xref: /openbmc/linux/fs/xfs/libxfs/xfs_alloc.c (revision 643e83501461763032ae51e4d540176e6a887d31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29 
30 struct kmem_cache	*xfs_extfree_item_cache;
31 
32 struct workqueue_struct *xfs_alloc_wq;
33 
34 #define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35 
36 #define	XFSA_FIXUP_BNO_OK	1
37 #define	XFSA_FIXUP_CNT_OK	2
38 
39 /*
40  * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
41  * the beginning of the block for a proper header with the location information
42  * and CRC.
43  */
44 unsigned int
45 xfs_agfl_size(
46 	struct xfs_mount	*mp)
47 {
48 	unsigned int		size = mp->m_sb.sb_sectsize;
49 
50 	if (xfs_has_crc(mp))
51 		size -= sizeof(struct xfs_agfl);
52 
53 	return size / sizeof(xfs_agblock_t);
54 }
55 
56 unsigned int
57 xfs_refc_block(
58 	struct xfs_mount	*mp)
59 {
60 	if (xfs_has_rmapbt(mp))
61 		return XFS_RMAP_BLOCK(mp) + 1;
62 	if (xfs_has_finobt(mp))
63 		return XFS_FIBT_BLOCK(mp) + 1;
64 	return XFS_IBT_BLOCK(mp) + 1;
65 }
66 
67 xfs_extlen_t
68 xfs_prealloc_blocks(
69 	struct xfs_mount	*mp)
70 {
71 	if (xfs_has_reflink(mp))
72 		return xfs_refc_block(mp) + 1;
73 	if (xfs_has_rmapbt(mp))
74 		return XFS_RMAP_BLOCK(mp) + 1;
75 	if (xfs_has_finobt(mp))
76 		return XFS_FIBT_BLOCK(mp) + 1;
77 	return XFS_IBT_BLOCK(mp) + 1;
78 }
79 
80 /*
81  * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82  * guarantee that we can refill the AGFL prior to allocating space in a nearly
83  * full AG.  Although the space described by the free space btrees, the
84  * blocks used by the freesp btrees themselves, and the blocks owned by the
85  * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86  * free space in the AG drop so low that the free space btrees cannot refill an
87  * empty AGFL up to the minimum level.  Rather than grind through empty AGs
88  * until the fs goes down, we subtract this many AG blocks from the incore
89  * fdblocks to ensure user allocation does not overcommit the space the
90  * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
91  * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92  */
93 #define XFS_ALLOCBT_AGFL_RESERVE	4
94 
95 /*
96  * Compute the number of blocks that we set aside to guarantee the ability to
97  * refill the AGFL and handle a full bmap btree split.
98  *
99  * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100  * AGF buffer (PV 947395), we place constraints on the relationship among
101  * actual allocations for data blocks, freelist blocks, and potential file data
102  * bmap btree blocks. However, these restrictions may result in no actual space
103  * allocated for a delayed extent, for example, a data block in a certain AG is
104  * allocated but there is no additional block for the additional bmap btree
105  * block due to a split of the bmap btree of the file. The result of this may
106  * lead to an infinite loop when the file gets flushed to disk and all delayed
107  * extents need to be actually allocated. To get around this, we explicitly set
108  * aside a few blocks which will not be reserved in delayed allocation.
109  *
110  * For each AG, we need to reserve enough blocks to replenish a totally empty
111  * AGFL and 4 more to handle a potential split of the file's bmap btree.
112  */
113 unsigned int
114 xfs_alloc_set_aside(
115 	struct xfs_mount	*mp)
116 {
117 	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119 
120 /*
121  * When deciding how much space to allocate out of an AG, we limit the
122  * allocation maximum size to the size the AG. However, we cannot use all the
123  * blocks in the AG - some are permanently used by metadata. These
124  * blocks are generally:
125  *	- the AG superblock, AGF, AGI and AGFL
126  *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
127  *	  the AGI free inode and rmap btree root blocks.
128  *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
129  *	- the rmapbt root block
130  *
131  * The AG headers are sector sized, so the amount of space they take up is
132  * dependent on filesystem geometry. The others are all single blocks.
133  */
134 unsigned int
135 xfs_alloc_ag_max_usable(
136 	struct xfs_mount	*mp)
137 {
138 	unsigned int		blocks;
139 
140 	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 	blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 	blocks += 3;			/* AGF, AGI btree root blocks */
143 	if (xfs_has_finobt(mp))
144 		blocks++;		/* finobt root block */
145 	if (xfs_has_rmapbt(mp))
146 		blocks++;		/* rmap root block */
147 	if (xfs_has_reflink(mp))
148 		blocks++;		/* refcount root block */
149 
150 	return mp->m_sb.sb_agblocks - blocks;
151 }
152 
153 /*
154  * Lookup the record equal to [bno, len] in the btree given by cur.
155  */
156 STATIC int				/* error */
157 xfs_alloc_lookup_eq(
158 	struct xfs_btree_cur	*cur,	/* btree cursor */
159 	xfs_agblock_t		bno,	/* starting block of extent */
160 	xfs_extlen_t		len,	/* length of extent */
161 	int			*stat)	/* success/failure */
162 {
163 	int			error;
164 
165 	cur->bc_rec.a.ar_startblock = bno;
166 	cur->bc_rec.a.ar_blockcount = len;
167 	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 	cur->bc_ag.abt.active = (*stat == 1);
169 	return error;
170 }
171 
172 /*
173  * Lookup the first record greater than or equal to [bno, len]
174  * in the btree given by cur.
175  */
176 int				/* error */
177 xfs_alloc_lookup_ge(
178 	struct xfs_btree_cur	*cur,	/* btree cursor */
179 	xfs_agblock_t		bno,	/* starting block of extent */
180 	xfs_extlen_t		len,	/* length of extent */
181 	int			*stat)	/* success/failure */
182 {
183 	int			error;
184 
185 	cur->bc_rec.a.ar_startblock = bno;
186 	cur->bc_rec.a.ar_blockcount = len;
187 	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 	cur->bc_ag.abt.active = (*stat == 1);
189 	return error;
190 }
191 
192 /*
193  * Lookup the first record less than or equal to [bno, len]
194  * in the btree given by cur.
195  */
196 int					/* error */
197 xfs_alloc_lookup_le(
198 	struct xfs_btree_cur	*cur,	/* btree cursor */
199 	xfs_agblock_t		bno,	/* starting block of extent */
200 	xfs_extlen_t		len,	/* length of extent */
201 	int			*stat)	/* success/failure */
202 {
203 	int			error;
204 	cur->bc_rec.a.ar_startblock = bno;
205 	cur->bc_rec.a.ar_blockcount = len;
206 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 	cur->bc_ag.abt.active = (*stat == 1);
208 	return error;
209 }
210 
211 static inline bool
212 xfs_alloc_cur_active(
213 	struct xfs_btree_cur	*cur)
214 {
215 	return cur && cur->bc_ag.abt.active;
216 }
217 
218 /*
219  * Update the record referred to by cur to the value given
220  * by [bno, len].
221  * This either works (return 0) or gets an EFSCORRUPTED error.
222  */
223 STATIC int				/* error */
224 xfs_alloc_update(
225 	struct xfs_btree_cur	*cur,	/* btree cursor */
226 	xfs_agblock_t		bno,	/* starting block of extent */
227 	xfs_extlen_t		len)	/* length of extent */
228 {
229 	union xfs_btree_rec	rec;
230 
231 	rec.alloc.ar_startblock = cpu_to_be32(bno);
232 	rec.alloc.ar_blockcount = cpu_to_be32(len);
233 	return xfs_btree_update(cur, &rec);
234 }
235 
236 /*
237  * Get the data from the pointed-to record.
238  */
239 int					/* error */
240 xfs_alloc_get_rec(
241 	struct xfs_btree_cur	*cur,	/* btree cursor */
242 	xfs_agblock_t		*bno,	/* output: starting block of extent */
243 	xfs_extlen_t		*len,	/* output: length of extent */
244 	int			*stat)	/* output: success/failure */
245 {
246 	struct xfs_mount	*mp = cur->bc_mp;
247 	struct xfs_perag	*pag = cur->bc_ag.pag;
248 	union xfs_btree_rec	*rec;
249 	int			error;
250 
251 	error = xfs_btree_get_rec(cur, &rec, stat);
252 	if (error || !(*stat))
253 		return error;
254 
255 	*bno = be32_to_cpu(rec->alloc.ar_startblock);
256 	*len = be32_to_cpu(rec->alloc.ar_blockcount);
257 
258 	if (*len == 0)
259 		goto out_bad_rec;
260 
261 	/* check for valid extent range, including overflow */
262 	if (!xfs_verify_agbext(pag, *bno, *len))
263 		goto out_bad_rec;
264 
265 	return 0;
266 
267 out_bad_rec:
268 	xfs_warn(mp,
269 		"%s Freespace BTree record corruption in AG %d detected!",
270 		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
271 		pag->pag_agno);
272 	xfs_warn(mp,
273 		"start block 0x%x block count 0x%x", *bno, *len);
274 	return -EFSCORRUPTED;
275 }
276 
277 /*
278  * Compute aligned version of the found extent.
279  * Takes alignment and min length into account.
280  */
281 STATIC bool
282 xfs_alloc_compute_aligned(
283 	xfs_alloc_arg_t	*args,		/* allocation argument structure */
284 	xfs_agblock_t	foundbno,	/* starting block in found extent */
285 	xfs_extlen_t	foundlen,	/* length in found extent */
286 	xfs_agblock_t	*resbno,	/* result block number */
287 	xfs_extlen_t	*reslen,	/* result length */
288 	unsigned	*busy_gen)
289 {
290 	xfs_agblock_t	bno = foundbno;
291 	xfs_extlen_t	len = foundlen;
292 	xfs_extlen_t	diff;
293 	bool		busy;
294 
295 	/* Trim busy sections out of found extent */
296 	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
297 
298 	/*
299 	 * If we have a largish extent that happens to start before min_agbno,
300 	 * see if we can shift it into range...
301 	 */
302 	if (bno < args->min_agbno && bno + len > args->min_agbno) {
303 		diff = args->min_agbno - bno;
304 		if (len > diff) {
305 			bno += diff;
306 			len -= diff;
307 		}
308 	}
309 
310 	if (args->alignment > 1 && len >= args->minlen) {
311 		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
312 
313 		diff = aligned_bno - bno;
314 
315 		*resbno = aligned_bno;
316 		*reslen = diff >= len ? 0 : len - diff;
317 	} else {
318 		*resbno = bno;
319 		*reslen = len;
320 	}
321 
322 	return busy;
323 }
324 
325 /*
326  * Compute best start block and diff for "near" allocations.
327  * freelen >= wantlen already checked by caller.
328  */
329 STATIC xfs_extlen_t			/* difference value (absolute) */
330 xfs_alloc_compute_diff(
331 	xfs_agblock_t	wantbno,	/* target starting block */
332 	xfs_extlen_t	wantlen,	/* target length */
333 	xfs_extlen_t	alignment,	/* target alignment */
334 	int		datatype,	/* are we allocating data? */
335 	xfs_agblock_t	freebno,	/* freespace's starting block */
336 	xfs_extlen_t	freelen,	/* freespace's length */
337 	xfs_agblock_t	*newbnop)	/* result: best start block from free */
338 {
339 	xfs_agblock_t	freeend;	/* end of freespace extent */
340 	xfs_agblock_t	newbno1;	/* return block number */
341 	xfs_agblock_t	newbno2;	/* other new block number */
342 	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
343 	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
344 	xfs_agblock_t	wantend;	/* end of target extent */
345 	bool		userdata = datatype & XFS_ALLOC_USERDATA;
346 
347 	ASSERT(freelen >= wantlen);
348 	freeend = freebno + freelen;
349 	wantend = wantbno + wantlen;
350 	/*
351 	 * We want to allocate from the start of a free extent if it is past
352 	 * the desired block or if we are allocating user data and the free
353 	 * extent is before desired block. The second case is there to allow
354 	 * for contiguous allocation from the remaining free space if the file
355 	 * grows in the short term.
356 	 */
357 	if (freebno >= wantbno || (userdata && freeend < wantend)) {
358 		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
359 			newbno1 = NULLAGBLOCK;
360 	} else if (freeend >= wantend && alignment > 1) {
361 		newbno1 = roundup(wantbno, alignment);
362 		newbno2 = newbno1 - alignment;
363 		if (newbno1 >= freeend)
364 			newbno1 = NULLAGBLOCK;
365 		else
366 			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
367 		if (newbno2 < freebno)
368 			newbno2 = NULLAGBLOCK;
369 		else
370 			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
371 		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
372 			if (newlen1 < newlen2 ||
373 			    (newlen1 == newlen2 &&
374 			     XFS_ABSDIFF(newbno1, wantbno) >
375 			     XFS_ABSDIFF(newbno2, wantbno)))
376 				newbno1 = newbno2;
377 		} else if (newbno2 != NULLAGBLOCK)
378 			newbno1 = newbno2;
379 	} else if (freeend >= wantend) {
380 		newbno1 = wantbno;
381 	} else if (alignment > 1) {
382 		newbno1 = roundup(freeend - wantlen, alignment);
383 		if (newbno1 > freeend - wantlen &&
384 		    newbno1 - alignment >= freebno)
385 			newbno1 -= alignment;
386 		else if (newbno1 >= freeend)
387 			newbno1 = NULLAGBLOCK;
388 	} else
389 		newbno1 = freeend - wantlen;
390 	*newbnop = newbno1;
391 	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
392 }
393 
394 /*
395  * Fix up the length, based on mod and prod.
396  * len should be k * prod + mod for some k.
397  * If len is too small it is returned unchanged.
398  * If len hits maxlen it is left alone.
399  */
400 STATIC void
401 xfs_alloc_fix_len(
402 	xfs_alloc_arg_t	*args)		/* allocation argument structure */
403 {
404 	xfs_extlen_t	k;
405 	xfs_extlen_t	rlen;
406 
407 	ASSERT(args->mod < args->prod);
408 	rlen = args->len;
409 	ASSERT(rlen >= args->minlen);
410 	ASSERT(rlen <= args->maxlen);
411 	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
412 	    (args->mod == 0 && rlen < args->prod))
413 		return;
414 	k = rlen % args->prod;
415 	if (k == args->mod)
416 		return;
417 	if (k > args->mod)
418 		rlen = rlen - (k - args->mod);
419 	else
420 		rlen = rlen - args->prod + (args->mod - k);
421 	/* casts to (int) catch length underflows */
422 	if ((int)rlen < (int)args->minlen)
423 		return;
424 	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
425 	ASSERT(rlen % args->prod == args->mod);
426 	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
427 		rlen + args->minleft);
428 	args->len = rlen;
429 }
430 
431 /*
432  * Update the two btrees, logically removing from freespace the extent
433  * starting at rbno, rlen blocks.  The extent is contained within the
434  * actual (current) free extent fbno for flen blocks.
435  * Flags are passed in indicating whether the cursors are set to the
436  * relevant records.
