1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "scrub/scrub.h" 30 #include "scrub/common.h" 31 #include "scrub/trace.h" 32 #include "scrub/repair.h" 33 #include "scrub/bitmap.h" 34 35 /* 36 * Attempt to repair some metadata, if the metadata is corrupt and userspace 37 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 38 * and will set *fixed to true if it thinks it repaired anything. 39 */ 40 int 41 xrep_attempt( 42 struct xfs_scrub *sc) 43 { 44 int error = 0; 45 46 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 47 48 xchk_ag_btcur_free(&sc->sa); 49 50 /* Repair whatever's broken. */ 51 ASSERT(sc->ops->repair); 52 error = sc->ops->repair(sc); 53 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 54 switch (error) { 55 case 0: 56 /* 57 * Repair succeeded. Commit the fixes and perform a second 58 * scrub so that we can tell userspace if we fixed the problem. 59 */ 60 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 61 sc->flags |= XREP_ALREADY_FIXED; 62 return -EAGAIN; 63 case -ECHRNG: 64 sc->flags |= XCHK_NEED_DRAIN; 65 return -EAGAIN; 66 case -EDEADLOCK: 67 /* Tell the caller to try again having grabbed all the locks. */ 68 if (!(sc->flags & XCHK_TRY_HARDER)) { 69 sc->flags |= XCHK_TRY_HARDER; 70 return -EAGAIN; 71 } 72 /* 73 * We tried harder but still couldn't grab all the resources 74 * we needed to fix it. The corruption has not been fixed, 75 * so exit to userspace with the scan's output flags unchanged. 76 */ 77 return 0; 78 default: 79 /* 80 * EAGAIN tells the caller to re-scrub, so we cannot return 81 * that here. 82 */ 83 ASSERT(error != -EAGAIN); 84 return error; 85 } 86 } 87 88 /* 89 * Complain about unfixable problems in the filesystem. We don't log 90 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 91 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 92 * administrator isn't running xfs_scrub in no-repairs mode. 93 * 94 * Use this helper function because _ratelimited silently declares a static 95 * structure to track rate limiting information. 96 */ 97 void 98 xrep_failure( 99 struct xfs_mount *mp) 100 { 101 xfs_alert_ratelimited(mp, 102 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 103 } 104 105 /* 106 * Repair probe -- userspace uses this to probe if we're willing to repair a 107 * given mountpoint. 108 */ 109 int 110 xrep_probe( 111 struct xfs_scrub *sc) 112 { 113 int error = 0; 114 115 if (xchk_should_terminate(sc, &error)) 116 return error; 117 118 return 0; 119 } 120 121 /* 122 * Roll a transaction, keeping the AG headers locked and reinitializing 123 * the btree cursors. 124 */ 125 int 126 xrep_roll_ag_trans( 127 struct xfs_scrub *sc) 128 { 129 int error; 130 131 /* 132 * Keep the AG header buffers locked while we roll the transaction. 133 * Ensure that both AG buffers are dirty and held when we roll the 134 * transaction so that they move forward in the log without losing the 135 * bli (and hence the bli type) when the transaction commits. 136 * 137 * Normal code would never hold clean buffers across a roll, but repair 138 * needs both buffers to maintain a total lock on the AG. 139 */ 140 if (sc->sa.agi_bp) { 141 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 142 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 143 } 144 145 if (sc->sa.agf_bp) { 146 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 147 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 148 } 149 150 /* 151 * Roll the transaction. We still hold the AG header buffers locked 152 * regardless of whether or not that succeeds. On failure, the buffers 153 * will be released during teardown on our way out of the kernel. If 154 * successful, join the buffers to the new transaction and move on. 155 */ 156 error = xfs_trans_roll(&sc->tp); 157 if (error) 158 return error; 159 160 /* Join the AG headers to the new transaction. */ 161 if (sc->sa.agi_bp) 162 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 163 if (sc->sa.agf_bp) 164 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 165 166 return 0; 167 } 168 169 /* 170 * Does the given AG have enough space to rebuild a btree? Neither AG 171 * reservation can be critical, and we must have enough space (factoring 172 * in AG reservations) to construct a whole btree. 