xref: /openbmc/linux/fs/xfs/libxfs/xfs_inode_fork.c (revision c95356ca884885db702670e24933ee7f2b9f1754)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_trace.h"
22 #include "xfs_da_format.h"
23 #include "xfs_da_btree.h"
24 #include "xfs_dir2_priv.h"
25 #include "xfs_attr_leaf.h"
26 #include "xfs_types.h"
27 #include "xfs_errortag.h"
28 
29 struct kmem_cache *xfs_ifork_cache;
30 
31 void
32 xfs_init_local_fork(
33 	struct xfs_inode	*ip,
34 	int			whichfork,
35 	const void		*data,
36 	int64_t			size)
37 {
38 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
39 	int			mem_size = size;
40 	bool			zero_terminate;
41 
42 	/*
43 	 * If we are using the local fork to store a symlink body we need to
44 	 * zero-terminate it so that we can pass it back to the VFS directly.
45 	 * Overallocate the in-memory fork by one for that and add a zero
46 	 * to terminate it below.
47 	 */
48 	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
49 	if (zero_terminate)
50 		mem_size++;
51 
52 	if (size) {
53 		ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS);
54 		memcpy(ifp->if_u1.if_data, data, size);
55 		if (zero_terminate)
56 			ifp->if_u1.if_data[size] = '\0';
57 	} else {
58 		ifp->if_u1.if_data = NULL;
59 	}
60 
61 	ifp->if_bytes = size;
62 }
63 
64 /*
65  * The file is in-lined in the on-disk inode.
66  */
67 STATIC int
68 xfs_iformat_local(
69 	struct xfs_inode	*ip,
70 	struct xfs_dinode	*dip,
71 	int			whichfork,
72 	int			size)
73 {
74 	/*
75 	 * If the size is unreasonable, then something
76 	 * is wrong and we just bail out rather than crash in
77 	 * kmem_alloc() or memcpy() below.
78 	 */
79 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
80 		xfs_warn(ip->i_mount,
81 	"corrupt inode %llu (bad size %d for local fork, size = %zd).",
82 			(unsigned long long) ip->i_ino, size,
83 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
84 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
85 				"xfs_iformat_local", dip, sizeof(*dip),
86 				__this_address);
87 		return -EFSCORRUPTED;
88 	}
89 
90 	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
91 	return 0;
92 }
93 
94 /*
95  * The file consists of a set of extents all of which fit into the on-disk
96  * inode.
97  */
98 STATIC int
99 xfs_iformat_extents(
100 	struct xfs_inode	*ip,
101 	struct xfs_dinode	*dip,
102 	int			whichfork)
103 {
104 	struct xfs_mount	*mp = ip->i_mount;
105 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
106 	int			state = xfs_bmap_fork_to_state(whichfork);
107 	xfs_extnum_t		nex = xfs_dfork_nextents(dip, whichfork);
108 	int			size = nex * sizeof(xfs_bmbt_rec_t);
109 	struct xfs_iext_cursor	icur;
110 	struct xfs_bmbt_rec	*dp;
111 	struct xfs_bmbt_irec	new;
112 	int			i;
113 
114 	/*
115 	 * If the number of extents is unreasonable, then something is wrong and
116 	 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
117 	 */
118 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
119 		xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
120 			ip->i_ino, nex);
121 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
122 				"xfs_iformat_extents(1)", dip, sizeof(*dip),
123 				__this_address);
124 		return -EFSCORRUPTED;
125 	}
126 
127 	ifp->if_bytes = 0;
128 	ifp->if_u1.if_root = NULL;
129 	ifp->if_height = 0;
130 	if (size) {
131 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
132 
133 		xfs_iext_first(ifp, &icur);
134 		for (i = 0; i < nex; i++, dp++) {
135 			xfs_failaddr_t	fa;
136 
137 			xfs_bmbt_disk_get_all(dp, &new);
138 			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
139 			if (fa) {
140 				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
141 						"xfs_iformat_extents(2)",
142 						dp, sizeof(*dp), fa);
143 				return -EFSCORRUPTED;
144 			}
145 
146 			xfs_iext_insert(ip, &icur, &new, state);
147 			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
148 			xfs_iext_next(ifp, &icur);
149 		}
150 	}
151 	return 0;
152 }
153 
154 /*
155  * The file has too many extents to fit into
156  * the inode, so they are in B-tree format.