437  */
438 STATIC int				/* error code */
439 xfs_alloc_fixup_trees(
440 	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
441 	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
442 	xfs_agblock_t	fbno,		/* starting block of free extent */
443 	xfs_extlen_t	flen,		/* length of free extent */
444 	xfs_agblock_t	rbno,		/* starting block of returned extent */
445 	xfs_extlen_t	rlen,		/* length of returned extent */
446 	int		flags)		/* flags, XFSA_FIXUP_... */
447 {
448 	int		error;		/* error code */
449 	int		i;		/* operation results */
450 	xfs_agblock_t	nfbno1;		/* first new free startblock */
451 	xfs_agblock_t	nfbno2;		/* second new free startblock */
452 	xfs_extlen_t	nflen1=0;	/* first new free length */
453 	xfs_extlen_t	nflen2=0;	/* second new free length */
454 	struct xfs_mount *mp;
455 
456 	mp = cnt_cur->bc_mp;
457 
458 	/*
459 	 * Look up the record in the by-size tree if necessary.
460 	 */
461 	if (flags & XFSA_FIXUP_CNT_OK) {
462 #ifdef DEBUG
463 		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
464 			return error;
465 		if (XFS_IS_CORRUPT(mp,
466 				   i != 1 ||
467 				   nfbno1 != fbno ||
468 				   nflen1 != flen))
469 			return -EFSCORRUPTED;
470 #endif
471 	} else {
472 		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
473 			return error;
474 		if (XFS_IS_CORRUPT(mp, i != 1))
475 			return -EFSCORRUPTED;
476 	}
477 	/*
478 	 * Look up the record in the by-block tree if necessary.
479 	 */
480 	if (flags & XFSA_FIXUP_BNO_OK) {
481 #ifdef DEBUG
482 		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
483 			return error;
484 		if (XFS_IS_CORRUPT(mp,
485 				   i != 1 ||
486 				   nfbno1 != fbno ||
487 				   nflen1 != flen))
488 			return -EFSCORRUPTED;
489 #endif
490 	} else {
491 		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
492 			return error;
493 		if (XFS_IS_CORRUPT(mp, i != 1))
494 			return -EFSCORRUPTED;
495 	}
496 
497 #ifdef DEBUG
498 	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
499 		struct xfs_btree_block	*bnoblock;
500 		struct xfs_btree_block	*cntblock;
501 
502 		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
503 		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
504 
505 		if (XFS_IS_CORRUPT(mp,
506 				   bnoblock->bb_numrecs !=
507 				   cntblock->bb_numrecs))
508 			return -EFSCORRUPTED;
509 	}
510 #endif
511 
512 	/*
513 	 * Deal with all four cases: the allocated record is contained
514 	 * within the freespace record, so we can have new freespace
515 	 * at either (or both) end, or no freespace remaining.
516 	 */
517 	if (rbno == fbno && rlen == flen)
518 		nfbno1 = nfbno2 = NULLAGBLOCK;
519 	else if (rbno == fbno) {
520 		nfbno1 = rbno + rlen;
521 		nflen1 = flen - rlen;
522 		nfbno2 = NULLAGBLOCK;
523 	} else if (rbno + rlen == fbno + flen) {
524 		nfbno1 = fbno;
525 		nflen1 = flen - rlen;
526 		nfbno2 = NULLAGBLOCK;
527 	} else {
528 		nfbno1 = fbno;
529 		nflen1 = rbno - fbno;
530 		nfbno2 = rbno + rlen;
531 		nflen2 = (fbno + flen) - nfbno2;
532 	}
533 	/*
534 	 * Delete the entry from the by-size btree.
535 	 */
536 	if ((error = xfs_btree_delete(cnt_cur, &i)))
537 		return error;
538 	if (XFS_IS_CORRUPT(mp, i != 1))
539 		return -EFSCORRUPTED;
540 	/*
541 	 * Add new by-size btree entry(s).
542 	 */
543 	if (nfbno1 != NULLAGBLOCK) {
544 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
545 			return error;
546 		if (XFS_IS_CORRUPT(mp, i != 0))
547 			return -EFSCORRUPTED;
548 		if ((error = xfs_btree_insert(cnt_cur, &i)))
549 			return error;
550 		if (XFS_IS_CORRUPT(mp, i != 1))
551 			return -EFSCORRUPTED;
552 	}
553 	if (nfbno2 != NULLAGBLOCK) {
554 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
555 			return error;
556 		if (XFS_IS_CORRUPT(mp, i != 0))
557 			return -EFSCORRUPTED;
558 		if ((error = xfs_btree_insert(cnt_cur, &i)))
559 			return error;
560 		if (XFS_IS_CORRUPT(mp, i != 1))
561 			return -EFSCORRUPTED;
562 	}
563 	/*
564 	 * Fix up the by-block btree entry(s).
565 	 */
566 	if (nfbno1 == NULLAGBLOCK) {
567 		/*
568 		 * No remaining freespace, just delete the by-block tree entry.
569 		 */
570 		if ((error = xfs_btree_delete(bno_cur, &i)))
571 			return error;
572 		if (XFS_IS_CORRUPT(mp, i != 1))
573 			return -EFSCORRUPTED;
574 	} else {
575 		/*
576 		 * Update the by-block entry to start later|be shorter.
577 		 */
578 		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
579 			return error;
580 	}
581 	if (nfbno2 != NULLAGBLOCK) {
582 		/*
583 		 * 2 resulting free entries, need to add one.
584 		 */
585 		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
586 			return error;
587 		if (XFS_IS_CORRUPT(mp, i != 0))
588 			return -EFSCORRUPTED;
589 		if ((error = xfs_btree_insert(bno_cur, &i)))
590 			return error;
591 		if (XFS_IS_CORRUPT(mp, i != 1))
592 			return -EFSCORRUPTED;
593 	}
594 	return 0;
595 }
596 
597 static xfs_failaddr_t
598 xfs_agfl_verify(
599 	struct xfs_buf	*bp)
600 {
601 	struct xfs_mount *mp = bp->b_mount;
602 	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
603 	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
604 	int		i;
605 
606 	/*
607 	 * There is no verification of non-crc AGFLs because mkfs does not
608 	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
609 	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
610 	 * can't verify just those entries are valid.
611 	 */
612 	if (!xfs_has_crc(mp))
613 		return NULL;
614 
615 	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
616 		return __this_address;
617 	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
618 		return __this_address;
619 	/*
620 	 * during growfs operations, the perag is not fully initialised,
621 	 * so we can't use it for any useful checking. growfs ensures we can't
622 	 * use it by using uncached buffers that don't have the perag attached
623 	 * so we can detect and avoid this problem.
624 	 */
625 	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
626 		return __this_address;
627 
628 	for (i = 0; i < xfs_agfl_size(mp); i++) {
629 		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
630 		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
631 			return __this_address;
632 	}
633 
634 	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
635 		return __this_address;
636 	return NULL;
637 }
638 
639 static void
640 xfs_agfl_read_verify(
641 	struct xfs_buf	*bp)
642 {
643 	struct xfs_mount *mp = bp->b_mount;
644 	xfs_failaddr_t	fa;
645 
646 	/*
647 	 * There is no verification of non-crc AGFLs because mkfs does not
648 	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
649 	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
650 	 * can't verify just those entries are valid.
651 	 */
652 	if (!xfs_has_crc(mp))
653 		return;
654 
655 	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
656 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
657 	else {
658 		fa = xfs_agfl_verify(bp);
659 		if (fa)
660 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
661 	}
662 }
663 
664 static void
665 xfs_agfl_write_verify(
666 	struct xfs_buf	*bp)
667 {
668 	struct xfs_mount	*mp = bp->b_mount;
669 	struct xfs_buf_log_item	*bip = bp->b_log_item;
670 	xfs_failaddr_t		fa;
671 
672 	/* no verification of non-crc AGFLs */
673 	if (!xfs_has_crc(mp))
674 		return;
675 
676 	fa = xfs_agfl_verify(bp);
677 	if (fa) {
678 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
679 		return;
680 	}
681 
682 	if (bip)
683 		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
684 
685 	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
686 }
687 
688 const struct xfs_buf_ops xfs_agfl_buf_ops = {
689 	.name = "xfs_agfl",
690 	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
691 	.verify_read = xfs_agfl_read_verify,
692 	.verify_write = xfs_agfl_write_verify,
693 	.verify_struct = xfs_agfl_verify,
694 };
695 
696 /*
697  * Read in the allocation group free block array.
698  */
699 int
700 xfs_alloc_read_agfl(
701 	struct xfs_perag	*pag,
702 	struct xfs_trans	*tp,
703 	struct xfs_buf		**bpp)
704 {
705 	struct xfs_mount	*mp = pag->pag_mount;
706 	struct xfs_buf		*bp;
707 	int			error;
708 
709 	error = xfs_trans_read_buf(
710 			mp, tp, mp->m_ddev_targp,
711 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
712 			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
713 	if (error)
714 		return error;
715 	xfs_buf_set_ref(bp, XFS_AGFL_REF);
716 	*bpp = bp;
717 	return 0;
718 }
719 
720 STATIC int
721 xfs_alloc_update_counters(
722 	struct xfs_trans	*tp,
723 	struct xfs_buf		*agbp,
724 	long			len)
725 {
726 	struct xfs_agf		*agf = agbp->b_addr;
727 
728 	agbp->b_pag->pagf_freeblks += len;
729 	be32_add_cpu(&agf->agf_freeblks, len);
730 
731 	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
732 		     be32_to_cpu(agf->agf_length))) {
733 		xfs_buf_mark_corrupt(agbp);
734 		return -EFSCORRUPTED;
735 	}
736 
737 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
738 	return 0;
739 }
740 
741 /*
742  * Block allocation algorithm and data structures.
743  */
744 struct xfs_alloc_cur {
745 	struct xfs_btree_cur		*cnt;	/* btree cursors */
746 	struct xfs_btree_cur		*bnolt;
747 	struct xfs_btree_cur		*bnogt;
748 	xfs_extlen_t			cur_len;/* current search length */
749 	xfs_agblock_t			rec_bno;/* extent startblock */
750 	xfs_extlen_t			rec_len;/* extent length */
751 	xfs_agblock_t			bno;	/* alloc bno */
752 	xfs_extlen_t			len;	/* alloc len */
753 	xfs_extlen_t			diff;	/* diff from search bno */
754 	unsigned int			busy_gen;/* busy state */
755 	bool				busy;
756 };
757 
758 /*
759  * Set up cursors, etc. in the extent allocation cursor. This function can be
760  * called multiple times to reset an initialized structure without having to
761  * reallocate cursors.
762  */
763 static int
764 xfs_alloc_cur_setup(
765 	struct xfs_alloc_arg	*args,
766 	struct xfs_alloc_cur	*acur)
767 {
768 	int			error;
769 	int			i;
770 
771 	acur->cur_len = args->maxlen;
772 	acur->rec_bno = 0;
773 	acur->rec_len = 0;
774 	acur->bno = 0;
775 	acur->len = 0;
776 	acur->diff = -1;
777 	acur->busy = false;
778 	acur->busy_gen = 0;
779 
780 	/*
781 	 * Perform an initial cntbt lookup to check for availability of maxlen
782 	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
783 	 * attempt a small allocation.
784 	 */
785 	if (!acur->cnt)
786 		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
787 					args->agbp, args->pag, XFS_BTNUM_CNT);
788 	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
789 	if (error)
790 		return error;
791 
792 	/*
793 	 * Allocate the bnobt left and right search cursors.
794 	 */
795 	if (!acur->bnolt)
796 		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
797 					args->agbp, args->pag, XFS_BTNUM_BNO);
798 	if (!acur->bnogt)
799 		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
800 					args->agbp, args->pag, XFS_BTNUM_BNO);
801 	return i == 1 ? 0 : -ENOSPC;
802 }
803 
804 static void
805 xfs_alloc_cur_close(
806 	struct xfs_alloc_cur	*acur,
807 	bool			error)
808 {
809 	int			cur_error = XFS_BTREE_NOERROR;
810 
811 	if (error)
812 		cur_error = XFS_BTREE_ERROR;
813 
814 	if (acur->cnt)
815 		xfs_btree_del_cursor(acur->cnt, cur_error);
816 	if (acur->bnolt)
817 		xfs_btree_del_cursor(acur->bnolt, cur_error);
818 	if (acur->bnogt)
819 		xfs_btree_del_cursor(acur->bnogt, cur_error);
820 	acur->cnt = acur->bnolt = acur->bnogt = NULL;
821 }
822 
823 /*
824  * Check an extent for allocation and track the best available candidate in the
825  * allocation structure. The cursor is deactivated if it has entered an out of
826  * range state based on allocation arguments. Optionally return the extent
827  * extent geometry and allocation status if requested by the caller.
828  */
829 static int
830 xfs_alloc_cur_check(
831 	struct xfs_alloc_arg	*args,
832 	struct xfs_alloc_cur	*acur,
833 	struct xfs_btree_cur	*cur,
834 	int			*new)
835 {
836 	int			error, i;
837 	xfs_agblock_t		bno, bnoa, bnew;
838 	xfs_extlen_t		len, lena, diff = -1;
839 	bool			busy;
840 	unsigned		busy_gen = 0;
841 	bool			deactivate = false;
842 	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
843 
844 	*new = 0;
845 
846 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
847 	if (error)
848 		return error;
849 	if (XFS_IS_CORRUPT(args->mp, i != 1))
850 		return -EFSCORRUPTED;
851 
852 	/*
853 	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
854 	 * range (i.e., walking backwards looking for a minlen extent).
855 	 */
856 	if (len < args->minlen) {
857 		deactivate = !isbnobt;
858 		goto out;
859 	}
860 
861 	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
862 					 &busy_gen);
863 	acur->busy |= busy;
864 	if (busy)
865 		acur->busy_gen = busy_gen;
866 	/* deactivate a bnobt cursor outside of locality range */
867 	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
868 		deactivate = isbnobt;
869 		goto out;
870 	}
871 	if (lena < args->minlen)
872 		goto out;
873 
874 	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
875 	xfs_alloc_fix_len(args);
876 	ASSERT(args->len >= args->minlen);
877 	if (args->len < acur->len)
878 		goto out;
879 
880 	/*
881 	 * We have an aligned record that satisfies minlen and beats or matches
882 	 * the candidate extent size. Compare locality for near allocation mode.
883 	 */
884 	diff = xfs_alloc_compute_diff(args->agbno, args->len,
885 				      args->alignment, args->datatype,
886 				      bnoa, lena, &bnew);
887 	if (bnew == NULLAGBLOCK)
888 		goto out;
889 
890 	/*
891 	 * Deactivate a bnobt cursor with worse locality than the current best.
892 	 */
893 	if (diff > acur->diff) {
894 		deactivate = isbnobt;
895 		goto out;
896 	}
897 
898 	ASSERT(args->len > acur->len ||
899 	       (args->len == acur->len && diff <= acur->diff));
900 	acur->rec_bno = bno;
901 	acur->rec_len = len;
902 	acur->bno = bnew;
903 	acur->len = args->len;
904 	acur->diff = diff;
905 	*new = 1;
906 
907 	/*
908 	 * We're done if we found a perfect allocation. This only deactivates
909 	 * the current cursor, but this is just an optimization to terminate a
910 	 * cntbt search that otherwise runs to the edge of the tree.
