xref: /openbmc/linux/fs/userfaultfd.c (revision a08b9f2f2267421092bf4b882a9461858216ed47)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 
31 int sysctl_unprivileged_userfaultfd __read_mostly;
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *	fd_wqh.lock
46  *		fault_pending_wqh.lock
47  *			fault_wqh.lock
48  *		event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55 	/* waitqueue head for the pending (i.e. not read) userfaults */
56 	wait_queue_head_t fault_pending_wqh;
57 	/* waitqueue head for the userfaults */
58 	wait_queue_head_t fault_wqh;
59 	/* waitqueue head for the pseudo fd to wakeup poll/read */
60 	wait_queue_head_t fd_wqh;
61 	/* waitqueue head for events */
62 	wait_queue_head_t event_wqh;
63 	/* a refile sequence protected by fault_pending_wqh lock */
64 	seqcount_spinlock_t refile_seq;
65 	/* pseudo fd refcounting */
66 	refcount_t refcount;
67 	/* userfaultfd syscall flags */
68 	unsigned int flags;
69 	/* features requested from the userspace */
70 	unsigned int features;
71 	/* state machine */
72 	enum userfaultfd_state state;
73 	/* released */
74 	bool released;
75 	/* memory mappings are changing because of non-cooperative event */
76 	bool mmap_changing;
77 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
78 	struct mm_struct *mm;
79 };
80 
81 struct userfaultfd_fork_ctx {
82 	struct userfaultfd_ctx *orig;
83 	struct userfaultfd_ctx *new;
84 	struct list_head list;
85 };
86 
87 struct userfaultfd_unmap_ctx {
88 	struct userfaultfd_ctx *ctx;
89 	unsigned long start;
90 	unsigned long end;
91 	struct list_head list;
92 };
93 
94 struct userfaultfd_wait_queue {
95 	struct uffd_msg msg;
96 	wait_queue_entry_t wq;
97 	struct userfaultfd_ctx *ctx;
98 	bool waken;
99 };
100 
101 struct userfaultfd_wake_range {
102 	unsigned long start;
103 	unsigned long len;
104 };
105 
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 				     int wake_flags, void *key)
108 {
109 	struct userfaultfd_wake_range *range = key;
110 	int ret;
111 	struct userfaultfd_wait_queue *uwq;
112 	unsigned long start, len;
113 
114 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 	ret = 0;
116 	/* len == 0 means wake all */
117 	start = range->start;
118 	len = range->len;
119 	if (len && (start > uwq->msg.arg.pagefault.address ||
120 		    start + len <= uwq->msg.arg.pagefault.address))
121 		goto out;
122 	WRITE_ONCE(uwq->waken, true);
123 	/*
124 	 * The Program-Order guarantees provided by the scheduler
125 	 * ensure uwq->waken is visible before the task is woken.
126 	 */
127 	ret = wake_up_state(wq->private, mode);
128 	if (ret) {
129 		/*
130 		 * Wake only once, autoremove behavior.
131 		 *
132 		 * After the effect of list_del_init is visible to the other
133 		 * CPUs, the waitqueue may disappear from under us, see the
134 		 * !list_empty_careful() in handle_userfault().
135 		 *
136 		 * try_to_wake_up() has an implicit smp_mb(), and the
137 		 * wq->private is read before calling the extern function
138 		 * "wake_up_state" (which in turns calls try_to_wake_up).
139 		 */
140 		list_del_init(&wq->entry);
141 	}
142 out:
143 	return ret;
144 }
145 
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 	refcount_inc(&ctx->refcount);
154 }
155 
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 	if (refcount_dec_and_test(&ctx->refcount)) {
167 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 		mmdrop(ctx->mm);
176 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 	}
178 }
179 
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 	/*
184 	 * Must use memset to zero out the paddings or kernel data is
185 	 * leaked to userland.
186 	 */
187 	memset(msg, 0, sizeof(struct uffd_msg));
188 }
189 
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 					    unsigned int flags,
192 					    unsigned long reason,
193 					    unsigned int features)
194 {
195 	struct uffd_msg msg;
196 	msg_init(&msg);
197 	msg.event = UFFD_EVENT_PAGEFAULT;
198 	msg.arg.pagefault.address = address;
199 	if (flags & FAULT_FLAG_WRITE)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 		 * was a read fault, otherwise if set it means it's
205 		 * a write fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 	if (reason & VM_UFFD_WP)
209 		/*
210 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 		 * a missing fault, otherwise if set it means it's a
214 		 * write protect fault.
215 		 */
216 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 	if (features & UFFD_FEATURE_THREAD_ID)
218 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 	return msg;
220 }
221 
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 					 struct vm_area_struct *vma,
229 					 unsigned long address,
230 					 unsigned long flags,
231 					 unsigned long reason)
232 {
233 	struct mm_struct *mm = ctx->mm;
234 	pte_t *ptep, pte;
235 	bool ret = true;
236 
237 	mmap_assert_locked(mm);
238 
239 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240 
241 	if (!ptep)
242 		goto out;
243 
244 	ret = false;
245 	pte = huge_ptep_get(ptep);
246 
247 	/*
248 	 * Lockless access: we're in a wait_event so it's ok if it
249 	 * changes under us.
250 	 */
251 	if (huge_pte_none(pte))
252 		ret = true;
253 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 		ret = true;
255 out:
256 	return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 					 struct vm_area_struct *vma,
261 					 unsigned long address,
262 					 unsigned long flags,
263 					 unsigned long reason)
264 {
265 	return false;	/* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268 
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 					 unsigned long address,
278 					 unsigned long flags,
279 					 unsigned long reason)
280 {
281 	struct mm_struct *mm = ctx->mm;
282 	pgd_t *pgd;
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd, _pmd;
286 	pte_t *pte;
287 	bool ret = true;
288 
289 	mmap_assert_locked(mm);
290 
291 	pgd = pgd_offset(mm, address);
292 	if (!pgd_present(*pgd))
293 		goto out;
294 	p4d = p4d_offset(pgd, address);
295 	if (!p4d_present(*p4d))
296 		goto out;
297 	pud = pud_offset(p4d, address);
298 	if (!pud_present(*pud))
299 		goto out;
300 	pmd = pmd_offset(pud, address);
301 	/*
302 	 * READ_ONCE must function as a barrier with narrower scope
303 	 * and it must be equivalent to:
304 	 *	_pmd = *pmd; barrier();
305 	 *
306 	 * This is to deal with the instability (as in
307 	 * pmd_trans_unstable) of the pmd.
308 	 */
309 	_pmd = READ_ONCE(*pmd);
310 	if (pmd_none(_pmd))
311 		goto out;
312 
313 	ret = false;
314 	if (!pmd_present(_pmd))
315 		goto out;
316 
317 	if (pmd_trans_huge(_pmd)) {
318 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 			ret = true;
320 		goto out;
321 	}
322 
323 	/*
324 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 	 * and use the standard pte_offset_map() instead of parsing _pmd.
326 	 */
327 	pte = pte_offset_map(pmd, address);
328 	/*
329 	 * Lockless access: we're in a wait_event so it's ok if it
330 	 * changes under us.
