write, NULL,
1532 					    DIO_ASYNC_EXTEND);
1533 		if (ret != -EIOCBQUEUED && iocb->private)
1534 			goto out_destroy_ioend;
1535 	} else {
1536 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1537 					    offset, xfs_get_blocks_direct,
1538 					    NULL, NULL, 0);
1539 	}
1540 
1541 	return ret;
1542 
1543 out_destroy_ioend:
1544 	xfs_destroy_ioend(ioend);
1545 	return ret;
1546 }
1547 
1548 /*
1549  * Punch out the delalloc blocks we have already allocated.
1550  *
1551  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1552  * as the page is still locked at this point.
1553  */
1554 STATIC void
1555 xfs_vm_kill_delalloc_range(
1556 	struct inode		*inode,
1557 	loff_t			start,
1558 	loff_t			end)
1559 {
1560 	struct xfs_inode	*ip = XFS_I(inode);
1561 	xfs_fileoff_t		start_fsb;
1562 	xfs_fileoff_t		end_fsb;
1563 	int			error;
1564 
1565 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1566 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1567 	if (end_fsb <= start_fsb)
1568 		return;
1569 
1570 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1571 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1572 						end_fsb - start_fsb);
1573 	if (error) {
1574 		/* something screwed, just bail */
1575 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1576 			xfs_alert(ip->i_mount,
1577 		"xfs_vm_write_failed: unable to clean up ino %lld",
1578 					ip->i_ino);
1579 		}
1580 	}
1581 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1582 }
1583 
1584 STATIC void
1585 xfs_vm_write_failed(
1586 	struct inode		*inode,
1587 	struct page		*page,
1588 	loff_t			pos,
1589 	unsigned		len)
1590 {
1591 	loff_t			block_offset;
1592 	loff_t			block_start;
1593 	loff_t			block_end;
1594 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1595 	loff_t			to = from + len;
1596 	struct buffer_head	*bh, *head;
1597 
1598 	/*
1599 	 * The request pos offset might be 32 or 64 bit, this is all fine
1600 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1601 	 * platform, the high 32-bit will be masked off if we evaluate the
1602 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1603 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1604 	 * which could cause the following ASSERT failed in most cases.
1605 	 * In order to avoid this, we can evaluate the block_offset of the
1606 	 * start of the page by using shifts rather than masks the mismatch
1607 	 * problem.
1608 	 */
1609 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1610 
1611 	ASSERT(block_offset + from == pos);
1612 
1613 	head = page_buffers(page);
1614 	block_start = 0;
1615 	for (bh = head; bh != head || !block_start;
1616 	     bh = bh->b_this_page, block_start = block_end,
1617 				   block_offset += bh->b_size) {
1618 		block_end = block_start + bh->b_size;
1619 
1620 		/* skip buffers before the write */
1621 		if (block_end <= from)
1622 			continue;
1623 
1624 		/* if the buffer is after the write, we're done */
1625 		if (block_start >= to)
1626 			break;
1627 
1628 		if (!buffer_delay(bh))
1629 			continue;
1630 
1631 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1632 			continue;
1633 
1634 		xfs_vm_kill_delalloc_range(inode, block_offset,
1635 					   block_offset + bh->b_size);
1636 
1637 		/*
1638 		 * This buffer does not contain data anymore. make sure anyone
1639 		 * who finds it knows that for certain.
1640 		 */
1641 		clear_buffer_delay(bh);
1642 		clear_buffer_uptodate(bh);
1643 		clear_buffer_mapped(bh);
1644 		clear_buffer_new(bh);
1645 		clear_buffer_dirty(bh);
1646 	}
1647 
1648 }
1649 
1650 /*
1651  * This used to call block_write_begin(), but it unlocks and releases the page
1652  * on error, and we need that page to be able to punch stale delalloc blocks out
1653  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1654  * the appropriate point.
1655  */
1656 STATIC int
1657 xfs_vm_write_begin(
1658 	struct file		*file,
1659 	struct address_space	*mapping,
1660 	loff_t			pos,
1661 	unsigned		len,
1662 	unsigned		flags,
1663 	struct page		**pagep,
1664 	void			**fsdata)
1665 {
1666 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1667 	struct page		*page;
1668 	int			status;
1669 
1670 	ASSERT(len <= PAGE_CACHE_SIZE);
1671 
1672 	page = grab_cache_page_write_begin(mapping, index, flags);
1673 	if (!page)
1674 		return -ENOMEM;
1675 
1676 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1677 	if (unlikely(status)) {
1678 		struct inode	*inode = mapping->host;
1679 		size_t		isize = i_size_read(inode);
1680 
1681 		xfs_vm_write_failed(inode, page, pos, len);
1682 		unlock_page(page);
1683 
1684 		/*
1685 		 * If the write is beyond EOF, we only want to kill blocks
1686 		 * allocated in this write, not blocks that were previously
1687 		 * written successfully.
1688 		 */
1689 		if (pos + len > isize) {
1690 			ssize_t start = max_t(ssize_t, pos, isize);
1691 
1692 			truncate_pagecache_range(inode, start, pos + len);
1693 		}
1694 
1695 		page_cache_release(page);
1696 		page = NULL;
1697 	}
1698 
1699 	*pagep = page;
1700 	return status;
1701 }
1702 
1703 /*
1704  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1705  * this specific write because they will never be written. Previous writes
1706  * beyond EOF where block allocation succeeded do not need to be trashed, so
1707  * only new blocks from this write should be trashed. For blocks within
1708  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1709  * written with all the other valid data.
