xref: /openbmc/linux/fs/userfaultfd.c (revision ed354c69dd370ebac8c438d3570aade296afce05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38 
39 /*
40  * Start with fault_pending_wqh and fault_wqh so they're more likely
41  * to be in the same cacheline.
42  *
43  * Locking order:
44  *	fd_wqh.lock
45  *		fault_pending_wqh.lock
46  *			fault_wqh.lock
47  *		event_wqh.lock
48  *
49  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51  * also taken in IRQ context.
52  */
53 struct userfaultfd_ctx {
54 	/* waitqueue head for the pending (i.e. not read) userfaults */
55 	wait_queue_head_t fault_pending_wqh;
56 	/* waitqueue head for the userfaults */
57 	wait_queue_head_t fault_wqh;
58 	/* waitqueue head for the pseudo fd to wakeup poll/read */
59 	wait_queue_head_t fd_wqh;
60 	/* waitqueue head for events */
61 	wait_queue_head_t event_wqh;
62 	/* a refile sequence protected by fault_pending_wqh lock */
63 	seqcount_spinlock_t refile_seq;
64 	/* pseudo fd refcounting */
65 	refcount_t refcount;
66 	/* userfaultfd syscall flags */
67 	unsigned int flags;
68 	/* features requested from the userspace */
69 	unsigned int features;
70 	/* released */
71 	bool released;
72 	/* memory mappings are changing because of non-cooperative event */
73 	atomic_t mmap_changing;
74 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
75 	struct mm_struct *mm;
76 };
77 
78 struct userfaultfd_fork_ctx {
79 	struct userfaultfd_ctx *orig;
80 	struct userfaultfd_ctx *new;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_unmap_ctx {
85 	struct userfaultfd_ctx *ctx;
86 	unsigned long start;
87 	unsigned long end;
88 	struct list_head list;
89 };
90 
91 struct userfaultfd_wait_queue {
92 	struct uffd_msg msg;
93 	wait_queue_entry_t wq;
94 	struct userfaultfd_ctx *ctx;
95 	bool waken;
96 };
97 
98 struct userfaultfd_wake_range {
99 	unsigned long start;
100 	unsigned long len;
101 };
102 
103 /* internal indication that UFFD_API ioctl was successfully executed */
104 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
105 
106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
107 {
108 	return ctx->features & UFFD_FEATURE_INITIALIZED;
109 }
110 
111 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
112 				     vm_flags_t flags)
113 {
114 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
115 
116 	vm_flags_reset(vma, flags);
117 	/*
118 	 * For shared mappings, we want to enable writenotify while
119 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
120 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
121 	 */
122 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
123 		vma_set_page_prot(vma);
124 }
125 
126 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
127 				     int wake_flags, void *key)
128 {
129 	struct userfaultfd_wake_range *range = key;
130 	int ret;
131 	struct userfaultfd_wait_queue *uwq;
132 	unsigned long start, len;
133 
134 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
135 	ret = 0;
136 	/* len == 0 means wake all */
137 	start = range->start;
138 	len = range->len;
139 	if (len && (start > uwq->msg.arg.pagefault.address ||
140 		    start + len <= uwq->msg.arg.pagefault.address))
141 		goto out;
142 	WRITE_ONCE(uwq->waken, true);
143 	/*
144 	 * The Program-Order guarantees provided by the scheduler
145 	 * ensure uwq->waken is visible before the task is woken.
146 	 */
147 	ret = wake_up_state(wq->private, mode);
148 	if (ret) {
149 		/*
150 		 * Wake only once, autoremove behavior.
151 		 *
152 		 * After the effect of list_del_init is visible to the other
153 		 * CPUs, the waitqueue may disappear from under us, see the
154 		 * !list_empty_careful() in handle_userfault().
155 		 *
156 		 * try_to_wake_up() has an implicit smp_mb(), and the
157 		 * wq->private is read before calling the extern function
158 		 * "wake_up_state" (which in turns calls try_to_wake_up).
159 		 */
160 		list_del_init(&wq->entry);
161 	}
162 out:
163 	return ret;
164 }
165 
166 /**
167  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
168  * context.
169  * @ctx: [in] Pointer to the userfaultfd context.
170  */
171 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
172 {
173 	refcount_inc(&ctx->refcount);
174 }
175 
176 /**
177  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
178  * context.
179  * @ctx: [in] Pointer to userfaultfd context.
180  *
181  * The userfaultfd context reference must have been previously acquired either
182  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
183  */
184 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
185 {
186 	if (refcount_dec_and_test(&ctx->refcount)) {
187 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
188 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
189 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
190 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
191 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
192 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
193 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
194 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
195 		mmdrop(ctx->mm);
196 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
197 	}
198 }
199 
200 static inline void msg_init(struct uffd_msg *msg)
201 {
202 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
203 	/*
204 	 * Must use memset to zero out the paddings or kernel data is
205 	 * leaked to userland.
206 	 */
207 	memset(msg, 0, sizeof(struct uffd_msg));
208 }
209 
210 static inline struct uffd_msg userfault_msg(unsigned long address,
211 					    unsigned long real_address,
212 					    unsigned int flags,
213 					    unsigned long reason,
214 					    unsigned int features)
215 {
216 	struct uffd_msg msg;
217 
218 	msg_init(&msg);
219 	msg.event = UFFD_EVENT_PAGEFAULT;
220 
221 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
222 				    real_address : address;
223 
224 	/*
225 	 * These flags indicate why the userfault occurred:
226 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
227 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
228 	 * - Neither of these flags being set indicates a MISSING fault.
229 	 *
230 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
231 	 * fault. Otherwise, it was a read fault.
232 	 */
233 	if (flags & FAULT_FLAG_WRITE)
234 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
235 	if (reason & VM_UFFD_WP)
236 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
237 	if (reason & VM_UFFD_MINOR)
238 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
239 	if (features & UFFD_FEATURE_THREAD_ID)
240 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
241 	return msg;
242 }
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 /*
246  * Same functionality as userfaultfd_must_wait below with modifications for
247  * hugepmd ranges.
248  */
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250 					 struct vm_area_struct *vma,
251 					 unsigned long address,
252 					 unsigned long flags,
253 					 unsigned long reason)
254 {
255 	pte_t *ptep, pte;
256 	bool ret = true;
257 
258 	mmap_assert_locked(ctx->mm);
259 
260 	ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
261 	if (!ptep)
262 		goto out;
263 
264 	ret = false;
265 	pte = huge_ptep_get(ptep);
266 
267 	/*
268 	 * Lockless access: we're in a wait_event so it's ok if it
269 	 * changes under us.  PTE markers should be handled the same as none
270 	 * ptes here.
271 	 */
272 	if (huge_pte_none_mostly(pte))
273 		ret = true;
274 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
275 		ret = true;
276 out:
277 	return ret;
278 }
279 #else
280 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
281 					 struct vm_area_struct *vma,
282 					 unsigned long address,
283 					 unsigned long flags,
284 					 unsigned long reason)
285 {
286 	return false;	/* should never get here */
287 }
288 #endif /* CONFIG_HUGETLB_PAGE */
289 
290 /*
291  * Verify the pagetables are still not ok after having reigstered into
292  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
293  * userfault that has already been resolved, if userfaultfd_read and
294  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
295  * threads.
296  */
297 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
298 					 unsigned long address,
299 					 unsigned long flags,
300 					 unsigned long reason)
301 {
302 	struct mm_struct *mm = ctx->mm;
303 	pgd_t *pgd;
304 	p4d_t *p4d;
305 	pud_t *pud;
306 	pmd_t *pmd, _pmd;
307 	pte_t *pte;
308 	bool ret = true;
309 
310 	mmap_assert_locked(mm);
311 
312 	pgd = pgd_offset(mm, address);
313 	if (!pgd_present(*pgd))
314 		goto out;
315 	p4d = p4d_offset(pgd, address);
316 	if (!p4d_present(*p4d))
317 		goto out;
318 	pud = pud_offset(p4d, address);
319 	if (!pud_present(*pud))
320 		goto out;
321 	pmd = pmd_offset(pud, address);
322 	/*
323 	 * READ_ONCE must function as a barrier with narrower scope
324 	 * and it must be equivalent to:
325 	 *	_pmd = *pmd; barrier();
326 	 *
327 	 * This is to deal with the instability (as in
328 	 * pmd_trans_unstable) of the pmd.