331 	 */
332 	if (pte_none(*pte))
333 		ret = true;
334 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 		ret = true;
336 	pte_unmap(pte);
337 
338 out:
339 	return ret;
340 }
341 
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 		return TASK_INTERRUPTIBLE;
346 
347 	if (flags & FAULT_FLAG_KILLABLE)
348 		return TASK_KILLABLE;
349 
350 	return TASK_UNINTERRUPTIBLE;
351 }
352 
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370 	struct mm_struct *mm = vmf->vma->vm_mm;
371 	struct userfaultfd_ctx *ctx;
372 	struct userfaultfd_wait_queue uwq;
373 	vm_fault_t ret = VM_FAULT_SIGBUS;
374 	bool must_wait;
375 	long blocking_state;
376 
377 	/*
378 	 * We don't do userfault handling for the final child pid update.
379 	 *
380 	 * We also don't do userfault handling during
381 	 * coredumping. hugetlbfs has the special
382 	 * follow_hugetlb_page() to skip missing pages in the
383 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 	 * the no_page_table() helper in follow_page_mask(), but the
385 	 * shmem_vm_ops->fault method is invoked even during
386 	 * coredumping without mmap_lock and it ends up here.
387 	 */
388 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 		goto out;
390 
391 	/*
392 	 * Coredumping runs without mmap_lock so we can only check that
393 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
394 	 */
395 	mmap_assert_locked(mm);
396 
397 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398 	if (!ctx)
399 		goto out;
400 
401 	BUG_ON(ctx->mm != mm);
402 
403 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405 
406 	if (ctx->features & UFFD_FEATURE_SIGBUS)
407 		goto out;
408 	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 	    ctx->flags & UFFD_USER_MODE_ONLY) {
410 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 			"sysctl knob to 1 if kernel faults must be handled "
412 			"without obtaining CAP_SYS_PTRACE capability\n");
413 		goto out;
414 	}
415 
416 	/*
417 	 * If it's already released don't get it. This avoids to loop
418 	 * in __get_user_pages if userfaultfd_release waits on the
419 	 * caller of handle_userfault to release the mmap_lock.
420 	 */
421 	if (unlikely(READ_ONCE(ctx->released))) {
422 		/*
423 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 		 * cooperative manager can close the uffd after the
425 		 * last UFFDIO_COPY, without risking to trigger an
426 		 * involuntary SIGBUS if the process was starting the
427 		 * userfaultfd while the userfaultfd was still armed
428 		 * (but after the last UFFDIO_COPY). If the uffd
429 		 * wasn't already closed when the userfault reached
430 		 * this point, that would normally be solved by
431 		 * userfaultfd_must_wait returning 'false'.
432 		 *
433 		 * If we were to return VM_FAULT_SIGBUS here, the non
434 		 * cooperative manager would be instead forced to
435 		 * always call UFFDIO_UNREGISTER before it can safely
436 		 * close the uffd.
437 		 */
438 		ret = VM_FAULT_NOPAGE;
439 		goto out;
440 	}
441 
442 	/*
443 	 * Check that we can return VM_FAULT_RETRY.
444 	 *
445 	 * NOTE: it should become possible to return VM_FAULT_RETRY
446 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 	 * -EBUSY failures, if the userfaultfd is to be extended for
448 	 * VM_UFFD_WP tracking and we intend to arm the userfault
449 	 * without first stopping userland access to the memory. For
450 	 * VM_UFFD_MISSING userfaults this is enough for now.
451 	 */
452 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
453 		/*
454 		 * Validate the invariant that nowait must allow retry
455 		 * to be sure not to return SIGBUS erroneously on
456 		 * nowait invocations.
457 		 */
458 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460 		if (printk_ratelimit()) {
461 			printk(KERN_WARNING
462 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463 			       vmf->flags);
464 			dump_stack();
465 		}
466 #endif
467 		goto out;
468 	}
469 
470 	/*
471 	 * Handle nowait, not much to do other than tell it to retry
472 	 * and wait.
473 	 */
474 	ret = VM_FAULT_RETRY;
475 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
476 		goto out;
477 
478 	/* take the reference before dropping the mmap_lock */
479 	userfaultfd_ctx_get(ctx);
480 
481 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 	uwq.wq.private = current;
483 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484 			ctx->features);
485 	uwq.ctx = ctx;
486 	uwq.waken = false;
487 
488 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
489 
490 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
491 	/*
492 	 * After the __add_wait_queue the uwq is visible to userland
493 	 * through poll/read().
494 	 */
495 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496 	/*
497 	 * The smp_mb() after __set_current_state prevents the reads
498 	 * following the spin_unlock to happen before the list_add in
499 	 * __add_wait_queue.
500 	 */
501 	set_current_state(blocking_state);
502 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
503 
504 	if (!is_vm_hugetlb_page(vmf->vma))
505 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506 						  reason);
507 	else
508 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509 						       vmf->address,
510 						       vmf->flags, reason);
511 	mmap_read_unlock(mm);
512 
513 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
514 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
515 		schedule();
516 	}
517 
518 	__set_current_state(TASK_RUNNING);
519 
520 	/*
521 	 * Here we race with the list_del; list_add in
522 	 * userfaultfd_ctx_read(), however because we don't ever run
523 	 * list_del_init() to refile across the two lists, the prev
524 	 * and next pointers will never point to self. list_add also
525 	 * would never let any of the two pointers to point to
526 	 * self. So list_empty_careful won't risk to see both pointers
527 	 * pointing to self at any time during the list refile. The
528 	 * only case where list_del_init() is called is the full
529 	 * removal in the wake function and there we don't re-list_add
530 	 * and it's fine not to block on the spinlock. The uwq on this
531 	 * kernel stack can be released after the list_del_init.
532 	 */
533 	if (!list_empty_careful(&uwq.wq.entry)) {
534 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
535 		/*
536 		 * No need of list_del_init(), the uwq on the stack
537 		 * will be freed shortly anyway.
538 		 */
539 		list_del(&uwq.wq.entry);
540 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
541 	}
542 
543 	/*
544 	 * ctx may go away after this if the userfault pseudo fd is
545 	 * already released.
546 	 */
547 	userfaultfd_ctx_put(ctx);
548 
549 out:
550 	return ret;
551 }
552 
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 					      struct userfaultfd_wait_queue *ewq)
555 {
556 	struct userfaultfd_ctx *release_new_ctx;
557 
558 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
559 		goto out;
560 
561 	ewq->ctx = ctx;
562 	init_waitqueue_entry(&ewq->wq, current);
563 	release_new_ctx = NULL;
564 
565 	spin_lock_irq(&ctx->event_wqh.lock);
566 	/*
567 	 * After the __add_wait_queue the uwq is visible to userland
568 	 * through poll/read().
569 	 */
570 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
571 	for (;;) {
572 		set_current_state(TASK_KILLABLE);
573 		if (ewq->msg.event == 0)
574 			break;
575 		if (READ_ONCE(ctx->released) ||
576 		    fatal_signal_pending(current)) {
577 			/*
578 			 * &ewq->wq may be queued in fork_event, but
579 			 * __remove_wait_queue ignores the head
580 			 * parameter. It would be a problem if it
581 			 * didn't.