911 	 */
912 	if (acur->diff == 0 && acur->len == args->maxlen)
913 		deactivate = true;
914 out:
915 	if (deactivate)
916 		cur->bc_ag.abt.active = false;
917 	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
918 				  *new);
919 	return 0;
920 }
921 
922 /*
923  * Complete an allocation of a candidate extent. Remove the extent from both
924  * trees and update the args structure.
925  */
926 STATIC int
927 xfs_alloc_cur_finish(
928 	struct xfs_alloc_arg	*args,
929 	struct xfs_alloc_cur	*acur)
930 {
931 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
932 	int			error;
933 
934 	ASSERT(acur->cnt && acur->bnolt);
935 	ASSERT(acur->bno >= acur->rec_bno);
936 	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
937 	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
938 
939 	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
940 				      acur->rec_len, acur->bno, acur->len, 0);
941 	if (error)
942 		return error;
943 
944 	args->agbno = acur->bno;
945 	args->len = acur->len;
946 	args->wasfromfl = 0;
947 
948 	trace_xfs_alloc_cur(args);
949 	return 0;
950 }
951 
952 /*
953  * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
954  * bno optimized lookup to search for extents with ideal size and locality.
955  */
956 STATIC int
957 xfs_alloc_cntbt_iter(
958 	struct xfs_alloc_arg		*args,
959 	struct xfs_alloc_cur		*acur)
960 {
961 	struct xfs_btree_cur	*cur = acur->cnt;
962 	xfs_agblock_t		bno;
963 	xfs_extlen_t		len, cur_len;
964 	int			error;
965 	int			i;
966 
967 	if (!xfs_alloc_cur_active(cur))
968 		return 0;
969 
970 	/* locality optimized lookup */
971 	cur_len = acur->cur_len;
972 	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
973 	if (error)
974 		return error;
975 	if (i == 0)
976 		return 0;
977 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
978 	if (error)
979 		return error;
980 
981 	/* check the current record and update search length from it */
982 	error = xfs_alloc_cur_check(args, acur, cur, &i);
983 	if (error)
984 		return error;
985 	ASSERT(len >= acur->cur_len);
986 	acur->cur_len = len;
987 
988 	/*
989 	 * We looked up the first record >= [agbno, len] above. The agbno is a
990 	 * secondary key and so the current record may lie just before or after
991 	 * agbno. If it is past agbno, check the previous record too so long as
992 	 * the length matches as it may be closer. Don't check a smaller record
993 	 * because that could deactivate our cursor.
994 	 */
995 	if (bno > args->agbno) {
996 		error = xfs_btree_decrement(cur, 0, &i);
997 		if (!error && i) {
998 			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
999 			if (!error && i && len == acur->cur_len)
1000 				error = xfs_alloc_cur_check(args, acur, cur,
1001 							    &i);
1002 		}
1003 		if (error)
1004 			return error;
1005 	}
1006 
1007 	/*
1008 	 * Increment the search key until we find at least one allocation
1009 	 * candidate or if the extent we found was larger. Otherwise, double the
1010 	 * search key to optimize the search. Efficiency is more important here
1011 	 * than absolute best locality.
1012 	 */
1013 	cur_len <<= 1;
1014 	if (!acur->len || acur->cur_len >= cur_len)
1015 		acur->cur_len++;
1016 	else
1017 		acur->cur_len = cur_len;
1018 
1019 	return error;
1020 }
1021 
1022 /*
1023  * Deal with the case where only small freespaces remain. Either return the
1024  * contents of the last freespace record, or allocate space from the freelist if
1025  * there is nothing in the tree.
1026  */
1027 STATIC int			/* error */
1028 xfs_alloc_ag_vextent_small(
1029 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1030 	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1031 	xfs_agblock_t		*fbnop,	/* result block number */
1032 	xfs_extlen_t		*flenp,	/* result length */
1033 	int			*stat)	/* status: 0-freelist, 1-normal/none */
1034 {
1035 	struct xfs_agf		*agf = args->agbp->b_addr;
1036 	int			error = 0;
1037 	xfs_agblock_t		fbno = NULLAGBLOCK;
1038 	xfs_extlen_t		flen = 0;
1039 	int			i = 0;
1040 
1041 	/*
1042 	 * If a cntbt cursor is provided, try to allocate the largest record in
1043 	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1044 	 * allocation. Make sure to respect minleft even when pulling from the
1045 	 * freelist.
1046 	 */
1047 	if (ccur)
1048 		error = xfs_btree_decrement(ccur, 0, &i);
1049 	if (error)
1050 		goto error;
1051 	if (i) {
1052 		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1053 		if (error)
1054 			goto error;
1055 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1056 			error = -EFSCORRUPTED;
1057 			goto error;
1058 		}
1059 		goto out;
1060 	}
1061 
1062 	if (args->minlen != 1 || args->alignment != 1 ||
1063 	    args->resv == XFS_AG_RESV_AGFL ||
1064 	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1065 		goto out;
1066 
1067 	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1068 			&fbno, 0);
1069 	if (error)
1070 		goto error;
1071 	if (fbno == NULLAGBLOCK)
1072 		goto out;
1073 
1074 	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1075 			      (args->datatype & XFS_ALLOC_NOBUSY));
1076 
1077 	if (args->datatype & XFS_ALLOC_USERDATA) {
1078 		struct xfs_buf	*bp;
1079 
1080 		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1081 				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1082 				args->mp->m_bsize, 0, &bp);
1083 		if (error)
1084 			goto error;
1085 		xfs_trans_binval(args->tp, bp);
1086 	}
1087 	*fbnop = args->agbno = fbno;
1088 	*flenp = args->len = 1;
1089 	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1090 		error = -EFSCORRUPTED;
1091 		goto error;
1092 	}
1093 	args->wasfromfl = 1;
1094 	trace_xfs_alloc_small_freelist(args);
1095 
1096 	/*
1097 	 * If we're feeding an AGFL block to something that doesn't live in the
1098 	 * free space, we need to clear out the OWN_AG rmap.
1099 	 */
1100 	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1101 			      &XFS_RMAP_OINFO_AG);
1102 	if (error)
1103 		goto error;
1104 
1105 	*stat = 0;
1106 	return 0;
1107 
1108 out:
1109 	/*
1110 	 * Can't do the allocation, give up.
1111 	 */
1112 	if (flen < args->minlen) {
1113 		args->agbno = NULLAGBLOCK;
1114 		trace_xfs_alloc_small_notenough(args);
1115 		flen = 0;
1116 	}
1117 	*fbnop = fbno;
1118 	*flenp = flen;
1119 	*stat = 1;
1120 	trace_xfs_alloc_small_done(args);
1121 	return 0;
1122 
1123 error:
1124 	trace_xfs_alloc_small_error(args);
1125 	return error;
1126 }
1127 
1128 /*
1129  * Allocate a variable extent at exactly agno/bno.
1130  * Extent's length (returned in *len) will be between minlen and maxlen,
1131  * and of the form k * prod + mod unless there's nothing that large.
1132  * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1133  */
1134 STATIC int			/* error */
1135 xfs_alloc_ag_vextent_exact(
1136 	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1137 {
1138 	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1139 	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1140 	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1141 	int		error;
1142 	xfs_agblock_t	fbno;	/* start block of found extent */
1143 	xfs_extlen_t	flen;	/* length of found extent */
1144 	xfs_agblock_t	tbno;	/* start block of busy extent */
1145 	xfs_extlen_t	tlen;	/* length of busy extent */
1146 	xfs_agblock_t	tend;	/* end block of busy extent */
1147 	int		i;	/* success/failure of operation */
1148 	unsigned	busy_gen;
1149 
1150 	ASSERT(args->alignment == 1);
1151 
1152 	/*
1153 	 * Allocate/initialize a cursor for the by-number freespace btree.
1154 	 */
1155 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1156 					  args->pag, XFS_BTNUM_BNO);
1157 
1158 	/*
1159 	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1160 	 * Look for the closest free block <= bno, it must contain bno
1161 	 * if any free block does.
1162 	 */
1163 	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1164 	if (error)
1165 		goto error0;
1166 	if (!i)
1167 		goto not_found;
1168 
1169 	/*
1170 	 * Grab the freespace record.
1171 	 */
1172 	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1173 	if (error)
1174 		goto error0;
1175 	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1176 		error = -EFSCORRUPTED;
1177 		goto error0;
1178 	}
1179 	ASSERT(fbno <= args->agbno);
1180 
1181 	/*
1182 	 * Check for overlapping busy extents.
1183 	 */
1184 	tbno = fbno;
1185 	tlen = flen;
1186 	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1187 
1188 	/*
1189 	 * Give up if the start of the extent is busy, or the freespace isn't
1190 	 * long enough for the minimum request.
1191 	 */
1192 	if (tbno > args->agbno)
1193 		goto not_found;
1194 	if (tlen < args->minlen)
1195 		goto not_found;
1196 	tend = tbno + tlen;
1197 	if (tend < args->agbno + args->minlen)
1198 		goto not_found;
1199 
1200 	/*
1201 	 * End of extent will be smaller of the freespace end and the
1202 	 * maximal requested end.
1203 	 *
1204 	 * Fix the length according to mod and prod if given.
1205 	 */
1206 	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1207 						- args->agbno;
1208 	xfs_alloc_fix_len(args);
1209 	ASSERT(args->agbno + args->len <= tend);
1210 
1211 	/*
1212 	 * We are allocating agbno for args->len
1213 	 * Allocate/initialize a cursor for the by-size btree.
1214 	 */
1215 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1216 					args->pag, XFS_BTNUM_CNT);
1217 	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1218 	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1219 				      args->len, XFSA_FIXUP_BNO_OK);
1220 	if (error) {
1221 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1222 		goto error0;
1223 	}
1224 
1225 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1226 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1227 
1228 	args->wasfromfl = 0;
1229 	trace_xfs_alloc_exact_done(args);
1230 	return 0;
1231 
1232 not_found:
1233 	/* Didn't find it, return null. */
1234 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1235 	args->agbno = NULLAGBLOCK;
1236 	trace_xfs_alloc_exact_notfound(args);
1237 	return 0;
1238 
1239 error0:
1240 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1241 	trace_xfs_alloc_exact_error(args);
1242 	return error;
1243 }
1244 
1245 /*
1246  * Search a given number of btree records in a given direction. Check each
1247  * record against the good extent we've already found.
1248  */
1249 STATIC int
1250 xfs_alloc_walk_iter(
1251 	struct xfs_alloc_arg	*args,
1252 	struct xfs_alloc_cur	*acur,
1253 	struct xfs_btree_cur	*cur,
1254 	bool			increment,
1255 	bool			find_one, /* quit on first candidate */
1256 	int			count,    /* rec count (-1 for infinite) */
1257 	int			*stat)
1258 {
1259 	int			error;
1260 	int			i;
1261 
1262 	*stat = 0;
1263 
1264 	/*
1265 	 * Search so long as the cursor is active or we find a better extent.
1266 	 * The cursor is deactivated if it extends beyond the range of the
1267 	 * current allocation candidate.
1268 	 */
1269 	while (xfs_alloc_cur_active(cur) && count) {
1270 		error = xfs_alloc_cur_check(args, acur, cur, &i);
1271 		if (error)
1272 			return error;
1273 		if (i == 1) {
1274 			*stat = 1;
1275 			if (find_one)
1276 				break;
1277 		}
1278 		if (!xfs_alloc_cur_active(cur))
1279 			break;
1280 
1281 		if (increment)
1282 			error = xfs_btree_increment(cur, 0, &i);
1283 		else
1284 			error = xfs_btree_decrement(cur, 0, &i);
1285 		if (error)
1286 			return error;
1287 		if (i == 0)
1288 			cur->bc_ag.abt.active = false;
1289 
1290 		if (count > 0)
1291 			count--;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Search the by-bno and by-size btrees in parallel in search of an extent with
1299  * ideal locality based on the NEAR mode ->agbno locality hint.
1300  */
1301 STATIC int
1302 xfs_alloc_ag_vextent_locality(
1303 	struct xfs_alloc_arg	*args,
1304 	struct xfs_alloc_cur	*acur,
1305 	int			*stat)
1306 {
1307 	struct xfs_btree_cur	*fbcur = NULL;
1308 	int			error;
1309 	int			i;
1310 	bool			fbinc;
1311 
1312 	ASSERT(acur->len == 0);
1313 
1314 	*stat = 0;
1315 
1316 	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1317 	if (error)
1318 		return error;
1319 	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1320 	if (error)
1321 		return error;
1322 	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1323 	if (error)
1324 		return error;
1325 
1326 	/*
1327 	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1328 	 * right and lookup the closest extent to the locality hint for each
1329 	 * extent size key in the cntbt. The entire search terminates
1330 	 * immediately on a bnobt hit because that means we've found best case
1331 	 * locality. Otherwise the search continues until the cntbt cursor runs
1332 	 * off the end of the tree. If no allocation candidate is found at this
1333 	 * point, give up on locality, walk backwards from the end of the cntbt
1334 	 * and take the first available extent.
1335 	 *
1336 	 * The parallel tree searches balance each other out to provide fairly
1337 	 * consistent performance for various situations. The bnobt search can
1338 	 * have pathological behavior in the worst case scenario of larger
1339 	 * allocation requests and fragmented free space. On the other hand, the
1340 	 * bnobt is able to satisfy most smaller allocation requests much more
1341 	 * quickly than the cntbt. The cntbt search can sift through fragmented
1342 	 * free space and sets of free extents for larger allocation requests
1343 	 * more quickly than the bnobt. Since the locality hint is just a hint
1344 	 * and we don't want to scan the entire bnobt for perfect locality, the
1345 	 * cntbt search essentially bounds the bnobt search such that we can
1346 	 * find good enough locality at reasonable performance in most cases.
1347 	 */
1348 	while (xfs_alloc_cur_active(acur->bnolt) ||
1349 	       xfs_alloc_cur_active(acur->bnogt) ||
1350 	       xfs_alloc_cur_active(acur->cnt)) {
1351 
1352 		trace_xfs_alloc_cur_lookup(args);
1353 
1354 		/*
1355 		 * Search the bnobt left and right. In the case of a hit, finish
1356 		 * the search in the opposite direction and we're done.
1357 		 */
1358 		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1359 					    true, 1, &i);
1360 		if (error)
1361 			return error;
1362 		if (i == 1) {
1363 			trace_xfs_alloc_cur_left(args);
1364 			fbcur = acur->bnogt;
1365 			fbinc = true;
1366 			break;
1367 		}
1368 		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1369 					    1, &i);
1370 		if (error)
1371 			return error;
1372 		if (i == 1) {
1373 			trace_xfs_alloc_cur_right(args);
1374 			fbcur = acur->bnolt;
1375 			fbinc = false;
1376 			break;
1377 		}
1378 
1379 		/*
1380 		 * Check the extent with best locality based on the current
1381 		 * extent size search key and keep track of the best candidate.
