1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_trans.h" 28 #include "xfs_inode_item.h" 29 #include "xfs_alloc.h" 30 #include "xfs_error.h" 31 #include "xfs_iomap.h" 32 #include "xfs_trace.h" 33 #include "xfs_bmap.h" 34 #include "xfs_bmap_util.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_dinode.h" 37 #include <linux/aio.h> 38 #include <linux/gfp.h> 39 #include <linux/mpage.h> 40 #include <linux/pagevec.h> 41 #include <linux/writeback.h> 42 43 void 44 xfs_count_page_state( 45 struct page *page, 46 int *delalloc, 47 int *unwritten) 48 { 49 struct buffer_head *bh, *head; 50 51 *delalloc = *unwritten = 0; 52 53 bh = head = page_buffers(page); 54 do { 55 if (buffer_unwritten(bh)) 56 (*unwritten) = 1; 57 else if (buffer_delay(bh)) 58 (*delalloc) = 1; 59 } while ((bh = bh->b_this_page) != head); 60 } 61 62 STATIC struct block_device * 63 xfs_find_bdev_for_inode( 64 struct inode *inode) 65 { 66 struct xfs_inode *ip = XFS_I(inode); 67 struct xfs_mount *mp = ip->i_mount; 68 69 if (XFS_IS_REALTIME_INODE(ip)) 70 return mp->m_rtdev_targp->bt_bdev; 71 else 72 return mp->m_ddev_targp->bt_bdev; 73 } 74 75 /* 76 * We're now finished for good with this ioend structure. 77 * Update the page state via the associated buffer_heads, 78 * release holds on the inode and bio, and finally free 79 * up memory. Do not use the ioend after this. 80 */ 81 STATIC void 82 xfs_destroy_ioend( 83 xfs_ioend_t *ioend) 84 { 85 struct buffer_head *bh, *next; 86 87 for (bh = ioend->io_buffer_head; bh; bh = next) { 88 next = bh->b_private; 89 bh->b_end_io(bh, !ioend->io_error); 90 } 91 92 mempool_free(ioend, xfs_ioend_pool); 93 } 94 95 /* 96 * Fast and loose check if this write could update the on-disk inode size. 97 */ 98 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 99 { 100 return ioend->io_offset + ioend->io_size > 101 XFS_I(ioend->io_inode)->i_d.di_size; 102 } 103 104 STATIC int 105 xfs_setfilesize_trans_alloc( 106 struct xfs_ioend *ioend) 107 { 108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 109 struct xfs_trans *tp; 110 int error; 111 112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 113 114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 115 if (error) { 116 xfs_trans_cancel(tp, 0); 117 return error; 118 } 119 120 ioend->io_append_trans = tp; 121 122 /* 123 * We may pass freeze protection with a transaction. So tell lockdep 124 * we released it. 125 */ 126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 127 1, _THIS_IP_); 128 /* 129 * We hand off the transaction to the completion thread now, so 130 * clear the flag here. 131 */ 132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 133 return 0; 134 } 135 136 /* 137 * Update on-disk file size now that data has been written to disk. 138 */ 139 STATIC int 140 xfs_setfilesize( 141 struct xfs_ioend *ioend) 142 { 143 struct xfs_inode *ip = XFS_I(ioend->io_inode); 144 struct xfs_trans *tp = ioend->io_append_trans; 145 xfs_fsize_t isize; 146 147 /* 148 * The transaction may have been allocated in the I/O submission thread, 149 * thus we need to mark ourselves as beeing in a transaction manually. 150 * Similarly for freeze protection. 151 */ 152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 154 0, 1, _THIS_IP_); 155 156 xfs_ilock(ip, XFS_ILOCK_EXCL); 157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 158 if (!isize) { 159 xfs_iunlock(ip, XFS_ILOCK_EXCL); 160 xfs_trans_cancel(tp, 0); 161 return 0; 162 } 163 164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 165 166 ip->i_d.di_size = isize; 167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 169 170 return xfs_trans_commit(tp, 0); 171 } 172 173 /* 174 * Schedule IO completion handling on the final put of an ioend. 175 * 176 * If there is no work to do we might as well call it a day and free the 177 * ioend right now. 178 */ 179 STATIC void 180 xfs_finish_ioend( 181 struct xfs_ioend *ioend) 182 { 183 if (atomic_dec_and_test(&ioend->io_remaining)) { 184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 185 186 if (ioend->io_type == XFS_IO_UNWRITTEN) 187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 188 else if (ioend->io_append_trans || 189 (ioend->io_isdirect && xfs_ioend_is_append(ioend))) 190 queue_work(mp->m_data_workqueue, &ioend->io_work); 191 else 192 xfs_destroy_ioend(ioend); 193 } 194 } 195 196 /* 197 * IO write completion. 198 */ 199 STATIC void 200 xfs_end_io( 201 struct work_struct *work) 202 { 203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 204 struct xfs_inode *ip = XFS_I(ioend->io_inode); 205 int error = 0; 206 207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 208 ioend->io_error = -EIO; 209 goto done; 210 } 211 if (ioend->io_error) 212 goto done; 213 214 /* 215 * For unwritten extents we need to issue transactions to convert a 216 * range to normal written extens after the data I/O has finished. 217 */ 218 if (ioend->io_type == XFS_IO_UNWRITTEN) { 219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 220 ioend->io_size); 221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) { 222 /* 223 * For direct I/O we do not know if we need to allocate blocks 224 * or not so we can't preallocate an append transaction as that 225 * results in nested reservations and log space deadlocks. Hence 226 * allocate the transaction here. While this is sub-optimal and 227 * can block IO completion for some time, we're stuck with doing 228 * it this way until we can pass the ioend to the direct IO 229 * allocation callbacks and avoid nesting that way. 230 */ 231 error = xfs_setfilesize_trans_alloc(ioend); 232 if (error) 233 goto done; 234 error = xfs_setfilesize(ioend); 235 } else if (ioend->io_append_trans) { 236 error = xfs_setfilesize(ioend); 237 } else { 238 ASSERT(!xfs_ioend_is_append(ioend)); 239 } 240 241 done: 242 if (error) 243 ioend->io_error = error; 244 xfs_destroy_ioend(ioend); 245 } 246 247 /* 248 * Call IO completion handling in caller context on the final put of an ioend. 249 */ 250 STATIC void 251 xfs_finish_ioend_sync( 252 struct xfs_ioend *ioend) 253 { 254 if (atomic_dec_and_test(&ioend->io_remaining)) 255 xfs_end_io(&ioend->io_work); 256 } 257 258 /* 259 * Allocate and initialise an IO completion structure. 260 * We need to track unwritten extent write completion here initially. 261 * We'll need to extend this for updating the ondisk inode size later 262 * (vs. incore size). 263 */ 264 STATIC xfs_ioend_t * 265 xfs_alloc_ioend( 266 struct inode *inode, 267 unsigned int type) 268 { 269 xfs_ioend_t *ioend; 270 271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 272 273 /* 274 * Set the count to 1 initially, which will prevent an I/O 275 * completion callback from happening before we have started 276 * all the I/O from calling the completion routine too early. 