582 			 */
583 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584 			if (ewq->msg.event == UFFD_EVENT_FORK) {
585 				struct userfaultfd_ctx *new;
586 
587 				new = (struct userfaultfd_ctx *)
588 					(unsigned long)
589 					ewq->msg.arg.reserved.reserved1;
590 				release_new_ctx = new;
591 			}
592 			break;
593 		}
594 
595 		spin_unlock_irq(&ctx->event_wqh.lock);
596 
597 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
598 		schedule();
599 
600 		spin_lock_irq(&ctx->event_wqh.lock);
601 	}
602 	__set_current_state(TASK_RUNNING);
603 	spin_unlock_irq(&ctx->event_wqh.lock);
604 
605 	if (release_new_ctx) {
606 		struct vm_area_struct *vma;
607 		struct mm_struct *mm = release_new_ctx->mm;
608 
609 		/* the various vma->vm_userfaultfd_ctx still points to it */
610 		mmap_write_lock(mm);
611 		for (vma = mm->mmap; vma; vma = vma->vm_next)
612 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
615 			}
616 		mmap_write_unlock(mm);
617 
618 		userfaultfd_ctx_put(release_new_ctx);
619 	}
620 
621 	/*
622 	 * ctx may go away after this if the userfault pseudo fd is
623 	 * already released.
624 	 */
625 out:
626 	WRITE_ONCE(ctx->mmap_changing, false);
627 	userfaultfd_ctx_put(ctx);
628 }
629 
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631 				       struct userfaultfd_wait_queue *ewq)
632 {
633 	ewq->msg.event = 0;
634 	wake_up_locked(&ctx->event_wqh);
635 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636 }
637 
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639 {
640 	struct userfaultfd_ctx *ctx = NULL, *octx;
641 	struct userfaultfd_fork_ctx *fctx;
642 
643 	octx = vma->vm_userfaultfd_ctx.ctx;
644 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
647 		return 0;
648 	}
649 
650 	list_for_each_entry(fctx, fcs, list)
651 		if (fctx->orig == octx) {
652 			ctx = fctx->new;
653 			break;
654 		}
655 
656 	if (!ctx) {
657 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658 		if (!fctx)
659 			return -ENOMEM;
660 
661 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662 		if (!ctx) {
663 			kfree(fctx);
664 			return -ENOMEM;
665 		}
666 
667 		refcount_set(&ctx->refcount, 1);
668 		ctx->flags = octx->flags;
669 		ctx->state = UFFD_STATE_RUNNING;
670 		ctx->features = octx->features;
671 		ctx->released = false;
672 		ctx->mmap_changing = false;
673 		ctx->mm = vma->vm_mm;
674 		mmgrab(ctx->mm);
675 
676 		userfaultfd_ctx_get(octx);
677 		WRITE_ONCE(octx->mmap_changing, true);
678 		fctx->orig = octx;
679 		fctx->new = ctx;
680 		list_add_tail(&fctx->list, fcs);
681 	}
682 
683 	vma->vm_userfaultfd_ctx.ctx = ctx;
684 	return 0;
685 }
686 
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688 {
689 	struct userfaultfd_ctx *ctx = fctx->orig;
690 	struct userfaultfd_wait_queue ewq;
691 
692 	msg_init(&ewq.msg);
693 
694 	ewq.msg.event = UFFD_EVENT_FORK;
695 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696 
697 	userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699 
700 void dup_userfaultfd_complete(struct list_head *fcs)
701 {
702 	struct userfaultfd_fork_ctx *fctx, *n;
703 
704 	list_for_each_entry_safe(fctx, n, fcs, list) {
705 		dup_fctx(fctx);
706 		list_del(&fctx->list);
707 		kfree(fctx);
708 	}
709 }
710 
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 			     struct vm_userfaultfd_ctx *vm_ctx)
713 {
714 	struct userfaultfd_ctx *ctx;
715 
716 	ctx = vma->vm_userfaultfd_ctx.ctx;
717 
718 	if (!ctx)
719 		return;
720 
721 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722 		vm_ctx->ctx = ctx;
723 		userfaultfd_ctx_get(ctx);
724 		WRITE_ONCE(ctx->mmap_changing, true);
725 	} else {
726 		/* Drop uffd context if remap feature not enabled */
727 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
729 	}
730 }
731 
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733 				 unsigned long from, unsigned long to,
734 				 unsigned long len)
735 {
736 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737 	struct userfaultfd_wait_queue ewq;
738 
739 	if (!ctx)
740 		return;
741 
742 	if (to & ~PAGE_MASK) {
743 		userfaultfd_ctx_put(ctx);
744 		return;
745 	}
746 
747 	msg_init(&ewq.msg);
748 
749 	ewq.msg.event = UFFD_EVENT_REMAP;
750 	ewq.msg.arg.remap.from = from;
751 	ewq.msg.arg.remap.to = to;
752 	ewq.msg.arg.remap.len = len;
753 
754 	userfaultfd_event_wait_completion(ctx, &ewq);
755 }
756 
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758 			unsigned long start, unsigned long end)
759 {
760 	struct mm_struct *mm = vma->vm_mm;
761 	struct userfaultfd_ctx *ctx;
762 	struct userfaultfd_wait_queue ewq;
763 
764 	ctx = vma->vm_userfaultfd_ctx.ctx;
765 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766 		return true;
767 
768 	userfaultfd_ctx_get(ctx);
769 	WRITE_ONCE(ctx->mmap_changing, true);
770 	mmap_read_unlock(mm);
771 
772 	msg_init(&ewq.msg);
773 
774 	ewq.msg.event = UFFD_EVENT_REMOVE;
775 	ewq.msg.arg.remove.start = start;
776 	ewq.msg.arg.remove.end = end;
777 
778 	userfaultfd_event_wait_completion(ctx, &ewq);
779 
780 	return false;
781 }
782 
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 			  unsigned long start, unsigned long end)
785 {
786 	struct userfaultfd_unmap_ctx *unmap_ctx;
787 
788 	list_for_each_entry(unmap_ctx, unmaps, list)
789 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 		    unmap_ctx->end == end)
791 			return true;
792 
793 	return false;
794 }
795 
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 			   unsigned long start, unsigned long end,
798 			   struct list_head *unmaps)
799 {
800 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 		struct userfaultfd_unmap_ctx *unmap_ctx;
802 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803 
804 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 		    has_unmap_ctx(ctx, unmaps, start, end))
806 			continue;
807 
808 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809 		if (!unmap_ctx)
810 			return -ENOMEM;
811 
812 		userfaultfd_ctx_get(ctx);
813 		WRITE_ONCE(ctx->mmap_changing, true);
814 		unmap_ctx->ctx = ctx;
815 		unmap_ctx->start = start;
816 		unmap_ctx->end = end;
817 		list_add_tail(&unmap_ctx->list, unmaps);
818 	}
819 
820 	return 0;
821 }
822 
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824 {
825 	struct userfaultfd_unmap_ctx *ctx, *n;
826 	struct userfaultfd_wait_queue ewq;
827 
828 	list_for_each_entry_safe(ctx, n, uf, list) {
829 		msg_init(&ewq.msg);
830 
831 		ewq.msg.event = UFFD_EVENT_UNMAP;
832 		ewq.msg.arg.remove.start = ctx->start;
833 		ewq.msg.arg.remove.end = ctx->end;
834 
835 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836 
837 		list_del(&ctx->list);
838 		kfree(ctx);
839 	}
840 }
841 
842 static int userfaultfd_release(struct inode *inode, struct file *file)
843 {
844 	struct userfaultfd_ctx *ctx = file->private_data;
845 	struct mm_struct *mm = ctx->mm;
846 	struct vm_area_struct *vma, *prev;
847 	/* len == 0 means wake all */
848 	struct userfaultfd_wake_range range = { .len = 0, };
849 	unsigned long new_flags;
850 
851 	WRITE_ONCE(ctx->released, true);
852 
853 	if (!mmget_not_zero(mm))
854 		goto wakeup;
855 
856 	/*
857 	 * Flush page faults out of all CPUs. NOTE: all page faults
858 	 * must be retried without returning VM_FAULT_SIGBUS if
859 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860 	 * changes while handle_userfault released the mmap_lock. So
861 	 * it's critical that released is set to true (above), before
862 	 * taking the mmap_lock for writing.