1382 		 */
1383 		error = xfs_alloc_cntbt_iter(args, acur);
1384 		if (error)
1385 			return error;
1386 		if (!xfs_alloc_cur_active(acur->cnt)) {
1387 			trace_xfs_alloc_cur_lookup_done(args);
1388 			break;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If we failed to find anything due to busy extents, return empty
1394 	 * handed so the caller can flush and retry. If no busy extents were
1395 	 * found, walk backwards from the end of the cntbt as a last resort.
1396 	 */
1397 	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1398 		error = xfs_btree_decrement(acur->cnt, 0, &i);
1399 		if (error)
1400 			return error;
1401 		if (i) {
1402 			acur->cnt->bc_ag.abt.active = true;
1403 			fbcur = acur->cnt;
1404 			fbinc = false;
1405 		}
1406 	}
1407 
1408 	/*
1409 	 * Search in the opposite direction for a better entry in the case of
1410 	 * a bnobt hit or walk backwards from the end of the cntbt.
1411 	 */
1412 	if (fbcur) {
1413 		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1414 					    &i);
1415 		if (error)
1416 			return error;
1417 	}
1418 
1419 	if (acur->len)
1420 		*stat = 1;
1421 
1422 	return 0;
1423 }
1424 
1425 /* Check the last block of the cnt btree for allocations. */
1426 static int
1427 xfs_alloc_ag_vextent_lastblock(
1428 	struct xfs_alloc_arg	*args,
1429 	struct xfs_alloc_cur	*acur,
1430 	xfs_agblock_t		*bno,
1431 	xfs_extlen_t		*len,
1432 	bool			*allocated)
1433 {
1434 	int			error;
1435 	int			i;
1436 
1437 #ifdef DEBUG
1438 	/* Randomly don't execute the first algorithm. */
1439 	if (get_random_u32_below(2))
1440 		return 0;
1441 #endif
1442 
1443 	/*
1444 	 * Start from the entry that lookup found, sequence through all larger
1445 	 * free blocks.  If we're actually pointing at a record smaller than
1446 	 * maxlen, go to the start of this block, and skip all those smaller
1447 	 * than minlen.
1448 	 */
1449 	if (*len || args->alignment > 1) {
1450 		acur->cnt->bc_levels[0].ptr = 1;
1451 		do {
1452 			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1453 			if (error)
1454 				return error;
1455 			if (XFS_IS_CORRUPT(args->mp, i != 1))
1456 				return -EFSCORRUPTED;
1457 			if (*len >= args->minlen)
1458 				break;
1459 			error = xfs_btree_increment(acur->cnt, 0, &i);
1460 			if (error)
1461 				return error;
1462 		} while (i);
1463 		ASSERT(*len >= args->minlen);
1464 		if (!i)
1465 			return 0;
1466 	}
1467 
1468 	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1469 	if (error)
1470 		return error;
1471 
1472 	/*
1473 	 * It didn't work.  We COULD be in a case where there's a good record
1474 	 * somewhere, so try again.
1475 	 */
1476 	if (acur->len == 0)
1477 		return 0;
1478 
1479 	trace_xfs_alloc_near_first(args);
1480 	*allocated = true;
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Allocate a variable extent near bno in the allocation group agno.
1486  * Extent's length (returned in len) will be between minlen and maxlen,
1487  * and of the form k * prod + mod unless there's nothing that large.
1488  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1489  */
1490 STATIC int
1491 xfs_alloc_ag_vextent_near(
1492 	struct xfs_alloc_arg	*args)
1493 {
1494 	struct xfs_alloc_cur	acur = {};
1495 	int			error;		/* error code */
1496 	int			i;		/* result code, temporary */
1497 	xfs_agblock_t		bno;
1498 	xfs_extlen_t		len;
1499 
1500 	/* handle uninitialized agbno range so caller doesn't have to */
1501 	if (!args->min_agbno && !args->max_agbno)
1502 		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1503 	ASSERT(args->min_agbno <= args->max_agbno);
1504 
1505 	/* clamp agbno to the range if it's outside */
1506 	if (args->agbno < args->min_agbno)
1507 		args->agbno = args->min_agbno;
1508 	if (args->agbno > args->max_agbno)
1509 		args->agbno = args->max_agbno;
1510 
1511 restart:
1512 	len = 0;
1513 
1514 	/*
1515 	 * Set up cursors and see if there are any free extents as big as
1516 	 * maxlen. If not, pick the last entry in the tree unless the tree is
1517 	 * empty.
1518 	 */
1519 	error = xfs_alloc_cur_setup(args, &acur);
1520 	if (error == -ENOSPC) {
1521 		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1522 				&len, &i);
1523 		if (error)
1524 			goto out;
1525 		if (i == 0 || len == 0) {
1526 			trace_xfs_alloc_near_noentry(args);
1527 			goto out;
1528 		}
1529 		ASSERT(i == 1);
1530 	} else if (error) {
1531 		goto out;
1532 	}
1533 
1534 	/*
1535 	 * First algorithm.
1536 	 * If the requested extent is large wrt the freespaces available
1537 	 * in this a.g., then the cursor will be pointing to a btree entry
1538 	 * near the right edge of the tree.  If it's in the last btree leaf
1539 	 * block, then we just examine all the entries in that block
1540 	 * that are big enough, and pick the best one.
1541 	 */
1542 	if (xfs_btree_islastblock(acur.cnt, 0)) {
1543 		bool		allocated = false;
1544 
1545 		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1546 				&allocated);
1547 		if (error)
1548 			goto out;
1549 		if (allocated)
1550 			goto alloc_finish;
1551 	}
1552 
1553 	/*
1554 	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1555 	 * locality.
1556 	 */
1557 	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1558 	if (error)
1559 		goto out;
1560 
1561 	/*
1562 	 * If we couldn't get anything, give up.
1563 	 */
1564 	if (!acur.len) {
1565 		if (acur.busy) {
1566 			trace_xfs_alloc_near_busy(args);
1567 			xfs_extent_busy_flush(args->mp, args->pag,
1568 					      acur.busy_gen);
1569 			goto restart;
1570 		}
1571 		trace_xfs_alloc_size_neither(args);
1572 		args->agbno = NULLAGBLOCK;
1573 		goto out;
1574 	}
1575 
1576 alloc_finish:
1577 	/* fix up btrees on a successful allocation */
1578 	error = xfs_alloc_cur_finish(args, &acur);
1579 
1580 out:
1581 	xfs_alloc_cur_close(&acur, error);
1582 	return error;
1583 }
1584 
1585 /*
1586  * Allocate a variable extent anywhere in the allocation group agno.
1587  * Extent's length (returned in len) will be between minlen and maxlen,
1588  * and of the form k * prod + mod unless there's nothing that large.
1589  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1590  */
1591 STATIC int				/* error */
1592 xfs_alloc_ag_vextent_size(
1593 	xfs_alloc_arg_t	*args)		/* allocation argument structure */
1594 {
1595 	struct xfs_agf	*agf = args->agbp->b_addr;
1596 	struct xfs_btree_cur *bno_cur;	/* cursor for bno btree */
1597 	struct xfs_btree_cur *cnt_cur;	/* cursor for cnt btree */
1598 	int		error;		/* error result */
1599 	xfs_agblock_t	fbno;		/* start of found freespace */
1600 	xfs_extlen_t	flen;		/* length of found freespace */
1601 	int		i;		/* temp status variable */
1602 	xfs_agblock_t	rbno;		/* returned block number */
1603 	xfs_extlen_t	rlen;		/* length of returned extent */
1604 	bool		busy;
1605 	unsigned	busy_gen;
1606 
1607 restart:
1608 	/*
1609 	 * Allocate and initialize a cursor for the by-size btree.
1610 	 */
1611 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1612 					args->pag, XFS_BTNUM_CNT);
1613 	bno_cur = NULL;
1614 
1615 	/*
1616 	 * Look for an entry >= maxlen+alignment-1 blocks.
1617 	 */
1618 	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1619 			args->maxlen + args->alignment - 1, &i)))
1620 		goto error0;
1621 
1622 	/*
1623 	 * If none then we have to settle for a smaller extent. In the case that
1624 	 * there are no large extents, this will return the last entry in the
1625 	 * tree unless the tree is empty. In the case that there are only busy
1626 	 * large extents, this will return the largest small extent unless there
1627 	 * are no smaller extents available.
1628 	 */
1629 	if (!i) {
1630 		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1631 						   &fbno, &flen, &i);
1632 		if (error)
1633 			goto error0;
1634 		if (i == 0 || flen == 0) {
1635 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1636 			trace_xfs_alloc_size_noentry(args);
1637 			return 0;
1638 		}
1639 		ASSERT(i == 1);
1640 		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1641 				&rlen, &busy_gen);
1642 	} else {
1643 		/*
1644 		 * Search for a non-busy extent that is large enough.
1645 		 */
1646 		for (;;) {
1647 			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1648 			if (error)
1649 				goto error0;
1650 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1651 				error = -EFSCORRUPTED;
1652 				goto error0;
1653 			}
1654 
1655 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1656 					&rbno, &rlen, &busy_gen);
1657 
1658 			if (rlen >= args->maxlen)
1659 				break;
1660 
1661 			error = xfs_btree_increment(cnt_cur, 0, &i);
1662 			if (error)
1663 				goto error0;
1664 			if (i == 0) {
1665 				/*
1666 				 * Our only valid extents must have been busy.
1667 				 * Make it unbusy by forcing the log out and
1668 				 * retrying.
1669 				 */
1670 				xfs_btree_del_cursor(cnt_cur,
1671 						     XFS_BTREE_NOERROR);
1672 				trace_xfs_alloc_size_busy(args);
1673 				xfs_extent_busy_flush(args->mp,
1674 							args->pag, busy_gen);
1675 				goto restart;
1676 			}
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * In the first case above, we got the last entry in the
1682 	 * by-size btree.  Now we check to see if the space hits maxlen
1683 	 * once aligned; if not, we search left for something better.
1684 	 * This can't happen in the second case above.
1685 	 */
1686 	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1687 	if (XFS_IS_CORRUPT(args->mp,
1688 			   rlen != 0 &&
1689 			   (rlen > flen ||
1690 			    rbno + rlen > fbno + flen))) {
1691 		error = -EFSCORRUPTED;
1692 		goto error0;
1693 	}
1694 	if (rlen < args->maxlen) {
1695 		xfs_agblock_t	bestfbno;
1696 		xfs_extlen_t	bestflen;
1697 		xfs_agblock_t	bestrbno;
1698 		xfs_extlen_t	bestrlen;
1699 
1700 		bestrlen = rlen;
1701 		bestrbno = rbno;
1702 		bestflen = flen;
1703 		bestfbno = fbno;
1704 		for (;;) {
1705 			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1706 				goto error0;
1707 			if (i == 0)
1708 				break;
1709 			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1710 					&i)))
1711 				goto error0;
1712 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1713 				error = -EFSCORRUPTED;
1714 				goto error0;
1715 			}
1716 			if (flen < bestrlen)
1717 				break;
1718 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1719 					&rbno, &rlen, &busy_gen);
1720 			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1721 			if (XFS_IS_CORRUPT(args->mp,
1722 					   rlen != 0 &&
1723 					   (rlen > flen ||
1724 					    rbno + rlen > fbno + flen))) {
1725 				error = -EFSCORRUPTED;
1726 				goto error0;
1727 			}
1728 			if (rlen > bestrlen) {
1729 				bestrlen = rlen;
1730 				bestrbno = rbno;
1731 				bestflen = flen;
1732 				bestfbno = fbno;
1733 				if (rlen == args->maxlen)
1734 					break;
1735 			}
1736 		}
1737 		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1738 				&i)))
1739 			goto error0;
1740 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1741 			error = -EFSCORRUPTED;
1742 			goto error0;
1743 		}
1744 		rlen = bestrlen;
1745 		rbno = bestrbno;
1746 		flen = bestflen;
1747 		fbno = bestfbno;
1748 	}
1749 	args->wasfromfl = 0;
1750 	/*
1751 	 * Fix up the length.
1752 	 */
1753 	args->len = rlen;
1754 	if (rlen < args->minlen) {
1755 		if (busy) {
1756 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1757 			trace_xfs_alloc_size_busy(args);
1758 			xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1759 			goto restart;
1760 		}
1761 		goto out_nominleft;
1762 	}
1763 	xfs_alloc_fix_len(args);
1764 
1765 	rlen = args->len;
1766 	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1767 		error = -EFSCORRUPTED;
1768 		goto error0;
1769 	}
1770 	/*
1771 	 * Allocate and initialize a cursor for the by-block tree.
1772 	 */
1773 	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1774 					args->pag, XFS_BTNUM_BNO);
1775 	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1776 			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1777 		goto error0;
1778 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1779 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1780 	cnt_cur = bno_cur = NULL;
1781 	args->len = rlen;
1782 	args->agbno = rbno;
1783 	if (XFS_IS_CORRUPT(args->mp,
1784 			   args->agbno + args->len >
1785 			   be32_to_cpu(agf->agf_length))) {
1786 		error = -EFSCORRUPTED;
1787 		goto error0;
1788 	}
1789 	trace_xfs_alloc_size_done(args);
1790 	return 0;
1791 
1792 error0:
1793 	trace_xfs_alloc_size_error(args);
1794 	if (cnt_cur)
1795 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1796 	if (bno_cur)
1797 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1798 	return error;
1799 
1800 out_nominleft:
1801 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1802 	trace_xfs_alloc_size_nominleft(args);
1803 	args->agbno = NULLAGBLOCK;
1804 	return 0;
1805 }
1806 
1807 /*
1808  * Free the extent starting at agno/bno for length.
1809  */
1810 STATIC int
1811 xfs_free_ag_extent(
1812 	struct xfs_trans		*tp,
1813 	struct xfs_buf			*agbp,
1814 	xfs_agnumber_t			agno,
1815 	xfs_agblock_t			bno,
1816 	xfs_extlen_t			len,
1817 	const struct xfs_owner_info	*oinfo,
1818 	enum xfs_ag_resv_type		type)
1819 {
1820 	struct xfs_mount		*mp;
1821 	struct xfs_btree_cur		*bno_cur;
1822 	struct xfs_btree_cur		*cnt_cur;
1823 	xfs_agblock_t			gtbno; /* start of right neighbor */
1824 	xfs_extlen_t			gtlen; /* length of right neighbor */
1825 	xfs_agblock_t			ltbno; /* start of left neighbor */
1826 	xfs_extlen_t			ltlen; /* length of left neighbor */
1827 	xfs_agblock_t			nbno; /* new starting block of freesp */
1828 	xfs_extlen_t			nlen; /* new length of freespace */
1829 	int				haveleft; /* have a left neighbor */
1830 	int				haveright; /* have a right neighbor */
1831 	int				i;
1832 	int				error;
1833 	struct xfs_perag		*pag = agbp->b_pag;
1834 
1835 	bno_cur = cnt_cur = NULL;
1836 	mp = tp->t_mountp;
1837 
1838 	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1839 		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1840 		if (error)
1841 			goto error0;
1842 	}
1843 
1844 	/*
1845 	 * Allocate and initialize a cursor for the by-block btree.