329 	 */
330 	_pmd = READ_ONCE(*pmd);
331 	if (pmd_none(_pmd))
332 		goto out;
333 
334 	ret = false;
335 	if (!pmd_present(_pmd))
336 		goto out;
337 
338 	if (pmd_trans_huge(_pmd)) {
339 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
340 			ret = true;
341 		goto out;
342 	}
343 
344 	/*
345 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
346 	 * and use the standard pte_offset_map() instead of parsing _pmd.
347 	 */
348 	pte = pte_offset_map(pmd, address);
349 	/*
350 	 * Lockless access: we're in a wait_event so it's ok if it
351 	 * changes under us.  PTE markers should be handled the same as none
352 	 * ptes here.
353 	 */
354 	if (pte_none_mostly(*pte))
355 		ret = true;
356 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
357 		ret = true;
358 	pte_unmap(pte);
359 
360 out:
361 	return ret;
362 }
363 
364 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
365 {
366 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
367 		return TASK_INTERRUPTIBLE;
368 
369 	if (flags & FAULT_FLAG_KILLABLE)
370 		return TASK_KILLABLE;
371 
372 	return TASK_UNINTERRUPTIBLE;
373 }
374 
375 /*
376  * The locking rules involved in returning VM_FAULT_RETRY depending on
377  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
378  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
379  * recommendation in __lock_page_or_retry is not an understatement.
380  *
381  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
382  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
383  * not set.
384  *
385  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
386  * set, VM_FAULT_RETRY can still be returned if and only if there are
387  * fatal_signal_pending()s, and the mmap_lock must be released before
388  * returning it.
389  */
390 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
391 {
392 	struct vm_area_struct *vma = vmf->vma;
393 	struct mm_struct *mm = vma->vm_mm;
394 	struct userfaultfd_ctx *ctx;
395 	struct userfaultfd_wait_queue uwq;
396 	vm_fault_t ret = VM_FAULT_SIGBUS;
397 	bool must_wait;
398 	unsigned int blocking_state;
399 
400 	/*
401 	 * We don't do userfault handling for the final child pid update.
402 	 *
403 	 * We also don't do userfault handling during
404 	 * coredumping. hugetlbfs has the special
405 	 * follow_hugetlb_page() to skip missing pages in the
406 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
407 	 * the no_page_table() helper in follow_page_mask(), but the
408 	 * shmem_vm_ops->fault method is invoked even during
409 	 * coredumping without mmap_lock and it ends up here.
410 	 */
411 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
412 		goto out;
413 
414 	/*
415 	 * Coredumping runs without mmap_lock so we can only check that
416 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
417 	 */
418 	mmap_assert_locked(mm);
419 
420 	ctx = vma->vm_userfaultfd_ctx.ctx;
421 	if (!ctx)
422 		goto out;
423 
424 	BUG_ON(ctx->mm != mm);
425 
426 	/* Any unrecognized flag is a bug. */
427 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
428 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
429 	VM_BUG_ON(!reason || (reason & (reason - 1)));
430 
431 	if (ctx->features & UFFD_FEATURE_SIGBUS)
432 		goto out;
433 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
434 		goto out;
435 
436 	/*
437 	 * If it's already released don't get it. This avoids to loop
438 	 * in __get_user_pages if userfaultfd_release waits on the
439 	 * caller of handle_userfault to release the mmap_lock.
440 	 */
441 	if (unlikely(READ_ONCE(ctx->released))) {
442 		/*
443 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
444 		 * cooperative manager can close the uffd after the
445 		 * last UFFDIO_COPY, without risking to trigger an
446 		 * involuntary SIGBUS if the process was starting the
447 		 * userfaultfd while the userfaultfd was still armed
448 		 * (but after the last UFFDIO_COPY). If the uffd
449 		 * wasn't already closed when the userfault reached
450 		 * this point, that would normally be solved by
451 		 * userfaultfd_must_wait returning 'false'.
452 		 *
453 		 * If we were to return VM_FAULT_SIGBUS here, the non
454 		 * cooperative manager would be instead forced to
455 		 * always call UFFDIO_UNREGISTER before it can safely
456 		 * close the uffd.
457 		 */
458 		ret = VM_FAULT_NOPAGE;
459 		goto out;
460 	}
461 
462 	/*
463 	 * Check that we can return VM_FAULT_RETRY.
464 	 *
465 	 * NOTE: it should become possible to return VM_FAULT_RETRY
466 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
467 	 * -EBUSY failures, if the userfaultfd is to be extended for
468 	 * VM_UFFD_WP tracking and we intend to arm the userfault
469 	 * without first stopping userland access to the memory. For
470 	 * VM_UFFD_MISSING userfaults this is enough for now.
471 	 */
472 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
473 		/*
474 		 * Validate the invariant that nowait must allow retry
475 		 * to be sure not to return SIGBUS erroneously on
476 		 * nowait invocations.
477 		 */
478 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
479 #ifdef CONFIG_DEBUG_VM
480 		if (printk_ratelimit()) {
481 			printk(KERN_WARNING
482 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
483 			       vmf->flags);
484 			dump_stack();
485 		}
486 #endif
487 		goto out;
488 	}
489 
490 	/*
491 	 * Handle nowait, not much to do other than tell it to retry
492 	 * and wait.
493 	 */
494 	ret = VM_FAULT_RETRY;
495 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
496 		goto out;
497 
498 	/* take the reference before dropping the mmap_lock */
499 	userfaultfd_ctx_get(ctx);
500 
501 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
502 	uwq.wq.private = current;
503 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
504 				reason, ctx->features);
505 	uwq.ctx = ctx;
506 	uwq.waken = false;
507 
508 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
509 
510         /*
511          * Take the vma lock now, in order to safely call
512          * userfaultfd_huge_must_wait() later. Since acquiring the
513          * (sleepable) vma lock can modify the current task state, that
514          * must be before explicitly calling set_current_state().
515          */
516 	if (is_vm_hugetlb_page(vma))
517 		hugetlb_vma_lock_read(vma);
518 
519 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
520 	/*
521 	 * After the __add_wait_queue the uwq is visible to userland
522 	 * through poll/read().
523 	 */
524 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
525 	/*
526 	 * The smp_mb() after __set_current_state prevents the reads
527 	 * following the spin_unlock to happen before the list_add in
528 	 * __add_wait_queue.
529 	 */
530 	set_current_state(blocking_state);
531 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
532 
533 	if (!is_vm_hugetlb_page(vma))
534 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
535 						  reason);
536 	else
537 		must_wait = userfaultfd_huge_must_wait(ctx, vma,
538 						       vmf->address,
539 						       vmf->flags, reason);
540 	if (is_vm_hugetlb_page(vma))
541 		hugetlb_vma_unlock_read(vma);
542 	mmap_read_unlock(mm);
543 
544 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
545 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
546 		schedule();
547 	}
548 
549 	__set_current_state(TASK_RUNNING);
550 
551 	/*
552 	 * Here we race with the list_del; list_add in
553 	 * userfaultfd_ctx_read(), however because we don't ever run
554 	 * list_del_init() to refile across the two lists, the prev
555 	 * and next pointers will never point to self. list_add also
556 	 * would never let any of the two pointers to point to
557 	 * self. So list_empty_careful won't risk to see both pointers
558 	 * pointing to self at any time during the list refile. The
559 	 * only case where list_del_init() is called is the full
560 	 * removal in the wake function and there we don't re-list_add
561 	 * and it's fine not to block on the spinlock. The uwq on this
562 	 * kernel stack can be released after the list_del_init.
563 	 */
564 	if (!list_empty_careful(&uwq.wq.entry)) {
565 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
566 		/*
567 		 * No need of list_del_init(), the uwq on the stack
568 		 * will be freed shortly anyway.
569 		 */
570 		list_del(&uwq.wq.entry);
571 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
572 	}
573 
574 	/*
575 	 * ctx may go away after this if the userfault pseudo fd is
576 	 * already released.