863 	 */
864 	mmap_write_lock(mm);
865 	prev = NULL;
866 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 		cond_resched();
868 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
870 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871 			prev = vma;
872 			continue;
873 		}
874 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
875 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 				 new_flags, vma->anon_vma,
877 				 vma->vm_file, vma->vm_pgoff,
878 				 vma_policy(vma),
879 				 NULL_VM_UFFD_CTX);
880 		if (prev)
881 			vma = prev;
882 		else
883 			prev = vma;
884 		vma->vm_flags = new_flags;
885 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886 	}
887 	mmap_write_unlock(mm);
888 	mmput(mm);
889 wakeup:
890 	/*
891 	 * After no new page faults can wait on this fault_*wqh, flush
892 	 * the last page faults that may have been already waiting on
893 	 * the fault_*wqh.
894 	 */
895 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
896 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899 
900 	/* Flush pending events that may still wait on event_wqh */
901 	wake_up_all(&ctx->event_wqh);
902 
903 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904 	userfaultfd_ctx_put(ctx);
905 	return 0;
906 }
907 
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910 		wait_queue_head_t *wqh)
911 {
912 	wait_queue_entry_t *wq;
913 	struct userfaultfd_wait_queue *uwq;
914 
915 	lockdep_assert_held(&wqh->lock);
916 
917 	uwq = NULL;
918 	if (!waitqueue_active(wqh))
919 		goto out;
920 	/* walk in reverse to provide FIFO behavior to read userfaults */
921 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923 out:
924 	return uwq;
925 }
926 
927 static inline struct userfaultfd_wait_queue *find_userfault(
928 		struct userfaultfd_ctx *ctx)
929 {
930 	return find_userfault_in(&ctx->fault_pending_wqh);
931 }
932 
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 		struct userfaultfd_ctx *ctx)
935 {
936 	return find_userfault_in(&ctx->event_wqh);
937 }
938 
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940 {
941 	struct userfaultfd_ctx *ctx = file->private_data;
942 	__poll_t ret;
943 
944 	poll_wait(file, &ctx->fd_wqh, wait);
945 
946 	switch (ctx->state) {
947 	case UFFD_STATE_WAIT_API:
948 		return EPOLLERR;
949 	case UFFD_STATE_RUNNING:
950 		/*
951 		 * poll() never guarantees that read won't block.
952 		 * userfaults can be waken before they're read().
953 		 */
954 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
955 			return EPOLLERR;
956 		/*
957 		 * lockless access to see if there are pending faults
958 		 * __pollwait last action is the add_wait_queue but
959 		 * the spin_unlock would allow the waitqueue_active to
960 		 * pass above the actual list_add inside
961 		 * add_wait_queue critical section. So use a full
962 		 * memory barrier to serialize the list_add write of
963 		 * add_wait_queue() with the waitqueue_active read
964 		 * below.
965 		 */
966 		ret = 0;
967 		smp_mb();
968 		if (waitqueue_active(&ctx->fault_pending_wqh))
969 			ret = EPOLLIN;
970 		else if (waitqueue_active(&ctx->event_wqh))
971 			ret = EPOLLIN;
972 
973 		return ret;
974 	default:
975 		WARN_ON_ONCE(1);
976 		return EPOLLERR;
977 	}
978 }
979 
980 static const struct file_operations userfaultfd_fops;
981 
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 				  struct inode *inode,
984 				  struct uffd_msg *msg)
985 {
986 	int fd;
987 
988 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990 	if (fd < 0)
991 		return fd;
992 
993 	msg->arg.reserved.reserved1 = 0;
994 	msg->arg.fork.ufd = fd;
995 	return 0;
996 }
997 
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 				    struct uffd_msg *msg, struct inode *inode)
1000 {
1001 	ssize_t ret;
1002 	DECLARE_WAITQUEUE(wait, current);
1003 	struct userfaultfd_wait_queue *uwq;
1004 	/*
1005 	 * Handling fork event requires sleeping operations, so
1006 	 * we drop the event_wqh lock, then do these ops, then
1007 	 * lock it back and wake up the waiter. While the lock is
1008 	 * dropped the ewq may go away so we keep track of it
1009 	 * carefully.
1010 	 */
1011 	LIST_HEAD(fork_event);
1012 	struct userfaultfd_ctx *fork_nctx = NULL;
1013 
1014 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 	spin_lock_irq(&ctx->fd_wqh.lock);
1016 	__add_wait_queue(&ctx->fd_wqh, &wait);
1017 	for (;;) {
1018 		set_current_state(TASK_INTERRUPTIBLE);
1019 		spin_lock(&ctx->fault_pending_wqh.lock);
1020 		uwq = find_userfault(ctx);
1021 		if (uwq) {
1022 			/*
1023 			 * Use a seqcount to repeat the lockless check
1024 			 * in wake_userfault() to avoid missing
1025 			 * wakeups because during the refile both
1026 			 * waitqueue could become empty if this is the
1027 			 * only userfault.
1028 			 */
1029 			write_seqcount_begin(&ctx->refile_seq);
1030 
1031 			/*
1032 			 * The fault_pending_wqh.lock prevents the uwq
1033 			 * to disappear from under us.
1034 			 *
1035 			 * Refile this userfault from
1036 			 * fault_pending_wqh to fault_wqh, it's not
1037 			 * pending anymore after we read it.
1038 			 *
1039 			 * Use list_del() by hand (as
1040 			 * userfaultfd_wake_function also uses
1041 			 * list_del_init() by hand) to be sure nobody
1042 			 * changes __remove_wait_queue() to use
1043 			 * list_del_init() in turn breaking the
1044 			 * !list_empty_careful() check in
1045 			 * handle_userfault(). The uwq->wq.head list
1046 			 * must never be empty at any time during the
1047 			 * refile, or the waitqueue could disappear
1048 			 * from under us. The "wait_queue_head_t"
1049 			 * parameter of __remove_wait_queue() is unused
1050 			 * anyway.
1051 			 */
1052 			list_del(&uwq->wq.entry);
1053 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054 
1055 			write_seqcount_end(&ctx->refile_seq);
1056 
1057 			/* careful to always initialize msg if ret == 0 */
1058 			*msg = uwq->msg;
1059 			spin_unlock(&ctx->fault_pending_wqh.lock);
1060 			ret = 0;
1061 			break;
1062 		}
1063 		spin_unlock(&ctx->fault_pending_wqh.lock);
1064 
1065 		spin_lock(&ctx->event_wqh.lock);
1066 		uwq = find_userfault_evt(ctx);
1067 		if (uwq) {
1068 			*msg = uwq->msg;
1069 
1070 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 				fork_nctx = (struct userfaultfd_ctx *)
1072 					(unsigned long)
1073 					uwq->msg.arg.reserved.reserved1;
1074 				list_move(&uwq->wq.entry, &fork_event);
1075 				/*
1076 				 * fork_nctx can be freed as soon as
1077 				 * we drop the lock, unless we take a
1078 				 * reference on it.
