1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "scrub/scrub.h" 30 #include "scrub/common.h" 31 #include "scrub/trace.h" 32 #include "scrub/repair.h" 33 #include "scrub/bitmap.h" 34 35 /* 36 * Attempt to repair some metadata, if the metadata is corrupt and userspace 37 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 38 * and will set *fixed to true if it thinks it repaired anything. 39 */ 40 int 41 xrep_attempt( 42 struct xfs_scrub *sc) 43 { 44 int error = 0; 45 46 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 47 48 xchk_ag_btcur_free(&sc->sa); 49 50 /* Repair whatever's broken. */ 51 ASSERT(sc->ops->repair); 52 error = sc->ops->repair(sc); 53 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 54 switch (error) { 55 case 0: 56 /* 57 * Repair succeeded. Commit the fixes and perform a second 58 * scrub so that we can tell userspace if we fixed the problem. 59 */ 60 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 61 sc->flags |= XREP_ALREADY_FIXED; 62 return -EAGAIN; 63 case -ECHRNG: 64 sc->flags |= XCHK_NEED_DRAIN; 65 return -EAGAIN; 66 case -EDEADLOCK: 67 /* Tell the caller to try again having grabbed all the locks. */ 68 if (!(sc->flags & XCHK_TRY_HARDER)) { 69 sc->flags |= XCHK_TRY_HARDER; 70 return -EAGAIN; 71 } 72 /* 73 * We tried harder but still couldn't grab all the resources 74 * we needed to fix it. The corruption has not been fixed, 75 * so exit to userspace with the scan's output flags unchanged. 76 */ 77 return 0; 78 default: 79 /* 80 * EAGAIN tells the caller to re-scrub, so we cannot return 81 * that here. 82 */ 83 ASSERT(error != -EAGAIN); 84 return error; 85 } 86 } 87 88 /* 89 * Complain about unfixable problems in the filesystem. We don't log 90 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 91 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 92 * administrator isn't running xfs_scrub in no-repairs mode. 93 * 94 * Use this helper function because _ratelimited silently declares a static 95 * structure to track rate limiting information. 96 */ 97 void 98 xrep_failure( 99 struct xfs_mount *mp) 100 { 101 xfs_alert_ratelimited(mp, 102 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 103 } 104 105 /* 106 * Repair probe -- userspace uses this to probe if we're willing to repair a 107 * given mountpoint. 108 */ 109 int 110 xrep_probe( 111 struct xfs_scrub *sc) 112 { 113 int error = 0; 114 115 if (xchk_should_terminate(sc, &error)) 116 return error; 117 118 return 0; 119 } 120 121 /* 122 * Roll a transaction, keeping the AG headers locked and reinitializing 123 * the btree cursors. 124 */ 125 int 126 xrep_roll_ag_trans( 127 struct xfs_scrub *sc) 128 { 129 int error; 130 131 /* 132 * Keep the AG header buffers locked while we roll the transaction. 133 * Ensure that both AG buffers are dirty and held when we roll the 134 * transaction so that they move forward in the log without losing the 135 * bli (and hence the bli type) when the transaction commits. 136 * 137 * Normal code would never hold clean buffers across a roll, but repair 138 * needs both buffers to maintain a total lock on the AG. 139 */ 140 if (sc->sa.agi_bp) { 141 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 142 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 143 } 144 145 if (sc->sa.agf_bp) { 146 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 147 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 148 } 149 150 /* 151 * Roll the transaction. We still hold the AG header buffers locked 152 * regardless of whether or not that succeeds. On failure, the buffers 153 * will be released during teardown on our way out of the kernel. If 154 * successful, join the buffers to the new transaction and move on. 155 */ 156 error = xfs_trans_roll(&sc->tp); 157 if (error) 158 return error; 159 160 /* Join the AG headers to the new transaction. */ 161 if (sc->sa.agi_bp) 162 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 163 if (sc->sa.agf_bp) 164 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 165 166 return 0; 167 } 168 169 /* 170 * Does the given AG have enough space to rebuild a btree? Neither AG 171 * reservation can be critical, and we must have enough space (factoring 172 * in AG reservations) to construct a whole btree. 