277 */ 278 atomic_set(&ioend->io_remaining, 1); 279 ioend->io_isdirect = 0; 280 ioend->io_error = 0; 281 ioend->io_list = NULL; 282 ioend->io_type = type; 283 ioend->io_inode = inode; 284 ioend->io_buffer_head = NULL; 285 ioend->io_buffer_tail = NULL; 286 ioend->io_offset = 0; 287 ioend->io_size = 0; 288 ioend->io_append_trans = NULL; 289 290 INIT_WORK(&ioend->io_work, xfs_end_io); 291 return ioend; 292 } 293 294 STATIC int 295 xfs_map_blocks( 296 struct inode *inode, 297 loff_t offset, 298 struct xfs_bmbt_irec *imap, 299 int type, 300 int nonblocking) 301 { 302 struct xfs_inode *ip = XFS_I(inode); 303 struct xfs_mount *mp = ip->i_mount; 304 ssize_t count = 1 << inode->i_blkbits; 305 xfs_fileoff_t offset_fsb, end_fsb; 306 int error = 0; 307 int bmapi_flags = XFS_BMAPI_ENTIRE; 308 int nimaps = 1; 309 310 if (XFS_FORCED_SHUTDOWN(mp)) 311 return -EIO; 312 313 if (type == XFS_IO_UNWRITTEN) 314 bmapi_flags |= XFS_BMAPI_IGSTATE; 315 316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 317 if (nonblocking) 318 return -EAGAIN; 319 xfs_ilock(ip, XFS_ILOCK_SHARED); 320 } 321 322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 323 (ip->i_df.if_flags & XFS_IFEXTENTS)); 324 ASSERT(offset <= mp->m_super->s_maxbytes); 325 326 if (offset + count > mp->m_super->s_maxbytes) 327 count = mp->m_super->s_maxbytes - offset; 328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 329 offset_fsb = XFS_B_TO_FSBT(mp, offset); 330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 331 imap, &nimaps, bmapi_flags); 332 xfs_iunlock(ip, XFS_ILOCK_SHARED); 333 334 if (error) 335 return error; 336 337 if (type == XFS_IO_DELALLOC && 338 (!nimaps || isnullstartblock(imap->br_startblock))) { 339 error = xfs_iomap_write_allocate(ip, offset, imap); 340 if (!error) 341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 342 return error; 343 } 344 345 #ifdef DEBUG 346 if (type == XFS_IO_UNWRITTEN) { 347 ASSERT(nimaps); 348 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 350 } 351 #endif 352 if (nimaps) 353 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 354 return 0; 355 } 356 357 STATIC int 358 xfs_imap_valid( 359 struct inode *inode, 360 struct xfs_bmbt_irec *imap, 361 xfs_off_t offset) 362 { 363 offset >>= inode->i_blkbits; 364 365 return offset >= imap->br_startoff && 366 offset < imap->br_startoff + imap->br_blockcount; 367 } 368 369 /* 370 * BIO completion handler for buffered IO. 371 */ 372 STATIC void 373 xfs_end_bio( 374 struct bio *bio, 375 int error) 376 { 377 xfs_ioend_t *ioend = bio->bi_private; 378 379 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 381 382 /* Toss bio and pass work off to an xfsdatad thread */ 383 bio->bi_private = NULL; 384 bio->bi_end_io = NULL; 385 bio_put(bio); 386 387 xfs_finish_ioend(ioend); 388 } 389 390 STATIC void 391 xfs_submit_ioend_bio( 392 struct writeback_control *wbc, 393 xfs_ioend_t *ioend, 394 struct bio *bio) 395 { 396 atomic_inc(&ioend->io_remaining); 397 bio->bi_private = ioend; 398 bio->bi_end_io = xfs_end_bio; 399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 400 } 401 402 STATIC struct bio * 403 xfs_alloc_ioend_bio( 404 struct buffer_head *bh) 405 { 406 int nvecs = bio_get_nr_vecs(bh->b_bdev); 407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 408 409 ASSERT(bio->bi_private == NULL); 410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 411 bio->bi_bdev = bh->b_bdev; 412 return bio; 413 } 414 415 STATIC void 416 xfs_start_buffer_writeback( 417 struct buffer_head *bh) 418 { 419 ASSERT(buffer_mapped(bh)); 420 ASSERT(buffer_locked(bh)); 421 ASSERT(!buffer_delay(bh)); 422 ASSERT(!buffer_unwritten(bh)); 423 424 mark_buffer_async_write(bh); 425 set_buffer_uptodate(bh); 426 clear_buffer_dirty(bh); 427 } 428 429 STATIC void 430 xfs_start_page_writeback( 431 struct page *page, 432 int clear_dirty, 433 int buffers) 434 { 435 ASSERT(PageLocked(page)); 436 ASSERT(!PageWriteback(page)); 437 438 /* 439 * if the page was not fully cleaned, we need to ensure that the higher 440 * layers come back to it correctly. That means we need to keep the page 441 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 442 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 443 * write this page in this writeback sweep will be made. 444 */ 445 if (clear_dirty) { 446 clear_page_dirty_for_io(page); 447 set_page_writeback(page); 448 } else 449 set_page_writeback_keepwrite(page); 450 451 unlock_page(page); 452 453 /* If no buffers on the page are to be written, finish it here */ 454 if (!buffers) 455 end_page_writeback(page); 456 } 457 458 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 459 { 460 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 461 } 462 463 /* 464 * Submit all of the bios for all of the ioends we have saved up, covering the 465 * initial writepage page and also any probed pages. 466 * 467 * Because we may have multiple ioends spanning a page, we need to start 468 * writeback on all the buffers before we submit them for I/O. If we mark the 469 * buffers as we got, then we can end up with a page that only has buffers 470 * marked async write and I/O complete on can occur before we mark the other 471 * buffers async write. 472 * 473 * The end result of this is that we trip a bug in end_page_writeback() because 474 * we call it twice for the one page as the code in end_buffer_async_write() 475 * assumes that all buffers on the page are started at the same time. 476 * 477 * The fix is two passes across the ioend list - one to start writeback on the 478 * buffer_heads, and then submit them for I/O on the second pass. 479 * 480 * If @fail is non-zero, it means that we have a situation where some part of 481 * the submission process has failed after we have marked paged for writeback 482 * and unlocked them. In this situation, we need to fail the ioend chain rather 483 * than submit it to IO. This typically only happens on a filesystem shutdown. 