1079 				 */
1080 				userfaultfd_ctx_get(fork_nctx);
1081 				spin_unlock(&ctx->event_wqh.lock);
1082 				ret = 0;
1083 				break;
1084 			}
1085 
1086 			userfaultfd_event_complete(ctx, uwq);
1087 			spin_unlock(&ctx->event_wqh.lock);
1088 			ret = 0;
1089 			break;
1090 		}
1091 		spin_unlock(&ctx->event_wqh.lock);
1092 
1093 		if (signal_pending(current)) {
1094 			ret = -ERESTARTSYS;
1095 			break;
1096 		}
1097 		if (no_wait) {
1098 			ret = -EAGAIN;
1099 			break;
1100 		}
1101 		spin_unlock_irq(&ctx->fd_wqh.lock);
1102 		schedule();
1103 		spin_lock_irq(&ctx->fd_wqh.lock);
1104 	}
1105 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1106 	__set_current_state(TASK_RUNNING);
1107 	spin_unlock_irq(&ctx->fd_wqh.lock);
1108 
1109 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 		spin_lock_irq(&ctx->event_wqh.lock);
1112 		if (!list_empty(&fork_event)) {
1113 			/*
1114 			 * The fork thread didn't abort, so we can
1115 			 * drop the temporary refcount.
1116 			 */
1117 			userfaultfd_ctx_put(fork_nctx);
1118 
1119 			uwq = list_first_entry(&fork_event,
1120 					       typeof(*uwq),
1121 					       wq.entry);
1122 			/*
1123 			 * If fork_event list wasn't empty and in turn
1124 			 * the event wasn't already released by fork
1125 			 * (the event is allocated on fork kernel
1126 			 * stack), put the event back to its place in
1127 			 * the event_wq. fork_event head will be freed
1128 			 * as soon as we return so the event cannot
1129 			 * stay queued there no matter the current
1130 			 * "ret" value.
1131 			 */
1132 			list_del(&uwq->wq.entry);
1133 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134 
1135 			/*
1136 			 * Leave the event in the waitqueue and report
1137 			 * error to userland if we failed to resolve
1138 			 * the userfault fork.
1139 			 */
1140 			if (likely(!ret))
1141 				userfaultfd_event_complete(ctx, uwq);
1142 		} else {
1143 			/*
1144 			 * Here the fork thread aborted and the
1145 			 * refcount from the fork thread on fork_nctx
1146 			 * has already been released. We still hold
1147 			 * the reference we took before releasing the
1148 			 * lock above. If resolve_userfault_fork
1149 			 * failed we've to drop it because the
1150 			 * fork_nctx has to be freed in such case. If
1151 			 * it succeeded we'll hold it because the new
1152 			 * uffd references it.
1153 			 */
1154 			if (ret)
1155 				userfaultfd_ctx_put(fork_nctx);
1156 		}
1157 		spin_unlock_irq(&ctx->event_wqh.lock);
1158 	}
1159 
1160 	return ret;
1161 }
1162 
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 				size_t count, loff_t *ppos)
1165 {
1166 	struct userfaultfd_ctx *ctx = file->private_data;
1167 	ssize_t _ret, ret = 0;
1168 	struct uffd_msg msg;
1169 	int no_wait = file->f_flags & O_NONBLOCK;
1170 	struct inode *inode = file_inode(file);
1171 
1172 	if (ctx->state == UFFD_STATE_WAIT_API)
1173 		return -EINVAL;
1174 
1175 	for (;;) {
1176 		if (count < sizeof(msg))
1177 			return ret ? ret : -EINVAL;
1178 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179 		if (_ret < 0)
1180 			return ret ? ret : _ret;
1181 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 			return ret ? ret : -EFAULT;
1183 		ret += sizeof(msg);
1184 		buf += sizeof(msg);
1185 		count -= sizeof(msg);
1186 		/*
1187 		 * Allow to read more than one fault at time but only
1188 		 * block if waiting for the very first one.
1189 		 */
1190 		no_wait = O_NONBLOCK;
1191 	}
1192 }
1193 
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 			     struct userfaultfd_wake_range *range)
1196 {
1197 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 	/* wake all in the range and autoremove */
1199 	if (waitqueue_active(&ctx->fault_pending_wqh))
1200 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201 				     range);
1202 	if (waitqueue_active(&ctx->fault_wqh))
1203 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206 
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 					   struct userfaultfd_wake_range *range)
1209 {
1210 	unsigned seq;
1211 	bool need_wakeup;
1212 
1213 	/*
1214 	 * To be sure waitqueue_active() is not reordered by the CPU
1215 	 * before the pagetable update, use an explicit SMP memory
1216 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 	 * have release semantics that can allow the
1218 	 * waitqueue_active() to be reordered before the pte update.
1219 	 */
1220 	smp_mb();
1221 
1222 	/*
1223 	 * Use waitqueue_active because it's very frequent to
1224 	 * change the address space atomically even if there are no
1225 	 * userfaults yet. So we take the spinlock only when we're
1226 	 * sure we've userfaults to wake.
1227 	 */
1228 	do {
1229 		seq = read_seqcount_begin(&ctx->refile_seq);
1230 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 			waitqueue_active(&ctx->fault_wqh);
1232 		cond_resched();
1233 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 	if (need_wakeup)
1235 		__wake_userfault(ctx, range);
1236 }
1237 
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 					  __u64 *start, __u64 len)
1240 {
1241 	__u64 task_size = mm->task_size;
1242 
1243 	*start = untagged_addr(*start);
1244 
1245 	if (*start & ~PAGE_MASK)
1246 		return -EINVAL;
1247 	if (len & ~PAGE_MASK)
1248 		return -EINVAL;
1249 	if (!len)
1250 		return -EINVAL;
1251 	if (*start < mmap_min_addr)
1252 		return -EINVAL;
1253 	if (*start >= task_size)
1254 		return -EINVAL;
1255 	if (len > task_size - *start)
1256 		return -EINVAL;
1257 	return 0;
1258 }
1259 
1260 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1261 				     unsigned long vm_flags)
1262 {
1263 	/* FIXME: add WP support to hugetlbfs and shmem */
1264 	return vma_is_anonymous(vma) ||
1265 		((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1266 		 !(vm_flags & VM_UFFD_WP));
1267 }
1268 
1269 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1270 				unsigned long arg)
1271 {
1272 	struct mm_struct *mm = ctx->mm;
1273 	struct vm_area_struct *vma, *prev, *cur;
1274 	int ret;
1275 	struct uffdio_register uffdio_register;
1276 	struct uffdio_register __user *user_uffdio_register;
1277 	unsigned long vm_flags, new_flags;
1278 	bool found;
1279 	bool basic_ioctls;
1280 	unsigned long start, end, vma_end;
1281 
1282 	user_uffdio_register = (struct uffdio_register __user *) arg;
1283 
1284 	ret = -EFAULT;
1285 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1286 			   sizeof(uffdio_register)-sizeof(__u64)))
1287 		goto out;
1288 
1289 	ret = -EINVAL;
1290 	if (!uffdio_register.mode)
1291 		goto out;
1292 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1293 				     UFFDIO_REGISTER_MODE_WP))
1294 		goto out;
1295 	vm_flags = 0;
1296 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1297 		vm_flags |= VM_UFFD_MISSING;
1298 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1299 		vm_flags |= VM_UFFD_WP;
1300 
1301 	ret = validate_range(mm, &uffdio_register.range.start,
1302 			     uffdio_register.range.len);
1303 	if (ret)
1304 		goto out;
1305 
1306 	start = uffdio_register.range.start;
1307 	end = start + uffdio_register.range.len;
1308 
1309 	ret = -ENOMEM;
1310 	if (!mmget_not_zero(mm))
1311 		goto out;
1312 
1313 	mmap_write_lock(mm);
1314 	vma = find_vma_prev(mm, start, &prev);
1315 	if (!vma)
1316 		goto out_unlock;
1317 
1318 	/* check that there's at least one vma in the range */
1319 	ret = -EINVAL;
1320 	if (vma->vm_start >= end)
1321 		goto out_unlock;
1322 
1323 	/*
1324 	 * If the first vma contains huge pages, make sure start address
1325 	 * is aligned to huge page size.