157  * Allocate a buffer for the root of the B-tree
158  * and copy the root into it.  The i_extents
159  * field will remain NULL until all of the
160  * extents are read in (when they are needed).
161  */
162 STATIC int
163 xfs_iformat_btree(
164 	struct xfs_inode	*ip,
165 	struct xfs_dinode	*dip,
166 	int			whichfork)
167 {
168 	struct xfs_mount	*mp = ip->i_mount;
169 	xfs_bmdr_block_t	*dfp;
170 	struct xfs_ifork	*ifp;
171 	/* REFERENCED */
172 	int			nrecs;
173 	int			size;
174 	int			level;
175 
176 	ifp = xfs_ifork_ptr(ip, whichfork);
177 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
178 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
179 	nrecs = be16_to_cpu(dfp->bb_numrecs);
180 	level = be16_to_cpu(dfp->bb_level);
181 
182 	/*
183 	 * blow out if -- fork has less extents than can fit in
184 	 * fork (fork shouldn't be a btree format), root btree
185 	 * block has more records than can fit into the fork,
186 	 * or the number of extents is greater than the number of
187 	 * blocks.
188 	 */
189 	if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
190 		     nrecs == 0 ||
191 		     XFS_BMDR_SPACE_CALC(nrecs) >
192 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
193 		     ifp->if_nextents > ip->i_nblocks) ||
194 		     level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
195 		xfs_warn(mp, "corrupt inode %llu (btree).",
196 					(unsigned long long) ip->i_ino);
197 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
198 				"xfs_iformat_btree", dfp, size,
199 				__this_address);
200 		return -EFSCORRUPTED;
201 	}
202 
203 	ifp->if_broot_bytes = size;
204 	ifp->if_broot = kmem_alloc(size, KM_NOFS);
205 	ASSERT(ifp->if_broot != NULL);
206 	/*
207 	 * Copy and convert from the on-disk structure
208 	 * to the in-memory structure.
209 	 */
210 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
211 			 ifp->if_broot, size);
212 
213 	ifp->if_bytes = 0;
214 	ifp->if_u1.if_root = NULL;
215 	ifp->if_height = 0;
216 	return 0;
217 }
218 
219 int
220 xfs_iformat_data_fork(
221 	struct xfs_inode	*ip,
222 	struct xfs_dinode	*dip)
223 {
224 	struct inode		*inode = VFS_I(ip);
225 	int			error;
226 
227 	/*
228 	 * Initialize the extent count early, as the per-format routines may
229 	 * depend on it.  Use release semantics to set needextents /after/ we
230 	 * set the format. This ensures that we can use acquire semantics on
231 	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
232 	 * valid format value after that load.
233 	 */
234 	ip->i_df.if_format = dip->di_format;
235 	ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
236 	smp_store_release(&ip->i_df.if_needextents,
237 			   ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
238 
239 	switch (inode->i_mode & S_IFMT) {
240 	case S_IFIFO:
241 	case S_IFCHR:
242 	case S_IFBLK:
243 	case S_IFSOCK:
244 		ip->i_disk_size = 0;
245 		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
246 		return 0;
247 	case S_IFREG:
248 	case S_IFLNK:
249 	case S_IFDIR:
250 		switch (ip->i_df.if_format) {
251 		case XFS_DINODE_FMT_LOCAL:
252 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
253 					be64_to_cpu(dip->di_size));
254 			if (!error)
255 				error = xfs_ifork_verify_local_data(ip);
256 			return error;
257 		case XFS_DINODE_FMT_EXTENTS:
258 			return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
259 		case XFS_DINODE_FMT_BTREE:
260 			return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
261 		default:
262 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
263 					dip, sizeof(*dip), __this_address);
264 			return -EFSCORRUPTED;
265 		}
266 		break;
267 	default:
268 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
269 				sizeof(*dip), __this_address);
270 		return -EFSCORRUPTED;
271 	}
272 }
273 
274 static uint16_t
275 xfs_dfork_attr_shortform_size(
276 	struct xfs_dinode		*dip)
277 {
278 	struct xfs_attr_shortform	*atp =
279 		(struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
280 
281 	return be16_to_cpu(atp->hdr.totsize);
282 }
283 
284 void
285 xfs_ifork_init_attr(
286 	struct xfs_inode	*ip,
287 	enum xfs_dinode_fmt	format,
288 	xfs_extnum_t		nextents)
289 {
290 	/*
291 	 * Initialize the extent count early, as the per-format routines may
292 	 * depend on it.  Use release semantics to set needextents /after/ we
293 	 * set the format. This ensures that we can use acquire semantics on
294 	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
295 	 * valid format value after that load.