173 */ 174 bool 175 xrep_ag_has_space( 176 struct xfs_perag *pag, 177 xfs_extlen_t nr_blocks, 178 enum xfs_ag_resv_type type) 179 { 180 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 181 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 182 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 183 } 184 185 /* 186 * Figure out how many blocks to reserve for an AG repair. We calculate the 187 * worst case estimate for the number of blocks we'd need to rebuild one of 188 * any type of per-AG btree. 189 */ 190 xfs_extlen_t 191 xrep_calc_ag_resblks( 192 struct xfs_scrub *sc) 193 { 194 struct xfs_mount *mp = sc->mp; 195 struct xfs_scrub_metadata *sm = sc->sm; 196 struct xfs_perag *pag; 197 struct xfs_buf *bp; 198 xfs_agino_t icount = NULLAGINO; 199 xfs_extlen_t aglen = NULLAGBLOCK; 200 xfs_extlen_t usedlen; 201 xfs_extlen_t freelen; 202 xfs_extlen_t bnobt_sz; 203 xfs_extlen_t inobt_sz; 204 xfs_extlen_t rmapbt_sz; 205 xfs_extlen_t refcbt_sz; 206 int error; 207 208 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 209 return 0; 210 211 pag = xfs_perag_get(mp, sm->sm_agno); 212 if (xfs_perag_initialised_agi(pag)) { 213 /* Use in-core icount if possible. */ 214 icount = pag->pagi_count; 215 } else { 216 /* Try to get the actual counters from disk. */ 217 error = xfs_ialloc_read_agi(pag, NULL, &bp); 218 if (!error) { 219 icount = pag->pagi_count; 220 xfs_buf_relse(bp); 221 } 222 } 223 224 /* Now grab the block counters from the AGF. */ 225 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 226 if (error) { 227 aglen = pag->block_count; 228 freelen = aglen; 229 usedlen = aglen; 230 } else { 231 struct xfs_agf *agf = bp->b_addr; 232 233 aglen = be32_to_cpu(agf->agf_length); 234 freelen = be32_to_cpu(agf->agf_freeblks); 235 usedlen = aglen - freelen; 236 xfs_buf_relse(bp); 237 } 238 239 /* If the icount is impossible, make some worst-case assumptions. */ 240 if (icount == NULLAGINO || 241 !xfs_verify_agino(pag, icount)) { 242 icount = pag->agino_max - pag->agino_min + 1; 243 } 244 245 /* If the block counts are impossible, make worst-case assumptions. */ 246 if (aglen == NULLAGBLOCK || 247 aglen != pag->block_count || 248 freelen >= aglen) { 249 aglen = pag->block_count; 250 freelen = aglen; 251 usedlen = aglen; 252 } 253 xfs_perag_put(pag); 254 255 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 256 freelen, usedlen); 257 258 /* 259 * Figure out how many blocks we'd need worst case to rebuild 260 * each type of btree. Note that we can only rebuild the 261 * bnobt/cntbt or inobt/finobt as pairs. 262 */ 263 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 264 if (xfs_has_sparseinodes(mp)) 265 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 266 XFS_INODES_PER_HOLEMASK_BIT); 267 else 268 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 269 XFS_INODES_PER_CHUNK); 270 if (xfs_has_finobt(mp)) 271 inobt_sz *= 2; 272 if (xfs_has_reflink(mp)) 273 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 274 else 275 refcbt_sz = 0; 276 if (xfs_has_rmapbt(mp)) { 277 /* 278 * Guess how many blocks we need to rebuild the rmapbt. 279 * For non-reflink filesystems we can't have more records than 280 * used blocks. However, with reflink it's possible to have 281 * more than one rmap record per AG block. We don't know how 282 * many rmaps there could be in the AG, so we start off with 283 * what we hope is an generous over-estimation. 284 */ 285 if (xfs_has_reflink(mp)) 286 rmapbt_sz = xfs_rmapbt_calc_size(mp, 287 (unsigned long long)aglen * 2); 288 else 289 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 290 } else { 291 rmapbt_sz = 0; 292 } 293 294 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 295 inobt_sz, rmapbt_sz, refcbt_sz); 296 297 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 298 } 299 300 /* 301 * Reconstructing per-AG Btrees 302 * 303 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 304 * we scan secondary space metadata to derive the records that should be in 305 * the damaged btree, initialize a fresh btree root, and insert the records. 