484 */ 485 STATIC void 486 xfs_submit_ioend( 487 struct writeback_control *wbc, 488 xfs_ioend_t *ioend, 489 int fail) 490 { 491 xfs_ioend_t *head = ioend; 492 xfs_ioend_t *next; 493 struct buffer_head *bh; 494 struct bio *bio; 495 sector_t lastblock = 0; 496 497 /* Pass 1 - start writeback */ 498 do { 499 next = ioend->io_list; 500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 501 xfs_start_buffer_writeback(bh); 502 } while ((ioend = next) != NULL); 503 504 /* Pass 2 - submit I/O */ 505 ioend = head; 506 do { 507 next = ioend->io_list; 508 bio = NULL; 509 510 /* 511 * If we are failing the IO now, just mark the ioend with an 512 * error and finish it. This will run IO completion immediately 513 * as there is only one reference to the ioend at this point in 514 * time. 515 */ 516 if (fail) { 517 ioend->io_error = fail; 518 xfs_finish_ioend(ioend); 519 continue; 520 } 521 522 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 523 524 if (!bio) { 525 retry: 526 bio = xfs_alloc_ioend_bio(bh); 527 } else if (bh->b_blocknr != lastblock + 1) { 528 xfs_submit_ioend_bio(wbc, ioend, bio); 529 goto retry; 530 } 531 532 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 533 xfs_submit_ioend_bio(wbc, ioend, bio); 534 goto retry; 535 } 536 537 lastblock = bh->b_blocknr; 538 } 539 if (bio) 540 xfs_submit_ioend_bio(wbc, ioend, bio); 541 xfs_finish_ioend(ioend); 542 } while ((ioend = next) != NULL); 543 } 544 545 /* 546 * Cancel submission of all buffer_heads so far in this endio. 547 * Toss the endio too. Only ever called for the initial page 548 * in a writepage request, so only ever one page. 549 */ 550 STATIC void 551 xfs_cancel_ioend( 552 xfs_ioend_t *ioend) 553 { 554 xfs_ioend_t *next; 555 struct buffer_head *bh, *next_bh; 556 557 do { 558 next = ioend->io_list; 559 bh = ioend->io_buffer_head; 560 do { 561 next_bh = bh->b_private; 562 clear_buffer_async_write(bh); 563 /* 564 * The unwritten flag is cleared when added to the 565 * ioend. We're not submitting for I/O so mark the 566 * buffer unwritten again for next time around. 567 */ 568 if (ioend->io_type == XFS_IO_UNWRITTEN) 569 set_buffer_unwritten(bh); 570 unlock_buffer(bh); 571 } while ((bh = next_bh) != NULL); 572 573 mempool_free(ioend, xfs_ioend_pool); 574 } while ((ioend = next) != NULL); 575 } 576 577 /* 578 * Test to see if we've been building up a completion structure for 579 * earlier buffers -- if so, we try to append to this ioend if we 580 * can, otherwise we finish off any current ioend and start another. 581 * Return true if we've finished the given ioend. 582 */ 583 STATIC void 584 xfs_add_to_ioend( 585 struct inode *inode, 586 struct buffer_head *bh, 587 xfs_off_t offset, 588 unsigned int type, 589 xfs_ioend_t **result, 590 int need_ioend) 591 { 592 xfs_ioend_t *ioend = *result; 593 594 if (!ioend || need_ioend || type != ioend->io_type) { 595 xfs_ioend_t *previous = *result; 596 597 ioend = xfs_alloc_ioend(inode, type); 598 ioend->io_offset = offset; 599 ioend->io_buffer_head = bh; 600 ioend->io_buffer_tail = bh; 601 if (previous) 602 previous->io_list = ioend; 603 *result = ioend; 604 } else { 605 ioend->io_buffer_tail->b_private = bh; 606 ioend->io_buffer_tail = bh; 607 } 608 609 bh->b_private = NULL; 610 ioend->io_size += bh->b_size; 611 } 612 613 STATIC void 614 xfs_map_buffer( 615 struct inode *inode, 616 struct buffer_head *bh, 617 struct xfs_bmbt_irec *imap, 618 xfs_off_t offset) 619 { 620 sector_t bn; 621 struct xfs_mount *m = XFS_I(inode)->i_mount; 622 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 623 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 624 625 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 627 628 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 629 ((offset - iomap_offset) >> inode->i_blkbits); 630 631 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 632 633 bh->b_blocknr = bn; 634 set_buffer_mapped(bh); 635 } 636 637 STATIC void 638 xfs_map_at_offset( 639 struct inode *inode, 640 struct buffer_head *bh, 641 struct xfs_bmbt_irec *imap, 642 xfs_off_t offset) 643 { 644 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 645 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 646 647 xfs_map_buffer(inode, bh, imap, offset); 648 set_buffer_mapped(bh); 649 clear_buffer_delay(bh); 650 clear_buffer_unwritten(bh); 651 } 652 653 /* 654 * Test if a given page contains at least one buffer of a given @type. 655 * If @check_all_buffers is true, then we walk all the buffers in the page to 656 * try to find one of the type passed in. If it is not set, then the caller only 657 * needs to check the first buffer on the page for a match. 658 */ 659 STATIC bool 660 xfs_check_page_type( 661 struct page *page, 662 unsigned int type, 663 bool check_all_buffers) 664 { 665 struct buffer_head *bh; 666 struct buffer_head *head; 667 668 if (PageWriteback(page)) 669 return false; 670 if (!page->mapping) 671 return false; 672 if (!page_has_buffers(page)) 673 return false; 674 675 bh = head = page_buffers(page); 676 do { 677 if (buffer_unwritten(bh)) { 678 if (type == XFS_IO_UNWRITTEN) 679 return true; 680 } else if (buffer_delay(bh)) { 681 if (type == XFS_IO_DELALLOC) 682 return true; 683 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 684 if (type == XFS_IO_OVERWRITE) 685 return true; 686 } 687 688 /* If we are only checking the first buffer, we are done now. */ 689 if (!check_all_buffers) 690 break; 691 } while ((bh = bh->b_this_page) != head); 692 693 return false; 694 } 695 696 /* 697 * Allocate & map buffers for page given the extent map. Write it out. 698 * except for the original page of a writepage, this is called on 699 * delalloc/unwritten pages only, for the original page it is possible 700 * that the page has no mapping at all. 701 */ 702 STATIC int 703 xfs_convert_page( 704 struct inode *inode, 705 struct page *page, 706 loff_t tindex, 707 struct xfs_bmbt_irec *imap, 708 xfs_ioend_t **ioendp, 709 struct writeback_control *wbc) 710 { 711 struct buffer_head *bh, *head; 712 xfs_off_t end_offset; 713 unsigned long p_offset; 714 unsigned int type; 715 int len, page_dirty; 716 int count = 0, done = 0, uptodate = 1; 717 xfs_off_t offset = page_offset(page); 718 719 if (page->index != tindex) 720 goto fail; 721 if (!trylock_page(page)) 722 goto fail; 723 if (PageWriteback(page)) 724 goto fail_unlock_page; 725 if (page->mapping != inode->i_mapping) 726 goto fail_unlock_page; 727 if (!xfs_check_page_type(page, (*ioendp)->io_type, false)) 728 goto fail_unlock_page; 729 730 /* 731 * page_dirty is initially a count of buffers on the page before 732 * EOF and is decremented as we move each into a cleanable state. 733 * 734 * Derivation: 735 * 736 * End offset is the highest offset that this page should represent. 