1846 	 */
1847 	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1848 	/*
1849 	 * Look for a neighboring block on the left (lower block numbers)
1850 	 * that is contiguous with this space.
1851 	 */
1852 	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1853 		goto error0;
1854 	if (haveleft) {
1855 		/*
1856 		 * There is a block to our left.
1857 		 */
1858 		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1859 			goto error0;
1860 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1861 			error = -EFSCORRUPTED;
1862 			goto error0;
1863 		}
1864 		/*
1865 		 * It's not contiguous, though.
1866 		 */
1867 		if (ltbno + ltlen < bno)
1868 			haveleft = 0;
1869 		else {
1870 			/*
1871 			 * If this failure happens the request to free this
1872 			 * space was invalid, it's (partly) already free.
1873 			 * Very bad.
1874 			 */
1875 			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1876 				error = -EFSCORRUPTED;
1877 				goto error0;
1878 			}
1879 		}
1880 	}
1881 	/*
1882 	 * Look for a neighboring block on the right (higher block numbers)
1883 	 * that is contiguous with this space.
1884 	 */
1885 	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1886 		goto error0;
1887 	if (haveright) {
1888 		/*
1889 		 * There is a block to our right.
1890 		 */
1891 		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1892 			goto error0;
1893 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1894 			error = -EFSCORRUPTED;
1895 			goto error0;
1896 		}
1897 		/*
1898 		 * It's not contiguous, though.
1899 		 */
1900 		if (bno + len < gtbno)
1901 			haveright = 0;
1902 		else {
1903 			/*
1904 			 * If this failure happens the request to free this
1905 			 * space was invalid, it's (partly) already free.
1906 			 * Very bad.
1907 			 */
1908 			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1909 				error = -EFSCORRUPTED;
1910 				goto error0;
1911 			}
1912 		}
1913 	}
1914 	/*
1915 	 * Now allocate and initialize a cursor for the by-size tree.
1916 	 */
1917 	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1918 	/*
1919 	 * Have both left and right contiguous neighbors.
1920 	 * Merge all three into a single free block.
1921 	 */
1922 	if (haveleft && haveright) {
1923 		/*
1924 		 * Delete the old by-size entry on the left.
1925 		 */
1926 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
1927 			goto error0;
1928 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1929 			error = -EFSCORRUPTED;
1930 			goto error0;
1931 		}
1932 		if ((error = xfs_btree_delete(cnt_cur, &i)))
1933 			goto error0;
1934 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1935 			error = -EFSCORRUPTED;
1936 			goto error0;
1937 		}
1938 		/*
1939 		 * Delete the old by-size entry on the right.
1940 		 */
1941 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
1942 			goto error0;
1943 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1944 			error = -EFSCORRUPTED;
1945 			goto error0;
1946 		}
1947 		if ((error = xfs_btree_delete(cnt_cur, &i)))
1948 			goto error0;
1949 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1950 			error = -EFSCORRUPTED;
1951 			goto error0;
1952 		}
1953 		/*
1954 		 * Delete the old by-block entry for the right block.
1955 		 */
1956 		if ((error = xfs_btree_delete(bno_cur, &i)))
1957 			goto error0;
1958 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1959 			error = -EFSCORRUPTED;
1960 			goto error0;
1961 		}
1962 		/*
1963 		 * Move the by-block cursor back to the left neighbor.
1964 		 */
1965 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
1966 			goto error0;
1967 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1968 			error = -EFSCORRUPTED;
1969 			goto error0;
1970 		}
1971 #ifdef DEBUG
1972 		/*
1973 		 * Check that this is the right record: delete didn't
1974 		 * mangle the cursor.
1975 		 */
1976 		{
1977 			xfs_agblock_t	xxbno;
1978 			xfs_extlen_t	xxlen;
1979 
1980 			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
1981 					&i)))
1982 				goto error0;
1983 			if (XFS_IS_CORRUPT(mp,
1984 					   i != 1 ||
1985 					   xxbno != ltbno ||
1986 					   xxlen != ltlen)) {
1987 				error = -EFSCORRUPTED;
1988 				goto error0;
1989 			}
1990 		}
1991 #endif
1992 		/*
1993 		 * Update remaining by-block entry to the new, joined block.
1994 		 */
1995 		nbno = ltbno;
1996 		nlen = len + ltlen + gtlen;
1997 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
1998 			goto error0;
1999 	}
2000 	/*
2001 	 * Have only a left contiguous neighbor.
2002 	 * Merge it together with the new freespace.
2003 	 */
2004 	else if (haveleft) {
2005 		/*
2006 		 * Delete the old by-size entry on the left.
2007 		 */
2008 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2009 			goto error0;
2010 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2011 			error = -EFSCORRUPTED;
2012 			goto error0;
2013 		}
2014 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2015 			goto error0;
2016 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2017 			error = -EFSCORRUPTED;
2018 			goto error0;
2019 		}
2020 		/*
2021 		 * Back up the by-block cursor to the left neighbor, and
2022 		 * update its length.
2023 		 */
2024 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2025 			goto error0;
2026 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2027 			error = -EFSCORRUPTED;
2028 			goto error0;
2029 		}
2030 		nbno = ltbno;
2031 		nlen = len + ltlen;
2032 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2033 			goto error0;
2034 	}
2035 	/*
2036 	 * Have only a right contiguous neighbor.
2037 	 * Merge it together with the new freespace.
2038 	 */
2039 	else if (haveright) {
2040 		/*
2041 		 * Delete the old by-size entry on the right.
2042 		 */
2043 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2044 			goto error0;
2045 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2046 			error = -EFSCORRUPTED;
2047 			goto error0;
2048 		}
2049 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2050 			goto error0;
2051 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2052 			error = -EFSCORRUPTED;
2053 			goto error0;
2054 		}
2055 		/*
2056 		 * Update the starting block and length of the right
2057 		 * neighbor in the by-block tree.
2058 		 */
2059 		nbno = bno;
2060 		nlen = len + gtlen;
2061 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2062 			goto error0;
2063 	}
2064 	/*
2065 	 * No contiguous neighbors.
2066 	 * Insert the new freespace into the by-block tree.
2067 	 */
2068 	else {
2069 		nbno = bno;
2070 		nlen = len;
2071 		if ((error = xfs_btree_insert(bno_cur, &i)))
2072 			goto error0;
2073 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2074 			error = -EFSCORRUPTED;
2075 			goto error0;
2076 		}
2077 	}
2078 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2079 	bno_cur = NULL;
2080 	/*
2081 	 * In all cases we need to insert the new freespace in the by-size tree.
2082 	 */
2083 	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2084 		goto error0;
2085 	if (XFS_IS_CORRUPT(mp, i != 0)) {
2086 		error = -EFSCORRUPTED;
2087 		goto error0;
2088 	}
2089 	if ((error = xfs_btree_insert(cnt_cur, &i)))
2090 		goto error0;
2091 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2092 		error = -EFSCORRUPTED;
2093 		goto error0;
2094 	}
2095 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2096 	cnt_cur = NULL;
2097 
2098 	/*
2099 	 * Update the freespace totals in the ag and superblock.
2100 	 */
2101 	error = xfs_alloc_update_counters(tp, agbp, len);
2102 	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2103 	if (error)
2104 		goto error0;
2105 
2106 	XFS_STATS_INC(mp, xs_freex);
2107 	XFS_STATS_ADD(mp, xs_freeb, len);
2108 
2109 	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2110 
2111 	return 0;
2112 
2113  error0:
2114 	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2115 	if (bno_cur)
2116 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2117 	if (cnt_cur)
2118 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2119 	return error;
2120 }
2121 
2122 /*
2123  * Visible (exported) allocation/free functions.
2124  * Some of these are used just by xfs_alloc_btree.c and this file.
2125  */
2126 
2127 /*
2128  * Compute and fill in value of m_alloc_maxlevels.
2129  */
2130 void
2131 xfs_alloc_compute_maxlevels(
2132 	xfs_mount_t	*mp)	/* file system mount structure */
2133 {
2134 	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2135 			(mp->m_sb.sb_agblocks + 1) / 2);
2136 	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2137 }
2138 
2139 /*
2140  * Find the length of the longest extent in an AG.  The 'need' parameter
2141  * specifies how much space we're going to need for the AGFL and the
2142  * 'reserved' parameter tells us how many blocks in this AG are reserved for
2143  * other callers.
2144  */
2145 xfs_extlen_t
2146 xfs_alloc_longest_free_extent(
2147 	struct xfs_perag	*pag,
2148 	xfs_extlen_t		need,
2149 	xfs_extlen_t		reserved)
2150 {
2151 	xfs_extlen_t		delta = 0;
2152 
2153 	/*
2154 	 * If the AGFL needs a recharge, we'll have to subtract that from the
2155 	 * longest extent.
2156 	 */
2157 	if (need > pag->pagf_flcount)
2158 		delta = need - pag->pagf_flcount;
2159 
2160 	/*
2161 	 * If we cannot maintain others' reservations with space from the
2162 	 * not-longest freesp extents, we'll have to subtract /that/ from
2163 	 * the longest extent too.
2164 	 */
2165 	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2166 		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2167 
2168 	/*
2169 	 * If the longest extent is long enough to satisfy all the
2170 	 * reservations and AGFL rules in place, we can return this extent.
2171 	 */
2172 	if (pag->pagf_longest > delta)
2173 		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2174 				pag->pagf_longest - delta);
2175 
2176 	/* Otherwise, let the caller try for 1 block if there's space. */
2177 	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2178 }
2179 
2180 /*
2181  * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2182  * return the largest possible minimum length.
2183  */
2184 unsigned int
2185 xfs_alloc_min_freelist(
2186 	struct xfs_mount	*mp,
2187 	struct xfs_perag	*pag)
2188 {
2189 	/* AG btrees have at least 1 level. */
2190 	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2191 	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
2192 	unsigned int		min_free;
2193 
2194 	ASSERT(mp->m_alloc_maxlevels > 0);
2195 
2196 	/* space needed by-bno freespace btree */
2197 	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2198 				       mp->m_alloc_maxlevels);
2199 	/* space needed by-size freespace btree */
2200 	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2201 				       mp->m_alloc_maxlevels);
2202 	/* space needed reverse mapping used space btree */
2203 	if (xfs_has_rmapbt(mp))
2204 		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2205 						mp->m_rmap_maxlevels);
2206 
2207 	return min_free;
2208 }
2209 
2210 /*
2211  * Check if the operation we are fixing up the freelist for should go ahead or
2212  * not. If we are freeing blocks, we always allow it, otherwise the allocation
2213  * is dependent on whether the size and shape of free space available will
2214  * permit the requested allocation to take place.
2215  */
2216 static bool
2217 xfs_alloc_space_available(
2218 	struct xfs_alloc_arg	*args,
2219 	xfs_extlen_t		min_free,
2220 	int			flags)
2221 {
2222 	struct xfs_perag	*pag = args->pag;
2223 	xfs_extlen_t		alloc_len, longest;
2224 	xfs_extlen_t		reservation; /* blocks that are still reserved */
2225 	int			available;
2226 	xfs_extlen_t		agflcount;
2227 
2228 	if (flags & XFS_ALLOC_FLAG_FREEING)
2229 		return true;
2230 
2231 	reservation = xfs_ag_resv_needed(pag, args->resv);
2232 
2233 	/* do we have enough contiguous free space for the allocation? */
2234 	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2235 	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2236 	if (longest < alloc_len)
2237 		return false;
2238 
2239 	/*
2240 	 * Do we have enough free space remaining for the allocation? Don't
2241 	 * account extra agfl blocks because we are about to defer free them,
2242 	 * making them unavailable until the current transaction commits.
2243 	 */
2244 	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2245 	available = (int)(pag->pagf_freeblks + agflcount -
2246 			  reservation - min_free - args->minleft);
2247 	if (available < (int)max(args->total, alloc_len))
2248 		return false;
2249 
2250 	/*
2251 	 * Clamp maxlen to the amount of free space available for the actual
2252 	 * extent allocation.
2253 	 */
2254 	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2255 		args->maxlen = available;
2256 		ASSERT(args->maxlen > 0);
2257 		ASSERT(args->maxlen >= args->minlen);
2258 	}
2259 
2260 	return true;
2261 }
2262 
2263 int
2264 xfs_free_agfl_block(
2265 	struct xfs_trans	*tp,
2266 	xfs_agnumber_t		agno,
2267 	xfs_agblock_t		agbno,
2268 	struct xfs_buf		*agbp,
2269 	struct xfs_owner_info	*oinfo)
2270 {
2271 	int			error;
2272 	struct xfs_buf		*bp;
2273 
2274 	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2275 				   XFS_AG_RESV_AGFL);
2276 	if (error)
2277 		return error;
2278 
2279 	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2280 			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2281 			tp->t_mountp->m_bsize, 0, &bp);
2282 	if (error)
2283 		return error;
2284 	xfs_trans_binval(tp, bp);
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2291  * is to detect an agfl header padding mismatch between current and early v5
2292  * kernels. This problem manifests as a 1-slot size difference between the
2293  * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2294  * may also catch variants of agfl count corruption unrelated to padding. Either
2295  * way, we'll reset the agfl and warn the user.
2296  *
2297  * Return true if a reset is required before the agfl can be used, false
2298  * otherwise.
2299  */
2300 static bool
2301 xfs_agfl_needs_reset(
2302 	struct xfs_mount	*mp,
2303 	struct xfs_agf		*agf)
2304 {
2305 	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2306 	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2307 	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2308 	int			agfl_size = xfs_agfl_size(mp);
2309 	int			active;
2310 
2311 	/* no agfl header on v4 supers */
2312 	if (!xfs_has_crc(mp))
2313 		return false;
2314 
2315 	/*
2316 	 * The agf read verifier catches severe corruption of these fields.
2317 	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2318 	 * the verifier allows it.
2319 	 */
2320 	if (f >= agfl_size || l >= agfl_size)
2321 		return true;
2322 	if (c > agfl_size)
2323 		return true;
2324 
2325 	/*
2326 	 * Check consistency between the on-disk count and the active range. An
2327 	 * agfl padding mismatch manifests as an inconsistent flcount.
2328 	 */
2329 	if (c && l >= f)
2330 		active = l - f + 1;
2331 	else if (c)
2332 		active = agfl_size - f + l + 1;
2333 	else
2334 		active = 0;
2335 
2336 	return active != c;
2337 }
2338 
2339 /*
2340  * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2341  * agfl content cannot be trusted. Warn the user that a repair is required to
2342  * recover leaked blocks.
2343  *
2344  * The purpose of this mechanism is to handle filesystems affected by the agfl
2345  * header padding mismatch problem. A reset keeps the filesystem online with a
2346  * relatively minor free space accounting inconsistency rather than suffer the
2347  * inevitable crash from use of an invalid agfl block.