306 * Note that for rebuilding the rmapbt we scan all the primary data to 307 * generate the new records. 308 * 309 * However, that leaves the matter of removing all the metadata describing the 310 * old broken structure. For primary metadata we use the rmap data to collect 311 * every extent with a matching rmap owner (bitmap); we then iterate all other 312 * metadata structures with the same rmap owner to collect the extents that 313 * cannot be removed (sublist). We then subtract sublist from bitmap to 314 * derive the blocks that were used by the old btree. These blocks can be 315 * reaped. 316 * 317 * For rmapbt reconstructions we must use different tactics for extent 318 * collection. First we iterate all primary metadata (this excludes the old 319 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 320 * records are collected as bitmap. The bnobt records are collected as 321 * sublist. As with the other btrees we subtract sublist from bitmap, and the 322 * result (since the rmapbt lives in the free space) are the blocks from the 323 * old rmapbt. 324 */ 325 326 /* Ensure the freelist is the correct size. */ 327 int 328 xrep_fix_freelist( 329 struct xfs_scrub *sc, 330 bool can_shrink) 331 { 332 struct xfs_alloc_arg args = {0}; 333 334 args.mp = sc->mp; 335 args.tp = sc->tp; 336 args.agno = sc->sa.pag->pag_agno; 337 args.alignment = 1; 338 args.pag = sc->sa.pag; 339 340 return xfs_alloc_fix_freelist(&args, 341 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 342 } 343 344 /* 345 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 346 * 347 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 348 * the AG headers by using the rmap data to rummage through the AG looking for 349 * btree roots. This is not guaranteed to work if the AG is heavily damaged 350 * or the rmap data are corrupt. 351 * 352 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 353 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 354 * AGI is being rebuilt. It must maintain these locks until it's safe for 355 * other threads to change the btrees' shapes. The caller provides 356 * information about the btrees to look for by passing in an array of 357 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 358 * The (root, height) fields will be set on return if anything is found. The 359 * last element of the array should have a NULL buf_ops to mark the end of the 360 * array. 361 * 362 * For every rmapbt record matching any of the rmap owners in btree_info, 363 * read each block referenced by the rmap record. If the block is a btree 364 * block from this filesystem matching any of the magic numbers and has a 365 * level higher than what we've already seen, remember the block and the 366 * height of the tree required to have such a block. When the call completes, 367 * we return the highest block we've found for each btree description; those 368 * should be the roots. 369 */ 370 371 struct xrep_findroot { 372 struct xfs_scrub *sc; 373 struct xfs_buf *agfl_bp; 374 struct xfs_agf *agf; 375 struct xrep_find_ag_btree *btree_info; 376 }; 377 378 /* See if our block is in the AGFL. */ 379 STATIC int 380 xrep_findroot_agfl_walk( 381 struct xfs_mount *mp, 382 xfs_agblock_t bno, 383 void *priv) 384 { 385 xfs_agblock_t *agbno = priv; 386 387 return (*agbno == bno) ? -ECANCELED : 0; 388 } 389 390 /* Does this block match the btree information passed in? */ 391 STATIC int 392 xrep_findroot_block( 393 struct xrep_findroot *ri, 394 struct xrep_find_ag_btree *fab, 395 uint64_t owner, 396 xfs_agblock_t agbno, 397 bool *done_with_block) 398 { 399 struct xfs_mount *mp = ri->sc->mp; 400 struct xfs_buf *bp; 401 struct xfs_btree_block *btblock; 402 xfs_daddr_t daddr; 403 int block_level; 404 int error = 0; 405 406 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 407 408 /* 409 * Blocks in the AGFL have stale contents that might just happen to 410 * have a matching magic and uuid. We don't want to pull these blocks 411 * in as part of a tree root, so we have to filter out the AGFL stuff 412 * here. If the AGFL looks insane we'll just refuse to repair. 