1710  */
1711 STATIC int
1712 xfs_vm_write_end(
1713 	struct file		*file,
1714 	struct address_space	*mapping,
1715 	loff_t			pos,
1716 	unsigned		len,
1717 	unsigned		copied,
1718 	struct page		*page,
1719 	void			*fsdata)
1720 {
1721 	int			ret;
1722 
1723 	ASSERT(len <= PAGE_CACHE_SIZE);
1724 
1725 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1726 	if (unlikely(ret < len)) {
1727 		struct inode	*inode = mapping->host;
1728 		size_t		isize = i_size_read(inode);
1729 		loff_t		to = pos + len;
1730 
1731 		if (to > isize) {
1732 			/* only kill blocks in this write beyond EOF */
1733 			if (pos > isize)
1734 				isize = pos;
1735 			xfs_vm_kill_delalloc_range(inode, isize, to);
1736 			truncate_pagecache_range(inode, isize, to);
1737 		}
1738 	}
1739 	return ret;
1740 }
1741 
1742 STATIC sector_t
1743 xfs_vm_bmap(
1744 	struct address_space	*mapping,
1745 	sector_t		block)
1746 {
1747 	struct inode		*inode = (struct inode *)mapping->host;
1748 	struct xfs_inode	*ip = XFS_I(inode);
1749 
1750 	trace_xfs_vm_bmap(XFS_I(inode));
1751 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1752 	filemap_write_and_wait(mapping);
1753 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1754 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1755 }
1756 
1757 STATIC int
1758 xfs_vm_readpage(
1759 	struct file		*unused,
1760 	struct page		*page)
1761 {
1762 	return mpage_readpage(page, xfs_get_blocks);
1763 }
1764 
1765 STATIC int
1766 xfs_vm_readpages(
1767 	struct file		*unused,
1768 	struct address_space	*mapping,
1769 	struct list_head	*pages,
1770 	unsigned		nr_pages)
1771 {
1772 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1773 }
1774 
1775 /*
1776  * This is basically a copy of __set_page_dirty_buffers() with one
1777  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1778  * dirty, we'll never be able to clean them because we don't write buffers
1779  * beyond EOF, and that means we can't invalidate pages that span EOF
1780  * that have been marked dirty. Further, the dirty state can leak into
1781  * the file interior if the file is extended, resulting in all sorts of
1782  * bad things happening as the state does not match the underlying data.
1783  *
1784  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1785  * this only exist because of bufferheads and how the generic code manages them.
1786  */
1787 STATIC int
1788 xfs_vm_set_page_dirty(
1789 	struct page		*page)
1790 {
1791 	struct address_space	*mapping = page->mapping;
1792 	struct inode		*inode = mapping->host;
1793 	loff_t			end_offset;
1794 	loff_t			offset;
1795 	int			newly_dirty;
1796 
1797 	if (unlikely(!mapping))
1798 		return !TestSetPageDirty(page);
1799 
1800 	end_offset = i_size_read(inode);
1801 	offset = page_offset(page);
1802 
1803 	spin_lock(&mapping->private_lock);
1804 	if (page_has_buffers(page)) {
1805 		struct buffer_head *head = page_buffers(page);
1806 		struct buffer_head *bh = head;
1807 
1808 		do {
1809 			if (offset < end_offset)
1810 				set_buffer_dirty(bh);
1811 			bh = bh->b_this_page;
1812 			offset += 1 << inode->i_blkbits;
1813 		} while (bh != head);
1814 	}
1815 	newly_dirty = !TestSetPageDirty(page);
1816 	spin_unlock(&mapping->private_lock);
1817 
1818 	if (newly_dirty) {
1819 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1820 		unsigned long flags;
1821 
1822 		spin_lock_irqsave(&mapping->tree_lock, flags);
1823 		if (page->mapping) {	/* Race with truncate? */
1824 			WARN_ON_ONCE(!PageUptodate(page));
1825 			account_page_dirtied(page, mapping);
1826 			radix_tree_tag_set(&mapping->page_tree,
1827 					page_index(page), PAGECACHE_TAG_DIRTY);
1828 		}
1829 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1830 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1831 	}
1832 	return newly_dirty;
1833 }
1834 
1835 const struct address_space_operations xfs_address_space_operations = {
1836 	.readpage		= xfs_vm_readpage,
1837 	.readpages		= xfs_vm_readpages,
1838 	.writepage		= xfs_vm_writepage,
1839 	.writepages		= xfs_vm_writepages,
1840 	.set_page_dirty		= xfs_vm_set_page_dirty,
1841 	.releasepage		= xfs_vm_releasepage,
1842 	.invalidatepage		= xfs_vm_invalidatepage,
1843 	.write_begin		= xfs_vm_write_begin,
1844 	.write_end		= xfs_vm_write_end,
1845 	.bmap			= xfs_vm_bmap,
1846 	.direct_IO		= xfs_vm_direct_IO,
1847 	.migratepage		= buffer_migrate_page,
1848 	.is_partially_uptodate  = block_is_partially_uptodate,
1849 	.error_remove_page	= generic_error_remove_page,
1850 };
1851