1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/poll.h> 20 #include <linux/slab.h> 21 #include <linux/seq_file.h> 22 #include <linux/file.h> 23 #include <linux/bug.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/syscalls.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ioctl.h> 29 #include <linux/security.h> 30 31 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 32 33 enum userfaultfd_state { 34 UFFD_STATE_WAIT_API, 35 UFFD_STATE_RUNNING, 36 }; 37 38 /* 39 * Start with fault_pending_wqh and fault_wqh so they're more likely 40 * to be in the same cacheline. 41 */ 42 struct userfaultfd_ctx { 43 /* waitqueue head for the pending (i.e. not read) userfaults */ 44 wait_queue_head_t fault_pending_wqh; 45 /* waitqueue head for the userfaults */ 46 wait_queue_head_t fault_wqh; 47 /* waitqueue head for the pseudo fd to wakeup poll/read */ 48 wait_queue_head_t fd_wqh; 49 /* waitqueue head for events */ 50 wait_queue_head_t event_wqh; 51 /* a refile sequence protected by fault_pending_wqh lock */ 52 struct seqcount refile_seq; 53 /* pseudo fd refcounting */ 54 atomic_t refcount; 55 /* userfaultfd syscall flags */ 56 unsigned int flags; 57 /* features requested from the userspace */ 58 unsigned int features; 59 /* state machine */ 60 enum userfaultfd_state state; 61 /* released */ 62 bool released; 63 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 64 struct mm_struct *mm; 65 }; 66 67 struct userfaultfd_fork_ctx { 68 struct userfaultfd_ctx *orig; 69 struct userfaultfd_ctx *new; 70 struct list_head list; 71 }; 72 73 struct userfaultfd_wait_queue { 74 struct uffd_msg msg; 75 wait_queue_t wq; 76 struct userfaultfd_ctx *ctx; 77 bool waken; 78 }; 79 80 struct userfaultfd_wake_range { 81 unsigned long start; 82 unsigned long len; 83 }; 84 85 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 86 int wake_flags, void *key) 87 { 88 struct userfaultfd_wake_range *range = key; 89 int ret; 90 struct userfaultfd_wait_queue *uwq; 91 unsigned long start, len; 92 93 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 94 ret = 0; 95 /* len == 0 means wake all */ 96 start = range->start; 97 len = range->len; 98 if (len && (start > uwq->msg.arg.pagefault.address || 99 start + len <= uwq->msg.arg.pagefault.address)) 100 goto out; 101 WRITE_ONCE(uwq->waken, true); 102 /* 103 * The implicit smp_mb__before_spinlock in try_to_wake_up() 104 * renders uwq->waken visible to other CPUs before the task is 105 * waken. 106 */ 107 ret = wake_up_state(wq->private, mode); 108 if (ret) 109 /* 110 * Wake only once, autoremove behavior. 111 * 112 * After the effect of list_del_init is visible to the 113 * other CPUs, the waitqueue may disappear from under 114 * us, see the !list_empty_careful() in 115 * handle_userfault(). try_to_wake_up() has an 116 * implicit smp_mb__before_spinlock, and the 117 * wq->private is read before calling the extern 118 * function "wake_up_state" (which in turns calls 119 * try_to_wake_up). While the spin_lock;spin_unlock; 120 * wouldn't be enough, the smp_mb__before_spinlock is 121 * enough to avoid an explicit smp_mb() here. 122 */ 123 list_del_init(&wq->task_list); 124 out: 125 return ret; 126 } 127 128 /** 129 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 130 * context. 131 * @ctx: [in] Pointer to the userfaultfd context. 132 * 133 * Returns: In case of success, returns not zero. 134 */ 135 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 136 { 137 if (!atomic_inc_not_zero(&ctx->refcount)) 138 BUG(); 139 } 140 141 /** 142 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 143 * context. 144 * @ctx: [in] Pointer to userfaultfd context. 145 * 146 * The userfaultfd context reference must have been previously acquired either 147 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 148 */ 149 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 150 { 151 if (atomic_dec_and_test(&ctx->refcount)) { 152 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 153 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 154 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 155 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 156 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 160 mmdrop(ctx->mm); 161 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 162 } 163 } 164 165 static inline void msg_init(struct uffd_msg *msg) 166 { 167 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 168 /* 169 * Must use memset to zero out the paddings or kernel data is 170 * leaked to userland. 171 */ 172 memset(msg, 0, sizeof(struct uffd_msg)); 173 } 174 175 static inline struct uffd_msg userfault_msg(unsigned long address, 176 unsigned int flags, 177 unsigned long reason) 178 { 179 struct uffd_msg msg; 180 msg_init(&msg); 181 msg.event = UFFD_EVENT_PAGEFAULT; 182 msg.arg.pagefault.address = address; 183 if (flags & FAULT_FLAG_WRITE) 184 /* 185 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 186 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 187 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 188 * was a read fault, otherwise if set it means it's 189 * a write fault. 