296 	 */
297 	ip->i_af.if_format = format;
298 	ip->i_af.if_nextents = nextents;
299 	smp_store_release(&ip->i_af.if_needextents,
300 			   ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
301 }
302 
303 void
304 xfs_ifork_zap_attr(
305 	struct xfs_inode	*ip)
306 {
307 	xfs_idestroy_fork(&ip->i_af);
308 	memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
309 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
310 }
311 
312 int
313 xfs_iformat_attr_fork(
314 	struct xfs_inode	*ip,
315 	struct xfs_dinode	*dip)
316 {
317 	xfs_extnum_t		naextents = xfs_dfork_attr_extents(dip);
318 	int			error = 0;
319 
320 	/*
321 	 * Initialize the extent count early, as the per-format routines may
322 	 * depend on it.
323 	 */
324 	xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
325 
326 	switch (ip->i_af.if_format) {
327 	case XFS_DINODE_FMT_LOCAL:
328 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
329 				xfs_dfork_attr_shortform_size(dip));
330 		if (!error)
331 			error = xfs_ifork_verify_local_attr(ip);
332 		break;
333 	case XFS_DINODE_FMT_EXTENTS:
334 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
335 		break;
336 	case XFS_DINODE_FMT_BTREE:
337 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
338 		break;
339 	default:
340 		xfs_inode_verifier_error(ip, error, __func__, dip,
341 				sizeof(*dip), __this_address);
342 		error = -EFSCORRUPTED;
343 		break;
344 	}
345 
346 	if (error)
347 		xfs_ifork_zap_attr(ip);
348 	return error;
349 }
350 
351 /*
352  * Reallocate the space for if_broot based on the number of records
353  * being added or deleted as indicated in rec_diff.  Move the records
354  * and pointers in if_broot to fit the new size.  When shrinking this
355  * will eliminate holes between the records and pointers created by
356  * the caller.  When growing this will create holes to be filled in
357  * by the caller.
358  *
359  * The caller must not request to add more records than would fit in
360  * the on-disk inode root.  If the if_broot is currently NULL, then
361  * if we are adding records, one will be allocated.  The caller must also
362  * not request that the number of records go below zero, although
363  * it can go to zero.
364  *
365  * ip -- the inode whose if_broot area is changing
366  * ext_diff -- the change in the number of records, positive or negative,
367  *	 requested for the if_broot array.
368  */
369 void
370 xfs_iroot_realloc(
371 	xfs_inode_t		*ip,
372 	int			rec_diff,
373 	int			whichfork)
374 {
375 	struct xfs_mount	*mp = ip->i_mount;
376 	int			cur_max;
377 	struct xfs_ifork	*ifp;
378 	struct xfs_btree_block	*new_broot;
379 	int			new_max;
380 	size_t			new_size;
381 	char			*np;
382 	char			*op;
383 
384 	/*
385 	 * Handle the degenerate case quietly.
386 	 */
387 	if (rec_diff == 0) {
388 		return;
389 	}
390 
391 	ifp = xfs_ifork_ptr(ip, whichfork);
392 	if (rec_diff > 0) {
393 		/*
394 		 * If there wasn't any memory allocated before, just
395 		 * allocate it now and get out.