1326 	 */
1327 	if (is_vm_hugetlb_page(vma)) {
1328 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329 
1330 		if (start & (vma_hpagesize - 1))
1331 			goto out_unlock;
1332 	}
1333 
1334 	/*
1335 	 * Search for not compatible vmas.
1336 	 */
1337 	found = false;
1338 	basic_ioctls = false;
1339 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1340 		cond_resched();
1341 
1342 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1343 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1344 
1345 		/* check not compatible vmas */
1346 		ret = -EINVAL;
1347 		if (!vma_can_userfault(cur, vm_flags))
1348 			goto out_unlock;
1349 
1350 		/*
1351 		 * UFFDIO_COPY will fill file holes even without
1352 		 * PROT_WRITE. This check enforces that if this is a
1353 		 * MAP_SHARED, the process has write permission to the backing
1354 		 * file. If VM_MAYWRITE is set it also enforces that on a
1355 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1356 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1357 		 */
1358 		ret = -EPERM;
1359 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1360 			goto out_unlock;
1361 
1362 		/*
1363 		 * If this vma contains ending address, and huge pages
1364 		 * check alignment.
1365 		 */
1366 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 		    end > cur->vm_start) {
1368 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369 
1370 			ret = -EINVAL;
1371 
1372 			if (end & (vma_hpagesize - 1))
1373 				goto out_unlock;
1374 		}
1375 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1376 			goto out_unlock;
1377 
1378 		/*
1379 		 * Check that this vma isn't already owned by a
1380 		 * different userfaultfd. We can't allow more than one
1381 		 * userfaultfd to own a single vma simultaneously or we
1382 		 * wouldn't know which one to deliver the userfaults to.
1383 		 */
1384 		ret = -EBUSY;
1385 		if (cur->vm_userfaultfd_ctx.ctx &&
1386 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1387 			goto out_unlock;
1388 
1389 		/*
1390 		 * Note vmas containing huge pages
1391 		 */
1392 		if (is_vm_hugetlb_page(cur))
1393 			basic_ioctls = true;
1394 
1395 		found = true;
1396 	}
1397 	BUG_ON(!found);
1398 
1399 	if (vma->vm_start < start)
1400 		prev = vma;
1401 
1402 	ret = 0;
1403 	do {
1404 		cond_resched();
1405 
1406 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1407 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1409 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1410 
1411 		/*
1412 		 * Nothing to do: this vma is already registered into this
1413 		 * userfaultfd and with the right tracking mode too.
1414 		 */
1415 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1416 		    (vma->vm_flags & vm_flags) == vm_flags)
1417 			goto skip;
1418 
1419 		if (vma->vm_start > start)
1420 			start = vma->vm_start;
1421 		vma_end = min(end, vma->vm_end);
1422 
1423 		new_flags = (vma->vm_flags &
1424 			     ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1425 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427 				 vma_policy(vma),
1428 				 ((struct vm_userfaultfd_ctx){ ctx }));
1429 		if (prev) {
1430 			vma = prev;
1431 			goto next;
1432 		}
1433 		if (vma->vm_start < start) {
1434 			ret = split_vma(mm, vma, start, 1);
1435 			if (ret)
1436 				break;
1437 		}
1438 		if (vma->vm_end > end) {
1439 			ret = split_vma(mm, vma, end, 0);
1440 			if (ret)
1441 				break;
1442 		}
1443 	next:
1444 		/*
1445 		 * In the vma_merge() successful mprotect-like case 8:
1446 		 * the next vma was merged into the current one and
1447 		 * the current one has not been updated yet.
1448 		 */
1449 		vma->vm_flags = new_flags;
1450 		vma->vm_userfaultfd_ctx.ctx = ctx;
1451 
1452 	skip:
1453 		prev = vma;
1454 		start = vma->vm_end;
1455 		vma = vma->vm_next;
1456 	} while (vma && vma->vm_start < end);
1457 out_unlock:
1458 	mmap_write_unlock(mm);
1459 	mmput(mm);
1460 	if (!ret) {
1461 		__u64 ioctls_out;
1462 
1463 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464 		    UFFD_API_RANGE_IOCTLS;
1465 
1466 		/*
1467 		 * Declare the WP ioctl only if the WP mode is
1468 		 * specified and all checks passed with the range
1469 		 */
1470 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1471 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1472 
1473 		/*
1474 		 * Now that we scanned all vmas we can already tell
1475 		 * userland which ioctls methods are guaranteed to
1476 		 * succeed on this range.
1477 		 */
1478 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1479 			ret = -EFAULT;
1480 	}
1481 out:
1482 	return ret;
1483 }
1484 
1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1486 				  unsigned long arg)
1487 {
1488 	struct mm_struct *mm = ctx->mm;
1489 	struct vm_area_struct *vma, *prev, *cur;
1490 	int ret;
1491 	struct uffdio_range uffdio_unregister;
1492 	unsigned long new_flags;
1493 	bool found;
1494 	unsigned long start, end, vma_end;
1495 	const void __user *buf = (void __user *)arg;
1496 
1497 	ret = -EFAULT;
1498 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1499 		goto out;
1500 
1501 	ret = validate_range(mm, &uffdio_unregister.start,
1502 			     uffdio_unregister.len);
1503 	if (ret)
1504 		goto out;
1505 
1506 	start = uffdio_unregister.start;
1507 	end = start + uffdio_unregister.len;
1508 
1509 	ret = -ENOMEM;
1510 	if (!mmget_not_zero(mm))
1511 		goto out;
1512 
1513 	mmap_write_lock(mm);
1514 	vma = find_vma_prev(mm, start, &prev);
1515 	if (!vma)
1516 		goto out_unlock;
1517 
1518 	/* check that there's at least one vma in the range */
1519 	ret = -EINVAL;
1520 	if (vma->vm_start >= end)
1521 		goto out_unlock;
1522 
1523 	/*
1524 	 * If the first vma contains huge pages, make sure start address
1525 	 * is aligned to huge page size.