173 */ 174 bool 175 xrep_ag_has_space( 176 struct xfs_perag *pag, 177 xfs_extlen_t nr_blocks, 178 enum xfs_ag_resv_type type) 179 { 180 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 181 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 182 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 183 } 184 185 /* 186 * Figure out how many blocks to reserve for an AG repair. We calculate the 187 * worst case estimate for the number of blocks we'd need to rebuild one of 188 * any type of per-AG btree. 189 */ 190 xfs_extlen_t 191 xrep_calc_ag_resblks( 192 struct xfs_scrub *sc) 193 { 194 struct xfs_mount *mp = sc->mp; 195 struct xfs_scrub_metadata *sm = sc->sm; 196 struct xfs_perag *pag; 197 struct xfs_buf *bp; 198 xfs_agino_t icount = NULLAGINO; 199 xfs_extlen_t aglen = NULLAGBLOCK; 200 xfs_extlen_t usedlen; 201 xfs_extlen_t freelen; 202 xfs_extlen_t bnobt_sz; 203 xfs_extlen_t inobt_sz; 204 xfs_extlen_t rmapbt_sz; 205 xfs_extlen_t refcbt_sz; 206 int error; 207 208 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 209 return 0; 210 211 pag = xfs_perag_get(mp, sm->sm_agno); 212 if (xfs_perag_initialised_agi(pag)) { 213 /* Use in-core icount if possible. */ 214 icount = pag->pagi_count; 215 } else { 216 /* Try to get the actual counters from disk. */ 217 error = xfs_ialloc_read_agi(pag, NULL, &bp); 218 if (!error) { 219 icount = pag->pagi_count; 220 xfs_buf_relse(bp); 221 } 222 } 223 224 /* Now grab the block counters from the AGF. */ 225 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 226 if (error) { 227 aglen = pag->block_count; 228 freelen = aglen; 229 usedlen = aglen; 230 } else { 231 struct xfs_agf *agf = bp->b_addr; 232 233 aglen = be32_to_cpu(agf->agf_length); 234 freelen = be32_to_cpu(agf->agf_freeblks); 235 usedlen = aglen - freelen; 236 xfs_buf_relse(bp); 237 } 238 239 /* If the icount is impossible, make some worst-case assumptions. */ 240 if (icount == NULLAGINO || 241 !xfs_verify_agino(pag, icount)) { 242 icount = pag->agino_max - pag->agino_min + 1; 243 } 244 245 /* If the block counts are impossible, make worst-case assumptions. */ 246 if (aglen == NULLAGBLOCK || 247 aglen != pag->block_count || 248 freelen >= aglen) { 249 aglen = pag->block_count; 250 freelen = aglen; 251 usedlen = aglen; 252 } 253 xfs_perag_put(pag); 254 255 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 256 freelen, usedlen); 257 258 /* 259 * Figure out how many blocks we'd need worst case to rebuild 260 * each type of btree. Note that we can only rebuild the 261 * bnobt/cntbt or inobt/finobt as pairs. 262 */ 263 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 264 if (xfs_has_sparseinodes(mp)) 265 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 266 XFS_INODES_PER_HOLEMASK_BIT); 267 else 268 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 269 XFS_INODES_PER_CHUNK); 270 if (xfs_has_finobt(mp)) 271 inobt_sz *= 2; 272 if (xfs_has_reflink(mp)) 273 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 274 else 275 refcbt_sz = 0; 276 if (xfs_has_rmapbt(mp)) { 277 /* 278 * Guess how many blocks we need to rebuild the rmapbt. 279 * For non-reflink filesystems we can't have more records than 280 * used blocks. However, with reflink it's possible to have 281 * more than one rmap record per AG block. We don't know how 282 * many rmaps there could be in the AG, so we start off with 283 * what we hope is an generous over-estimation. 284 */ 285 if (xfs_has_reflink(mp)) 286 rmapbt_sz = xfs_rmapbt_calc_size(mp, 287 (unsigned long long)aglen * 2); 288 else 289 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 290 } else { 291 rmapbt_sz = 0; 292 } 293 294 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 295 inobt_sz, rmapbt_sz, refcbt_sz); 296 297 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 298 } 299 300 /* 301 * Reconstructing per-AG Btrees 302 * 303 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 304 * we scan secondary space metadata to derive the records that should be in 305 * the damaged btree, initialize a fresh btree root, and insert the records. 