396 		 */
397 		if (ifp->if_broot_bytes == 0) {
398 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
399 			ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
400 			ifp->if_broot_bytes = (int)new_size;
401 			return;
402 		}
403 
404 		/*
405 		 * If there is already an existing if_broot, then we need
406 		 * to realloc() it and shift the pointers to their new
407 		 * location.  The records don't change location because
408 		 * they are kept butted up against the btree block header.
409 		 */
410 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
411 		new_max = cur_max + rec_diff;
412 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
413 		ifp->if_broot = krealloc(ifp->if_broot, new_size,
414 					 GFP_NOFS | __GFP_NOFAIL);
415 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
416 						     ifp->if_broot_bytes);
417 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
418 						     (int)new_size);
419 		ifp->if_broot_bytes = (int)new_size;
420 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
421 			xfs_inode_fork_size(ip, whichfork));
422 		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
423 		return;
424 	}
425 
426 	/*
427 	 * rec_diff is less than 0.  In this case, we are shrinking the
428 	 * if_broot buffer.  It must already exist.  If we go to zero
429 	 * records, just get rid of the root and clear the status bit.
430 	 */
431 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
432 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
433 	new_max = cur_max + rec_diff;
434 	ASSERT(new_max >= 0);
435 	if (new_max > 0)
436 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
437 	else
438 		new_size = 0;
439 	if (new_size > 0) {
440 		new_broot = kmem_alloc(new_size, KM_NOFS);
441 		/*
442 		 * First copy over the btree block header.
443 		 */
444 		memcpy(new_broot, ifp->if_broot,
445 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
446 	} else {
447 		new_broot = NULL;
448 	}
449 
450 	/*
451 	 * Only copy the records and pointers if there are any.
452 	 */
453 	if (new_max > 0) {
454 		/*
455 		 * First copy the records.
456 		 */
457 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
458 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
459 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
460 
461 		/*
462 		 * Then copy the pointers.
463 		 */
464 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
465 						     ifp->if_broot_bytes);
466 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
467 						     (int)new_size);
468 		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
469 	}
470 	kmem_free(ifp->if_broot);
471 	ifp->if_broot = new_broot;
472 	ifp->if_broot_bytes = (int)new_size;
473 	if (ifp->if_broot)
474 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
475 			xfs_inode_fork_size(ip, whichfork));
476 	return;
477 }
478 
479 
480 /*
481  * This is called when the amount of space needed for if_data
482  * is increased or decreased.  The change in size is indicated by
483  * the number of bytes that need to be added or deleted in the
484  * byte_diff parameter.
485  *
486  * If the amount of space needed has decreased below the size of the
487  * inline buffer, then switch to using the inline buffer.  Otherwise,
488  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
489  * to what is needed.
490  *
491  * ip -- the inode whose if_data area is changing
492  * byte_diff -- the change in the number of bytes, positive or negative,
493  *	 requested for the if_data array.
494  */
495 void
496 xfs_idata_realloc(
497 	struct xfs_inode	*ip,
498 	int64_t			byte_diff,
499 	int			whichfork)
500 {
501 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
502 	int64_t			new_size = ifp->if_bytes + byte_diff;
503 
504 	ASSERT(new_size >= 0);
505 	ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
506 
507 	if (byte_diff == 0)
508 		return;
509 
510 	if (new_size == 0) {
511 		kmem_free(ifp->if_u1.if_data);
512 		ifp->if_u1.if_data = NULL;
513 		ifp->if_bytes = 0;
514 		return;
515 	}
516 
517 	ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size,
518 				      GFP_NOFS | __GFP_NOFAIL);
519 	ifp->if_bytes = new_size;
520 }
521 
522 void
523 xfs_idestroy_fork(
524 	struct xfs_ifork	*ifp)
525 {
526 	if (ifp->if_broot != NULL) {
527 		kmem_free(ifp->if_broot);
528 		ifp->if_broot = NULL;
529 	}
530 
531 	switch (ifp->if_format) {
532 	case XFS_DINODE_FMT_LOCAL:
533 		kmem_free(ifp->if_u1.if_data);
534 		ifp->if_u1.if_data = NULL;
535 		break;
536 	case XFS_DINODE_FMT_EXTENTS:
537 	case XFS_DINODE_FMT_BTREE:
538 		if (ifp->if_height)
539 			xfs_iext_destroy(ifp);
540 		break;
541 	}
542 }
543 
544 /*
545  * Convert in-core extents to on-disk form
546  *
547  * In the case of the data fork, the in-core and on-disk fork sizes can be
548  * different due to delayed allocation extents. We only copy on-disk extents
549  * here, so callers must always use the physical fork size to determine the
550  * size of the buffer passed to this routine.  We will return the size actually
551  * used.