190 */ 191 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 192 if (reason & VM_UFFD_WP) 193 /* 194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 196 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 197 * a missing fault, otherwise if set it means it's a 198 * write protect fault. 199 */ 200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 201 return msg; 202 } 203 204 /* 205 * Verify the pagetables are still not ok after having reigstered into 206 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 207 * userfault that has already been resolved, if userfaultfd_read and 208 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 209 * threads. 210 */ 211 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 212 unsigned long address, 213 unsigned long flags, 214 unsigned long reason) 215 { 216 struct mm_struct *mm = ctx->mm; 217 pgd_t *pgd; 218 pud_t *pud; 219 pmd_t *pmd, _pmd; 220 pte_t *pte; 221 bool ret = true; 222 223 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 224 225 pgd = pgd_offset(mm, address); 226 if (!pgd_present(*pgd)) 227 goto out; 228 pud = pud_offset(pgd, address); 229 if (!pud_present(*pud)) 230 goto out; 231 pmd = pmd_offset(pud, address); 232 /* 233 * READ_ONCE must function as a barrier with narrower scope 234 * and it must be equivalent to: 235 * _pmd = *pmd; barrier(); 236 * 237 * This is to deal with the instability (as in 238 * pmd_trans_unstable) of the pmd. 239 */ 240 _pmd = READ_ONCE(*pmd); 241 if (!pmd_present(_pmd)) 242 goto out; 243 244 ret = false; 245 if (pmd_trans_huge(_pmd)) 246 goto out; 247 248 /* 249 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 250 * and use the standard pte_offset_map() instead of parsing _pmd. 251 */ 252 pte = pte_offset_map(pmd, address); 253 /* 254 * Lockless access: we're in a wait_event so it's ok if it 255 * changes under us. 256 */ 257 if (pte_none(*pte)) 258 ret = true; 259 pte_unmap(pte); 260 261 out: 262 return ret; 263 } 264 265 /* 266 * The locking rules involved in returning VM_FAULT_RETRY depending on 267 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 268 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 269 * recommendation in __lock_page_or_retry is not an understatement. 270 * 271 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 272 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 273 * not set. 274 * 275 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 276 * set, VM_FAULT_RETRY can still be returned if and only if there are 277 * fatal_signal_pending()s, and the mmap_sem must be released before 278 * returning it. 279 */ 280 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 281 { 282 struct mm_struct *mm = vmf->vma->vm_mm; 283 struct userfaultfd_ctx *ctx; 284 struct userfaultfd_wait_queue uwq; 285 int ret; 286 bool must_wait, return_to_userland; 287 long blocking_state; 288 289 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 290 291 ret = VM_FAULT_SIGBUS; 292 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 293 if (!ctx) 294 goto out; 295 296 BUG_ON(ctx->mm != mm); 297 298 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 299 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 300 301 /* 302 * If it's already released don't get it. This avoids to loop 303 * in __get_user_pages if userfaultfd_release waits on the 304 * caller of handle_userfault to release the mmap_sem. 305 */ 306 if (unlikely(ACCESS_ONCE(ctx->released))) 307 goto out; 308 309 /* 310 * We don't do userfault handling for the final child pid update. 311 */ 312 if (current->flags & PF_EXITING) 313 goto out; 314 315 /* 316 * Check that we can return VM_FAULT_RETRY. 317 * 318 * NOTE: it should become possible to return VM_FAULT_RETRY 319 * even if FAULT_FLAG_TRIED is set without leading to gup() 320 * -EBUSY failures, if the userfaultfd is to be extended for 321 * VM_UFFD_WP tracking and we intend to arm the userfault 322 * without first stopping userland access to the memory. For 323 * VM_UFFD_MISSING userfaults this is enough for now. 324 */ 325 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 326 /* 327 * Validate the invariant that nowait must allow retry 328 * to be sure not to return SIGBUS erroneously on 329 * nowait invocations. 330 */ 331 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 332 #ifdef CONFIG_DEBUG_VM 333 if (printk_ratelimit()) { 334 printk(KERN_WARNING 335 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 336 vmf->flags); 337 dump_stack(); 338 } 339 #endif 340 goto out; 341 } 342 343 /* 344 * Handle nowait, not much to do other than tell it to retry 345 * and wait. 346 */ 347 ret = VM_FAULT_RETRY; 348 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 349 goto out; 350 351 /* take the reference before dropping the mmap_sem */ 352 userfaultfd_ctx_get(ctx); 353 354 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 355 uwq.wq.private = current; 356 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 357 uwq.ctx = ctx; 358 uwq.waken = false; 359 360 return_to_userland = 361 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 362 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 363 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 364 TASK_KILLABLE; 365 366 spin_lock(&ctx->fault_pending_wqh.lock); 367 /* 368 * After the __add_wait_queue the uwq is visible to userland 369 * through poll/read(). 