306 * Note that for rebuilding the rmapbt we scan all the primary data to 307 * generate the new records. 308 * 309 * However, that leaves the matter of removing all the metadata describing the 310 * old broken structure. For primary metadata we use the rmap data to collect 311 * every extent with a matching rmap owner (bitmap); we then iterate all other 312 * metadata structures with the same rmap owner to collect the extents that 313 * cannot be removed (sublist). We then subtract sublist from bitmap to 314 * derive the blocks that were used by the old btree. These blocks can be 315 * reaped. 316 * 317 * For rmapbt reconstructions we must use different tactics for extent 318 * collection. First we iterate all primary metadata (this excludes the old 319 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 320 * records are collected as bitmap. The bnobt records are collected as 321 * sublist. As with the other btrees we subtract sublist from bitmap, and the 322 * result (since the rmapbt lives in the free space) are the blocks from the 323 * old rmapbt. 324 * 325 * Disposal of Blocks from Old per-AG Btrees 326 * 327 * Now that we've constructed a new btree to replace the damaged one, we want 328 * to dispose of the blocks that (we think) the old btree was using. 329 * Previously, we used the rmapbt to collect the extents (bitmap) with the 330 * rmap owner corresponding to the tree we rebuilt, collected extents for any 331 * blocks with the same rmap owner that are owned by another data structure 332 * (sublist), and subtracted sublist from bitmap. In theory the extents 333 * remaining in bitmap are the old btree's blocks. 334 * 335 * Unfortunately, it's possible that the btree was crosslinked with other 336 * blocks on disk. The rmap data can tell us if there are multiple owners, so 337 * if the rmapbt says there is an owner of this block other than @oinfo, then 338 * the block is crosslinked. Remove the reverse mapping and continue. 339 * 340 * If there is one rmap record, we can free the block, which removes the 341 * reverse mapping but doesn't add the block to the free space. Our repair 342 * strategy is to hope the other metadata objects crosslinked on this block 343 * will be rebuilt (atop different blocks), thereby removing all the cross 344 * links. 345 * 346 * If there are no rmap records at all, we also free the block. If the btree 347 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 348 * supposed to be a rmap record and everything is ok. For other btrees there 349 * had to have been an rmap entry for the block to have ended up on @bitmap, 350 * so if it's gone now there's something wrong and the fs will shut down. 351 * 352 * Note: If there are multiple rmap records with only the same rmap owner as 353 * the btree we're trying to rebuild and the block is indeed owned by another 354 * data structure with the same rmap owner, then the block will be in sublist 355 * and therefore doesn't need disposal. If there are multiple rmap records 356 * with only the same rmap owner but the block is not owned by something with 357 * the same rmap owner, the block will be freed. 358 * 359 * The caller is responsible for locking the AG headers for the entire rebuild 360 * operation so that nothing else can sneak in and change the AG state while 361 * we're not looking. We also assume that the caller already invalidated any 362 * buffers associated with @bitmap. 