2348  */
2349 static void
2350 xfs_agfl_reset(
2351 	struct xfs_trans	*tp,
2352 	struct xfs_buf		*agbp,
2353 	struct xfs_perag	*pag)
2354 {
2355 	struct xfs_mount	*mp = tp->t_mountp;
2356 	struct xfs_agf		*agf = agbp->b_addr;
2357 
2358 	ASSERT(xfs_perag_agfl_needs_reset(pag));
2359 	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2360 
2361 	xfs_warn(mp,
2362 	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2363 	       "Please unmount and run xfs_repair.",
2364 	         pag->pag_agno, pag->pagf_flcount);
2365 
2366 	agf->agf_flfirst = 0;
2367 	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2368 	agf->agf_flcount = 0;
2369 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2370 				    XFS_AGF_FLCOUNT);
2371 
2372 	pag->pagf_flcount = 0;
2373 	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2374 }
2375 
2376 /*
2377  * Defer an AGFL block free. This is effectively equivalent to
2378  * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2379  *
2380  * Deferring AGFL frees helps prevent log reservation overruns due to too many
2381  * allocation operations in a transaction. AGFL frees are prone to this problem
2382  * because for one they are always freed one at a time. Further, an immediate
2383  * AGFL block free can cause a btree join and require another block free before
2384  * the real allocation can proceed. Deferring the free disconnects freeing up
2385  * the AGFL slot from freeing the block.
2386  */
2387 STATIC void
2388 xfs_defer_agfl_block(
2389 	struct xfs_trans		*tp,
2390 	xfs_agnumber_t			agno,
2391 	xfs_fsblock_t			agbno,
2392 	struct xfs_owner_info		*oinfo)
2393 {
2394 	struct xfs_mount		*mp = tp->t_mountp;
2395 	struct xfs_extent_free_item	*xefi;
2396 
2397 	ASSERT(xfs_extfree_item_cache != NULL);
2398 	ASSERT(oinfo != NULL);
2399 
2400 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2401 			       GFP_KERNEL | __GFP_NOFAIL);
2402 	xefi->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2403 	xefi->xefi_blockcount = 1;
2404 	xefi->xefi_owner = oinfo->oi_owner;
2405 
2406 	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2407 
2408 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
2409 }
2410 
2411 /*
2412  * Add the extent to the list of extents to be free at transaction end.
2413  * The list is maintained sorted (by block number).
2414  */
2415 void
2416 __xfs_free_extent_later(
2417 	struct xfs_trans		*tp,
2418 	xfs_fsblock_t			bno,
2419 	xfs_filblks_t			len,
2420 	const struct xfs_owner_info	*oinfo,
2421 	bool				skip_discard)
2422 {
2423 	struct xfs_extent_free_item	*xefi;
2424 #ifdef DEBUG
2425 	struct xfs_mount		*mp = tp->t_mountp;
2426 	xfs_agnumber_t			agno;
2427 	xfs_agblock_t			agbno;
2428 
2429 	ASSERT(bno != NULLFSBLOCK);
2430 	ASSERT(len > 0);
2431 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2432 	ASSERT(!isnullstartblock(bno));
2433 	agno = XFS_FSB_TO_AGNO(mp, bno);
2434 	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2435 	ASSERT(agno < mp->m_sb.sb_agcount);
2436 	ASSERT(agbno < mp->m_sb.sb_agblocks);
2437 	ASSERT(len < mp->m_sb.sb_agblocks);
2438 	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2439 #endif
2440 	ASSERT(xfs_extfree_item_cache != NULL);
2441 
2442 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2443 			       GFP_KERNEL | __GFP_NOFAIL);
2444 	xefi->xefi_startblock = bno;
2445 	xefi->xefi_blockcount = (xfs_extlen_t)len;
2446 	if (skip_discard)
2447 		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2448 	if (oinfo) {
2449 		ASSERT(oinfo->oi_offset == 0);
2450 
2451 		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2452 			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2453 		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2454 			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2455 		xefi->xefi_owner = oinfo->oi_owner;
2456 	} else {
2457 		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2458 	}
2459 	trace_xfs_bmap_free_defer(tp->t_mountp,
2460 			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2461 			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2462 	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
2463 }
2464 
2465 #ifdef DEBUG
2466 /*
2467  * Check if an AGF has a free extent record whose length is equal to
2468  * args->minlen.
2469  */
2470 STATIC int
2471 xfs_exact_minlen_extent_available(
2472 	struct xfs_alloc_arg	*args,
2473 	struct xfs_buf		*agbp,
2474 	int			*stat)
2475 {
2476 	struct xfs_btree_cur	*cnt_cur;
2477 	xfs_agblock_t		fbno;
2478 	xfs_extlen_t		flen;
2479 	int			error = 0;
2480 
2481 	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2482 					args->pag, XFS_BTNUM_CNT);
2483 	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2484 	if (error)
2485 		goto out;
2486 
2487 	if (*stat == 0) {
2488 		error = -EFSCORRUPTED;
2489 		goto out;
2490 	}
2491 
2492 	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2493 	if (error)
2494 		goto out;
2495 
2496 	if (*stat == 1 && flen != args->minlen)
2497 		*stat = 0;
2498 
2499 out:
2500 	xfs_btree_del_cursor(cnt_cur, error);
2501 
2502 	return error;
2503 }
2504 #endif
2505 
2506 /*
2507  * Decide whether to use this allocation group for this allocation.
2508  * If so, fix up the btree freelist's size.
2509  */
2510 int			/* error */
2511 xfs_alloc_fix_freelist(
2512 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2513 	int			flags)	/* XFS_ALLOC_FLAG_... */
2514 {
2515 	struct xfs_mount	*mp = args->mp;
2516 	struct xfs_perag	*pag = args->pag;
2517 	struct xfs_trans	*tp = args->tp;
2518 	struct xfs_buf		*agbp = NULL;
2519 	struct xfs_buf		*agflbp = NULL;
2520 	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2521 	xfs_agblock_t		bno;	/* freelist block */
2522 	xfs_extlen_t		need;	/* total blocks needed in freelist */
2523 	int			error = 0;
2524 
2525 	/* deferred ops (AGFL block frees) require permanent transactions */
2526 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2527 
2528 	if (!xfs_perag_initialised_agf(pag)) {
2529 		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2530 		if (error) {
2531 			/* Couldn't lock the AGF so skip this AG. */
2532 			if (error == -EAGAIN)
2533 				error = 0;
2534 			goto out_no_agbp;
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * If this is a metadata preferred pag and we are user data then try
2540 	 * somewhere else if we are not being asked to try harder at this
2541 	 * point
2542 	 */
2543 	if (xfs_perag_prefers_metadata(pag) &&
2544 	    (args->datatype & XFS_ALLOC_USERDATA) &&
2545 	    (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2546 		ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
2547 		goto out_agbp_relse;
2548 	}
2549 
2550 	need = xfs_alloc_min_freelist(mp, pag);
2551 	if (!xfs_alloc_space_available(args, need, flags |
2552 			XFS_ALLOC_FLAG_CHECK))
2553 		goto out_agbp_relse;
2554 
2555 	/*
2556 	 * Get the a.g. freespace buffer.
2557 	 * Can fail if we're not blocking on locks, and it's held.
2558 	 */
2559 	if (!agbp) {
2560 		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2561 		if (error) {
2562 			/* Couldn't lock the AGF so skip this AG. */
2563 			if (error == -EAGAIN)
2564 				error = 0;
2565 			goto out_no_agbp;
2566 		}
2567 	}
2568 
2569 	/* reset a padding mismatched agfl before final free space check */
2570 	if (xfs_perag_agfl_needs_reset(pag))
2571 		xfs_agfl_reset(tp, agbp, pag);
2572 
2573 	/* If there isn't enough total space or single-extent, reject it. */
2574 	need = xfs_alloc_min_freelist(mp, pag);
2575 	if (!xfs_alloc_space_available(args, need, flags))
2576 		goto out_agbp_relse;
2577 
2578 #ifdef DEBUG
2579 	if (args->alloc_minlen_only) {
2580 		int stat;
2581 
2582 		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2583 		if (error || !stat)
2584 			goto out_agbp_relse;
2585 	}
2586 #endif
2587 	/*
2588 	 * Make the freelist shorter if it's too long.
2589 	 *
2590 	 * Note that from this point onwards, we will always release the agf and
2591 	 * agfl buffers on error. This handles the case where we error out and
2592 	 * the buffers are clean or may not have been joined to the transaction
2593 	 * and hence need to be released manually. If they have been joined to
2594 	 * the transaction, then xfs_trans_brelse() will handle them
2595 	 * appropriately based on the recursion count and dirty state of the
2596 	 * buffer.
2597 	 *
2598 	 * XXX (dgc): When we have lots of free space, does this buy us
2599 	 * anything other than extra overhead when we need to put more blocks
2600 	 * back on the free list? Maybe we should only do this when space is
2601 	 * getting low or the AGFL is more than half full?
2602 	 *
2603 	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2604 	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2605 	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2606 	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2607 	 * both required to ensure that rmaps are correctly recorded for the
2608 	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2609 	 * repair/rmap.c in xfsprogs for details.
2610 	 */
2611 	memset(&targs, 0, sizeof(targs));
2612 	/* struct copy below */
2613 	if (flags & XFS_ALLOC_FLAG_NORMAP)
2614 		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2615 	else
2616 		targs.oinfo = XFS_RMAP_OINFO_AG;
2617 	while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2618 		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2619 		if (error)
2620 			goto out_agbp_relse;
2621 
2622 		/* defer agfl frees */
2623 		xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2624 	}
2625 
2626 	targs.tp = tp;
2627 	targs.mp = mp;
2628 	targs.agbp = agbp;
2629 	targs.agno = args->agno;
2630 	targs.alignment = targs.minlen = targs.prod = 1;
2631 	targs.pag = pag;
2632 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2633 	if (error)
2634 		goto out_agbp_relse;
2635 
2636 	/* Make the freelist longer if it's too short. */
2637 	while (pag->pagf_flcount < need) {
2638 		targs.agbno = 0;
2639 		targs.maxlen = need - pag->pagf_flcount;
2640 		targs.resv = XFS_AG_RESV_AGFL;
2641 
2642 		/* Allocate as many blocks as possible at once. */
2643 		error = xfs_alloc_ag_vextent_size(&targs);
2644 		if (error)
2645 			goto out_agflbp_relse;
2646 
2647 		/*
2648 		 * Stop if we run out.  Won't happen if callers are obeying
2649 		 * the restrictions correctly.  Can happen for free calls
2650 		 * on a completely full ag.
2651 		 */
2652 		if (targs.agbno == NULLAGBLOCK) {
2653 			if (flags & XFS_ALLOC_FLAG_FREEING)
2654 				break;
2655 			goto out_agflbp_relse;
2656 		}
2657 
2658 		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2659 			error = xfs_rmap_alloc(tp, agbp, pag,
2660 				       targs.agbno, targs.len, &targs.oinfo);
2661 			if (error)
2662 				goto out_agflbp_relse;
2663 		}
2664 		error = xfs_alloc_update_counters(tp, agbp,
2665 						  -((long)(targs.len)));
2666 		if (error)
2667 			goto out_agflbp_relse;
2668 
2669 		/*
2670 		 * Put each allocated block on the list.
2671 		 */
2672 		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2673 			error = xfs_alloc_put_freelist(pag, tp, agbp,
2674 							agflbp, bno, 0);
2675 			if (error)
2676 				goto out_agflbp_relse;
2677 		}
2678 	}
2679 	xfs_trans_brelse(tp, agflbp);
2680 	args->agbp = agbp;
2681 	return 0;
2682 
2683 out_agflbp_relse:
2684 	xfs_trans_brelse(tp, agflbp);
2685 out_agbp_relse:
2686 	if (agbp)
2687 		xfs_trans_brelse(tp, agbp);
2688 out_no_agbp:
2689 	args->agbp = NULL;
2690 	return error;
2691 }
2692 
2693 /*
2694  * Get a block from the freelist.
2695  * Returns with the buffer for the block gotten.
2696  */
2697 int
2698 xfs_alloc_get_freelist(
2699 	struct xfs_perag	*pag,
2700 	struct xfs_trans	*tp,
2701 	struct xfs_buf		*agbp,
2702 	xfs_agblock_t		*bnop,
2703 	int			btreeblk)
2704 {
2705 	struct xfs_agf		*agf = agbp->b_addr;
2706 	struct xfs_buf		*agflbp;
2707 	xfs_agblock_t		bno;
2708 	__be32			*agfl_bno;
2709 	int			error;
2710 	uint32_t		logflags;
2711 	struct xfs_mount	*mp = tp->t_mountp;
2712 
2713 	/*
2714 	 * Freelist is empty, give up.
2715 	 */
2716 	if (!agf->agf_flcount) {
2717 		*bnop = NULLAGBLOCK;
2718 		return 0;
2719 	}
2720 	/*
2721 	 * Read the array of free blocks.
2722 	 */
2723 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2724 	if (error)
2725 		return error;
2726 
2727 
2728 	/*
2729 	 * Get the block number and update the data structures.
2730 	 */
2731 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2732 	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2733 	be32_add_cpu(&agf->agf_flfirst, 1);
2734 	xfs_trans_brelse(tp, agflbp);
2735 	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2736 		agf->agf_flfirst = 0;
2737 
2738 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2739 	be32_add_cpu(&agf->agf_flcount, -1);
2740 	pag->pagf_flcount--;
2741 
2742 	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2743 	if (btreeblk) {
2744 		be32_add_cpu(&agf->agf_btreeblks, 1);
2745 		pag->pagf_btreeblks++;
2746 		logflags |= XFS_AGF_BTREEBLKS;
2747 	}
2748 
2749 	xfs_alloc_log_agf(tp, agbp, logflags);
2750 	*bnop = bno;
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * Log the given fields from the agf structure.
2757  */
2758 void
2759 xfs_alloc_log_agf(
2760 	struct xfs_trans	*tp,
2761 	struct xfs_buf		*bp,
2762 	uint32_t		fields)
2763 {
2764 	int	first;		/* first byte offset */
2765 	int	last;		/* last byte offset */
2766 	static const short	offsets[] = {
2767 		offsetof(xfs_agf_t, agf_magicnum),
2768 		offsetof(xfs_agf_t, agf_versionnum),
2769 		offsetof(xfs_agf_t, agf_seqno),
2770 		offsetof(xfs_agf_t, agf_length),
2771 		offsetof(xfs_agf_t, agf_roots[0]),
2772 		offsetof(xfs_agf_t, agf_levels[0]),
2773 		offsetof(xfs_agf_t, agf_flfirst),
2774 		offsetof(xfs_agf_t, agf_fllast),
2775 		offsetof(xfs_agf_t, agf_flcount),
2776 		offsetof(xfs_agf_t, agf_freeblks),
2777 		offsetof(xfs_agf_t, agf_longest),
2778 		offsetof(xfs_agf_t, agf_btreeblks),
2779 		offsetof(xfs_agf_t, agf_uuid),
2780 		offsetof(xfs_agf_t, agf_rmap_blocks),
2781 		offsetof(xfs_agf_t, agf_refcount_blocks),
2782 		offsetof(xfs_agf_t, agf_refcount_root),
2783 		offsetof(xfs_agf_t, agf_refcount_level),
2784 		/* needed so that we don't log the whole rest of the structure: */
2785 		offsetof(xfs_agf_t, agf_spare64),
2786 		sizeof(xfs_agf_t)
2787 	};
2788 
2789 	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2790 
2791 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2792 
2793 	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2794 	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2795 }
2796 
2797 /*
2798  * Put the block on the freelist for the allocation group.