370 */ 371 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 372 /* 373 * The smp_mb() after __set_current_state prevents the reads 374 * following the spin_unlock to happen before the list_add in 375 * __add_wait_queue. 376 */ 377 set_current_state(blocking_state); 378 spin_unlock(&ctx->fault_pending_wqh.lock); 379 380 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 381 reason); 382 up_read(&mm->mmap_sem); 383 384 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 385 (return_to_userland ? !signal_pending(current) : 386 !fatal_signal_pending(current)))) { 387 wake_up_poll(&ctx->fd_wqh, POLLIN); 388 schedule(); 389 ret |= VM_FAULT_MAJOR; 390 391 /* 392 * False wakeups can orginate even from rwsem before 393 * up_read() however userfaults will wait either for a 394 * targeted wakeup on the specific uwq waitqueue from 395 * wake_userfault() or for signals or for uffd 396 * release. 397 */ 398 while (!READ_ONCE(uwq.waken)) { 399 /* 400 * This needs the full smp_store_mb() 401 * guarantee as the state write must be 402 * visible to other CPUs before reading 403 * uwq.waken from other CPUs. 404 */ 405 set_current_state(blocking_state); 406 if (READ_ONCE(uwq.waken) || 407 READ_ONCE(ctx->released) || 408 (return_to_userland ? signal_pending(current) : 409 fatal_signal_pending(current))) 410 break; 411 schedule(); 412 } 413 } 414 415 __set_current_state(TASK_RUNNING); 416 417 if (return_to_userland) { 418 if (signal_pending(current) && 419 !fatal_signal_pending(current)) { 420 /* 421 * If we got a SIGSTOP or SIGCONT and this is 422 * a normal userland page fault, just let 423 * userland return so the signal will be 424 * handled and gdb debugging works. The page 425 * fault code immediately after we return from 426 * this function is going to release the 427 * mmap_sem and it's not depending on it 428 * (unlike gup would if we were not to return 429 * VM_FAULT_RETRY). 430 * 431 * If a fatal signal is pending we still take 432 * the streamlined VM_FAULT_RETRY failure path 433 * and there's no need to retake the mmap_sem 434 * in such case. 435 */ 436 down_read(&mm->mmap_sem); 437 ret = 0; 438 } 439 } 440 441 /* 442 * Here we race with the list_del; list_add in 443 * userfaultfd_ctx_read(), however because we don't ever run 444 * list_del_init() to refile across the two lists, the prev 445 * and next pointers will never point to self. list_add also 446 * would never let any of the two pointers to point to 447 * self. So list_empty_careful won't risk to see both pointers 448 * pointing to self at any time during the list refile. The 449 * only case where list_del_init() is called is the full 450 * removal in the wake function and there we don't re-list_add 451 * and it's fine not to block on the spinlock. The uwq on this 452 * kernel stack can be released after the list_del_init. 453 */ 454 if (!list_empty_careful(&uwq.wq.task_list)) { 455 spin_lock(&ctx->fault_pending_wqh.lock); 456 /* 457 * No need of list_del_init(), the uwq on the stack 458 * will be freed shortly anyway. 459 */ 460 list_del(&uwq.wq.task_list); 461 spin_unlock(&ctx->fault_pending_wqh.lock); 462 } 463 464 /* 465 * ctx may go away after this if the userfault pseudo fd is 466 * already released. 467 */ 468 userfaultfd_ctx_put(ctx); 469 470 out: 471 return ret; 472 } 473 474 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 475 struct userfaultfd_wait_queue *ewq) 476 { 477 int ret = 0; 478 479 ewq->ctx = ctx; 480 init_waitqueue_entry(&ewq->wq, current); 481 482 spin_lock(&ctx->event_wqh.lock); 483 /* 484 * After the __add_wait_queue the uwq is visible to userland 485 * through poll/read(). 486 */ 487 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 488 for (;;) { 489 set_current_state(TASK_KILLABLE); 490 if (ewq->msg.event == 0) 491 break; 492 if (ACCESS_ONCE(ctx->released) || 493 fatal_signal_pending(current)) { 494 ret = -1; 495 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 496 break; 497 } 498 499 spin_unlock(&ctx->event_wqh.lock); 500 501 wake_up_poll(&ctx->fd_wqh, POLLIN); 502 schedule(); 503 504 spin_lock(&ctx->event_wqh.lock); 505 } 506 __set_current_state(TASK_RUNNING); 507 spin_unlock(&ctx->event_wqh.lock); 508 509 /* 510 * ctx may go away after this if the userfault pseudo fd is 511 * already released. 