363 */ 364 365 static int 366 xrep_invalidate_block( 367 uint64_t fsbno, 368 void *priv) 369 { 370 struct xfs_scrub *sc = priv; 371 struct xfs_buf *bp; 372 int error; 373 374 /* Skip AG headers and post-EOFS blocks */ 375 if (!xfs_verify_fsbno(sc->mp, fsbno)) 376 return 0; 377 378 error = xfs_buf_incore(sc->mp->m_ddev_targp, 379 XFS_FSB_TO_DADDR(sc->mp, fsbno), 380 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp); 381 if (error) 382 return 0; 383 384 xfs_trans_bjoin(sc->tp, bp); 385 xfs_trans_binval(sc->tp, bp); 386 return 0; 387 } 388 389 /* 390 * Invalidate buffers for per-AG btree blocks we're dumping. This function 391 * is not intended for use with file data repairs; we have bunmapi for that. 392 */ 393 int 394 xrep_invalidate_blocks( 395 struct xfs_scrub *sc, 396 struct xbitmap *bitmap) 397 { 398 /* 399 * For each block in each extent, see if there's an incore buffer for 400 * exactly that block; if so, invalidate it. The buffer cache only 401 * lets us look for one buffer at a time, so we have to look one block 402 * at a time. Avoid invalidating AG headers and post-EOFS blocks 403 * because we never own those; and if we can't TRYLOCK the buffer we 404 * assume it's owned by someone else. 405 */ 406 return xbitmap_walk_bits(bitmap, xrep_invalidate_block, sc); 407 } 408 409 /* Ensure the freelist is the correct size. */ 410 int 411 xrep_fix_freelist( 412 struct xfs_scrub *sc, 413 bool can_shrink) 414 { 415 struct xfs_alloc_arg args = {0}; 416 417 args.mp = sc->mp; 418 args.tp = sc->tp; 419 args.agno = sc->sa.pag->pag_agno; 420 args.alignment = 1; 421 args.pag = sc->sa.pag; 422 423 return xfs_alloc_fix_freelist(&args, 424 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 425 } 426 427 /* Information about reaping extents after a repair. */ 428 struct xrep_reap_state { 429 struct xfs_scrub *sc; 430 431 /* Reverse mapping owner and metadata reservation type. */ 432 const struct xfs_owner_info *oinfo; 433 enum xfs_ag_resv_type resv; 434 }; 435 436 /* 437 * Put a block back on the AGFL. 438 */ 439 STATIC int 440 xrep_put_freelist( 441 struct xfs_scrub *sc, 442 xfs_agblock_t agbno) 443 { 444 struct xfs_buf *agfl_bp; 445 int error; 446 447 /* Make sure there's space on the freelist. */ 448 error = xrep_fix_freelist(sc, true); 449 if (error) 450 return error; 451 452 /* 453 * Since we're "freeing" a lost block onto the AGFL, we have to 454 * create an rmap for the block prior to merging it or else other 455 * parts will break. 456 */ 457 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, 458 &XFS_RMAP_OINFO_AG); 459 if (error) 460 return error; 461 462 /* Put the block on the AGFL. */ 463 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); 464 if (error) 465 return error; 466 467 error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp, 468 agfl_bp, agbno, 0); 469 if (error) 470 return error; 471 xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, 472 XFS_EXTENT_BUSY_SKIP_DISCARD); 473 474 return 0; 475 } 476 477 /* Dispose of a single block. */ 478 STATIC int 479 xrep_reap_block( 480 uint64_t fsbno, 481 void *priv) 482 { 483 struct xrep_reap_state *rs = priv; 484 struct xfs_scrub *sc = rs->sc; 485 struct xfs_btree_cur *cur; 486 struct xfs_buf *agf_bp = NULL; 487 xfs_agblock_t agbno; 488 bool has_other_rmap; 489 int error; 490 491 ASSERT(sc->ip != NULL || 492 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 493 trace_xrep_dispose_btree_extent(sc->mp, 494 XFS_FSB_TO_AGNO(sc->mp, fsbno), 495 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 496 497 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 498 ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno); 499 500 /* 501 * If we are repairing per-inode metadata, we need to read in the AGF 502 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 503 * the AGF buffer that the setup functions already grabbed. 504 */ 505 if (sc->ip) { 506 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); 507 if (error) 508 return error; 509 } else { 510 agf_bp = sc->sa.agf_bp; 511 } 512 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag); 513 514 /* Can we find any other rmappings? */ 515 error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo, 516 &has_other_rmap); 517 xfs_btree_del_cursor(cur, error); 518 if (error) 519 goto out_free; 520 521 /* 522 * If there are other rmappings, this block is cross linked and must 523 * not be freed. Remove the reverse mapping and move on. Otherwise, 524 * we were the only owner of the block, so free the extent, which will 525 * also remove the rmap. 526 * 527 * XXX: XFS doesn't support detecting the case where a single block 528 * metadata structure is crosslinked with a multi-block structure 529 * because the buffer cache doesn't detect aliasing problems, so we 530 * can't fix 100% of crosslinking problems (yet). The verifiers will 531 * blow on writeout, the filesystem will shut down, and the admin gets 532 * to run xfs_repair. 