2799  */
2800 int
2801 xfs_alloc_put_freelist(
2802 	struct xfs_perag	*pag,
2803 	struct xfs_trans	*tp,
2804 	struct xfs_buf		*agbp,
2805 	struct xfs_buf		*agflbp,
2806 	xfs_agblock_t		bno,
2807 	int			btreeblk)
2808 {
2809 	struct xfs_mount	*mp = tp->t_mountp;
2810 	struct xfs_agf		*agf = agbp->b_addr;
2811 	__be32			*blockp;
2812 	int			error;
2813 	uint32_t		logflags;
2814 	__be32			*agfl_bno;
2815 	int			startoff;
2816 
2817 	if (!agflbp) {
2818 		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2819 		if (error)
2820 			return error;
2821 	}
2822 
2823 	be32_add_cpu(&agf->agf_fllast, 1);
2824 	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2825 		agf->agf_fllast = 0;
2826 
2827 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2828 	be32_add_cpu(&agf->agf_flcount, 1);
2829 	pag->pagf_flcount++;
2830 
2831 	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2832 	if (btreeblk) {
2833 		be32_add_cpu(&agf->agf_btreeblks, -1);
2834 		pag->pagf_btreeblks--;
2835 		logflags |= XFS_AGF_BTREEBLKS;
2836 	}
2837 
2838 	xfs_alloc_log_agf(tp, agbp, logflags);
2839 
2840 	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2841 
2842 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2843 	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2844 	*blockp = cpu_to_be32(bno);
2845 	startoff = (char *)blockp - (char *)agflbp->b_addr;
2846 
2847 	xfs_alloc_log_agf(tp, agbp, logflags);
2848 
2849 	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2850 	xfs_trans_log_buf(tp, agflbp, startoff,
2851 			  startoff + sizeof(xfs_agblock_t) - 1);
2852 	return 0;
2853 }
2854 
2855 static xfs_failaddr_t
2856 xfs_agf_verify(
2857 	struct xfs_buf		*bp)
2858 {
2859 	struct xfs_mount	*mp = bp->b_mount;
2860 	struct xfs_agf		*agf = bp->b_addr;
2861 
2862 	if (xfs_has_crc(mp)) {
2863 		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2864 			return __this_address;
2865 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2866 			return __this_address;
2867 	}
2868 
2869 	if (!xfs_verify_magic(bp, agf->agf_magicnum))
2870 		return __this_address;
2871 
2872 	if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2873 	      be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2874 	      be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2875 	      be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2876 	      be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2877 		return __this_address;
2878 
2879 	if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2880 		return __this_address;
2881 
2882 	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2883 	    be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2884 		return __this_address;
2885 
2886 	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2887 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2888 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
2889 						mp->m_alloc_maxlevels ||
2890 	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
2891 						mp->m_alloc_maxlevels)
2892 		return __this_address;
2893 
2894 	if (xfs_has_rmapbt(mp) &&
2895 	    (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2896 	     be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
2897 						mp->m_rmap_maxlevels))
2898 		return __this_address;
2899 
2900 	if (xfs_has_rmapbt(mp) &&
2901 	    be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2902 		return __this_address;
2903 
2904 	/*
2905 	 * during growfs operations, the perag is not fully initialised,
2906 	 * so we can't use it for any useful checking. growfs ensures we can't
2907 	 * use it by using uncached buffers that don't have the perag attached
2908 	 * so we can detect and avoid this problem.
2909 	 */
2910 	if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2911 		return __this_address;
2912 
2913 	if (xfs_has_lazysbcount(mp) &&
2914 	    be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2915 		return __this_address;
2916 
2917 	if (xfs_has_reflink(mp) &&
2918 	    be32_to_cpu(agf->agf_refcount_blocks) >
2919 	    be32_to_cpu(agf->agf_length))
2920 		return __this_address;
2921 
2922 	if (xfs_has_reflink(mp) &&
2923 	    (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2924 	     be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2925 		return __this_address;
2926 
2927 	return NULL;
2928 
2929 }
2930 
2931 static void
2932 xfs_agf_read_verify(
2933 	struct xfs_buf	*bp)
2934 {
2935 	struct xfs_mount *mp = bp->b_mount;
2936 	xfs_failaddr_t	fa;
2937 
2938 	if (xfs_has_crc(mp) &&
2939 	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
2940 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2941 	else {
2942 		fa = xfs_agf_verify(bp);
2943 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
2944 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2945 	}
2946 }
2947 
2948 static void
2949 xfs_agf_write_verify(
2950 	struct xfs_buf	*bp)
2951 {
2952 	struct xfs_mount	*mp = bp->b_mount;
2953 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2954 	struct xfs_agf		*agf = bp->b_addr;
2955 	xfs_failaddr_t		fa;
2956 
2957 	fa = xfs_agf_verify(bp);
2958 	if (fa) {
2959 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2960 		return;
2961 	}
2962 
2963 	if (!xfs_has_crc(mp))
2964 		return;
2965 
2966 	if (bip)
2967 		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2968 
2969 	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
2970 }
2971 
2972 const struct xfs_buf_ops xfs_agf_buf_ops = {
2973 	.name = "xfs_agf",
2974 	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
2975 	.verify_read = xfs_agf_read_verify,
2976 	.verify_write = xfs_agf_write_verify,
2977 	.verify_struct = xfs_agf_verify,
2978 };
2979 
2980 /*
2981  * Read in the allocation group header (free/alloc section).
2982  */
2983 int
2984 xfs_read_agf(
2985 	struct xfs_perag	*pag,
2986 	struct xfs_trans	*tp,
2987 	int			flags,
2988 	struct xfs_buf		**agfbpp)
2989 {
2990 	struct xfs_mount	*mp = pag->pag_mount;
2991 	int			error;
2992 
2993 	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
2994 
2995 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2996 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
2997 			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
2998 	if (error)
2999 		return error;
3000 
3001 	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3002 	return 0;
3003 }
3004 
3005 /*
3006  * Read in the allocation group header (free/alloc section) and initialise the
3007  * perag structure if necessary. If the caller provides @agfbpp, then return the
3008  * locked buffer to the caller, otherwise free it.
3009  */
3010 int
3011 xfs_alloc_read_agf(
3012 	struct xfs_perag	*pag,
3013 	struct xfs_trans	*tp,
3014 	int			flags,
3015 	struct xfs_buf		**agfbpp)
3016 {
3017 	struct xfs_buf		*agfbp;
3018 	struct xfs_agf		*agf;
3019 	int			error;
3020 	int			allocbt_blks;
3021 
3022 	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3023 
3024 	/* We don't support trylock when freeing. */
3025 	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3026 			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3027 	error = xfs_read_agf(pag, tp,
3028 			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3029 			&agfbp);
3030 	if (error)
3031 		return error;
3032 
3033 	agf = agfbp->b_addr;
3034 	if (!xfs_perag_initialised_agf(pag)) {
3035 		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3036 		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3037 		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3038 		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3039 		pag->pagf_levels[XFS_BTNUM_BNOi] =
3040 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3041 		pag->pagf_levels[XFS_BTNUM_CNTi] =
3042 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3043 		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3044 			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3045 		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3046 		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3047 			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3048 
3049 		/*
3050 		 * Update the in-core allocbt counter. Filter out the rmapbt
3051 		 * subset of the btreeblks counter because the rmapbt is managed
3052 		 * by perag reservation. Subtract one for the rmapbt root block
3053 		 * because the rmap counter includes it while the btreeblks
3054 		 * counter only tracks non-root blocks.
3055 		 */
3056 		allocbt_blks = pag->pagf_btreeblks;
3057 		if (xfs_has_rmapbt(pag->pag_mount))
3058 			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3059 		if (allocbt_blks > 0)
3060 			atomic64_add(allocbt_blks,
3061 					&pag->pag_mount->m_allocbt_blks);
3062 
3063 		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3064 	}
3065 #ifdef DEBUG
3066 	else if (!xfs_is_shutdown(pag->pag_mount)) {
3067 		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3068 		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3069 		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3070 		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3071 		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3072 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3073 		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3074 		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3075 	}
3076 #endif
3077 	if (agfbpp)
3078 		*agfbpp = agfbp;
3079 	else
3080 		xfs_trans_brelse(tp, agfbp);
3081 	return 0;
3082 }
3083 
3084 /*
3085  * Pre-proces allocation arguments to set initial state that we don't require
3086  * callers to set up correctly, as well as bounds check the allocation args
3087  * that are set up.
3088  */
3089 static int
3090 xfs_alloc_vextent_check_args(
3091 	struct xfs_alloc_arg	*args,
3092 	xfs_fsblock_t		target,
3093 	xfs_agnumber_t		*minimum_agno)
3094 {
3095 	struct xfs_mount	*mp = args->mp;
3096 	xfs_agblock_t		agsize;
3097 
3098 	args->fsbno = NULLFSBLOCK;
3099 
3100 	*minimum_agno = 0;
3101 	if (args->tp->t_highest_agno != NULLAGNUMBER)
3102 		*minimum_agno = args->tp->t_highest_agno;
3103 
3104 	/*
3105 	 * Just fix this up, for the case where the last a.g. is shorter
3106 	 * (or there's only one a.g.) and the caller couldn't easily figure
3107 	 * that out (xfs_bmap_alloc).
3108 	 */
3109 	agsize = mp->m_sb.sb_agblocks;
3110 	if (args->maxlen > agsize)
3111 		args->maxlen = agsize;
3112 	if (args->alignment == 0)
3113 		args->alignment = 1;
3114 
3115 	ASSERT(args->minlen > 0);
3116 	ASSERT(args->maxlen > 0);
3117 	ASSERT(args->alignment > 0);
3118 	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3119 
3120 	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3121 	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3122 	ASSERT(args->minlen <= args->maxlen);
3123 	ASSERT(args->minlen <= agsize);
3124 	ASSERT(args->mod < args->prod);
3125 
3126 	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3127 	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3128 	    args->minlen > args->maxlen || args->minlen > agsize ||
3129 	    args->mod >= args->prod) {
3130 		trace_xfs_alloc_vextent_badargs(args);
3131 		return -ENOSPC;
3132 	}
3133 
3134 	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3135 		trace_xfs_alloc_vextent_skip_deadlock(args);
3136 		return -ENOSPC;
3137 	}
3138 	return 0;
3139 
3140 }
3141 
3142 /*
3143  * Prepare an AG for allocation. If the AG is not prepared to accept the
3144  * allocation, return failure.
3145  *
3146  * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3147  * modified to hold their own perag references.
3148  */
3149 static int
3150 xfs_alloc_vextent_prepare_ag(
3151 	struct xfs_alloc_arg	*args)
3152 {
3153 	bool			need_pag = !args->pag;
3154 	int			error;
3155 
3156 	if (need_pag)
3157 		args->pag = xfs_perag_get(args->mp, args->agno);
3158 
3159 	args->agbp = NULL;
3160 	error = xfs_alloc_fix_freelist(args, 0);
3161 	if (error) {
3162 		trace_xfs_alloc_vextent_nofix(args);
3163 		if (need_pag)
3164 			xfs_perag_put(args->pag);
3165 		args->agbno = NULLAGBLOCK;
3166 		return error;
3167 	}
3168 	if (!args->agbp) {
3169 		/* cannot allocate in this AG at all */
3170 		trace_xfs_alloc_vextent_noagbp(args);
3171 		args->agbno = NULLAGBLOCK;
3172 		return 0;
3173 	}
3174 	args->wasfromfl = 0;
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Post-process allocation results to account for the allocation if it succeed
3180  * and set the allocated block number correctly for the caller.
3181  *
3182  * XXX: we should really be returning ENOSPC for ENOSPC, not
3183  * hiding it behind a "successful" NULLFSBLOCK allocation.
3184  */
3185 static int
3186 xfs_alloc_vextent_finish(
3187 	struct xfs_alloc_arg	*args,
3188 	xfs_agnumber_t		minimum_agno,
3189 	int			alloc_error,
3190 	bool			drop_perag)
3191 {
3192 	struct xfs_mount	*mp = args->mp;
3193 	int			error = 0;
3194 
3195 	/*
3196 	 * We can end up here with a locked AGF. If we failed, the caller is
3197 	 * likely going to try to allocate again with different parameters, and
3198 	 * that can widen the AGs that are searched for free space. If we have
3199 	 * to do BMBT block allocation, we have to do a new allocation.
3200 	 *
3201 	 * Hence leaving this function with the AGF locked opens up potential
3202 	 * ABBA AGF deadlocks because a future allocation attempt in this
3203 	 * transaction may attempt to lock a lower number AGF.
3204 	 *
3205 	 * We can't release the AGF until the transaction is commited, so at
3206 	 * this point we must update the "first allocation" tracker to point at
3207 	 * this AG if the tracker is empty or points to a lower AG. This allows
3208 	 * the next allocation attempt to be modified appropriately to avoid
3209 	 * deadlocks.
3210 	 */
3211 	if (args->agbp &&
3212 	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3213 	     args->agno > minimum_agno))
3214 		args->tp->t_highest_agno = args->agno;
3215 
3216 	/*
3217 	 * If the allocation failed with an error or we had an ENOSPC result,
3218 	 * preserve the returned error whilst also marking the allocation result
3219 	 * as "no extent allocated". This ensures that callers that fail to
3220 	 * capture the error will still treat it as a failed allocation.
3221 	 */
3222 	if (alloc_error || args->agbno == NULLAGBLOCK) {
3223 		args->fsbno = NULLFSBLOCK;
3224 		error = alloc_error;
3225 		goto out_drop_perag;
3226 	}
3227 
3228 	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3229 
3230 	ASSERT(args->len >= args->minlen);
3231 	ASSERT(args->len <= args->maxlen);
3232 	ASSERT(args->agbno % args->alignment == 0);
3233 	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3234 
3235 	/* if not file data, insert new block into the reverse map btree */
3236 	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3237 		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3238 				       args->agbno, args->len, &args->oinfo);
3239 		if (error)
3240 			goto out_drop_perag;
3241 	}
3242 
3243 	if (!args->wasfromfl) {
3244 		error = xfs_alloc_update_counters(args->tp, args->agbp,
3245 						  -((long)(args->len)));
3246 		if (error)
3247 			goto out_drop_perag;
3248 
3249 		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3250 				args->len));
3251 	}
3252 
3253 	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3254 
3255 	XFS_STATS_INC(mp, xs_allocx);
3256 	XFS_STATS_ADD(mp, xs_allocb, args->len);
3257 
3258 out_drop_perag:
3259 	if (drop_perag && args->pag) {
3260 		xfs_perag_rele(args->pag);
3261 		args->pag = NULL;
3262 	}
3263 	return error;
3264 }
3265 
3266 /*
3267  * Allocate within a single AG only. This uses a best-fit length algorithm so if
3268  * you need an exact sized allocation without locality constraints, this is the
3269  * fastest way to do it.
3270  *
3271  * Caller is expected to hold a perag reference in args->pag.