512 */ 513 514 userfaultfd_ctx_put(ctx); 515 return ret; 516 } 517 518 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 519 struct userfaultfd_wait_queue *ewq) 520 { 521 ewq->msg.event = 0; 522 wake_up_locked(&ctx->event_wqh); 523 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 524 } 525 526 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 527 { 528 struct userfaultfd_ctx *ctx = NULL, *octx; 529 struct userfaultfd_fork_ctx *fctx; 530 531 octx = vma->vm_userfaultfd_ctx.ctx; 532 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 533 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 534 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 535 return 0; 536 } 537 538 list_for_each_entry(fctx, fcs, list) 539 if (fctx->orig == octx) { 540 ctx = fctx->new; 541 break; 542 } 543 544 if (!ctx) { 545 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 546 if (!fctx) 547 return -ENOMEM; 548 549 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 550 if (!ctx) { 551 kfree(fctx); 552 return -ENOMEM; 553 } 554 555 atomic_set(&ctx->refcount, 1); 556 ctx->flags = octx->flags; 557 ctx->state = UFFD_STATE_RUNNING; 558 ctx->features = octx->features; 559 ctx->released = false; 560 ctx->mm = vma->vm_mm; 561 atomic_inc(&ctx->mm->mm_count); 562 563 userfaultfd_ctx_get(octx); 564 fctx->orig = octx; 565 fctx->new = ctx; 566 list_add_tail(&fctx->list, fcs); 567 } 568 569 vma->vm_userfaultfd_ctx.ctx = ctx; 570 return 0; 571 } 572 573 static int dup_fctx(struct userfaultfd_fork_ctx *fctx) 574 { 575 struct userfaultfd_ctx *ctx = fctx->orig; 576 struct userfaultfd_wait_queue ewq; 577 578 msg_init(&ewq.msg); 579 580 ewq.msg.event = UFFD_EVENT_FORK; 581 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 582 583 return userfaultfd_event_wait_completion(ctx, &ewq); 584 } 585 586 void dup_userfaultfd_complete(struct list_head *fcs) 587 { 588 int ret = 0; 589 struct userfaultfd_fork_ctx *fctx, *n; 590 591 list_for_each_entry_safe(fctx, n, fcs, list) { 592 if (!ret) 593 ret = dup_fctx(fctx); 594 list_del(&fctx->list); 595 kfree(fctx); 596 } 597 } 598 599 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 600 struct vm_userfaultfd_ctx *vm_ctx) 601 { 602 struct userfaultfd_ctx *ctx; 603 604 ctx = vma->vm_userfaultfd_ctx.ctx; 605 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 606 vm_ctx->ctx = ctx; 607 userfaultfd_ctx_get(ctx); 608 } 609 } 610 611 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 612 unsigned long from, unsigned long to, 613 unsigned long len) 614 { 615 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 616 struct userfaultfd_wait_queue ewq; 617 618 if (!ctx) 619 return; 620 621 if (to & ~PAGE_MASK) { 622 userfaultfd_ctx_put(ctx); 623 return; 624 } 625 626 msg_init(&ewq.msg); 627 628 ewq.msg.event = UFFD_EVENT_REMAP; 629 ewq.msg.arg.remap.from = from; 630 ewq.msg.arg.remap.to = to; 631 ewq.msg.arg.remap.len = len; 632 633 userfaultfd_event_wait_completion(ctx, &ewq); 634 } 635 636 static int userfaultfd_release(struct inode *inode, struct file *file) 637 { 638 struct userfaultfd_ctx *ctx = file->private_data; 639 struct mm_struct *mm = ctx->mm; 640 struct vm_area_struct *vma, *prev; 641 /* len == 0 means wake all */ 642 struct userfaultfd_wake_range range = { .len = 0, }; 643 unsigned long new_flags; 644 645 ACCESS_ONCE(ctx->released) = true; 646 647 if (!mmget_not_zero(mm)) 648 goto wakeup; 649 650 /* 651 * Flush page faults out of all CPUs. NOTE: all page faults 652 * must be retried without returning VM_FAULT_SIGBUS if 653 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 654 * changes while handle_userfault released the mmap_sem. So 655 * it's critical that released is set to true (above), before 656 * taking the mmap_sem for writing. 657 */ 658 down_write(&mm->mmap_sem); 659 prev = NULL; 660 for (vma = mm->mmap; vma; vma = vma->vm_next) { 661 cond_resched(); 662 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 663 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 664 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 665 prev = vma; 666 continue; 667 } 668 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 669 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 670 new_flags, vma->anon_vma, 671 vma->vm_file, vma->vm_pgoff, 672 vma_policy(vma), 673 NULL_VM_UFFD_CTX); 674 if (prev) 675 vma = prev; 676 else 677 prev = vma; 678 vma->vm_flags = new_flags; 679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 680 } 681 up_write(&mm->mmap_sem); 682 mmput(mm); 683 wakeup: 684 /* 685 * After no new page faults can wait on this fault_*wqh, flush 686 * the last page faults that may have been already waiting on 687 * the fault_*wqh. 688 */ 689 spin_lock(&ctx->fault_pending_wqh.lock); 690 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 691 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 692 spin_unlock(&ctx->fault_pending_wqh.lock); 693 694 wake_up_poll(&ctx->fd_wqh, POLLHUP); 695 userfaultfd_ctx_put(ctx); 696 return 0; 697 } 698 699 /* fault_pending_wqh.lock must be hold by the caller */ 700 static inline struct userfaultfd_wait_queue *find_userfault_in( 701 wait_queue_head_t *wqh) 702 { 703 wait_queue_t *wq; 704 struct userfaultfd_wait_queue *uwq; 705 706 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 707 708 uwq = NULL; 709 if (!waitqueue_active(wqh)) 710 goto out; 711 /* walk in reverse to provide FIFO behavior to read userfaults */ 712 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 713 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 714 out: 715 return uwq; 716 } 717 718 static inline struct userfaultfd_wait_queue *find_userfault( 719 struct userfaultfd_ctx *ctx) 720 { 721 return find_userfault_in(&ctx->fault_pending_wqh); 722 } 723 724 static inline struct userfaultfd_wait_queue *find_userfault_evt( 725 struct userfaultfd_ctx *ctx) 726 { 727 return find_userfault_in(&ctx->event_wqh); 728 } 729 730 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 731 { 732 struct userfaultfd_ctx *ctx = file->private_data; 733 unsigned int ret; 734 735 poll_wait(file, &ctx->fd_wqh, wait); 736 737 switch (ctx->state) { 738 case UFFD_STATE_WAIT_API: 739 return POLLERR; 740 case UFFD_STATE_RUNNING: 741 /* 742 * poll() never guarantees that read won't block. 743 * userfaults can be waken before they're read(). 744 */ 745 if (unlikely(!(file->f_flags & O_NONBLOCK))) 746 return POLLERR; 747 /* 748 * lockless access to see if there are pending faults 749 * __pollwait last action is the add_wait_queue but 750 * the spin_unlock would allow the waitqueue_active to 751 * pass above the actual list_add inside 752 * add_wait_queue critical section. So use a full 753 * memory barrier to serialize the list_add write of 754 * add_wait_queue() with the waitqueue_active read 755 * below. 756 */ 757 ret = 0; 758 smp_mb(); 759 if (waitqueue_active(&ctx->fault_pending_wqh)) 760 ret = POLLIN; 761 else if (waitqueue_active(&ctx->event_wqh)) 762 ret = POLLIN; 763 764 return ret; 765 default: 766 WARN_ON_ONCE(1); 767 return POLLERR; 768 } 769 } 770 771 static const struct file_operations userfaultfd_fops; 772 773 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 774 struct userfaultfd_ctx *new, 775 struct uffd_msg *msg) 776 { 777 int fd; 778 struct file *file; 779 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 780 781 fd = get_unused_fd_flags(flags); 782 if (fd < 0) 783 return fd; 784 785 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 786 O_RDWR | flags); 787 if (IS_ERR(file)) { 788 put_unused_fd(fd); 789 return PTR_ERR(file); 790 } 791 792 fd_install(fd, file); 793 msg->arg.reserved.reserved1 = 0; 794 msg->arg.fork.ufd = fd; 795 796 return 0; 797 } 798 799 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 800 struct uffd_msg *msg) 801 { 802 ssize_t ret; 803 DECLARE_WAITQUEUE(wait, current); 804 struct userfaultfd_wait_queue *uwq; 805 /* 806 * Handling fork event requires sleeping operations, so 807 * we drop the event_wqh lock, then do these ops, then 808 * lock it back and wake up the waiter. While the lock is 809 * dropped the ewq may go away so we keep track of it 810 * carefully. 811 */ 812 LIST_HEAD(fork_event); 813 struct userfaultfd_ctx *fork_nctx = NULL; 814 815 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 816 spin_lock(&ctx->fd_wqh.lock); 817 __add_wait_queue(&ctx->fd_wqh, &wait); 818 for (;;) { 819 set_current_state(TASK_INTERRUPTIBLE); 820 spin_lock(&ctx->fault_pending_wqh.lock); 821 uwq = find_userfault(ctx); 822 if (uwq) { 823 /* 824 * Use a seqcount to repeat the lockless check 825 * in wake_userfault() to avoid missing 826 * wakeups because during the refile both 827 * waitqueue could become empty if this is the 828 * only userfault. 829 */ 830 write_seqcount_begin(&ctx->refile_seq); 831 832 /* 833 * The fault_pending_wqh.lock prevents the uwq 834 * to disappear from under us. 835 * 836 * Refile this userfault from 837 * fault_pending_wqh to fault_wqh, it's not 838 * pending anymore after we read it. 839 * 840 * Use list_del() by hand (as 841 * userfaultfd_wake_function also uses 842 * list_del_init() by hand) to be sure nobody 843 * changes __remove_wait_queue() to use 844 * list_del_init() in turn breaking the 845 * !list_empty_careful() check in 846 * handle_userfault(). The uwq->wq.task_list 847 * must never be empty at any time during the 848 * refile, or the waitqueue could disappear 849 * from under us. The "wait_queue_head_t" 850 * parameter of __remove_wait_queue() is unused 851 * anyway. 