533 */ 534 if (has_other_rmap) 535 error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno, 536 1, rs->oinfo); 537 else if (rs->resv == XFS_AG_RESV_AGFL) 538 error = xrep_put_freelist(sc, agbno); 539 else 540 error = xfs_free_extent(sc->tp, sc->sa.pag, agbno, 1, rs->oinfo, 541 rs->resv); 542 if (agf_bp != sc->sa.agf_bp) 543 xfs_trans_brelse(sc->tp, agf_bp); 544 if (error) 545 return error; 546 547 if (sc->ip) 548 return xfs_trans_roll_inode(&sc->tp, sc->ip); 549 return xrep_roll_ag_trans(sc); 550 551 out_free: 552 if (agf_bp != sc->sa.agf_bp) 553 xfs_trans_brelse(sc->tp, agf_bp); 554 return error; 555 } 556 557 /* Dispose of every block of every extent in the bitmap. */ 558 int 559 xrep_reap_extents( 560 struct xfs_scrub *sc, 561 struct xbitmap *bitmap, 562 const struct xfs_owner_info *oinfo, 563 enum xfs_ag_resv_type type) 564 { 565 struct xrep_reap_state rs = { 566 .sc = sc, 567 .oinfo = oinfo, 568 .resv = type, 569 }; 570 571 ASSERT(xfs_has_rmapbt(sc->mp)); 572 573 return xbitmap_walk_bits(bitmap, xrep_reap_block, &rs); 574 } 575 576 /* 577 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 578 * 579 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 580 * the AG headers by using the rmap data to rummage through the AG looking for 581 * btree roots. This is not guaranteed to work if the AG is heavily damaged 582 * or the rmap data are corrupt. 583 * 584 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 585 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 586 * AGI is being rebuilt. It must maintain these locks until it's safe for 587 * other threads to change the btrees' shapes. The caller provides 588 * information about the btrees to look for by passing in an array of 589 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 590 * The (root, height) fields will be set on return if anything is found. The 591 * last element of the array should have a NULL buf_ops to mark the end of the 592 * array. 593 * 594 * For every rmapbt record matching any of the rmap owners in btree_info, 595 * read each block referenced by the rmap record. If the block is a btree 596 * block from this filesystem matching any of the magic numbers and has a 597 * level higher than what we've already seen, remember the block and the 598 * height of the tree required to have such a block. When the call completes, 599 * we return the highest block we've found for each btree description; those 600 * should be the roots. 601 */ 602 603 struct xrep_findroot { 604 struct xfs_scrub *sc; 605 struct xfs_buf *agfl_bp; 606 struct xfs_agf *agf; 607 struct xrep_find_ag_btree *btree_info; 608 }; 609 610 /* See if our block is in the AGFL. */ 611 STATIC int 612 xrep_findroot_agfl_walk( 613 struct xfs_mount *mp, 614 xfs_agblock_t bno, 615 void *priv) 616 { 617 xfs_agblock_t *agbno = priv; 618 619 return (*agbno == bno) ? -ECANCELED : 0; 620 } 621 622 /* Does this block match the btree information passed in? */ 623 STATIC int 624 xrep_findroot_block( 625 struct xrep_findroot *ri, 626 struct xrep_find_ag_btree *fab, 627 uint64_t owner, 628 xfs_agblock_t agbno, 629 bool *done_with_block) 630 { 631 struct xfs_mount *mp = ri->sc->mp; 632 struct xfs_buf *bp; 633 struct xfs_btree_block *btblock; 634 xfs_daddr_t daddr; 635 int block_level; 636 int error = 0; 637 638 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 639 640 /* 641 * Blocks in the AGFL have stale contents that might just happen to 642 * have a matching magic and uuid. We don't want to pull these blocks 643 * in as part of a tree root, so we have to filter out the AGFL stuff 644 * here. If the AGFL looks insane we'll just refuse to repair. 