3272  */
3273 int
3274 xfs_alloc_vextent_this_ag(
3275 	struct xfs_alloc_arg	*args,
3276 	xfs_agnumber_t		agno)
3277 {
3278 	struct xfs_mount	*mp = args->mp;
3279 	xfs_agnumber_t		minimum_agno;
3280 	int			error;
3281 
3282 	args->agno = agno;
3283 	args->agbno = 0;
3284 	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3285 			&minimum_agno);
3286 	if (error) {
3287 		if (error == -ENOSPC)
3288 			return 0;
3289 		return error;
3290 	}
3291 
3292 	error = xfs_alloc_vextent_prepare_ag(args);
3293 	if (!error && args->agbp)
3294 		error = xfs_alloc_ag_vextent_size(args);
3295 
3296 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3297 }
3298 
3299 /*
3300  * Iterate all AGs trying to allocate an extent starting from @start_ag.
3301  *
3302  * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3303  * allocation attempts in @start_agno have locality information. If we fail to
3304  * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3305  * we attempt to allocation in as there is no locality optimisation possible for
3306  * those allocations.
3307  *
3308  * On return, args->pag may be left referenced if we finish before the "all
3309  * failed" return point. The allocation finish still needs the perag, and
3310  * so the caller will release it once they've finished the allocation.
3311  *
3312  * When we wrap the AG iteration at the end of the filesystem, we have to be
3313  * careful not to wrap into AGs below ones we already have locked in the
3314  * transaction if we are doing a blocking iteration. This will result in an
3315  * out-of-order locking of AGFs and hence can cause deadlocks.
3316  */
3317 static int
3318 xfs_alloc_vextent_iterate_ags(
3319 	struct xfs_alloc_arg	*args,
3320 	xfs_agnumber_t		minimum_agno,
3321 	xfs_agnumber_t		start_agno,
3322 	xfs_agblock_t		target_agbno,
3323 	uint32_t		flags)
3324 {
3325 	struct xfs_mount	*mp = args->mp;
3326 	xfs_agnumber_t		agno;
3327 	int			error = 0;
3328 
3329 restart:
3330 	for_each_perag_wrap_range(mp, start_agno, minimum_agno,
3331 			mp->m_sb.sb_agcount, agno, args->pag) {
3332 		args->agno = agno;
3333 		error = xfs_alloc_vextent_prepare_ag(args);
3334 		if (error)
3335 			break;
3336 		if (!args->agbp) {
3337 			trace_xfs_alloc_vextent_loopfailed(args);
3338 			continue;
3339 		}
3340 
3341 		/*
3342 		 * Allocation is supposed to succeed now, so break out of the
3343 		 * loop regardless of whether we succeed or not.
3344 		 */
3345 		if (args->agno == start_agno && target_agbno) {
3346 			args->agbno = target_agbno;
3347 			error = xfs_alloc_ag_vextent_near(args);
3348 		} else {
3349 			args->agbno = 0;
3350 			error = xfs_alloc_ag_vextent_size(args);
3351 		}
3352 		break;
3353 	}
3354 	if (error) {
3355 		xfs_perag_rele(args->pag);
3356 		args->pag = NULL;
3357 		return error;
3358 	}
3359 	if (args->agbp)
3360 		return 0;
3361 
3362 	/*
3363 	 * We didn't find an AG we can alloation from. If we were given
3364 	 * constraining flags by the caller, drop them and retry the allocation
3365 	 * without any constraints being set.
3366 	 */
3367 	if (flags) {
3368 		flags = 0;
3369 		goto restart;
3370 	}
3371 
3372 	ASSERT(args->pag == NULL);
3373 	trace_xfs_alloc_vextent_allfailed(args);
3374 	return 0;
3375 }
3376 
3377 /*
3378  * Iterate from the AGs from the start AG to the end of the filesystem, trying
3379  * to allocate blocks. It starts with a near allocation attempt in the initial
3380  * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3381  * back to zero if allowed by previous allocations in this transaction,
3382  * otherwise will wrap back to the start AG and run a second blocking pass to
3383  * the end of the filesystem.
3384  */
3385 int
3386 xfs_alloc_vextent_start_ag(
3387 	struct xfs_alloc_arg	*args,
3388 	xfs_fsblock_t		target)
3389 {
3390 	struct xfs_mount	*mp = args->mp;
3391 	xfs_agnumber_t		minimum_agno;
3392 	xfs_agnumber_t		start_agno;
3393 	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3394 	bool			bump_rotor = false;
3395 	int			error;
3396 
3397 	args->agno = NULLAGNUMBER;
3398 	args->agbno = NULLAGBLOCK;
3399 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3400 	if (error) {
3401 		if (error == -ENOSPC)
3402 			return 0;
3403 		return error;
3404 	}
3405 
3406 	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3407 	    xfs_is_inode32(mp)) {
3408 		target = XFS_AGB_TO_FSB(mp,
3409 				((mp->m_agfrotor / rotorstep) %
3410 				mp->m_sb.sb_agcount), 0);
3411 		bump_rotor = 1;
3412 	}
3413 
3414 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3415 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3416 			XFS_FSB_TO_AGBNO(mp, target), XFS_ALLOC_FLAG_TRYLOCK);
3417 
3418 	if (bump_rotor) {
3419 		if (args->agno == start_agno)
3420 			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3421 				(mp->m_sb.sb_agcount * rotorstep);
3422 		else
3423 			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3424 				(mp->m_sb.sb_agcount * rotorstep);
3425 	}
3426 
3427 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3428 }
3429 
3430 /*
3431  * Iterate from the agno indicated via @target through to the end of the
3432  * filesystem attempting blocking allocation. This does not wrap or try a second
3433  * pass, so will not recurse into AGs lower than indicated by the target.
3434  */
3435 int
3436 xfs_alloc_vextent_first_ag(
3437 	struct xfs_alloc_arg	*args,
3438 	xfs_fsblock_t		target)
3439  {
3440 	struct xfs_mount	*mp = args->mp;
3441 	xfs_agnumber_t		minimum_agno;
3442 	xfs_agnumber_t		start_agno;
3443 	int			error;
3444 
3445 	args->agno = NULLAGNUMBER;
3446 	args->agbno = NULLAGBLOCK;
3447 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3448 	if (error) {
3449 		if (error == -ENOSPC)
3450 			return 0;
3451 		return error;
3452 	}
3453 
3454 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3455 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3456 			XFS_FSB_TO_AGBNO(mp, target), 0);
3457 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3458 }
3459 
3460 /*
3461  * Allocate at the exact block target or fail. Caller is expected to hold a
3462  * perag reference in args->pag.
3463  */
3464 int
3465 xfs_alloc_vextent_exact_bno(
3466 	struct xfs_alloc_arg	*args,
3467 	xfs_fsblock_t		target)
3468 {
3469 	struct xfs_mount	*mp = args->mp;
3470 	xfs_agnumber_t		minimum_agno;
3471 	int			error;
3472 
3473 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3474 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3475 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3476 	if (error) {
3477 		if (error == -ENOSPC)
3478 			return 0;
3479 		return error;
3480 	}
3481 
3482 	error = xfs_alloc_vextent_prepare_ag(args);
3483 	if (!error && args->agbp)
3484 		error = xfs_alloc_ag_vextent_exact(args);
3485 
3486 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3487 }
3488 
3489 /*
3490  * Allocate an extent as close to the target as possible. If there are not
3491  * viable candidates in the AG, then fail the allocation.
3492  *
3493  * Caller may or may not have a per-ag reference in args->pag.
3494  */
3495 int
3496 xfs_alloc_vextent_near_bno(
3497 	struct xfs_alloc_arg	*args,
3498 	xfs_fsblock_t		target)
3499 {
3500 	struct xfs_mount	*mp = args->mp;
3501 	xfs_agnumber_t		minimum_agno;
3502 	bool			needs_perag = args->pag == NULL;
3503 	int			error;
3504 
3505 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3506 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3507 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3508 	if (error) {
3509 		if (error == -ENOSPC)
3510 			return 0;
3511 		return error;
3512 	}
3513 
3514 	if (needs_perag)
3515 		args->pag = xfs_perag_grab(mp, args->agno);
3516 
3517 	error = xfs_alloc_vextent_prepare_ag(args);
3518 	if (!error && args->agbp)
3519 		error = xfs_alloc_ag_vextent_near(args);
3520 
3521 	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3522 }
3523 
3524 /* Ensure that the freelist is at full capacity. */
3525 int
3526 xfs_free_extent_fix_freelist(
3527 	struct xfs_trans	*tp,
3528 	struct xfs_perag	*pag,
3529 	struct xfs_buf		**agbp)
3530 {
3531 	struct xfs_alloc_arg	args;
3532 	int			error;
3533 
3534 	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3535 	args.tp = tp;
3536 	args.mp = tp->t_mountp;
3537 	args.agno = pag->pag_agno;
3538 	args.pag = pag;
3539 
3540 	/*
3541 	 * validate that the block number is legal - the enables us to detect
3542 	 * and handle a silent filesystem corruption rather than crashing.
3543 	 */
3544 	if (args.agno >= args.mp->m_sb.sb_agcount)
3545 		return -EFSCORRUPTED;
3546 
3547 	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3548 	if (error)
3549 		return error;
3550 
3551 	*agbp = args.agbp;
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Free an extent.
3557  * Just break up the extent address and hand off to xfs_free_ag_extent
3558  * after fixing up the freelist.
3559  */
3560 int
3561 __xfs_free_extent(
3562 	struct xfs_trans		*tp,
3563 	xfs_fsblock_t			bno,
3564 	xfs_extlen_t			len,
3565 	const struct xfs_owner_info	*oinfo,
3566 	enum xfs_ag_resv_type		type,
3567 	bool				skip_discard)
3568 {
3569 	struct xfs_mount		*mp = tp->t_mountp;
3570 	struct xfs_buf			*agbp;
3571 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, bno);
3572 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp, bno);
3573 	struct xfs_agf			*agf;
3574 	int				error;
3575 	unsigned int			busy_flags = 0;
3576 	struct xfs_perag		*pag;
3577 
3578 	ASSERT(len != 0);
3579 	ASSERT(type != XFS_AG_RESV_AGFL);
3580 
3581 	if (XFS_TEST_ERROR(false, mp,
3582 			XFS_ERRTAG_FREE_EXTENT))
3583 		return -EIO;
3584 
3585 	pag = xfs_perag_get(mp, agno);
3586 	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3587 	if (error)
3588 		goto err;
3589 	agf = agbp->b_addr;
3590 
3591 	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3592 		error = -EFSCORRUPTED;
3593 		goto err_release;
3594 	}
3595 
3596 	/* validate the extent size is legal now we have the agf locked */
3597 	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3598 		error = -EFSCORRUPTED;
3599 		goto err_release;
3600 	}
3601 
3602 	error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
3603 	if (error)
3604 		goto err_release;
3605 
3606 	if (skip_discard)
3607 		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3608 	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3609 	xfs_perag_put(pag);
3610 	return 0;
3611 
3612 err_release:
3613 	xfs_trans_brelse(tp, agbp);
3614 err:
3615 	xfs_perag_put(pag);
3616 	return error;
3617 }
3618 
3619 struct xfs_alloc_query_range_info {
3620 	xfs_alloc_query_range_fn	fn;
3621 	void				*priv;
3622 };
3623 
3624 /* Format btree record and pass to our callback. */
3625 STATIC int
3626 xfs_alloc_query_range_helper(
3627 	struct xfs_btree_cur		*cur,
3628 	const union xfs_btree_rec	*rec,
3629 	void				*priv)
3630 {
3631 	struct xfs_alloc_query_range_info	*query = priv;
3632 	struct xfs_alloc_rec_incore		irec;
3633 
3634 	irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3635 	irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3636 	return query->fn(cur, &irec, query->priv);
3637 }
3638 
3639 /* Find all free space within a given range of blocks. */
3640 int
3641 xfs_alloc_query_range(
3642 	struct xfs_btree_cur			*cur,
3643 	const struct xfs_alloc_rec_incore	*low_rec,
3644 	const struct xfs_alloc_rec_incore	*high_rec,
3645 	xfs_alloc_query_range_fn		fn,
3646 	void					*priv)
3647 {
3648 	union xfs_btree_irec			low_brec;
3649 	union xfs_btree_irec			high_brec;
3650 	struct xfs_alloc_query_range_info	query;
3651 
3652 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3653 	low_brec.a = *low_rec;
3654 	high_brec.a = *high_rec;
3655 	query.priv = priv;
3656 	query.fn = fn;
3657 	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3658 			xfs_alloc_query_range_helper, &query);
3659 }
3660 
3661 /* Find all free space records. */
3662 int
3663 xfs_alloc_query_all(
3664 	struct xfs_btree_cur			*cur,
3665 	xfs_alloc_query_range_fn		fn,
3666 	void					*priv)
3667 {
3668 	struct xfs_alloc_query_range_info	query;
3669 
3670 	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3671 	query.priv = priv;
3672 	query.fn = fn;
3673 	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3674 }
3675 
3676 /* Is there a record covering a given extent? */
3677 int
3678 xfs_alloc_has_record(
3679 	struct xfs_btree_cur	*cur,
3680 	xfs_agblock_t		bno,
3681 	xfs_extlen_t		len,
3682 	bool			*exists)
3683 {
3684 	union xfs_btree_irec	low;
3685 	union xfs_btree_irec	high;
3686 
3687 	memset(&low, 0, sizeof(low));
3688 	low.a.ar_startblock = bno;
3689 	memset(&high, 0xFF, sizeof(high));
3690 	high.a.ar_startblock = bno + len - 1;
3691 
3692 	return xfs_btree_has_record(cur, &low, &high, exists);
3693 }
3694 
3695 /*
3696  * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3697  * error code or XFS_ITER_*.
3698  */
3699 int
3700 xfs_agfl_walk(
3701 	struct xfs_mount	*mp,
3702 	struct xfs_agf		*agf,
3703 	struct xfs_buf		*agflbp,
3704 	xfs_agfl_walk_fn	walk_fn,
3705 	void			*priv)
3706 {
3707 	__be32			*agfl_bno;
3708 	unsigned int		i;
3709 	int			error;
3710 
3711 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3712 	i = be32_to_cpu(agf->agf_flfirst);
3713 
3714 	/* Nothing to walk in an empty AGFL. */
3715 	if (agf->agf_flcount == cpu_to_be32(0))
3716 		return 0;
3717 
3718 	/* Otherwise, walk from first to last, wrapping as needed. */
3719 	for (;;) {
3720 		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3721 		if (error)
3722 			return error;
3723 		if (i == be32_to_cpu(agf->agf_fllast))
3724 			break;
3725 		if (++i == xfs_agfl_size(mp))
3726 			i = 0;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 int __init
3733 xfs_extfree_intent_init_cache(void)
3734 {
3735 	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3736 			sizeof(struct xfs_extent_free_item),
3737 			0, 0, NULL);
3738 
3739 	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3740 }
3741 
3742 void
3743 xfs_extfree_intent_destroy_cache(void)
3744 {
3745 	kmem_cache_destroy(xfs_extfree_item_cache);
3746 	xfs_extfree_item_cache = NULL;
3747 }
3748