852 */ 853 list_del(&uwq->wq.task_list); 854 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 855 856 write_seqcount_end(&ctx->refile_seq); 857 858 /* careful to always initialize msg if ret == 0 */ 859 *msg = uwq->msg; 860 spin_unlock(&ctx->fault_pending_wqh.lock); 861 ret = 0; 862 break; 863 } 864 spin_unlock(&ctx->fault_pending_wqh.lock); 865 866 spin_lock(&ctx->event_wqh.lock); 867 uwq = find_userfault_evt(ctx); 868 if (uwq) { 869 *msg = uwq->msg; 870 871 if (uwq->msg.event == UFFD_EVENT_FORK) { 872 fork_nctx = (struct userfaultfd_ctx *) 873 (unsigned long) 874 uwq->msg.arg.reserved.reserved1; 875 list_move(&uwq->wq.task_list, &fork_event); 876 spin_unlock(&ctx->event_wqh.lock); 877 ret = 0; 878 break; 879 } 880 881 userfaultfd_event_complete(ctx, uwq); 882 spin_unlock(&ctx->event_wqh.lock); 883 ret = 0; 884 break; 885 } 886 spin_unlock(&ctx->event_wqh.lock); 887 888 if (signal_pending(current)) { 889 ret = -ERESTARTSYS; 890 break; 891 } 892 if (no_wait) { 893 ret = -EAGAIN; 894 break; 895 } 896 spin_unlock(&ctx->fd_wqh.lock); 897 schedule(); 898 spin_lock(&ctx->fd_wqh.lock); 899 } 900 __remove_wait_queue(&ctx->fd_wqh, &wait); 901 __set_current_state(TASK_RUNNING); 902 spin_unlock(&ctx->fd_wqh.lock); 903 904 if (!ret && msg->event == UFFD_EVENT_FORK) { 905 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 906 907 if (!ret) { 908 spin_lock(&ctx->event_wqh.lock); 909 if (!list_empty(&fork_event)) { 910 uwq = list_first_entry(&fork_event, 911 typeof(*uwq), 912 wq.task_list); 913 list_del(&uwq->wq.task_list); 914 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 915 userfaultfd_event_complete(ctx, uwq); 916 } 917 spin_unlock(&ctx->event_wqh.lock); 918 } 919 } 920 921 return ret; 922 } 923 924 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 925 size_t count, loff_t *ppos) 926 { 927 struct userfaultfd_ctx *ctx = file->private_data; 928 ssize_t _ret, ret = 0; 929 struct uffd_msg msg; 930 int no_wait = file->f_flags & O_NONBLOCK; 931 932 if (ctx->state == UFFD_STATE_WAIT_API) 933 return -EINVAL; 934 935 for (;;) { 936 if (count < sizeof(msg)) 937 return ret ? ret : -EINVAL; 938 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 939 if (_ret < 0) 940 return ret ? ret : _ret; 941 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 942 return ret ? ret : -EFAULT; 943 ret += sizeof(msg); 944 buf += sizeof(msg); 945 count -= sizeof(msg); 946 /* 947 * Allow to read more than one fault at time but only 948 * block if waiting for the very first one. 949 */ 950 no_wait = O_NONBLOCK; 951 } 952 } 953 954 static void __wake_userfault(struct userfaultfd_ctx *ctx, 955 struct userfaultfd_wake_range *range) 956 { 957 unsigned long start, end; 958 959 start = range->start; 960 end = range->start + range->len; 961 962 spin_lock(&ctx->fault_pending_wqh.lock); 963 /* wake all in the range and autoremove */ 964 if (waitqueue_active(&ctx->fault_pending_wqh)) 965 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 966 range); 967 if (waitqueue_active(&ctx->fault_wqh)) 968 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 969 spin_unlock(&ctx->fault_pending_wqh.lock); 970 } 971 972 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 973 struct userfaultfd_wake_range *range) 974 { 975 unsigned seq; 976 bool need_wakeup; 977 978 /* 979 * To be sure waitqueue_active() is not reordered by the CPU 980 * before the pagetable update, use an explicit SMP memory 981 * barrier here. PT lock release or up_read(mmap_sem) still 982 * have release semantics that can allow the 983 * waitqueue_active() to be reordered before the pte update. 984 */ 985 smp_mb(); 986 987 /* 988 * Use waitqueue_active because it's very frequent to 989 * change the address space atomically even if there are no 990 * userfaults yet. So we take the spinlock only when we're 991 * sure we've userfaults to wake. 992 */ 993 do { 994 seq = read_seqcount_begin(&ctx->refile_seq); 995 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 996 waitqueue_active(&ctx->fault_wqh); 997 cond_resched(); 998 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 999 if (need_wakeup) 1000 __wake_userfault(ctx, range); 1001 } 1002 1003 static __always_inline int validate_range(struct mm_struct *mm, 1004 __u64 start, __u64 len) 1005 { 1006 __u64 task_size = mm->task_size; 1007 1008 if (start & ~PAGE_MASK) 1009 return -EINVAL; 1010 if (len & ~PAGE_MASK) 1011 return -EINVAL; 1012 if (!len) 1013 return -EINVAL; 1014 if (start < mmap_min_addr) 1015 return -EINVAL; 1016 if (start >= task_size) 1017 return -EINVAL; 1018 if (len > task_size - start) 1019 return -EINVAL; 1020 return 0; 1021 } 1022 1023 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1024 unsigned long arg) 1025 { 1026 struct mm_struct *mm = ctx->mm; 1027 struct vm_area_struct *vma, *prev, *cur; 1028 int ret; 1029 struct uffdio_register uffdio_register; 1030 struct uffdio_register __user *user_uffdio_register; 1031 unsigned long vm_flags, new_flags; 1032 bool found; 1033 unsigned long start, end, vma_end; 1034 1035 user_uffdio_register = (struct uffdio_register __user *) arg; 1036 1037 ret = -EFAULT; 1038 if (copy_from_user(&uffdio_register, user_uffdio_register, 1039 sizeof(uffdio_register)-sizeof(__u64))) 1040 goto out; 1041 1042 ret = -EINVAL; 1043 if (!uffdio_register.mode) 1044 goto out; 1045 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1046 UFFDIO_REGISTER_MODE_WP)) 1047 goto out; 1048 vm_flags = 0; 1049 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1050 vm_flags |= VM_UFFD_MISSING; 