552  */
553 int
554 xfs_iextents_copy(
555 	struct xfs_inode	*ip,
556 	struct xfs_bmbt_rec	*dp,
557 	int			whichfork)
558 {
559 	int			state = xfs_bmap_fork_to_state(whichfork);
560 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
561 	struct xfs_iext_cursor	icur;
562 	struct xfs_bmbt_irec	rec;
563 	int64_t			copied = 0;
564 
565 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
566 	ASSERT(ifp->if_bytes > 0);
567 
568 	for_each_xfs_iext(ifp, &icur, &rec) {
569 		if (isnullstartblock(rec.br_startblock))
570 			continue;
571 		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
572 		xfs_bmbt_disk_set_all(dp, &rec);
573 		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
574 		copied += sizeof(struct xfs_bmbt_rec);
575 		dp++;
576 	}
577 
578 	ASSERT(copied > 0);
579 	ASSERT(copied <= ifp->if_bytes);
580 	return copied;
581 }
582 
583 /*
584  * Each of the following cases stores data into the same region
585  * of the on-disk inode, so only one of them can be valid at
586  * any given time. While it is possible to have conflicting formats
587  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
588  * in EXTENTS format, this can only happen when the fork has
589  * changed formats after being modified but before being flushed.
590  * In these cases, the format always takes precedence, because the
591  * format indicates the current state of the fork.
592  */
593 void
594 xfs_iflush_fork(
595 	struct xfs_inode	*ip,
596 	struct xfs_dinode	*dip,
597 	struct xfs_inode_log_item *iip,
598 	int			whichfork)
599 {
600 	char			*cp;
601 	struct xfs_ifork	*ifp;
602 	xfs_mount_t		*mp;
603 	static const short	brootflag[2] =
604 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
605 	static const short	dataflag[2] =
606 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
607 	static const short	extflag[2] =
608 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
609 
610 	if (!iip)
611 		return;
612 	ifp = xfs_ifork_ptr(ip, whichfork);
613 	/*
614 	 * This can happen if we gave up in iformat in an error path,
615 	 * for the attribute fork.
616 	 */
617 	if (!ifp) {
618 		ASSERT(whichfork == XFS_ATTR_FORK);
619 		return;
620 	}
621 	cp = XFS_DFORK_PTR(dip, whichfork);
622 	mp = ip->i_mount;
623 	switch (ifp->if_format) {
624 	case XFS_DINODE_FMT_LOCAL:
625 		if ((iip->ili_fields & dataflag[whichfork]) &&
626 		    (ifp->if_bytes > 0)) {
627 			ASSERT(ifp->if_u1.if_data != NULL);
628 			ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
629 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
630 		}
631 		break;
632 
633 	case XFS_DINODE_FMT_EXTENTS:
634 		if ((iip->ili_fields & extflag[whichfork]) &&
635 		    (ifp->if_bytes > 0)) {
636 			ASSERT(ifp->if_nextents > 0);
637 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
638 				whichfork);
639 		}
640 		break;
641 
642 	case XFS_DINODE_FMT_BTREE:
643 		if ((iip->ili_fields & brootflag[whichfork]) &&
644 		    (ifp->if_broot_bytes > 0)) {
645 			ASSERT(ifp->if_broot != NULL);
646 			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
647 			        xfs_inode_fork_size(ip, whichfork));
648 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
649 				(xfs_bmdr_block_t *)cp,
650 				XFS_DFORK_SIZE(dip, mp, whichfork));
651 		}
652 		break;
653 
654 	case XFS_DINODE_FMT_DEV:
655 		if (iip->ili_fields & XFS_ILOG_DEV) {
656 			ASSERT(whichfork == XFS_DATA_FORK);
657 			xfs_dinode_put_rdev(dip,
658 					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
659 		}
660 		break;
661 
662 	default:
663 		ASSERT(0);
664 		break;
665 	}
666 }
667 
668 /* Convert bmap state flags to an inode fork. */
669 struct xfs_ifork *
670 xfs_iext_state_to_fork(
671 	struct xfs_inode	*ip,
672 	int			state)
673 {
674 	if (state & BMAP_COWFORK)
675 		return ip->i_cowfp;
676 	else if (state & BMAP_ATTRFORK)
677 		return &ip->i_af;
678 	return &ip->i_df;
679 }
680 
681 /*
682  * Initialize an inode's copy-on-write fork.