413 */ 414 if (owner == XFS_RMAP_OWN_AG) { 415 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 416 xrep_findroot_agfl_walk, &agbno); 417 if (error == -ECANCELED) 418 return 0; 419 if (error) 420 return error; 421 } 422 423 /* 424 * Read the buffer into memory so that we can see if it's a match for 425 * our btree type. We have no clue if it is beforehand, and we want to 426 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 427 * will cause needless disk reads in subsequent calls to this function) 428 * and logging metadata verifier failures. 429 * 430 * Therefore, pass in NULL buffer ops. If the buffer was already in 431 * memory from some other caller it will already have b_ops assigned. 432 * If it was in memory from a previous unsuccessful findroot_block 433 * call, the buffer won't have b_ops but it should be clean and ready 434 * for us to try to verify if the read call succeeds. The same applies 435 * if the buffer wasn't in memory at all. 436 * 437 * Note: If we never match a btree type with this buffer, it will be 438 * left in memory with NULL b_ops. This shouldn't be a problem unless 439 * the buffer gets written. 440 */ 441 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 442 mp->m_bsize, 0, &bp, NULL); 443 if (error) 444 return error; 445 446 /* Ensure the block magic matches the btree type we're looking for. */ 447 btblock = XFS_BUF_TO_BLOCK(bp); 448 ASSERT(fab->buf_ops->magic[1] != 0); 449 if (btblock->bb_magic != fab->buf_ops->magic[1]) 450 goto out; 451 452 /* 453 * If the buffer already has ops applied and they're not the ones for 454 * this btree type, we know this block doesn't match the btree and we 455 * can bail out. 456 * 457 * If the buffer ops match ours, someone else has already validated 458 * the block for us, so we can move on to checking if this is a root 459 * block candidate. 460 * 461 * If the buffer does not have ops, nobody has successfully validated 462 * the contents and the buffer cannot be dirty. If the magic, uuid, 463 * and structure match this btree type then we'll move on to checking 464 * if it's a root block candidate. If there is no match, bail out. 465 */ 466 if (bp->b_ops) { 467 if (bp->b_ops != fab->buf_ops) 468 goto out; 469 } else { 470 ASSERT(!xfs_trans_buf_is_dirty(bp)); 471 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 472 &mp->m_sb.sb_meta_uuid)) 473 goto out; 474 /* 475 * Read verifiers can reference b_ops, so we set the pointer 476 * here. If the verifier fails we'll reset the buffer state 477 * to what it was before we touched the buffer. 478 */ 479 bp->b_ops = fab->buf_ops; 480 fab->buf_ops->verify_read(bp); 481 if (bp->b_error) { 482 bp->b_ops = NULL; 483 bp->b_error = 0; 484 goto out; 485 } 486 487 /* 488 * Some read verifiers will (re)set b_ops, so we must be 489 * careful not to change b_ops after running the verifier. 490 */ 491 } 492 493 /* 494 * This block passes the magic/uuid and verifier tests for this btree 495 * type. We don't need the caller to try the other tree types. 496 */ 497 *done_with_block = true; 498 499 /* 500 * Compare this btree block's level to the height of the current 501 * candidate root block. 502 * 503 * If the level matches the root we found previously, throw away both 504 * blocks because there can't be two candidate roots. 505 * 506 * If level is lower in the tree than the root we found previously, 507 * ignore this block. 508 */ 509 block_level = xfs_btree_get_level(btblock); 510 if (block_level + 1 == fab->height) { 511 fab->root = NULLAGBLOCK; 512 goto out; 513 } else if (block_level < fab->height) { 514 goto out; 515 } 516 517 /* 518 * This is the highest block in the tree that we've found so far. 519 * Update the btree height to reflect what we've learned from this 520 * block. 