577 	 */
578 	userfaultfd_ctx_put(ctx);
579 
580 out:
581 	return ret;
582 }
583 
584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
585 					      struct userfaultfd_wait_queue *ewq)
586 {
587 	struct userfaultfd_ctx *release_new_ctx;
588 
589 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
590 		goto out;
591 
592 	ewq->ctx = ctx;
593 	init_waitqueue_entry(&ewq->wq, current);
594 	release_new_ctx = NULL;
595 
596 	spin_lock_irq(&ctx->event_wqh.lock);
597 	/*
598 	 * After the __add_wait_queue the uwq is visible to userland
599 	 * through poll/read().
600 	 */
601 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
602 	for (;;) {
603 		set_current_state(TASK_KILLABLE);
604 		if (ewq->msg.event == 0)
605 			break;
606 		if (READ_ONCE(ctx->released) ||
607 		    fatal_signal_pending(current)) {
608 			/*
609 			 * &ewq->wq may be queued in fork_event, but
610 			 * __remove_wait_queue ignores the head
611 			 * parameter. It would be a problem if it
612 			 * didn't.
613 			 */
614 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
615 			if (ewq->msg.event == UFFD_EVENT_FORK) {
616 				struct userfaultfd_ctx *new;
617 
618 				new = (struct userfaultfd_ctx *)
619 					(unsigned long)
620 					ewq->msg.arg.reserved.reserved1;
621 				release_new_ctx = new;
622 			}
623 			break;
624 		}
625 
626 		spin_unlock_irq(&ctx->event_wqh.lock);
627 
628 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
629 		schedule();
630 
631 		spin_lock_irq(&ctx->event_wqh.lock);
632 	}
633 	__set_current_state(TASK_RUNNING);
634 	spin_unlock_irq(&ctx->event_wqh.lock);
635 
636 	if (release_new_ctx) {
637 		struct vm_area_struct *vma;
638 		struct mm_struct *mm = release_new_ctx->mm;
639 		VMA_ITERATOR(vmi, mm, 0);
640 
641 		/* the various vma->vm_userfaultfd_ctx still points to it */
642 		mmap_write_lock(mm);
643 		for_each_vma(vmi, vma) {
644 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
645 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 				userfaultfd_set_vm_flags(vma,
647 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
648 			}
649 		}
650 		mmap_write_unlock(mm);
651 
652 		userfaultfd_ctx_put(release_new_ctx);
653 	}
654 
655 	/*
656 	 * ctx may go away after this if the userfault pseudo fd is
657 	 * already released.
658 	 */
659 out:
660 	atomic_dec(&ctx->mmap_changing);
661 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
662 	userfaultfd_ctx_put(ctx);
663 }
664 
665 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
666 				       struct userfaultfd_wait_queue *ewq)
667 {
668 	ewq->msg.event = 0;
669 	wake_up_locked(&ctx->event_wqh);
670 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
671 }
672 
673 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
674 {
675 	struct userfaultfd_ctx *ctx = NULL, *octx;
676 	struct userfaultfd_fork_ctx *fctx;
677 
678 	octx = vma->vm_userfaultfd_ctx.ctx;
679 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
680 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
681 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
682 		return 0;
683 	}
684 
685 	list_for_each_entry(fctx, fcs, list)
686 		if (fctx->orig == octx) {
687 			ctx = fctx->new;
688 			break;
689 		}
690 
691 	if (!ctx) {
692 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
693 		if (!fctx)
694 			return -ENOMEM;
695 
696 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
697 		if (!ctx) {
698 			kfree(fctx);
699 			return -ENOMEM;
700 		}
701 
702 		refcount_set(&ctx->refcount, 1);
703 		ctx->flags = octx->flags;
704 		ctx->features = octx->features;
705 		ctx->released = false;
706 		atomic_set(&ctx->mmap_changing, 0);
707 		ctx->mm = vma->vm_mm;
708 		mmgrab(ctx->mm);
709 
710 		userfaultfd_ctx_get(octx);
711 		atomic_inc(&octx->mmap_changing);
712 		fctx->orig = octx;
713 		fctx->new = ctx;
714 		list_add_tail(&fctx->list, fcs);
715 	}
716 
717 	vma->vm_userfaultfd_ctx.ctx = ctx;
718 	return 0;
719 }
720 
721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
722 {
723 	struct userfaultfd_ctx *ctx = fctx->orig;
724 	struct userfaultfd_wait_queue ewq;
725 
726 	msg_init(&ewq.msg);
727 
728 	ewq.msg.event = UFFD_EVENT_FORK;
729 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
730 
731 	userfaultfd_event_wait_completion(ctx, &ewq);
732 }
733 
734 void dup_userfaultfd_complete(struct list_head *fcs)
735 {
736 	struct userfaultfd_fork_ctx *fctx, *n;
737 
738 	list_for_each_entry_safe(fctx, n, fcs, list) {
739 		dup_fctx(fctx);
740 		list_del(&fctx->list);
741 		kfree(fctx);
742 	}
743 }
744 
745 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746 			     struct vm_userfaultfd_ctx *vm_ctx)
747 {
748 	struct userfaultfd_ctx *ctx;
749 
750 	ctx = vma->vm_userfaultfd_ctx.ctx;
751 
752 	if (!ctx)
753 		return;
754 
755 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
756 		vm_ctx->ctx = ctx;
757 		userfaultfd_ctx_get(ctx);
758 		atomic_inc(&ctx->mmap_changing);
759 	} else {
760 		/* Drop uffd context if remap feature not enabled */
761 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
762 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
763 	}
764 }
765 
766 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
767 				 unsigned long from, unsigned long to,
768 				 unsigned long len)
769 {
770 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
771 	struct userfaultfd_wait_queue ewq;
772 
773 	if (!ctx)
774 		return;
775 
776 	if (to & ~PAGE_MASK) {
777 		userfaultfd_ctx_put(ctx);
778 		return;
779 	}
780 
781 	msg_init(&ewq.msg);
782 
783 	ewq.msg.event = UFFD_EVENT_REMAP;
784 	ewq.msg.arg.remap.from = from;
785 	ewq.msg.arg.remap.to = to;
786 	ewq.msg.arg.remap.len = len;
787 
788 	userfaultfd_event_wait_completion(ctx, &ewq);
789 }
790 
791 bool userfaultfd_remove(struct vm_area_struct *vma,
792 			unsigned long start, unsigned long end)
793 {
794 	struct mm_struct *mm = vma->vm_mm;
795 	struct userfaultfd_ctx *ctx;
796 	struct userfaultfd_wait_queue ewq;
797 
798 	ctx = vma->vm_userfaultfd_ctx.ctx;
799 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800 		return true;
801 
802 	userfaultfd_ctx_get(ctx);
803 	atomic_inc(&ctx->mmap_changing);
804 	mmap_read_unlock(mm);
805 
806 	msg_init(&ewq.msg);
807 
808 	ewq.msg.event = UFFD_EVENT_REMOVE;
809 	ewq.msg.arg.remove.start = start;
810 	ewq.msg.arg.remove.end = end;
811 
812 	userfaultfd_event_wait_completion(ctx, &ewq);
813 
814 	return false;
815 }
816 
817 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
818 			  unsigned long start, unsigned long end)
819 {
820 	struct userfaultfd_unmap_ctx *unmap_ctx;
821 
822 	list_for_each_entry(unmap_ctx, unmaps, list)
823 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
824 		    unmap_ctx->end == end)
825 			return true;
826 
827 	return false;
828 }
829 
830 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
831 			   unsigned long end, struct list_head *unmaps)
832 {
833 	VMA_ITERATOR(vmi, mm, start);
834 	struct vm_area_struct *vma;
835 
836 	for_each_vma_range(vmi, vma, end) {
837 		struct userfaultfd_unmap_ctx *unmap_ctx;
838 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
839 
840 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
841 		    has_unmap_ctx(ctx, unmaps, start, end))
842 			continue;
843 
844 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
845 		if (!unmap_ctx)
846 			return -ENOMEM;
847 
848 		userfaultfd_ctx_get(ctx);
849 		atomic_inc(&ctx->mmap_changing);
850 		unmap_ctx->ctx = ctx;
851 		unmap_ctx->start = start;
852 		unmap_ctx->end = end;
853 		list_add_tail(&unmap_ctx->list, unmaps);
854 	}
855 
856 	return 0;
857 }
858 
859 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
860 {
861 	struct userfaultfd_unmap_ctx *ctx, *n;
862 	struct userfaultfd_wait_queue ewq;
863 
864 	list_for_each_entry_safe(ctx, n, uf, list) {
865 		msg_init(&ewq.msg);
866 
867 		ewq.msg.event = UFFD_EVENT_UNMAP;
868 		ewq.msg.arg.remove.start = ctx->start;
869 		ewq.msg.arg.remove.end = ctx->end;
870 
871 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
872 
873 		list_del(&ctx->list);
874 		kfree(ctx);
875 	}
876 }
877 
878 static int userfaultfd_release(struct inode *inode, struct file *file)
879 {
880 	struct userfaultfd_ctx *ctx = file->private_data;
881 	struct mm_struct *mm = ctx->mm;
882 	struct vm_area_struct *vma, *prev;
883 	/* len == 0 means wake all */
884 	struct userfaultfd_wake_range range = { .len = 0, };
885 	unsigned long new_flags;
886 	VMA_ITERATOR(vmi, mm, 0);
887 
888 	WRITE_ONCE(ctx->released, true);
889 
890 	if (!mmget_not_zero(mm))
891 		goto wakeup;
892 
893 	/*
894 	 * Flush page faults out of all CPUs. NOTE: all page faults
895 	 * must be retried without returning VM_FAULT_SIGBUS if
896 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
897 	 * changes while handle_userfault released the mmap_lock. So
898 	 * it's critical that released is set to true (above), before
899 	 * taking the mmap_lock for writing.