683  */
684 void
685 xfs_ifork_init_cow(
686 	struct xfs_inode	*ip)
687 {
688 	if (ip->i_cowfp)
689 		return;
690 
691 	ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
692 				       GFP_NOFS | __GFP_NOFAIL);
693 	ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
694 }
695 
696 /* Verify the inline contents of the data fork of an inode. */
697 int
698 xfs_ifork_verify_local_data(
699 	struct xfs_inode	*ip)
700 {
701 	xfs_failaddr_t		fa = NULL;
702 
703 	switch (VFS_I(ip)->i_mode & S_IFMT) {
704 	case S_IFDIR:
705 		fa = xfs_dir2_sf_verify(ip);
706 		break;
707 	case S_IFLNK:
708 		fa = xfs_symlink_shortform_verify(ip);
709 		break;
710 	default:
711 		break;
712 	}
713 
714 	if (fa) {
715 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
716 				ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
717 		return -EFSCORRUPTED;
718 	}
719 
720 	return 0;
721 }
722 
723 /* Verify the inline contents of the attr fork of an inode. */
724 int
725 xfs_ifork_verify_local_attr(
726 	struct xfs_inode	*ip)
727 {
728 	struct xfs_ifork	*ifp = &ip->i_af;
729 	xfs_failaddr_t		fa;
730 
731 	if (!xfs_inode_has_attr_fork(ip))
732 		fa = __this_address;
733 	else
734 		fa = xfs_attr_shortform_verify(ip);
735 
736 	if (fa) {
737 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
738 				ifp->if_u1.if_data, ifp->if_bytes, fa);
739 		return -EFSCORRUPTED;
740 	}
741 
742 	return 0;
743 }
744 
745 int
746 xfs_iext_count_may_overflow(
747 	struct xfs_inode	*ip,
748 	int			whichfork,
749 	int			nr_to_add)
750 {
751 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
752 	uint64_t		max_exts;
753 	uint64_t		nr_exts;
754 
755 	if (whichfork == XFS_COW_FORK)
756 		return 0;
757 
758 	max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
759 				whichfork);
760 
761 	if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
762 		max_exts = 10;
763 
764 	nr_exts = ifp->if_nextents + nr_to_add;
765 	if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
766 		return -EFBIG;
767 
768 	return 0;
769 }
770 
771 /*
772  * Upgrade this inode's extent counter fields to be able to handle a potential
773  * increase in the extent count by nr_to_add.  Normally this is the same
774  * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
775  */
776 int
777 xfs_iext_count_upgrade(
778 	struct xfs_trans	*tp,
779 	struct xfs_inode	*ip,
780 	uint			nr_to_add)
781 {
782 	ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
783 
784 	if (!xfs_has_large_extent_counts(ip->i_mount) ||
785 	    xfs_inode_has_large_extent_counts(ip) ||
786 	    XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
787 		return -EFBIG;
788 
789 	ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
790 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
791 
792 	return 0;
793 }
794