1526 	 */
1527 	if (is_vm_hugetlb_page(vma)) {
1528 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1529 
1530 		if (start & (vma_hpagesize - 1))
1531 			goto out_unlock;
1532 	}
1533 
1534 	/*
1535 	 * Search for not compatible vmas.
1536 	 */
1537 	found = false;
1538 	ret = -EINVAL;
1539 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1540 		cond_resched();
1541 
1542 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1543 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1544 
1545 		/*
1546 		 * Check not compatible vmas, not strictly required
1547 		 * here as not compatible vmas cannot have an
1548 		 * userfaultfd_ctx registered on them, but this
1549 		 * provides for more strict behavior to notice
1550 		 * unregistration errors.
1551 		 */
1552 		if (!vma_can_userfault(cur, cur->vm_flags))
1553 			goto out_unlock;
1554 
1555 		found = true;
1556 	}
1557 	BUG_ON(!found);
1558 
1559 	if (vma->vm_start < start)
1560 		prev = vma;
1561 
1562 	ret = 0;
1563 	do {
1564 		cond_resched();
1565 
1566 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1567 
1568 		/*
1569 		 * Nothing to do: this vma is already registered into this
1570 		 * userfaultfd and with the right tracking mode too.
1571 		 */
1572 		if (!vma->vm_userfaultfd_ctx.ctx)
1573 			goto skip;
1574 
1575 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1576 
1577 		if (vma->vm_start > start)
1578 			start = vma->vm_start;
1579 		vma_end = min(end, vma->vm_end);
1580 
1581 		if (userfaultfd_missing(vma)) {
1582 			/*
1583 			 * Wake any concurrent pending userfault while
1584 			 * we unregister, so they will not hang
1585 			 * permanently and it avoids userland to call
1586 			 * UFFDIO_WAKE explicitly.
1587 			 */
1588 			struct userfaultfd_wake_range range;
1589 			range.start = start;
1590 			range.len = vma_end - start;
1591 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1592 		}
1593 
1594 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1595 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1596 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1597 				 vma_policy(vma),
1598 				 NULL_VM_UFFD_CTX);
1599 		if (prev) {
1600 			vma = prev;
1601 			goto next;
1602 		}
1603 		if (vma->vm_start < start) {
1604 			ret = split_vma(mm, vma, start, 1);
1605 			if (ret)
1606 				break;
1607 		}
1608 		if (vma->vm_end > end) {
1609 			ret = split_vma(mm, vma, end, 0);
1610 			if (ret)
1611 				break;
1612 		}
1613 	next:
1614 		/*
1615 		 * In the vma_merge() successful mprotect-like case 8:
1616 		 * the next vma was merged into the current one and
1617 		 * the current one has not been updated yet.
1618 		 */
1619 		vma->vm_flags = new_flags;
1620 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1621 
1622 	skip:
1623 		prev = vma;
1624 		start = vma->vm_end;
1625 		vma = vma->vm_next;
1626 	} while (vma && vma->vm_start < end);
1627 out_unlock:
1628 	mmap_write_unlock(mm);
1629 	mmput(mm);
1630 out:
1631 	return ret;
1632 }
1633 
1634 /*
1635  * userfaultfd_wake may be used in combination with the
1636  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1637  */
1638 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1639 			    unsigned long arg)
1640 {
1641 	int ret;
1642 	struct uffdio_range uffdio_wake;
1643 	struct userfaultfd_wake_range range;
1644 	const void __user *buf = (void __user *)arg;
1645 
1646 	ret = -EFAULT;
1647 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1648 		goto out;
1649 
1650 	ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1651 	if (ret)
1652 		goto out;
1653 
1654 	range.start = uffdio_wake.start;
1655 	range.len = uffdio_wake.len;
1656 
1657 	/*
1658 	 * len == 0 means wake all and we don't want to wake all here,
1659 	 * so check it again to be sure.
1660 	 */
1661 	VM_BUG_ON(!range.len);
1662 
1663 	wake_userfault(ctx, &range);
1664 	ret = 0;
1665 
1666 out:
1667 	return ret;
1668 }
1669 
1670 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1671 			    unsigned long arg)
1672 {
1673 	__s64 ret;
1674 	struct uffdio_copy uffdio_copy;
1675 	struct uffdio_copy __user *user_uffdio_copy;
1676 	struct userfaultfd_wake_range range;
1677 
1678 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1679 
1680 	ret = -EAGAIN;
1681 	if (READ_ONCE(ctx->mmap_changing))
1682 		goto out;
1683 
1684 	ret = -EFAULT;
1685 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1686 			   /* don't copy "copy" last field */
1687 			   sizeof(uffdio_copy)-sizeof(__s64)))
1688 		goto out;
1689 
1690 	ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1691 	if (ret)
1692 		goto out;
1693 	/*
1694 	 * double check for wraparound just in case. copy_from_user()
1695 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1696 	 * in the userland range.
1697 	 */
1698 	ret = -EINVAL;
1699 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1700 		goto out;
1701 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1702 		goto out;
1703 	if (mmget_not_zero(ctx->mm)) {
1704 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1705 				   uffdio_copy.len, &ctx->mmap_changing,
1706 				   uffdio_copy.mode);
1707 		mmput(ctx->mm);
1708 	} else {
1709 		return -ESRCH;
1710 	}
1711 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1712 		return -EFAULT;
1713 	if (ret < 0)
1714 		goto out;
1715 	BUG_ON(!ret);
1716 	/* len == 0 would wake all */
1717 	range.len = ret;
1718 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1719 		range.start = uffdio_copy.dst;
1720 		wake_userfault(ctx, &range);
1721 	}
1722 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1723 out:
1724 	return ret;
1725 }
1726 
1727 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1728 				unsigned long arg)
1729 {
1730 	__s64 ret;
1731 	struct uffdio_zeropage uffdio_zeropage;
1732 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1733 	struct userfaultfd_wake_range range;
1734 
1735 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1736 
1737 	ret = -EAGAIN;
1738 	if (READ_ONCE(ctx->mmap_changing))
1739 		goto out;
1740 
1741 	ret = -EFAULT;
1742 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1743 			   /* don't copy "zeropage" last field */
1744 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1745 		goto out;
1746 
1747 	ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1748 			     uffdio_zeropage.range.len);
1749 	if (ret)
1750 		goto out;
1751 	ret = -EINVAL;
1752 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1753 		goto out;
1754 
1755 	if (mmget_not_zero(ctx->mm)) {
1756 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1757 				     uffdio_zeropage.range.len,
1758 				     &ctx->mmap_changing);
1759 		mmput(ctx->mm);
1760 	} else {
1761 		return -ESRCH;
1762 	}
1763 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1764 		return -EFAULT;
1765 	if (ret < 0)
1766 		goto out;
1767 	/* len == 0 would wake all */
1768 	BUG_ON(!ret);
1769 	range.len = ret;
1770 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1771 		range.start = uffdio_zeropage.range.start;
1772 		wake_userfault(ctx, &range);
1773 	}
1774 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1775 out:
1776 	return ret;
1777 }
1778 
1779 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1780 				    unsigned long arg)
1781 {
1782 	int ret;
1783 	struct uffdio_writeprotect uffdio_wp;
1784 	struct uffdio_writeprotect __user *user_uffdio_wp;
1785 	struct userfaultfd_wake_range range;
1786 	bool mode_wp, mode_dontwake;
1787 
1788 	if (READ_ONCE(ctx->mmap_changing))
1789 		return -EAGAIN;
1790 
1791 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1792 
1793 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1794 			   sizeof(struct uffdio_writeprotect)))
1795 		return -EFAULT;
1796 
1797 	ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1798 			     uffdio_wp.range.len);
1799 	if (ret)
1800 		return ret;
1801 
1802 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1803 			       UFFDIO_WRITEPROTECT_MODE_WP))
1804 		return -EINVAL;
1805 
1806 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1807 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1808 
1809 	if (mode_wp && mode_dontwake)
1810 		return -EINVAL;
1811 
1812 	ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1813 				  uffdio_wp.range.len, mode_wp,
1814 				  &ctx->mmap_changing);
1815 	if (ret)
1816 		return ret;
1817 
1818 	if (!mode_wp && !mode_dontwake) {
1819 		range.start = uffdio_wp.range.start;
1820 		range.len = uffdio_wp.range.len;
1821 		wake_userfault(ctx, &range);
1822 	}
1823 	return ret;
1824 }
1825 
1826 static inline unsigned int uffd_ctx_features(__u64 user_features)
1827 {
1828 	/*
1829 	 * For the current set of features the bits just coincide
1830 	 */
1831 	return (unsigned int)user_features;
1832 }
1833 
1834 /*
1835  * userland asks for a certain API version and we return which bits
1836  * and ioctl commands are implemented in this kernel for such API
1837  * version or -EINVAL if unknown.