521 */ 522 fab->height = block_level + 1; 523 524 /* 525 * If this block doesn't have sibling pointers, then it's the new root 526 * block candidate. Otherwise, the root will be found farther up the 527 * tree. 528 */ 529 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 530 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 531 fab->root = agbno; 532 else 533 fab->root = NULLAGBLOCK; 534 535 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 536 be32_to_cpu(btblock->bb_magic), fab->height - 1); 537 out: 538 xfs_trans_brelse(ri->sc->tp, bp); 539 return error; 540 } 541 542 /* 543 * Do any of the blocks in this rmap record match one of the btrees we're 544 * looking for? 545 */ 546 STATIC int 547 xrep_findroot_rmap( 548 struct xfs_btree_cur *cur, 549 const struct xfs_rmap_irec *rec, 550 void *priv) 551 { 552 struct xrep_findroot *ri = priv; 553 struct xrep_find_ag_btree *fab; 554 xfs_agblock_t b; 555 bool done; 556 int error = 0; 557 558 /* Ignore anything that isn't AG metadata. */ 559 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 560 return 0; 561 562 /* Otherwise scan each block + btree type. */ 563 for (b = 0; b < rec->rm_blockcount; b++) { 564 done = false; 565 for (fab = ri->btree_info; fab->buf_ops; fab++) { 566 if (rec->rm_owner != fab->rmap_owner) 567 continue; 568 error = xrep_findroot_block(ri, fab, 569 rec->rm_owner, rec->rm_startblock + b, 570 &done); 571 if (error) 572 return error; 573 if (done) 574 break; 575 } 576 } 577 578 return 0; 579 } 580 581 /* Find the roots of the per-AG btrees described in btree_info. */ 582 int 583 xrep_find_ag_btree_roots( 584 struct xfs_scrub *sc, 585 struct xfs_buf *agf_bp, 586 struct xrep_find_ag_btree *btree_info, 587 struct xfs_buf *agfl_bp) 588 { 589 struct xfs_mount *mp = sc->mp; 590 struct xrep_findroot ri; 591 struct xrep_find_ag_btree *fab; 592 struct xfs_btree_cur *cur; 593 int error; 594 595 ASSERT(xfs_buf_islocked(agf_bp)); 596 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 597 598 ri.sc = sc; 599 ri.btree_info = btree_info; 600 ri.agf = agf_bp->b_addr; 601 ri.agfl_bp = agfl_bp; 602 for (fab = btree_info; fab->buf_ops; fab++) { 603 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 604 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 605 fab->root = NULLAGBLOCK; 606 fab->height = 0; 607 } 608 609 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 610 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 611 xfs_btree_del_cursor(cur, error); 612 613 return error; 614 } 615 616 /* Force a quotacheck the next time we mount. */ 617 void 618 xrep_force_quotacheck( 619 struct xfs_scrub *sc, 620 xfs_dqtype_t type) 621 { 622 uint flag; 623 624 flag = xfs_quota_chkd_flag(type); 625 if (!(flag & sc->mp->m_qflags)) 626 return; 627 628 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock); 629 sc->mp->m_qflags &= ~flag; 630 spin_lock(&sc->mp->m_sb_lock); 631 sc->mp->m_sb.sb_qflags &= ~flag; 632 spin_unlock(&sc->mp->m_sb_lock); 633 xfs_log_sb(sc->tp); 634 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 635 } 636 637 /* 638 * Attach dquots to this inode, or schedule quotacheck to fix them. 639 * 640 * This function ensures that the appropriate dquots are attached to an inode. 641 * We cannot allow the dquot code to allocate an on-disk dquot block here 642 * because we're already in transaction context with the inode locked. The 643 * on-disk dquot should already exist anyway. If the quota code signals 644 * corruption or missing quota information, schedule quotacheck, which will 645 * repair corruptions in the quota metadata. 646 */ 647 int 648 xrep_ino_dqattach( 649 struct xfs_scrub *sc) 650 { 651 int error; 652 653 error = xfs_qm_dqattach_locked(sc->ip, false); 654 switch (error) { 655 case -EFSBADCRC: 656 case -EFSCORRUPTED: 657 case -ENOENT: 658 xfs_err_ratelimited(sc->mp, 659 "inode %llu repair encountered quota error %d, quotacheck forced.", 660 (unsigned long long)sc->ip->i_ino, error); 661 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 662 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 663 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 664 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 665 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 666 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 667 fallthrough; 668 case -ESRCH: 669 error = 0; 670 break; 671 default: 672 break; 673 } 674 675 return error; 676 } 677