645 */ 646 if (owner == XFS_RMAP_OWN_AG) { 647 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 648 xrep_findroot_agfl_walk, &agbno); 649 if (error == -ECANCELED) 650 return 0; 651 if (error) 652 return error; 653 } 654 655 /* 656 * Read the buffer into memory so that we can see if it's a match for 657 * our btree type. We have no clue if it is beforehand, and we want to 658 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 659 * will cause needless disk reads in subsequent calls to this function) 660 * and logging metadata verifier failures. 661 * 662 * Therefore, pass in NULL buffer ops. If the buffer was already in 663 * memory from some other caller it will already have b_ops assigned. 664 * If it was in memory from a previous unsuccessful findroot_block 665 * call, the buffer won't have b_ops but it should be clean and ready 666 * for us to try to verify if the read call succeeds. The same applies 667 * if the buffer wasn't in memory at all. 668 * 669 * Note: If we never match a btree type with this buffer, it will be 670 * left in memory with NULL b_ops. This shouldn't be a problem unless 671 * the buffer gets written. 672 */ 673 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 674 mp->m_bsize, 0, &bp, NULL); 675 if (error) 676 return error; 677 678 /* Ensure the block magic matches the btree type we're looking for. */ 679 btblock = XFS_BUF_TO_BLOCK(bp); 680 ASSERT(fab->buf_ops->magic[1] != 0); 681 if (btblock->bb_magic != fab->buf_ops->magic[1]) 682 goto out; 683 684 /* 685 * If the buffer already has ops applied and they're not the ones for 686 * this btree type, we know this block doesn't match the btree and we 687 * can bail out. 688 * 689 * If the buffer ops match ours, someone else has already validated 690 * the block for us, so we can move on to checking if this is a root 691 * block candidate. 692 * 693 * If the buffer does not have ops, nobody has successfully validated 694 * the contents and the buffer cannot be dirty. If the magic, uuid, 695 * and structure match this btree type then we'll move on to checking 696 * if it's a root block candidate. If there is no match, bail out. 697 */ 698 if (bp->b_ops) { 699 if (bp->b_ops != fab->buf_ops) 700 goto out; 701 } else { 702 ASSERT(!xfs_trans_buf_is_dirty(bp)); 703 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 704 &mp->m_sb.sb_meta_uuid)) 705 goto out; 706 /* 707 * Read verifiers can reference b_ops, so we set the pointer 708 * here. If the verifier fails we'll reset the buffer state 709 * to what it was before we touched the buffer. 710 */ 711 bp->b_ops = fab->buf_ops; 712 fab->buf_ops->verify_read(bp); 713 if (bp->b_error) { 714 bp->b_ops = NULL; 715 bp->b_error = 0; 716 goto out; 717 } 718 719 /* 720 * Some read verifiers will (re)set b_ops, so we must be 721 * careful not to change b_ops after running the verifier. 722 */ 723 } 724 725 /* 726 * This block passes the magic/uuid and verifier tests for this btree 727 * type. We don't need the caller to try the other tree types. 728 */ 729 *done_with_block = true; 730 731 /* 732 * Compare this btree block's level to the height of the current 733 * candidate root block. 734 * 735 * If the level matches the root we found previously, throw away both 736 * blocks because there can't be two candidate roots. 737 * 738 * If level is lower in the tree than the root we found previously, 739 * ignore this block. 740 */ 741 block_level = xfs_btree_get_level(btblock); 742 if (block_level + 1 == fab->height) { 743 fab->root = NULLAGBLOCK; 744 goto out; 745 } else if (block_level < fab->height) { 746 goto out; 747 } 748 749 /* 750 * This is the highest block in the tree that we've found so far. 751 * Update the btree height to reflect what we've learned from this 752 * block. 