1051 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1052 vm_flags |= VM_UFFD_WP; 1053 /* 1054 * FIXME: remove the below error constraint by 1055 * implementing the wprotect tracking mode. 1056 */ 1057 ret = -EINVAL; 1058 goto out; 1059 } 1060 1061 ret = validate_range(mm, uffdio_register.range.start, 1062 uffdio_register.range.len); 1063 if (ret) 1064 goto out; 1065 1066 start = uffdio_register.range.start; 1067 end = start + uffdio_register.range.len; 1068 1069 ret = -ENOMEM; 1070 if (!mmget_not_zero(mm)) 1071 goto out; 1072 1073 down_write(&mm->mmap_sem); 1074 vma = find_vma_prev(mm, start, &prev); 1075 if (!vma) 1076 goto out_unlock; 1077 1078 /* check that there's at least one vma in the range */ 1079 ret = -EINVAL; 1080 if (vma->vm_start >= end) 1081 goto out_unlock; 1082 1083 /* 1084 * Search for not compatible vmas. 1085 * 1086 * FIXME: this shall be relaxed later so that it doesn't fail 1087 * on tmpfs backed vmas (in addition to the current allowance 1088 * on anonymous vmas). 1089 */ 1090 found = false; 1091 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1092 cond_resched(); 1093 1094 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1095 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1096 1097 /* check not compatible vmas */ 1098 ret = -EINVAL; 1099 if (!vma_is_anonymous(cur)) 1100 goto out_unlock; 1101 1102 /* 1103 * Check that this vma isn't already owned by a 1104 * different userfaultfd. We can't allow more than one 1105 * userfaultfd to own a single vma simultaneously or we 1106 * wouldn't know which one to deliver the userfaults to. 1107 */ 1108 ret = -EBUSY; 1109 if (cur->vm_userfaultfd_ctx.ctx && 1110 cur->vm_userfaultfd_ctx.ctx != ctx) 1111 goto out_unlock; 1112 1113 found = true; 1114 } 1115 BUG_ON(!found); 1116 1117 if (vma->vm_start < start) 1118 prev = vma; 1119 1120 ret = 0; 1121 do { 1122 cond_resched(); 1123 1124 BUG_ON(!vma_is_anonymous(vma)); 1125 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1126 vma->vm_userfaultfd_ctx.ctx != ctx); 1127 1128 /* 1129 * Nothing to do: this vma is already registered into this 1130 * userfaultfd and with the right tracking mode too. 1131 */ 1132 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1133 (vma->vm_flags & vm_flags) == vm_flags) 1134 goto skip; 1135 1136 if (vma->vm_start > start) 1137 start = vma->vm_start; 1138 vma_end = min(end, vma->vm_end); 1139 1140 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1141 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1142 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1143 vma_policy(vma), 1144 ((struct vm_userfaultfd_ctx){ ctx })); 1145 if (prev) { 1146 vma = prev; 1147 goto next; 1148 } 1149 if (vma->vm_start < start) { 1150 ret = split_vma(mm, vma, start, 1); 1151 if (ret) 1152 break; 1153 } 1154 if (vma->vm_end > end) { 1155 ret = split_vma(mm, vma, end, 0); 1156 if (ret) 1157 break; 1158 } 1159 next: 1160 /* 1161 * In the vma_merge() successful mprotect-like case 8: 1162 * the next vma was merged into the current one and 1163 * the current one has not been updated yet. 1164 */ 1165 vma->vm_flags = new_flags; 1166 vma->vm_userfaultfd_ctx.ctx = ctx; 1167 1168 skip: 1169 prev = vma; 1170 start = vma->vm_end; 1171 vma = vma->vm_next; 1172 } while (vma && vma->vm_start < end); 1173 out_unlock: 1174 up_write(&mm->mmap_sem); 1175 mmput(mm); 1176 if (!ret) { 1177 /* 1178 * Now that we scanned all vmas we can already tell 1179 * userland which ioctls methods are guaranteed to 1180 * succeed on this range. 1181 */ 1182 if (put_user(UFFD_API_RANGE_IOCTLS, 1183 &user_uffdio_register->ioctls)) 1184 ret = -EFAULT; 1185 } 1186 out: 1187 return ret; 1188 } 1189 1190 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1191 unsigned long arg) 1192 { 1193 struct mm_struct *mm = ctx->mm; 1194 struct vm_area_struct *vma, *prev, *cur; 1195 int ret; 1196 struct uffdio_range uffdio_unregister; 1197 unsigned long new_flags; 1198 bool found; 1199 unsigned long start, end, vma_end; 1200 const void __user *buf = (void __user *)arg; 1201 1202 ret = -EFAULT; 1203 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1204 goto out; 1205 1206 ret = validate_range(mm, uffdio_unregister.start, 1207 uffdio_unregister.len); 1208 if (ret) 1209 goto out; 1210 1211 start = uffdio_unregister.start; 1212 end = start + uffdio_unregister.len; 1213 1214 ret = -ENOMEM; 1215 if (!mmget_not_zero(mm)) 1216 goto out; 1217 1218 down_write(&mm->mmap_sem); 1219 vma = find_vma_prev(mm, start, &prev); 1220 if (!vma) 1221 goto out_unlock; 1222 1223 /* check that there's at least one vma in the range */ 1224 ret = -EINVAL; 1225 if (vma->vm_start >= end) 1226 goto out_unlock; 1227 1228 /* 1229 * Search for not compatible vmas. 1230 * 1231 * FIXME: this shall be relaxed later so that it doesn't fail 1232 * on tmpfs backed vmas (in addition to the current allowance 1233 * on anonymous vmas). 