900 	 */
901 	mmap_write_lock(mm);
902 	prev = NULL;
903 	for_each_vma(vmi, vma) {
904 		cond_resched();
905 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
906 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
907 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
908 			prev = vma;
909 			continue;
910 		}
911 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
912 		prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
913 				 new_flags, vma->anon_vma,
914 				 vma->vm_file, vma->vm_pgoff,
915 				 vma_policy(vma),
916 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
917 		if (prev) {
918 			vma = prev;
919 		} else {
920 			prev = vma;
921 		}
922 
923 		userfaultfd_set_vm_flags(vma, new_flags);
924 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
925 	}
926 	mmap_write_unlock(mm);
927 	mmput(mm);
928 wakeup:
929 	/*
930 	 * After no new page faults can wait on this fault_*wqh, flush
931 	 * the last page faults that may have been already waiting on
932 	 * the fault_*wqh.
933 	 */
934 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
935 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
936 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
937 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
938 
939 	/* Flush pending events that may still wait on event_wqh */
940 	wake_up_all(&ctx->event_wqh);
941 
942 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
943 	userfaultfd_ctx_put(ctx);
944 	return 0;
945 }
946 
947 /* fault_pending_wqh.lock must be hold by the caller */
948 static inline struct userfaultfd_wait_queue *find_userfault_in(
949 		wait_queue_head_t *wqh)
950 {
951 	wait_queue_entry_t *wq;
952 	struct userfaultfd_wait_queue *uwq;
953 
954 	lockdep_assert_held(&wqh->lock);
955 
956 	uwq = NULL;
957 	if (!waitqueue_active(wqh))
958 		goto out;
959 	/* walk in reverse to provide FIFO behavior to read userfaults */
960 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
961 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
962 out:
963 	return uwq;
964 }
965 
966 static inline struct userfaultfd_wait_queue *find_userfault(
967 		struct userfaultfd_ctx *ctx)
968 {
969 	return find_userfault_in(&ctx->fault_pending_wqh);
970 }
971 
972 static inline struct userfaultfd_wait_queue *find_userfault_evt(
973 		struct userfaultfd_ctx *ctx)
974 {
975 	return find_userfault_in(&ctx->event_wqh);
976 }
977 
978 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
979 {
980 	struct userfaultfd_ctx *ctx = file->private_data;
981 	__poll_t ret;
982 
983 	poll_wait(file, &ctx->fd_wqh, wait);
984 
985 	if (!userfaultfd_is_initialized(ctx))
986 		return EPOLLERR;
987 
988 	/*
989 	 * poll() never guarantees that read won't block.
990 	 * userfaults can be waken before they're read().
991 	 */
992 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
993 		return EPOLLERR;
994 	/*
995 	 * lockless access to see if there are pending faults
996 	 * __pollwait last action is the add_wait_queue but
997 	 * the spin_unlock would allow the waitqueue_active to
998 	 * pass above the actual list_add inside
999 	 * add_wait_queue critical section. So use a full
1000 	 * memory barrier to serialize the list_add write of
1001 	 * add_wait_queue() with the waitqueue_active read
1002 	 * below.
1003 	 */
1004 	ret = 0;
1005 	smp_mb();
1006 	if (waitqueue_active(&ctx->fault_pending_wqh))
1007 		ret = EPOLLIN;
1008 	else if (waitqueue_active(&ctx->event_wqh))
1009 		ret = EPOLLIN;
1010 
1011 	return ret;
1012 }
1013 
1014 static const struct file_operations userfaultfd_fops;
1015 
1016 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1017 				  struct inode *inode,
1018 				  struct uffd_msg *msg)
1019 {
1020 	int fd;
1021 
1022 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1023 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1024 	if (fd < 0)
1025 		return fd;
1026 
1027 	msg->arg.reserved.reserved1 = 0;
1028 	msg->arg.fork.ufd = fd;
1029 	return 0;
1030 }
1031 
1032 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1033 				    struct uffd_msg *msg, struct inode *inode)
1034 {
1035 	ssize_t ret;
1036 	DECLARE_WAITQUEUE(wait, current);
1037 	struct userfaultfd_wait_queue *uwq;
1038 	/*
1039 	 * Handling fork event requires sleeping operations, so
1040 	 * we drop the event_wqh lock, then do these ops, then
1041 	 * lock it back and wake up the waiter. While the lock is
1042 	 * dropped the ewq may go away so we keep track of it
1043 	 * carefully.
1044 	 */
1045 	LIST_HEAD(fork_event);
1046 	struct userfaultfd_ctx *fork_nctx = NULL;
1047 
1048 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1049 	spin_lock_irq(&ctx->fd_wqh.lock);
1050 	__add_wait_queue(&ctx->fd_wqh, &wait);
1051 	for (;;) {
1052 		set_current_state(TASK_INTERRUPTIBLE);
1053 		spin_lock(&ctx->fault_pending_wqh.lock);
1054 		uwq = find_userfault(ctx);
1055 		if (uwq) {
1056 			/*
1057 			 * Use a seqcount to repeat the lockless check
1058 			 * in wake_userfault() to avoid missing
1059 			 * wakeups because during the refile both
1060 			 * waitqueue could become empty if this is the
1061 			 * only userfault.
1062 			 */
1063 			write_seqcount_begin(&ctx->refile_seq);
1064 
1065 			/*
1066 			 * The fault_pending_wqh.lock prevents the uwq
1067 			 * to disappear from under us.
1068 			 *
1069 			 * Refile this userfault from
1070 			 * fault_pending_wqh to fault_wqh, it's not
1071 			 * pending anymore after we read it.
1072 			 *
1073 			 * Use list_del() by hand (as
1074 			 * userfaultfd_wake_function also uses
1075 			 * list_del_init() by hand) to be sure nobody
1076 			 * changes __remove_wait_queue() to use
1077 			 * list_del_init() in turn breaking the
1078 			 * !list_empty_careful() check in
1079 			 * handle_userfault(). The uwq->wq.head list
1080 			 * must never be empty at any time during the
1081 			 * refile, or the waitqueue could disappear
1082 			 * from under us. The "wait_queue_head_t"
1083 			 * parameter of __remove_wait_queue() is unused
1084 			 * anyway.