753 */ 754 fab->height = block_level + 1; 755 756 /* 757 * If this block doesn't have sibling pointers, then it's the new root 758 * block candidate. Otherwise, the root will be found farther up the 759 * tree. 760 */ 761 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 762 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 763 fab->root = agbno; 764 else 765 fab->root = NULLAGBLOCK; 766 767 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 768 be32_to_cpu(btblock->bb_magic), fab->height - 1); 769 out: 770 xfs_trans_brelse(ri->sc->tp, bp); 771 return error; 772 } 773 774 /* 775 * Do any of the blocks in this rmap record match one of the btrees we're 776 * looking for? 777 */ 778 STATIC int 779 xrep_findroot_rmap( 780 struct xfs_btree_cur *cur, 781 const struct xfs_rmap_irec *rec, 782 void *priv) 783 { 784 struct xrep_findroot *ri = priv; 785 struct xrep_find_ag_btree *fab; 786 xfs_agblock_t b; 787 bool done; 788 int error = 0; 789 790 /* Ignore anything that isn't AG metadata. */ 791 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 792 return 0; 793 794 /* Otherwise scan each block + btree type. */ 795 for (b = 0; b < rec->rm_blockcount; b++) { 796 done = false; 797 for (fab = ri->btree_info; fab->buf_ops; fab++) { 798 if (rec->rm_owner != fab->rmap_owner) 799 continue; 800 error = xrep_findroot_block(ri, fab, 801 rec->rm_owner, rec->rm_startblock + b, 802 &done); 803 if (error) 804 return error; 805 if (done) 806 break; 807 } 808 } 809 810 return 0; 811 } 812 813 /* Find the roots of the per-AG btrees described in btree_info. */ 814 int 815 xrep_find_ag_btree_roots( 816 struct xfs_scrub *sc, 817 struct xfs_buf *agf_bp, 818 struct xrep_find_ag_btree *btree_info, 819 struct xfs_buf *agfl_bp) 820 { 821 struct xfs_mount *mp = sc->mp; 822 struct xrep_findroot ri; 823 struct xrep_find_ag_btree *fab; 824 struct xfs_btree_cur *cur; 825 int error; 826 827 ASSERT(xfs_buf_islocked(agf_bp)); 828 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 829 830 ri.sc = sc; 831 ri.btree_info = btree_info; 832 ri.agf = agf_bp->b_addr; 833 ri.agfl_bp = agfl_bp; 834 for (fab = btree_info; fab->buf_ops; fab++) { 835 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 836 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 837 fab->root = NULLAGBLOCK; 838 fab->height = 0; 839 } 840 841 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 842 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 843 xfs_btree_del_cursor(cur, error); 844 845 return error; 846 } 847 848 /* Force a quotacheck the next time we mount. */ 849 void 850 xrep_force_quotacheck( 851 struct xfs_scrub *sc, 852 xfs_dqtype_t type) 853 { 854 uint flag; 855 856 flag = xfs_quota_chkd_flag(type); 857 if (!(flag & sc->mp->m_qflags)) 858 return; 859 860 mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock); 861 sc->mp->m_qflags &= ~flag; 862 spin_lock(&sc->mp->m_sb_lock); 863 sc->mp->m_sb.sb_qflags &= ~flag; 864 spin_unlock(&sc->mp->m_sb_lock); 865 xfs_log_sb(sc->tp); 866 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); 867 } 868 869 /* 870 * Attach dquots to this inode, or schedule quotacheck to fix them. 871 * 872 * This function ensures that the appropriate dquots are attached to an inode. 873 * We cannot allow the dquot code to allocate an on-disk dquot block here 874 * because we're already in transaction context with the inode locked. The 875 * on-disk dquot should already exist anyway. If the quota code signals 876 * corruption or missing quota information, schedule quotacheck, which will 877 * repair corruptions in the quota metadata. 878 */ 879 int 880 xrep_ino_dqattach( 881 struct xfs_scrub *sc) 882 { 883 int error; 884 885 error = xfs_qm_dqattach_locked(sc->ip, false); 886 switch (error) { 887 case -EFSBADCRC: 888 case -EFSCORRUPTED: 889 case -ENOENT: 890 xfs_err_ratelimited(sc->mp, 891 "inode %llu repair encountered quota error %d, quotacheck forced.", 892 (unsigned long long)sc->ip->i_ino, error); 893 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 894 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 895 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 896 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 897 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 898 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 899 fallthrough; 900 case -ESRCH: 901 error = 0; 902 break; 903 default: 904 break; 905 } 906 907 return error; 908 } 909