1838  */
1839 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1840 			   unsigned long arg)
1841 {
1842 	struct uffdio_api uffdio_api;
1843 	void __user *buf = (void __user *)arg;
1844 	int ret;
1845 	__u64 features;
1846 
1847 	ret = -EINVAL;
1848 	if (ctx->state != UFFD_STATE_WAIT_API)
1849 		goto out;
1850 	ret = -EFAULT;
1851 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1852 		goto out;
1853 	features = uffdio_api.features;
1854 	ret = -EINVAL;
1855 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1856 		goto err_out;
1857 	ret = -EPERM;
1858 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1859 		goto err_out;
1860 	/* report all available features and ioctls to userland */
1861 	uffdio_api.features = UFFD_API_FEATURES;
1862 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1863 	ret = -EFAULT;
1864 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1865 		goto out;
1866 	ctx->state = UFFD_STATE_RUNNING;
1867 	/* only enable the requested features for this uffd context */
1868 	ctx->features = uffd_ctx_features(features);
1869 	ret = 0;
1870 out:
1871 	return ret;
1872 err_out:
1873 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1874 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1875 		ret = -EFAULT;
1876 	goto out;
1877 }
1878 
1879 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1880 			      unsigned long arg)
1881 {
1882 	int ret = -EINVAL;
1883 	struct userfaultfd_ctx *ctx = file->private_data;
1884 
1885 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1886 		return -EINVAL;
1887 
1888 	switch(cmd) {
1889 	case UFFDIO_API:
1890 		ret = userfaultfd_api(ctx, arg);
1891 		break;
1892 	case UFFDIO_REGISTER:
1893 		ret = userfaultfd_register(ctx, arg);
1894 		break;
1895 	case UFFDIO_UNREGISTER:
1896 		ret = userfaultfd_unregister(ctx, arg);
1897 		break;
1898 	case UFFDIO_WAKE:
1899 		ret = userfaultfd_wake(ctx, arg);
1900 		break;
1901 	case UFFDIO_COPY:
1902 		ret = userfaultfd_copy(ctx, arg);
1903 		break;
1904 	case UFFDIO_ZEROPAGE:
1905 		ret = userfaultfd_zeropage(ctx, arg);
1906 		break;
1907 	case UFFDIO_WRITEPROTECT:
1908 		ret = userfaultfd_writeprotect(ctx, arg);
1909 		break;
1910 	}
1911 	return ret;
1912 }
1913 
1914 #ifdef CONFIG_PROC_FS
1915 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1916 {
1917 	struct userfaultfd_ctx *ctx = f->private_data;
1918 	wait_queue_entry_t *wq;
1919 	unsigned long pending = 0, total = 0;
1920 
1921 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1922 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1923 		pending++;
1924 		total++;
1925 	}
1926 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1927 		total++;
1928 	}
1929 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1930 
1931 	/*
1932 	 * If more protocols will be added, there will be all shown
1933 	 * separated by a space. Like this:
1934 	 *	protocols: aa:... bb:...
1935 	 */
1936 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1937 		   pending, total, UFFD_API, ctx->features,
1938 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1939 }
1940 #endif
1941 
1942 static const struct file_operations userfaultfd_fops = {
1943 #ifdef CONFIG_PROC_FS
1944 	.show_fdinfo	= userfaultfd_show_fdinfo,
1945 #endif
1946 	.release	= userfaultfd_release,
1947 	.poll		= userfaultfd_poll,
1948 	.read		= userfaultfd_read,
1949 	.unlocked_ioctl = userfaultfd_ioctl,
1950 	.compat_ioctl	= compat_ptr_ioctl,
1951 	.llseek		= noop_llseek,
1952 };
1953 
1954 static void init_once_userfaultfd_ctx(void *mem)
1955 {
1956 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1957 
1958 	init_waitqueue_head(&ctx->fault_pending_wqh);
1959 	init_waitqueue_head(&ctx->fault_wqh);
1960 	init_waitqueue_head(&ctx->event_wqh);
1961 	init_waitqueue_head(&ctx->fd_wqh);
1962 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1963 }
1964 
1965 SYSCALL_DEFINE1(userfaultfd, int, flags)
1966 {
1967 	struct userfaultfd_ctx *ctx;
1968 	int fd;
1969 
1970 	if (!sysctl_unprivileged_userfaultfd &&
1971 	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
1972 	    !capable(CAP_SYS_PTRACE)) {
1973 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
1974 			"sysctl knob to 1 if kernel faults must be handled "
1975 			"without obtaining CAP_SYS_PTRACE capability\n");
1976 		return -EPERM;
1977 	}
1978 
1979 	BUG_ON(!current->mm);
1980 
1981 	/* Check the UFFD_* constants for consistency.  */
1982 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
1983 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1984 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1985 
1986 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
1987 		return -EINVAL;
1988 
1989 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1990 	if (!ctx)
1991 		return -ENOMEM;
1992 
1993 	refcount_set(&ctx->refcount, 1);
1994 	ctx->flags = flags;
1995 	ctx->features = 0;
1996 	ctx->state = UFFD_STATE_WAIT_API;
1997 	ctx->released = false;
1998 	ctx->mmap_changing = false;
1999 	ctx->mm = current->mm;
2000 	/* prevent the mm struct to be freed */
2001 	mmgrab(ctx->mm);
2002 
2003 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2004 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2005 	if (fd < 0) {
2006 		mmdrop(ctx->mm);
2007 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2008 	}
2009 	return fd;
2010 }
2011 
2012 static int __init userfaultfd_init(void)
2013 {
2014 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2015 						sizeof(struct userfaultfd_ctx),
2016 						0,
2017 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2018 						init_once_userfaultfd_ctx);
2019 	return 0;
2020 }
2021 __initcall(userfaultfd_init);
2022