1085 			 */
1086 			list_del(&uwq->wq.entry);
1087 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1088 
1089 			write_seqcount_end(&ctx->refile_seq);
1090 
1091 			/* careful to always initialize msg if ret == 0 */
1092 			*msg = uwq->msg;
1093 			spin_unlock(&ctx->fault_pending_wqh.lock);
1094 			ret = 0;
1095 			break;
1096 		}
1097 		spin_unlock(&ctx->fault_pending_wqh.lock);
1098 
1099 		spin_lock(&ctx->event_wqh.lock);
1100 		uwq = find_userfault_evt(ctx);
1101 		if (uwq) {
1102 			*msg = uwq->msg;
1103 
1104 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1105 				fork_nctx = (struct userfaultfd_ctx *)
1106 					(unsigned long)
1107 					uwq->msg.arg.reserved.reserved1;
1108 				list_move(&uwq->wq.entry, &fork_event);
1109 				/*
1110 				 * fork_nctx can be freed as soon as
1111 				 * we drop the lock, unless we take a
1112 				 * reference on it.
1113 				 */
1114 				userfaultfd_ctx_get(fork_nctx);
1115 				spin_unlock(&ctx->event_wqh.lock);
1116 				ret = 0;
1117 				break;
1118 			}
1119 
1120 			userfaultfd_event_complete(ctx, uwq);
1121 			spin_unlock(&ctx->event_wqh.lock);
1122 			ret = 0;
1123 			break;
1124 		}
1125 		spin_unlock(&ctx->event_wqh.lock);
1126 
1127 		if (signal_pending(current)) {
1128 			ret = -ERESTARTSYS;
1129 			break;
1130 		}
1131 		if (no_wait) {
1132 			ret = -EAGAIN;
1133 			break;
1134 		}
1135 		spin_unlock_irq(&ctx->fd_wqh.lock);
1136 		schedule();
1137 		spin_lock_irq(&ctx->fd_wqh.lock);
1138 	}
1139 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1140 	__set_current_state(TASK_RUNNING);
1141 	spin_unlock_irq(&ctx->fd_wqh.lock);
1142 
1143 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1144 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1145 		spin_lock_irq(&ctx->event_wqh.lock);
1146 		if (!list_empty(&fork_event)) {
1147 			/*
1148 			 * The fork thread didn't abort, so we can
1149 			 * drop the temporary refcount.
1150 			 */
1151 			userfaultfd_ctx_put(fork_nctx);
1152 
1153 			uwq = list_first_entry(&fork_event,
1154 					       typeof(*uwq),
1155 					       wq.entry);
1156 			/*
1157 			 * If fork_event list wasn't empty and in turn
1158 			 * the event wasn't already released by fork
1159 			 * (the event is allocated on fork kernel
1160 			 * stack), put the event back to its place in
1161 			 * the event_wq. fork_event head will be freed
1162 			 * as soon as we return so the event cannot
1163 			 * stay queued there no matter the current
1164 			 * "ret" value.
1165 			 */
1166 			list_del(&uwq->wq.entry);
1167 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1168 
1169 			/*
1170 			 * Leave the event in the waitqueue and report
1171 			 * error to userland if we failed to resolve
1172 			 * the userfault fork.
1173 			 */
1174 			if (likely(!ret))
1175 				userfaultfd_event_complete(ctx, uwq);
1176 		} else {
1177 			/*
1178 			 * Here the fork thread aborted and the
1179 			 * refcount from the fork thread on fork_nctx
1180 			 * has already been released. We still hold
1181 			 * the reference we took before releasing the
1182 			 * lock above. If resolve_userfault_fork
1183 			 * failed we've to drop it because the
1184 			 * fork_nctx has to be freed in such case. If
1185 			 * it succeeded we'll hold it because the new
1186 			 * uffd references it.
1187 			 */
1188 			if (ret)
1189 				userfaultfd_ctx_put(fork_nctx);
1190 		}
1191 		spin_unlock_irq(&ctx->event_wqh.lock);
1192 	}
1193 
1194 	return ret;
1195 }
1196 
1197 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1198 				size_t count, loff_t *ppos)
1199 {
1200 	struct userfaultfd_ctx *ctx = file->private_data;
1201 	ssize_t _ret, ret = 0;
1202 	struct uffd_msg msg;
1203 	int no_wait = file->f_flags & O_NONBLOCK;
1204 	struct inode *inode = file_inode(file);
1205 
1206 	if (!userfaultfd_is_initialized(ctx))
1207 		return -EINVAL;
1208 
1209 	for (;;) {
1210 		if (count < sizeof(msg))
1211 			return ret ? ret : -EINVAL;
1212 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1213 		if (_ret < 0)
1214 			return ret ? ret : _ret;
1215 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1216 			return ret ? ret : -EFAULT;
1217 		ret += sizeof(msg);
1218 		buf += sizeof(msg);
1219 		count -= sizeof(msg);
1220 		/*
1221 		 * Allow to read more than one fault at time but only
1222 		 * block if waiting for the very first one.
1223 		 */
1224 		no_wait = O_NONBLOCK;
1225 	}
1226 }
1227 
1228 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1229 			     struct userfaultfd_wake_range *range)
1230 {
1231 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1232 	/* wake all in the range and autoremove */
1233 	if (waitqueue_active(&ctx->fault_pending_wqh))
1234 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1235 				     range);
1236 	if (waitqueue_active(&ctx->fault_wqh))
1237 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1238 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1239 }
1240 
1241 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1242 					   struct userfaultfd_wake_range *range)
1243 {
1244 	unsigned seq;
1245 	bool need_wakeup;
1246 
1247 	/*
1248 	 * To be sure waitqueue_active() is not reordered by the CPU
1249 	 * before the pagetable update, use an explicit SMP memory
1250 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1251 	 * have release semantics that can allow the
1252 	 * waitqueue_active() to be reordered before the pte update.
1253 	 */
1254 	smp_mb();
1255 
1256 	/*
1257 	 * Use waitqueue_active because it's very frequent to
1258 	 * change the address space atomically even if there are no
1259 	 * userfaults yet. So we take the spinlock only when we're
1260 	 * sure we've userfaults to wake.
1261 	 */
1262 	do {
1263 		seq = read_seqcount_begin(&ctx->refile_seq);
1264 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1265 			waitqueue_active(&ctx->fault_wqh);
1266 		cond_resched();
1267 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1268 	if (need_wakeup)
1269 		__wake_userfault(ctx, range);
1270 }
1271 
1272 static __always_inline int validate_range(struct mm_struct *mm,
1273 					  __u64 start, __u64 len)
1274 {
1275 	__u64 task_size = mm->task_size;
1276 
1277 	if (start & ~PAGE_MASK)
1278 		return -EINVAL;
1279 	if (len & ~PAGE_MASK)
1280 		return -EINVAL;
1281 	if (!len)
1282 		return -EINVAL;
1283 	if (start < mmap_min_addr)
1284 		return -EINVAL;
1285 	if (start >= task_size)
1286 		return -EINVAL;
1287 	if (len > task_size - start)
1288 		return -EINVAL;
1289 	return 0;
1290 }
1291 
1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1293 				unsigned long arg)
1294 {
1295 	struct mm_struct *mm = ctx->mm;
1296 	struct vm_area_struct *vma, *prev, *cur;
1297 	int ret;
1298 	struct uffdio_register uffdio_register;
1299 	struct uffdio_register __user *user_uffdio_register;
1300 	unsigned long vm_flags, new_flags;
1301 	bool found;
1302 	bool basic_ioctls;
1303 	unsigned long start, end, vma_end;
1304 	struct vma_iterator vmi;
1305 
1306 	user_uffdio_register = (struct uffdio_register __user *) arg;
1307 
1308 	ret = -EFAULT;
1309 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1310 			   sizeof(uffdio_register)-sizeof(__u64)))
1311 		goto out;
1312 
1313 	ret = -EINVAL;
1314 	if (!uffdio_register.mode)
1315 		goto out;
1316 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1317 		goto out;
1318 	vm_flags = 0;
1319 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1320 		vm_flags |= VM_UFFD_MISSING;
1321 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1322 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1323 		goto out;
1324 #endif
1325 		vm_flags |= VM_UFFD_WP;
1326 	}
1327 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1328 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1329 		goto out;
1330 #endif
1331 		vm_flags |= VM_UFFD_MINOR;
1332 	}
1333 
1334 	ret = validate_range(mm, uffdio_register.range.start,
1335 			     uffdio_register.range.len);
1336 	if (ret)
1337 		goto out;
1338 
1339 	start = uffdio_register.range.start;
1340 	end = start + uffdio_register.range.len;
1341 
1342 	ret = -ENOMEM;
1343 	if (!mmget_not_zero(mm))
1344 		goto out;
1345 
1346 	ret = -EINVAL;
1347 	mmap_write_lock(mm);
1348 	vma_iter_init(&vmi, mm, start);
1349 	vma = vma_find(&vmi, end);
1350 	if (!vma)
1351 		goto out_unlock;
1352 
1353 	/*
1354 	 * If the first vma contains huge pages, make sure start address
1355 	 * is aligned to huge page size.