737 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 738 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 739 * hence give us the correct page_dirty count. On any other page, 740 * it will be zero and in that case we need page_dirty to be the 741 * count of buffers on the page. 742 */ 743 end_offset = min_t(unsigned long long, 744 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 745 i_size_read(inode)); 746 747 /* 748 * If the current map does not span the entire page we are about to try 749 * to write, then give up. The only way we can write a page that spans 750 * multiple mappings in a single writeback iteration is via the 751 * xfs_vm_writepage() function. Data integrity writeback requires the 752 * entire page to be written in a single attempt, otherwise the part of 753 * the page we don't write here doesn't get written as part of the data 754 * integrity sync. 755 * 756 * For normal writeback, we also don't attempt to write partial pages 757 * here as it simply means that write_cache_pages() will see it under 758 * writeback and ignore the page until some point in the future, at 759 * which time this will be the only page in the file that needs 760 * writeback. Hence for more optimal IO patterns, we should always 761 * avoid partial page writeback due to multiple mappings on a page here. 762 */ 763 if (!xfs_imap_valid(inode, imap, end_offset)) 764 goto fail_unlock_page; 765 766 len = 1 << inode->i_blkbits; 767 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 768 PAGE_CACHE_SIZE); 769 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 770 page_dirty = p_offset / len; 771 772 /* 773 * The moment we find a buffer that doesn't match our current type 774 * specification or can't be written, abort the loop and start 775 * writeback. As per the above xfs_imap_valid() check, only 776 * xfs_vm_writepage() can handle partial page writeback fully - we are 777 * limited here to the buffers that are contiguous with the current 778 * ioend, and hence a buffer we can't write breaks that contiguity and 779 * we have to defer the rest of the IO to xfs_vm_writepage(). 780 */ 781 bh = head = page_buffers(page); 782 do { 783 if (offset >= end_offset) 784 break; 785 if (!buffer_uptodate(bh)) 786 uptodate = 0; 787 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 788 done = 1; 789 break; 790 } 791 792 if (buffer_unwritten(bh) || buffer_delay(bh) || 793 buffer_mapped(bh)) { 794 if (buffer_unwritten(bh)) 795 type = XFS_IO_UNWRITTEN; 796 else if (buffer_delay(bh)) 797 type = XFS_IO_DELALLOC; 798 else 799 type = XFS_IO_OVERWRITE; 800 801 /* 802 * imap should always be valid because of the above 803 * partial page end_offset check on the imap. 804 */ 805 ASSERT(xfs_imap_valid(inode, imap, offset)); 806 807 lock_buffer(bh); 808 if (type != XFS_IO_OVERWRITE) 809 xfs_map_at_offset(inode, bh, imap, offset); 810 xfs_add_to_ioend(inode, bh, offset, type, 811 ioendp, done); 812 813 page_dirty--; 814 count++; 815 } else { 816 done = 1; 817 break; 818 } 819 } while (offset += len, (bh = bh->b_this_page) != head); 820 821 if (uptodate && bh == head) 822 SetPageUptodate(page); 823 824 if (count) { 825 if (--wbc->nr_to_write <= 0 && 826 wbc->sync_mode == WB_SYNC_NONE) 827 done = 1; 828 } 829 xfs_start_page_writeback(page, !page_dirty, count); 830 831 return done; 832 fail_unlock_page: 833 unlock_page(page); 834 fail: 835 return 1; 836 } 837 838 /* 839 * Convert & write out a cluster of pages in the same extent as defined 840 * by mp and following the start page. 841 */ 842 STATIC void 843 xfs_cluster_write( 844 struct inode *inode, 845 pgoff_t tindex, 846 struct xfs_bmbt_irec *imap, 847 xfs_ioend_t **ioendp, 848 struct writeback_control *wbc, 849 pgoff_t tlast) 850 { 851 struct pagevec pvec; 852 int done = 0, i; 853 854 pagevec_init(&pvec, 0); 855 while (!done && tindex <= tlast) { 856 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 857 858 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 859 break; 860 861 for (i = 0; i < pagevec_count(&pvec); i++) { 862 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 863 imap, ioendp, wbc); 864 if (done) 865 break; 866 } 867 868 pagevec_release(&pvec); 869 cond_resched(); 870 } 871 } 872 873 STATIC void 874 xfs_vm_invalidatepage( 875 struct page *page, 876 unsigned int offset, 877 unsigned int length) 878 { 879 trace_xfs_invalidatepage(page->mapping->host, page, offset, 880 length); 881 block_invalidatepage(page, offset, length); 882 } 883 884 /* 885 * If the page has delalloc buffers on it, we need to punch them out before we 886 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 887 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 888 * is done on that same region - the delalloc extent is returned when none is 889 * supposed to be there. 890 * 891 * We prevent this by truncating away the delalloc regions on the page before 892 * invalidating it. Because they are delalloc, we can do this without needing a 893 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 894 * truncation without a transaction as there is no space left for block 895 * reservation (typically why we see a ENOSPC in writeback). 896 * 897 * This is not a performance critical path, so for now just do the punching a 898 * buffer head at a time. 899 */ 900 STATIC void 901 xfs_aops_discard_page( 902 struct page *page) 903 { 904 struct inode *inode = page->mapping->host; 905 struct xfs_inode *ip = XFS_I(inode); 906 struct buffer_head *bh, *head; 907 loff_t offset = page_offset(page); 908 909 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 910 goto out_invalidate; 911 912 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 913 goto out_invalidate; 914 915 xfs_alert(ip->i_mount, 916 "page discard on page %p, inode 0x%llx, offset %llu.", 917 page, ip->i_ino, offset); 918 919 xfs_ilock(ip, XFS_ILOCK_EXCL); 920 bh = head = page_buffers(page); 921 do { 922 int error; 923 xfs_fileoff_t start_fsb; 924 925 if (!buffer_delay(bh)) 926 goto next_buffer; 927 928 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 929 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 930 if (error) { 931 /* something screwed, just bail */ 932 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 933 xfs_alert(ip->i_mount, 934 "page discard unable to remove delalloc mapping."); 935 } 936 break; 937 } 938 next_buffer: 939 offset += 1 << inode->i_blkbits; 940 941 } while ((bh = bh->b_this_page) != head); 942 943 xfs_iunlock(ip, XFS_ILOCK_EXCL); 944 out_invalidate: 945 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 946 return; 947 } 948 949 /* 950 * Write out a dirty page. 951 * 952 * For delalloc space on the page we need to allocate space and flush it. 953 * For unwritten space on the page we need to start the conversion to 954 * regular allocated space. 955 * For any other dirty buffer heads on the page we should flush them. 956 */ 957 STATIC int 958 xfs_vm_writepage( 959 struct page *page, 960 struct writeback_control *wbc) 961 { 962 struct inode *inode = page->mapping->host; 963 struct buffer_head *bh, *head; 964 struct xfs_bmbt_irec imap; 965 xfs_ioend_t *ioend = NULL, *iohead = NULL; 966 loff_t offset; 967 unsigned int type; 968 __uint64_t end_offset; 969 pgoff_t end_index, last_index; 970 ssize_t len; 971 int err, imap_valid = 0, uptodate = 1; 972 int count = 0; 973 int nonblocking = 0; 974 975 trace_xfs_writepage(inode, page, 0, 0); 976 977 ASSERT(page_has_buffers(page)); 978 979 /* 980 * Refuse to write the page out if we are called from reclaim context. 