1356 	 */
1357 	if (is_vm_hugetlb_page(vma)) {
1358 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1359 
1360 		if (start & (vma_hpagesize - 1))
1361 			goto out_unlock;
1362 	}
1363 
1364 	/*
1365 	 * Search for not compatible vmas.
1366 	 */
1367 	found = false;
1368 	basic_ioctls = false;
1369 	cur = vma;
1370 	do {
1371 		cond_resched();
1372 
1373 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1374 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1375 
1376 		/* check not compatible vmas */
1377 		ret = -EINVAL;
1378 		if (!vma_can_userfault(cur, vm_flags))
1379 			goto out_unlock;
1380 
1381 		/*
1382 		 * UFFDIO_COPY will fill file holes even without
1383 		 * PROT_WRITE. This check enforces that if this is a
1384 		 * MAP_SHARED, the process has write permission to the backing
1385 		 * file. If VM_MAYWRITE is set it also enforces that on a
1386 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1388 		 */
1389 		ret = -EPERM;
1390 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1391 			goto out_unlock;
1392 
1393 		/*
1394 		 * If this vma contains ending address, and huge pages
1395 		 * check alignment.
1396 		 */
1397 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1398 		    end > cur->vm_start) {
1399 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1400 
1401 			ret = -EINVAL;
1402 
1403 			if (end & (vma_hpagesize - 1))
1404 				goto out_unlock;
1405 		}
1406 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1407 			goto out_unlock;
1408 
1409 		/*
1410 		 * Check that this vma isn't already owned by a
1411 		 * different userfaultfd. We can't allow more than one
1412 		 * userfaultfd to own a single vma simultaneously or we
1413 		 * wouldn't know which one to deliver the userfaults to.
1414 		 */
1415 		ret = -EBUSY;
1416 		if (cur->vm_userfaultfd_ctx.ctx &&
1417 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1418 			goto out_unlock;
1419 
1420 		/*
1421 		 * Note vmas containing huge pages
1422 		 */
1423 		if (is_vm_hugetlb_page(cur))
1424 			basic_ioctls = true;
1425 
1426 		found = true;
1427 	} for_each_vma_range(vmi, cur, end);
1428 	BUG_ON(!found);
1429 
1430 	vma_iter_set(&vmi, start);
1431 	prev = vma_prev(&vmi);
1432 
1433 	ret = 0;
1434 	for_each_vma_range(vmi, vma, end) {
1435 		cond_resched();
1436 
1437 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1438 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1439 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1440 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1441 
1442 		/*
1443 		 * Nothing to do: this vma is already registered into this
1444 		 * userfaultfd and with the right tracking mode too.
1445 		 */
1446 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1447 		    (vma->vm_flags & vm_flags) == vm_flags)
1448 			goto skip;
1449 
1450 		if (vma->vm_start > start)
1451 			start = vma->vm_start;
1452 		vma_end = min(end, vma->vm_end);
1453 
1454 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1455 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1456 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1457 				 vma_policy(vma),
1458 				 ((struct vm_userfaultfd_ctx){ ctx }),
1459 				 anon_vma_name(vma));
1460 		if (prev) {
1461 			/* vma_merge() invalidated the mas */
1462 			vma = prev;
1463 			goto next;
1464 		}
1465 		if (vma->vm_start < start) {
1466 			ret = split_vma(&vmi, vma, start, 1);
1467 			if (ret)
1468 				break;
1469 		}
1470 		if (vma->vm_end > end) {
1471 			ret = split_vma(&vmi, vma, end, 0);
1472 			if (ret)
1473 				break;
1474 		}
1475 	next:
1476 		/*
1477 		 * In the vma_merge() successful mprotect-like case 8:
1478 		 * the next vma was merged into the current one and
1479 		 * the current one has not been updated yet.
1480 		 */
1481 		userfaultfd_set_vm_flags(vma, new_flags);
1482 		vma->vm_userfaultfd_ctx.ctx = ctx;
1483 
1484 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1485 			hugetlb_unshare_all_pmds(vma);
1486 
1487 	skip:
1488 		prev = vma;
1489 		start = vma->vm_end;
1490 	}
1491 
1492 out_unlock:
1493 	mmap_write_unlock(mm);
1494 	mmput(mm);
1495 	if (!ret) {
1496 		__u64 ioctls_out;
1497 
1498 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1499 		    UFFD_API_RANGE_IOCTLS;
1500 
1501 		/*
1502 		 * Declare the WP ioctl only if the WP mode is
1503 		 * specified and all checks passed with the range
1504 		 */
1505 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1506 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1507 
1508 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1509 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1510 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1511 
1512 		/*
1513 		 * Now that we scanned all vmas we can already tell
1514 		 * userland which ioctls methods are guaranteed to
1515 		 * succeed on this range.
1516 		 */
1517 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1518 			ret = -EFAULT;
1519 	}
1520 out:
1521 	return ret;
1522 }
1523 
1524 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1525 				  unsigned long arg)
1526 {
1527 	struct mm_struct *mm = ctx->mm;
1528 	struct vm_area_struct *vma, *prev, *cur;
1529 	int ret;
1530 	struct uffdio_range uffdio_unregister;
1531 	unsigned long new_flags;
1532 	bool found;
1533 	unsigned long start, end, vma_end;
1534 	const void __user *buf = (void __user *)arg;
1535 	struct vma_iterator vmi;
1536 
1537 	ret = -EFAULT;
1538 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1539 		goto out;
1540 
1541 	ret = validate_range(mm, uffdio_unregister.start,
1542 			     uffdio_unregister.len);
1543 	if (ret)
1544 		goto out;
1545 
1546 	start = uffdio_unregister.start;
1547 	end = start + uffdio_unregister.len;
1548 
1549 	ret = -ENOMEM;
1550 	if (!mmget_not_zero(mm))
1551 		goto out;
1552 
1553 	mmap_write_lock(mm);
1554 	ret = -EINVAL;
1555 	vma_iter_init(&vmi, mm, start);
1556 	vma = vma_find(&vmi, end);
1557 	if (!vma)
1558 		goto out_unlock;
1559 
1560 	/*
1561 	 * If the first vma contains huge pages, make sure start address
1562 	 * is aligned to huge page size.
1563 	 */
1564 	if (is_vm_hugetlb_page(vma)) {
1565 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1566 
1567 		if (start & (vma_hpagesize - 1))
1568 			goto out_unlock;
1569 	}
1570 
1571 	/*
1572 	 * Search for not compatible vmas.
1573 	 */
1574 	found = false;
1575 	cur = vma;
1576 	do {
1577 		cond_resched();
1578 
1579 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1580 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1581 
1582 		/*
1583 		 * Check not compatible vmas, not strictly required
1584 		 * here as not compatible vmas cannot have an
1585 		 * userfaultfd_ctx registered on them, but this
1586 		 * provides for more strict behavior to notice
1587 		 * unregistration errors.
1588 		 */
1589 		if (!vma_can_userfault(cur, cur->vm_flags))
1590 			goto out_unlock;
1591 
1592 		found = true;
1593 	} for_each_vma_range(vmi, cur, end);
1594 	BUG_ON(!found);
1595 
1596 	vma_iter_set(&vmi, start);
1597 	prev = vma_prev(&vmi);
1598 	ret = 0;
1599 	for_each_vma_range(vmi, vma, end) {
1600 		cond_resched();
1601 
1602 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1603 
1604 		/*
1605 		 * Nothing to do: this vma is already registered into this
1606 		 * userfaultfd and with the right tracking mode too.
1607 		 */
1608 		if (!vma->vm_userfaultfd_ctx.ctx)
1609 			goto skip;
1610 
1611 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1612 
1613 		if (vma->vm_start > start)
1614 			start = vma->vm_start;
1615 		vma_end = min(end, vma->vm_end);
1616 
1617 		if (userfaultfd_missing(vma)) {
1618 			/*
1619 			 * Wake any concurrent pending userfault while
1620 			 * we unregister, so they will not hang
1621 			 * permanently and it avoids userland to call
1622 			 * UFFDIO_WAKE explicitly.
1623 			 */
1624 			struct userfaultfd_wake_range range;
1625 			range.start = start;
1626 			range.len = vma_end - start;
1627 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1628 		}
1629 
1630 		/* Reset ptes for the whole vma range if wr-protected */
1631 		if (userfaultfd_wp(vma))
1632 			uffd_wp_range(mm, vma, start, vma_end - start, false);
1633 
1634 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1635 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1636 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1637 				 vma_policy(vma),
1638 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1639 		if (prev) {
1640 			vma = prev;
1641 			goto next;
1642 		}
1643 		if (vma->vm_start < start) {
1644 			ret = split_vma(&vmi, vma, start, 1);
1645 			if (ret)
1646 				break;
1647 		}
1648 		if (vma->vm_end > end) {
1649 			ret = split_vma(&vmi, vma, end, 0);
1650 			if (ret)
1651 				break;
1652 		}
1653 	next:
1654 		/*
1655 		 * In the vma_merge() successful mprotect-like case 8:
1656 		 * the next vma was merged into the current one and
1657 		 * the current one has not been updated yet.
1658 		 */
1659 		userfaultfd_set_vm_flags(vma, new_flags);
1660 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1661 
1662 	skip:
1663 		prev = vma;
1664 		start = vma->vm_end;
1665 	}
1666 
1667 out_unlock:
1668 	mmap_write_unlock(mm);
1669 	mmput(mm);
1670 out:
1671 	return ret;
1672 }
1673 
1674 /*
1675  * userfaultfd_wake may be used in combination with the
1676  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1677  */
1678 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1679 			    unsigned long arg)
1680 {
1681 	int ret;
1682 	struct uffdio_range uffdio_wake;
1683 	struct userfaultfd_wake_range range;
1684 	const void __user *buf = (void __user *)arg;
1685 
1686 	ret = -EFAULT;
1687 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1688 		goto out;
1689 
1690 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1691 	if (ret)
1692 		goto out;
1693 
1694 	range.start = uffdio_wake.start;
1695 	range.len = uffdio_wake.len;
1696 
1697 	/*
1698 	 * len == 0 means wake all and we don't want to wake all here,
1699 	 * so check it again to be sure.
1700 	 */
1701 	VM_BUG_ON(!range.len);
1702 
1703 	wake_userfault(ctx, &range);
1704 	ret = 0;
1705 
1706 out:
1707 	return ret;
1708 }
1709 
1710 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1711 			    unsigned long arg)
1712 {
1713 	__s64 ret;
1714 	struct uffdio_copy uffdio_copy;
1715 	struct uffdio_copy __user *user_uffdio_copy;
1716 	struct userfaultfd_wake_range range;
1717 
1718 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1719 
1720 	ret = -EAGAIN;
1721 	if (atomic_read(&ctx->mmap_changing))
1722 		goto out;
1723 
1724 	ret = -EFAULT;
1725 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1726 			   /* don't copy "copy" last field */
1727 			   sizeof(uffdio_copy)-sizeof(__s64)))
1728 		goto out;
1729 
1730 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1731 	if (ret)
1732 		goto out;
1733 	/*
1734 	 * double check for wraparound just in case. copy_from_user()
1735 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1736 	 * in the userland range.
1737 	 */
1738 	ret = -EINVAL;
1739 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1740 		goto out;
1741 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1742 		goto out;
1743 	if (mmget_not_zero(ctx->mm)) {
1744 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1745 				   uffdio_copy.len, &ctx->mmap_changing,
1746 				   uffdio_copy.mode);
1747 		mmput(ctx->mm);
1748 	} else {
1749 		return -ESRCH;
1750 	}
1751 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1752 		return -EFAULT;
1753 	if (ret < 0)
1754 		goto out;
1755 	BUG_ON(!ret);
1756 	/* len == 0 would wake all */
1757 	range.len = ret;
1758 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1759 		range.start = uffdio_copy.dst;
1760 		wake_userfault(ctx, &range);
1761 	}
1762 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1763 out:
1764 	return ret;
1765 }
1766 
1767 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1768 				unsigned long arg)
1769 {
1770 	__s64 ret;
1771 	struct uffdio_zeropage uffdio_zeropage;
1772 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1773 	struct userfaultfd_wake_range range;
1774 
1775 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1776 
1777 	ret = -EAGAIN;
1778 	if (atomic_read(&ctx->mmap_changing))
1779 		goto out;
1780 
1781 	ret = -EFAULT;
1782 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1783 			   /* don't copy "zeropage" last field */
1784 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1785 		goto out;
1786 
1787 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1788 			     uffdio_zeropage.range.len);
1789 	if (ret)
1790 		goto out;
1791 	ret = -EINVAL;
1792 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1793 		goto out;
1794 
1795 	if (mmget_not_zero(ctx->mm)) {
1796 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1797 				     uffdio_zeropage.range.len,
1798 				     &ctx->mmap_changing);
1799 		mmput(ctx->mm);
1800 	} else {
1801 		return -ESRCH;
1802 	}
1803 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1804 		return -EFAULT;
1805 	if (ret < 0)
1806 		goto out;
1807 	/* len == 0 would wake all */
1808 	BUG_ON(!ret);
1809 	range.len = ret;
1810 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1811 		range.start = uffdio_zeropage.range.start;
1812 		wake_userfault(ctx, &range);
1813 	}
1814 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1815 out:
1816 	return ret;
1817 }
1818 
1819 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1820 				    unsigned long arg)
1821 {
1822 	int ret;
1823 	struct uffdio_writeprotect uffdio_wp;
1824 	struct uffdio_writeprotect __user *user_uffdio_wp;
1825 	struct userfaultfd_wake_range range;
1826 	bool mode_wp, mode_dontwake;
1827 
1828 	if (atomic_read(&ctx->mmap_changing))
1829 		return -EAGAIN;
1830 
1831 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1832 
1833 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1834 			   sizeof(struct uffdio_writeprotect)))
1835 		return -EFAULT;
1836 
1837 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1838 			     uffdio_wp.range.len);
1839 	if (ret)
1840 		return ret;
1841 
1842 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1843 			       UFFDIO_WRITEPROTECT_MODE_WP))
1844 		return -EINVAL;
1845 
1846 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1847 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1848 
1849 	if (mode_wp && mode_dontwake)
1850 		return -EINVAL;
1851 
1852 	if (mmget_not_zero(ctx->mm)) {
1853 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1854 					  uffdio_wp.range.len, mode_wp,
1855 					  &ctx->mmap_changing);
1856 		mmput(ctx->mm);
1857 	} else {
1858 		return -ESRCH;
1859 	}
1860 
1861 	if (ret)
1862 		return ret;
1863 
1864 	if (!mode_wp && !mode_dontwake) {
1865 		range.start = uffdio_wp.range.start;
1866 		range.len = uffdio_wp.range.len;
1867 		wake_userfault(ctx, &range);
1868 	}
1869 	return ret;
1870 }
1871 
1872 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1873 {
1874 	__s64 ret;
1875 	struct uffdio_continue uffdio_continue;
1876 	struct uffdio_continue __user *user_uffdio_continue;
1877 	struct userfaultfd_wake_range range;
1878 
1879 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1880 
1881 	ret = -EAGAIN;
1882 	if (atomic_read(&ctx->mmap_changing))
1883 		goto out;
1884 
1885 	ret = -EFAULT;
1886 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1887 			   /* don't copy the output fields */
1888 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1889 		goto out;
1890 
1891 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1892 			     uffdio_continue.range.len);
1893 	if (ret)
1894 		goto out;
1895 
1896 	ret = -EINVAL;
1897 	/* double check for wraparound just in case. */
1898 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1899 	    uffdio_continue.range.start) {
1900 		goto out;
1901 	}
1902 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1903 		goto out;
1904 
1905 	if (mmget_not_zero(ctx->mm)) {
1906 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1907 				     uffdio_continue.range.len,
1908 				     &ctx->mmap_changing);
1909 		mmput(ctx->mm);
1910 	} else {
1911 		return -ESRCH;
1912 	}
1913 
1914 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1915 		return -EFAULT;
1916 	if (ret < 0)
1917 		goto out;
1918 
1919 	/* len == 0 would wake all */
1920 	BUG_ON(!ret);
1921 	range.len = ret;
1922 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1923 		range.start = uffdio_continue.range.start;
1924 		wake_userfault(ctx, &range);
1925 	}
1926 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1927 
1928 out:
1929 	return ret;
1930 }
1931 
1932 static inline unsigned int uffd_ctx_features(__u64 user_features)
1933 {
1934 	/*
1935 	 * For the current set of features the bits just coincide. Set
1936 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1937 	 */
1938 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1939 }
1940 
1941 /*
1942  * userland asks for a certain API version and we return which bits
1943  * and ioctl commands are implemented in this kernel for such API
1944  * version or -EINVAL if unknown.