981 * 982 * This avoids stack overflows when called from deeply used stacks in 983 * random callers for direct reclaim or memcg reclaim. We explicitly 984 * allow reclaim from kswapd as the stack usage there is relatively low. 985 * 986 * This should never happen except in the case of a VM regression so 987 * warn about it. 988 */ 989 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 990 PF_MEMALLOC)) 991 goto redirty; 992 993 /* 994 * Given that we do not allow direct reclaim to call us, we should 995 * never be called while in a filesystem transaction. 996 */ 997 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 998 goto redirty; 999 1000 /* Is this page beyond the end of the file? */ 1001 offset = i_size_read(inode); 1002 end_index = offset >> PAGE_CACHE_SHIFT; 1003 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 1004 1005 /* 1006 * The page index is less than the end_index, adjust the end_offset 1007 * to the highest offset that this page should represent. 1008 * ----------------------------------------------------- 1009 * | file mapping | <EOF> | 1010 * ----------------------------------------------------- 1011 * | Page ... | Page N-2 | Page N-1 | Page N | | 1012 * ^--------------------------------^----------|-------- 1013 * | desired writeback range | see else | 1014 * ---------------------------------^------------------| 1015 */ 1016 if (page->index < end_index) 1017 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT; 1018 else { 1019 /* 1020 * Check whether the page to write out is beyond or straddles 1021 * i_size or not. 1022 * ------------------------------------------------------- 1023 * | file mapping | <EOF> | 1024 * ------------------------------------------------------- 1025 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1026 * ^--------------------------------^-----------|--------- 1027 * | | Straddles | 1028 * ---------------------------------^-----------|--------| 1029 */ 1030 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 1031 1032 /* 1033 * Skip the page if it is fully outside i_size, e.g. due to a 1034 * truncate operation that is in progress. We must redirty the 1035 * page so that reclaim stops reclaiming it. Otherwise 1036 * xfs_vm_releasepage() is called on it and gets confused. 1037 * 1038 * Note that the end_index is unsigned long, it would overflow 1039 * if the given offset is greater than 16TB on 32-bit system 1040 * and if we do check the page is fully outside i_size or not 1041 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1042 * will be evaluated to 0. Hence this page will be redirtied 1043 * and be written out repeatedly which would result in an 1044 * infinite loop, the user program that perform this operation 1045 * will hang. Instead, we can verify this situation by checking 1046 * if the page to write is totally beyond the i_size or if it's 1047 * offset is just equal to the EOF. 1048 */ 1049 if (page->index > end_index || 1050 (page->index == end_index && offset_into_page == 0)) 1051 goto redirty; 1052 1053 /* 1054 * The page straddles i_size. It must be zeroed out on each 1055 * and every writepage invocation because it may be mmapped. 1056 * "A file is mapped in multiples of the page size. For a file 1057 * that is not a multiple of the page size, the remaining 1058 * memory is zeroed when mapped, and writes to that region are 1059 * not written out to the file." 1060 */ 1061 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 1062 1063 /* Adjust the end_offset to the end of file */ 1064 end_offset = offset; 1065 } 1066 1067 len = 1 << inode->i_blkbits; 1068 1069 bh = head = page_buffers(page); 1070 offset = page_offset(page); 1071 type = XFS_IO_OVERWRITE; 1072 1073 if (wbc->sync_mode == WB_SYNC_NONE) 1074 nonblocking = 1; 1075 1076 do { 1077 int new_ioend = 0; 1078 1079 if (offset >= end_offset) 1080 break; 1081 if (!buffer_uptodate(bh)) 1082 uptodate = 0; 1083 1084 /* 1085 * set_page_dirty dirties all buffers in a page, independent 1086 * of their state. The dirty state however is entirely 1087 * meaningless for holes (!mapped && uptodate), so skip 1088 * buffers covering holes here. 1089 */ 1090 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1091 imap_valid = 0; 1092 continue; 1093 } 1094 1095 if (buffer_unwritten(bh)) { 1096 if (type != XFS_IO_UNWRITTEN) { 1097 type = XFS_IO_UNWRITTEN; 1098 imap_valid = 0; 1099 } 1100 } else if (buffer_delay(bh)) { 1101 if (type != XFS_IO_DELALLOC) { 1102 type = XFS_IO_DELALLOC; 1103 imap_valid = 0; 1104 } 1105 } else if (buffer_uptodate(bh)) { 1106 if (type != XFS_IO_OVERWRITE) { 1107 type = XFS_IO_OVERWRITE; 1108 imap_valid = 0; 1109 } 1110 } else { 1111 if (PageUptodate(page)) 1112 ASSERT(buffer_mapped(bh)); 1113 /* 1114 * This buffer is not uptodate and will not be 1115 * written to disk. Ensure that we will put any 1116 * subsequent writeable buffers into a new 1117 * ioend. 1118 */ 1119 imap_valid = 0; 1120 continue; 1121 } 1122 1123 if (imap_valid) 1124 imap_valid = xfs_imap_valid(inode, &imap, offset); 1125 if (!imap_valid) { 1126 /* 1127 * If we didn't have a valid mapping then we need to 1128 * put the new mapping into a separate ioend structure. 1129 * This ensures non-contiguous extents always have 1130 * separate ioends, which is particularly important 1131 * for unwritten extent conversion at I/O completion 1132 * time. 1133 */ 1134 new_ioend = 1; 1135 err = xfs_map_blocks(inode, offset, &imap, type, 1136 nonblocking); 1137 if (err) 1138 goto error; 1139 imap_valid = xfs_imap_valid(inode, &imap, offset); 1140 } 1141 if (imap_valid) { 1142 lock_buffer(bh); 1143 if (type != XFS_IO_OVERWRITE) 1144 xfs_map_at_offset(inode, bh, &imap, offset); 1145 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1146 new_ioend); 1147 count++; 1148 } 1149 1150 if (!iohead) 1151 iohead = ioend; 1152 1153 } while (offset += len, ((bh = bh->b_this_page) != head)); 1154 1155 if (uptodate && bh == head) 1156 SetPageUptodate(page); 1157 1158 xfs_start_page_writeback(page, 1, count); 1159 1160 /* if there is no IO to be submitted for this page, we are done */ 1161 if (!ioend) 1162 return 0; 1163 1164 ASSERT(iohead); 1165 1166 /* 1167 * Any errors from this point onwards need tobe reported through the IO 1168 * completion path as we have marked the initial page as under writeback 1169 * and unlocked it. 1170 */ 1171 if (imap_valid) { 1172 xfs_off_t end_index; 1173 1174 end_index = imap.br_startoff + imap.br_blockcount; 1175 1176 /* to bytes */ 1177 end_index <<= inode->i_blkbits; 1178 1179 /* to pages */ 1180 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1181 1182 /* check against file size */ 1183 if (end_index > last_index) 1184 end_index = last_index; 1185 1186 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1187 wbc, end_index); 1188 } 1189 1190 1191 /* 1192 * Reserve log space if we might write beyond the on-disk inode size. 1193 */ 1194 err = 0; 1195 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1196 err = xfs_setfilesize_trans_alloc(ioend); 1197 1198 xfs_submit_ioend(wbc, iohead, err); 1199 1200 return 0; 1201 1202 error: 1203 if (iohead) 1204 xfs_cancel_ioend(iohead); 1205 1206 if (err == -EAGAIN) 1207 goto redirty; 1208 1209 xfs_aops_discard_page(page); 1210 ClearPageUptodate(page); 1211 unlock_page(page); 1212 return err; 1213 1214 redirty: 1215 redirty_page_for_writepage(wbc, page); 1216 unlock_page(page); 1217 return 0; 1218 } 1219 1220 STATIC int 1221 xfs_vm_writepages( 1222 struct address_space *mapping, 1223 struct writeback_control *wbc) 1224 { 1225 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1226 return generic_writepages(mapping, wbc); 1227 } 1228 1229 /* 1230 * Called to move a page into cleanable state - and from there 1231 * to be released. The page should already be clean. We always 1232 * have buffer heads in this call. 1233 * 1234 * Returns 1 if the page is ok to release, 0 otherwise. 1235 */ 1236 STATIC int 1237 xfs_vm_releasepage( 1238 struct page *page, 1239 gfp_t gfp_mask) 1240 { 1241 int delalloc, unwritten; 1242 1243 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1244 1245 xfs_count_page_state(page, &delalloc, &unwritten); 1246 1247 if (WARN_ON_ONCE(delalloc)) 1248 return 0; 1249 if (WARN_ON_ONCE(unwritten)) 1250 return 0; 1251 1252 return try_to_free_buffers(page); 1253 } 1254 1255 STATIC int 1256 __xfs_get_blocks( 1257 struct inode *inode, 1258 sector_t iblock, 1259 struct buffer_head *bh_result, 1260 int create, 1261 int direct) 1262 { 1263 struct xfs_inode *ip = XFS_I(inode); 1264 struct xfs_mount *mp = ip->i_mount; 1265 xfs_fileoff_t offset_fsb, end_fsb; 1266 int error = 0; 1267 int lockmode = 0; 1268 struct xfs_bmbt_irec imap; 1269 int nimaps = 1; 1270 xfs_off_t offset; 1271 ssize_t size; 1272 int new = 0; 1273 1274 if (XFS_FORCED_SHUTDOWN(mp)) 1275 return -EIO; 1276 1277 offset = (xfs_off_t)iblock << inode->i_blkbits; 1278 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1279 size = bh_result->b_size; 1280 1281 if (!create && direct && offset >= i_size_read(inode)) 1282 return 0; 1283 1284 /* 1285 * Direct I/O is usually done on preallocated files, so try getting 1286 * a block mapping without an exclusive lock first. For buffered 1287 * writes we already have the exclusive iolock anyway, so avoiding 1288 * a lock roundtrip here by taking the ilock exclusive from the 1289 * beginning is a useful micro optimization. 1290 */ 1291 if (create && !direct) { 1292 lockmode = XFS_ILOCK_EXCL; 1293 xfs_ilock(ip, lockmode); 1294 } else { 1295 lockmode = xfs_ilock_data_map_shared(ip); 1296 } 1297 1298 ASSERT(offset <= mp->m_super->s_maxbytes); 1299 if (offset + size > mp->m_super->s_maxbytes) 1300 size = mp->m_super->s_maxbytes - offset; 1301 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1302 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1303 1304 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1305 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1306 if (error) 1307 goto out_unlock; 1308 1309 if (create && 1310 (!nimaps || 1311 (imap.br_startblock == HOLESTARTBLOCK || 1312 imap.br_startblock == DELAYSTARTBLOCK))) { 1313 if (direct || xfs_get_extsz_hint(ip)) { 1314 /* 1315 * Drop the ilock in preparation for starting the block 1316 * allocation transaction. It will be retaken 1317 * exclusively inside xfs_iomap_write_direct for the 1318 * actual allocation. 1319 */ 1320 xfs_iunlock(ip, lockmode); 1321 error = xfs_iomap_write_direct(ip, offset, size, 1322 &imap, nimaps); 1323 if (error) 1324 return error; 1325 new = 1; 1326 } else { 1327 /* 1328 * Delalloc reservations do not require a transaction, 1329 * we can go on without dropping the lock here. If we 1330 * are allocating a new delalloc block, make sure that 1331 * we set the new flag so that we mark the buffer new so 1332 * that we know that it is newly allocated if the write 1333 * fails. 1334 */ 1335 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1336 new = 1; 1337 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1338 if (error) 1339 goto out_unlock; 1340 1341 xfs_iunlock(ip, lockmode); 1342 } 1343 1344 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1345 } else if (nimaps) { 1346 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1347 xfs_iunlock(ip, lockmode); 1348 } else { 1349 trace_xfs_get_blocks_notfound(ip, offset, size); 1350 goto out_unlock; 1351 } 1352 1353 if (imap.br_startblock != HOLESTARTBLOCK && 1354 imap.br_startblock != DELAYSTARTBLOCK) { 1355 /* 1356 * For unwritten extents do not report a disk address on 1357 * the read case (treat as if we're reading into a hole). 1358 */ 1359 if (create || !ISUNWRITTEN(&imap)) 1360 xfs_map_buffer(inode, bh_result, &imap, offset); 1361 if (create && ISUNWRITTEN(&imap)) { 1362 if (direct) { 1363 bh_result->b_private = inode; 1364 set_buffer_defer_completion(bh_result); 1365 } 1366 set_buffer_unwritten(bh_result); 1367 } 1368 } 1369 1370 /* 1371 * If this is a realtime file, data may be on a different device. 1372 * to that pointed to from the buffer_head b_bdev currently. 1373 */ 1374 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1375 1376 /* 1377 * If we previously allocated a block out beyond eof and we are now 1378 * coming back to use it then we will need to flag it as new even if it 1379 * has a disk address. 1380 * 1381 * With sub-block writes into unwritten extents we also need to mark 1382 * the buffer as new so that the unwritten parts of the buffer gets 1383 * correctly zeroed. 1384 */ 1385 if (create && 1386 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1387 (offset >= i_size_read(inode)) || 1388 (new || ISUNWRITTEN(&imap)))) 1389 set_buffer_new(bh_result); 1390 1391 if (imap.br_startblock == DELAYSTARTBLOCK) { 1392 BUG_ON(direct); 1393 if (create) { 1394 set_buffer_uptodate(bh_result); 1395 set_buffer_mapped(bh_result); 1396 set_buffer_delay(bh_result); 1397 } 1398 } 1399 1400 /* 1401 * If this is O_DIRECT or the mpage code calling tell them how large 1402 * the mapping is, so that we can avoid repeated get_blocks calls. 