1945  */
1946 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1947 			   unsigned long arg)
1948 {
1949 	struct uffdio_api uffdio_api;
1950 	void __user *buf = (void __user *)arg;
1951 	unsigned int ctx_features;
1952 	int ret;
1953 	__u64 features;
1954 
1955 	ret = -EFAULT;
1956 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1957 		goto out;
1958 	/* Ignore unsupported features (userspace built against newer kernel) */
1959 	features = uffdio_api.features & UFFD_API_FEATURES;
1960 	ret = -EPERM;
1961 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1962 		goto err_out;
1963 	/* report all available features and ioctls to userland */
1964 	uffdio_api.features = UFFD_API_FEATURES;
1965 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1966 	uffdio_api.features &=
1967 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1968 #endif
1969 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1970 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1971 #endif
1972 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1973 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1974 #endif
1975 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1976 	ret = -EFAULT;
1977 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1978 		goto out;
1979 
1980 	/* only enable the requested features for this uffd context */
1981 	ctx_features = uffd_ctx_features(features);
1982 	ret = -EINVAL;
1983 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1984 		goto err_out;
1985 
1986 	ret = 0;
1987 out:
1988 	return ret;
1989 err_out:
1990 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1991 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1992 		ret = -EFAULT;
1993 	goto out;
1994 }
1995 
1996 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1997 			      unsigned long arg)
1998 {
1999 	int ret = -EINVAL;
2000 	struct userfaultfd_ctx *ctx = file->private_data;
2001 
2002 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2003 		return -EINVAL;
2004 
2005 	switch(cmd) {
2006 	case UFFDIO_API:
2007 		ret = userfaultfd_api(ctx, arg);
2008 		break;
2009 	case UFFDIO_REGISTER:
2010 		ret = userfaultfd_register(ctx, arg);
2011 		break;
2012 	case UFFDIO_UNREGISTER:
2013 		ret = userfaultfd_unregister(ctx, arg);
2014 		break;
2015 	case UFFDIO_WAKE:
2016 		ret = userfaultfd_wake(ctx, arg);
2017 		break;
2018 	case UFFDIO_COPY:
2019 		ret = userfaultfd_copy(ctx, arg);
2020 		break;
2021 	case UFFDIO_ZEROPAGE:
2022 		ret = userfaultfd_zeropage(ctx, arg);
2023 		break;
2024 	case UFFDIO_WRITEPROTECT:
2025 		ret = userfaultfd_writeprotect(ctx, arg);
2026 		break;
2027 	case UFFDIO_CONTINUE:
2028 		ret = userfaultfd_continue(ctx, arg);
2029 		break;
2030 	}
2031 	return ret;
2032 }
2033 
2034 #ifdef CONFIG_PROC_FS
2035 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2036 {
2037 	struct userfaultfd_ctx *ctx = f->private_data;
2038 	wait_queue_entry_t *wq;
2039 	unsigned long pending = 0, total = 0;
2040 
2041 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2042 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2043 		pending++;
2044 		total++;
2045 	}
2046 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2047 		total++;
2048 	}
2049 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2050 
2051 	/*
2052 	 * If more protocols will be added, there will be all shown
2053 	 * separated by a space. Like this:
2054 	 *	protocols: aa:... bb:...
2055 	 */
2056 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2057 		   pending, total, UFFD_API, ctx->features,
2058 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2059 }
2060 #endif
2061 
2062 static const struct file_operations userfaultfd_fops = {
2063 #ifdef CONFIG_PROC_FS
2064 	.show_fdinfo	= userfaultfd_show_fdinfo,
2065 #endif
2066 	.release	= userfaultfd_release,
2067 	.poll		= userfaultfd_poll,
2068 	.read		= userfaultfd_read,
2069 	.unlocked_ioctl = userfaultfd_ioctl,
2070 	.compat_ioctl	= compat_ptr_ioctl,
2071 	.llseek		= noop_llseek,
2072 };
2073 
2074 static void init_once_userfaultfd_ctx(void *mem)
2075 {
2076 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2077 
2078 	init_waitqueue_head(&ctx->fault_pending_wqh);
2079 	init_waitqueue_head(&ctx->fault_wqh);
2080 	init_waitqueue_head(&ctx->event_wqh);
2081 	init_waitqueue_head(&ctx->fd_wqh);
2082 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2083 }
2084 
2085 static int new_userfaultfd(int flags)
2086 {
2087 	struct userfaultfd_ctx *ctx;
2088 	int fd;
2089 
2090 	BUG_ON(!current->mm);
2091 
2092 	/* Check the UFFD_* constants for consistency.  */
2093 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2094 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2095 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2096 
2097 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2098 		return -EINVAL;
2099 
2100 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2101 	if (!ctx)
2102 		return -ENOMEM;
2103 
2104 	refcount_set(&ctx->refcount, 1);
2105 	ctx->flags = flags;
2106 	ctx->features = 0;
2107 	ctx->released = false;
2108 	atomic_set(&ctx->mmap_changing, 0);
2109 	ctx->mm = current->mm;
2110 	/* prevent the mm struct to be freed */
2111 	mmgrab(ctx->mm);
2112 
2113 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2114 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2115 	if (fd < 0) {
2116 		mmdrop(ctx->mm);
2117 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2118 	}
2119 	return fd;
2120 }
2121 
2122 static inline bool userfaultfd_syscall_allowed(int flags)
2123 {
2124 	/* Userspace-only page faults are always allowed */
2125 	if (flags & UFFD_USER_MODE_ONLY)
2126 		return true;
2127 
2128 	/*
2129 	 * The user is requesting a userfaultfd which can handle kernel faults.
2130 	 * Privileged users are always allowed to do this.
2131 	 */
2132 	if (capable(CAP_SYS_PTRACE))
2133 		return true;
2134 
2135 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2136 	return sysctl_unprivileged_userfaultfd;
2137 }
2138 
2139 SYSCALL_DEFINE1(userfaultfd, int, flags)
2140 {
2141 	if (!userfaultfd_syscall_allowed(flags))
2142 		return -EPERM;
2143 
2144 	return new_userfaultfd(flags);
2145 }
2146 
2147 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2148 {
2149 	if (cmd != USERFAULTFD_IOC_NEW)
2150 		return -EINVAL;
2151 
2152 	return new_userfaultfd(flags);
2153 }
2154 
2155 static const struct file_operations userfaultfd_dev_fops = {
2156 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2157 	.compat_ioctl = userfaultfd_dev_ioctl,
2158 	.owner = THIS_MODULE,
2159 	.llseek = noop_llseek,
2160 };
2161 
2162 static struct miscdevice userfaultfd_misc = {
2163 	.minor = MISC_DYNAMIC_MINOR,
2164 	.name = "userfaultfd",
2165 	.fops = &userfaultfd_dev_fops
2166 };
2167 
2168 static int __init userfaultfd_init(void)
2169 {
2170 	int ret;
2171 
2172 	ret = misc_register(&userfaultfd_misc);
2173 	if (ret)
2174 		return ret;
2175 
2176 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2177 						sizeof(struct userfaultfd_ctx),
2178 						0,
2179 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2180 						init_once_userfaultfd_ctx);
2181 	return 0;
2182 }
2183 __initcall(userfaultfd_init);
2184