1403 * 1404 * If the mapping spans EOF, then we have to break the mapping up as the 1405 * mapping for blocks beyond EOF must be marked new so that sub block 1406 * regions can be correctly zeroed. We can't do this for mappings within 1407 * EOF unless the mapping was just allocated or is unwritten, otherwise 1408 * the callers would overwrite existing data with zeros. Hence we have 1409 * to split the mapping into a range up to and including EOF, and a 1410 * second mapping for beyond EOF. 1411 */ 1412 if (direct || size > (1 << inode->i_blkbits)) { 1413 xfs_off_t mapping_size; 1414 1415 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1416 mapping_size <<= inode->i_blkbits; 1417 1418 ASSERT(mapping_size > 0); 1419 if (mapping_size > size) 1420 mapping_size = size; 1421 if (offset < i_size_read(inode) && 1422 offset + mapping_size >= i_size_read(inode)) { 1423 /* limit mapping to block that spans EOF */ 1424 mapping_size = roundup_64(i_size_read(inode) - offset, 1425 1 << inode->i_blkbits); 1426 } 1427 if (mapping_size > LONG_MAX) 1428 mapping_size = LONG_MAX; 1429 1430 bh_result->b_size = mapping_size; 1431 } 1432 1433 return 0; 1434 1435 out_unlock: 1436 xfs_iunlock(ip, lockmode); 1437 return error; 1438 } 1439 1440 int 1441 xfs_get_blocks( 1442 struct inode *inode, 1443 sector_t iblock, 1444 struct buffer_head *bh_result, 1445 int create) 1446 { 1447 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1448 } 1449 1450 STATIC int 1451 xfs_get_blocks_direct( 1452 struct inode *inode, 1453 sector_t iblock, 1454 struct buffer_head *bh_result, 1455 int create) 1456 { 1457 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1458 } 1459 1460 /* 1461 * Complete a direct I/O write request. 1462 * 1463 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1464 * need to issue a transaction to convert the range from unwritten to written 1465 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1466 * to do this and we are done. But in case this was a successful AIO 1467 * request this handler is called from interrupt context, from which we 1468 * can't start transactions. In that case offload the I/O completion to 1469 * the workqueues we also use for buffered I/O completion. 1470 */ 1471 STATIC void 1472 xfs_end_io_direct_write( 1473 struct kiocb *iocb, 1474 loff_t offset, 1475 ssize_t size, 1476 void *private) 1477 { 1478 struct xfs_ioend *ioend = iocb->private; 1479 1480 /* 1481 * While the generic direct I/O code updates the inode size, it does 1482 * so only after the end_io handler is called, which means our 1483 * end_io handler thinks the on-disk size is outside the in-core 1484 * size. To prevent this just update it a little bit earlier here. 1485 */ 1486 if (offset + size > i_size_read(ioend->io_inode)) 1487 i_size_write(ioend->io_inode, offset + size); 1488 1489 /* 1490 * blockdev_direct_IO can return an error even after the I/O 1491 * completion handler was called. Thus we need to protect 1492 * against double-freeing. 1493 */ 1494 iocb->private = NULL; 1495 1496 ioend->io_offset = offset; 1497 ioend->io_size = size; 1498 if (private && size > 0) 1499 ioend->io_type = XFS_IO_UNWRITTEN; 1500 1501 xfs_finish_ioend_sync(ioend); 1502 } 1503 1504 STATIC ssize_t 1505 xfs_vm_direct_IO( 1506 int rw, 1507 struct kiocb *iocb, 1508 struct iov_iter *iter, 1509 loff_t offset) 1510 { 1511 struct inode *inode = iocb->ki_filp->f_mapping->host; 1512 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1513 struct xfs_ioend *ioend = NULL; 1514 ssize_t ret; 1515 1516 if (rw & WRITE) { 1517 size_t size = iov_iter_count(iter); 1518 1519 /* 1520 * We cannot preallocate a size update transaction here as we 1521 * don't know whether allocation is necessary or not. Hence we 1522 * can only tell IO completion that one is necessary if we are 1523 * not doing unwritten extent conversion. 1524 */ 1525 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT); 1526 if (offset + size > XFS_I(inode)->i_d.di_size) 1527 ioend->io_isdirect = 1; 1528 1529 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1530 offset, xfs_get_blocks_direct, 1531 xfs_end_io_direct_write, NULL, 1532 DIO_ASYNC_EXTEND); 1533 if (ret != -EIOCBQUEUED && iocb->private) 1534 goto out_destroy_ioend; 1535 } else { 1536 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1537 offset, xfs_get_blocks_direct, 1538 NULL, NULL, 0); 1539 } 1540 1541 return ret; 1542 1543 out_destroy_ioend: 1544 xfs_destroy_ioend(ioend); 1545 return ret; 1546 } 1547 1548 /* 1549 * Punch out the delalloc blocks we have already allocated. 1550 * 1551 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1552 * as the page is still locked at this point. 1553 */ 1554 STATIC void 1555 xfs_vm_kill_delalloc_range( 1556 struct inode *inode, 1557 loff_t start, 1558 loff_t end) 1559 { 1560 struct xfs_inode *ip = XFS_I(inode); 1561 xfs_fileoff_t start_fsb; 1562 xfs_fileoff_t end_fsb; 1563 int error; 1564 1565 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1566 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1567 if (end_fsb <= start_fsb) 1568 return; 1569 1570 xfs_ilock(ip, XFS_ILOCK_EXCL); 1571 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1572 end_fsb - start_fsb); 1573 if (error) { 1574 /* something screwed, just bail */ 1575 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1576 xfs_alert(ip->i_mount, 1577 "xfs_vm_write_failed: unable to clean up ino %lld", 1578 ip->i_ino); 1579 } 1580 } 1581 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1582 } 1583 1584 STATIC void 1585 xfs_vm_write_failed( 1586 struct inode *inode, 1587 struct page *page, 1588 loff_t pos, 1589 unsigned len) 1590 { 1591 loff_t block_offset; 1592 loff_t block_start; 1593 loff_t block_end; 1594 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1595 loff_t to = from + len; 1596 struct buffer_head *bh, *head; 1597 1598 /* 1599 * The request pos offset might be 32 or 64 bit, this is all fine 1600 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1601 * platform, the high 32-bit will be masked off if we evaluate the 1602 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1603 * 0xfffff000 as an unsigned long, hence the result is incorrect 1604 * which could cause the following ASSERT failed in most cases. 1605 * In order to avoid this, we can evaluate the block_offset of the 1606 * start of the page by using shifts rather than masks the mismatch 1607 * problem. 1608 */ 1609 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1610 1611 ASSERT(block_offset + from == pos); 1612 1613 head = page_buffers(page); 1614 block_start = 0; 1615 for (bh = head; bh != head || !block_start; 1616 bh = bh->b_this_page, block_start = block_end, 1617 block_offset += bh->b_size) { 1618 block_end = block_start + bh->b_size; 1619 1620 /* skip buffers before the write */ 1621 if (block_end <= from) 1622 continue; 1623 1624 /* if the buffer is after the write, we're done */ 1625 if (block_start >= to) 1626 break; 1627 1628 if (!buffer_delay(bh)) 1629 continue; 1630 1631 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1632 continue; 1633 1634 xfs_vm_kill_delalloc_range(inode, block_offset, 1635 block_offset + bh->b_size); 1636 1637 /* 1638 * This buffer does not contain data anymore. make sure anyone 1639 * who finds it knows that for certain. 1640 */ 1641 clear_buffer_delay(bh); 1642 clear_buffer_uptodate(bh); 1643 clear_buffer_mapped(bh); 1644 clear_buffer_new(bh); 1645 clear_buffer_dirty(bh); 1646 } 1647 1648 } 1649 1650 /* 1651 * This used to call block_write_begin(), but it unlocks and releases the page 1652 * on error, and we need that page to be able to punch stale delalloc blocks out 1653 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1654 * the appropriate point. 1655 */ 1656 STATIC int 1657 xfs_vm_write_begin( 1658 struct file *file, 1659 struct address_space *mapping, 1660 loff_t pos, 1661 unsigned len, 1662 unsigned flags, 1663 struct page **pagep, 1664 void **fsdata) 1665 { 1666 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1667 struct page *page; 1668 int status; 1669 1670 ASSERT(len <= PAGE_CACHE_SIZE); 1671 1672 page = grab_cache_page_write_begin(mapping, index, flags); 1673 if (!page) 1674 return -ENOMEM; 1675 1676 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1677 if (unlikely(status)) { 1678 struct inode *inode = mapping->host; 1679 size_t isize = i_size_read(inode); 1680 1681 xfs_vm_write_failed(inode, page, pos, len); 1682 unlock_page(page); 1683 1684 /* 1685 * If the write is beyond EOF, we only want to kill blocks 1686 * allocated in this write, not blocks that were previously 1687 * written successfully. 1688 */ 1689 if (pos + len > isize) { 1690 ssize_t start = max_t(ssize_t, pos, isize); 1691 1692 truncate_pagecache_range(inode, start, pos + len); 1693 } 1694 1695 page_cache_release(page); 1696 page = NULL; 1697 } 1698 1699 *pagep = page; 1700 return status; 1701 } 1702 1703 /* 1704 * On failure, we only need to kill delalloc blocks beyond EOF in the range of 1705 * this specific write because they will never be written. Previous writes 1706 * beyond EOF where block allocation succeeded do not need to be trashed, so 1707 * only new blocks from this write should be trashed. For blocks within 1708 * EOF, generic_write_end() zeros them so they are safe to leave alone and be 1709 * written with all the other valid data. 1710 */ 1711 STATIC int 1712 xfs_vm_write_end( 1713 struct file *file, 1714 struct address_space *mapping, 1715 loff_t pos, 1716 unsigned len, 1717 unsigned copied, 1718 struct page *page, 1719 void *fsdata) 1720 { 1721 int ret; 1722 1723 ASSERT(len <= PAGE_CACHE_SIZE); 1724 1725 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1726 if (unlikely(ret < len)) { 1727 struct inode *inode = mapping->host; 1728 size_t isize = i_size_read(inode); 1729 loff_t to = pos + len; 1730 1731 if (to > isize) { 1732 /* only kill blocks in this write beyond EOF */ 1733 if (pos > isize) 1734 isize = pos; 1735 xfs_vm_kill_delalloc_range(inode, isize, to); 1736 truncate_pagecache_range(inode, isize, to); 1737 } 1738 } 1739 return ret; 1740 } 1741 1742 STATIC sector_t 1743 xfs_vm_bmap( 1744 struct address_space *mapping, 1745 sector_t block) 1746 { 1747 struct inode *inode = (struct inode *)mapping->host; 1748 struct xfs_inode *ip = XFS_I(inode); 1749 1750 trace_xfs_vm_bmap(XFS_I(inode)); 1751 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1752 filemap_write_and_wait(mapping); 1753 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1754 return generic_block_bmap(mapping, block, xfs_get_blocks); 1755 } 1756 1757 STATIC int 1758 xfs_vm_readpage( 1759 struct file *unused, 1760 struct page *page) 1761 { 1762 return mpage_readpage(page, xfs_get_blocks); 1763 } 1764 1765 STATIC int 1766 xfs_vm_readpages( 1767 struct file *unused, 1768 struct address_space *mapping, 1769 struct list_head *pages, 1770 unsigned nr_pages) 1771 { 1772 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1773 } 1774 1775 /* 1776 * This is basically a copy of __set_page_dirty_buffers() with one 1777 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1778 * dirty, we'll never be able to clean them because we don't write buffers 1779 * beyond EOF, and that means we can't invalidate pages that span EOF 1780 * that have been marked dirty. Further, the dirty state can leak into 1781 * the file interior if the file is extended, resulting in all sorts of 1782 * bad things happening as the state does not match the underlying data. 1783 * 1784 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1785 * this only exist because of bufferheads and how the generic code manages them. 1786 */ 1787 STATIC int 1788 xfs_vm_set_page_dirty( 1789 struct page *page) 1790 { 1791 struct address_space *mapping = page->mapping; 1792 struct inode *inode = mapping->host; 1793 loff_t end_offset; 1794 loff_t offset; 1795 int newly_dirty; 1796 1797 if (unlikely(!mapping)) 1798 return !TestSetPageDirty(page); 1799 1800 end_offset = i_size_read(inode); 1801 offset = page_offset(page); 1802 1803 spin_lock(&mapping->private_lock); 1804 if (page_has_buffers(page)) { 1805 struct buffer_head *head = page_buffers(page); 1806 struct buffer_head *bh = head; 1807 1808 do { 1809 if (offset < end_offset) 1810 set_buffer_dirty(bh); 1811 bh = bh->b_this_page; 1812 offset += 1 << inode->i_blkbits; 1813 } while (bh != head); 1814 } 1815 newly_dirty = !TestSetPageDirty(page); 1816 spin_unlock(&mapping->private_lock); 1817 1818 if (newly_dirty) { 1819 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1820 unsigned long flags; 1821 1822 spin_lock_irqsave(&mapping->tree_lock, flags); 1823 if (page->mapping) { /* Race with truncate? */ 1824 WARN_ON_ONCE(!PageUptodate(page)); 1825 account_page_dirtied(page, mapping); 1826 radix_tree_tag_set(&mapping->page_tree, 1827 page_index(page), PAGECACHE_TAG_DIRTY); 1828 } 1829 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1830 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1831 } 1832 return newly_dirty; 1833 } 1834 1835 const struct address_space_operations xfs_address_space_operations = { 1836 .readpage = xfs_vm_readpage, 1837 .readpages = xfs_vm_readpages, 1838 .writepage = xfs_vm_writepage, 1839 .writepages = xfs_vm_writepages, 1840 .set_page_dirty = xfs_vm_set_page_dirty, 1841 .releasepage = xfs_vm_releasepage, 1842 .invalidatepage = xfs_vm_invalidatepage, 1843 .write_begin = xfs_vm_write_begin, 1844 .write_end = xfs_vm_write_end, 1845 .bmap = xfs_vm_bmap, 1846 .direct_IO = xfs_vm_direct_IO, 1847 .migratepage = buffer_migrate_page, 1848 .is_partially_uptodate = block_is_partially_uptodate, 1849 .error_remove_page = generic_error_remove_page, 1850 }; 1851