1234 */ 1235 found = false; 1236 ret = -EINVAL; 1237 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1238 cond_resched(); 1239 1240 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1241 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1242 1243 /* 1244 * Check not compatible vmas, not strictly required 1245 * here as not compatible vmas cannot have an 1246 * userfaultfd_ctx registered on them, but this 1247 * provides for more strict behavior to notice 1248 * unregistration errors. 1249 */ 1250 if (!vma_is_anonymous(cur)) 1251 goto out_unlock; 1252 1253 found = true; 1254 } 1255 BUG_ON(!found); 1256 1257 if (vma->vm_start < start) 1258 prev = vma; 1259 1260 ret = 0; 1261 do { 1262 cond_resched(); 1263 1264 BUG_ON(!vma_is_anonymous(vma)); 1265 1266 /* 1267 * Nothing to do: this vma is already registered into this 1268 * userfaultfd and with the right tracking mode too. 1269 */ 1270 if (!vma->vm_userfaultfd_ctx.ctx) 1271 goto skip; 1272 1273 if (vma->vm_start > start) 1274 start = vma->vm_start; 1275 vma_end = min(end, vma->vm_end); 1276 1277 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1278 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1279 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1280 vma_policy(vma), 1281 NULL_VM_UFFD_CTX); 1282 if (prev) { 1283 vma = prev; 1284 goto next; 1285 } 1286 if (vma->vm_start < start) { 1287 ret = split_vma(mm, vma, start, 1); 1288 if (ret) 1289 break; 1290 } 1291 if (vma->vm_end > end) { 1292 ret = split_vma(mm, vma, end, 0); 1293 if (ret) 1294 break; 1295 } 1296 next: 1297 /* 1298 * In the vma_merge() successful mprotect-like case 8: 1299 * the next vma was merged into the current one and 1300 * the current one has not been updated yet. 1301 */ 1302 vma->vm_flags = new_flags; 1303 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1304 1305 skip: 1306 prev = vma; 1307 start = vma->vm_end; 1308 vma = vma->vm_next; 1309 } while (vma && vma->vm_start < end); 1310 out_unlock: 1311 up_write(&mm->mmap_sem); 1312 mmput(mm); 1313 out: 1314 return ret; 1315 } 1316 1317 /* 1318 * userfaultfd_wake may be used in combination with the 1319 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1320 */ 1321 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1322 unsigned long arg) 1323 { 1324 int ret; 1325 struct uffdio_range uffdio_wake; 1326 struct userfaultfd_wake_range range; 1327 const void __user *buf = (void __user *)arg; 1328 1329 ret = -EFAULT; 1330 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1331 goto out; 1332 1333 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1334 if (ret) 1335 goto out; 1336 1337 range.start = uffdio_wake.start; 1338 range.len = uffdio_wake.len; 1339 1340 /* 1341 * len == 0 means wake all and we don't want to wake all here, 1342 * so check it again to be sure. 1343 */ 1344 VM_BUG_ON(!range.len); 1345 1346 wake_userfault(ctx, &range); 1347 ret = 0; 1348 1349 out: 1350 return ret; 1351 } 1352 1353 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1354 unsigned long arg) 1355 { 1356 __s64 ret; 1357 struct uffdio_copy uffdio_copy; 1358 struct uffdio_copy __user *user_uffdio_copy; 1359 struct userfaultfd_wake_range range; 1360 1361 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1362 1363 ret = -EFAULT; 1364 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1365 /* don't copy "copy" last field */ 1366 sizeof(uffdio_copy)-sizeof(__s64))) 1367 goto out; 1368 1369 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1370 if (ret) 1371 goto out; 1372 /* 1373 * double check for wraparound just in case. copy_from_user() 1374 * will later check uffdio_copy.src + uffdio_copy.len to fit 1375 * in the userland range. 1376 */ 1377 ret = -EINVAL; 1378 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1379 goto out; 1380 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1381 goto out; 1382 if (mmget_not_zero(ctx->mm)) { 1383 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1384 uffdio_copy.len); 1385 mmput(ctx->mm); 1386 } 1387 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1388 return -EFAULT; 1389 if (ret < 0) 1390 goto out; 1391 BUG_ON(!ret); 1392 /* len == 0 would wake all */ 1393 range.len = ret; 1394 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1395 range.start = uffdio_copy.dst; 1396 wake_userfault(ctx, &range); 1397 } 1398 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1399 out: 1400 return ret; 1401 } 1402 1403 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1404 unsigned long arg) 1405 { 1406 __s64 ret; 1407 struct uffdio_zeropage uffdio_zeropage; 1408 struct uffdio_zeropage __user *user_uffdio_zeropage; 1409 struct userfaultfd_wake_range range; 1410 1411 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1412 1413 ret = -EFAULT; 1414 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1415 /* don't copy "zeropage" last field */ 1416 sizeof(uffdio_zeropage)-sizeof(__s64))) 1417 goto out; 1418 1419 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1420 uffdio_zeropage.range.len); 1421 if (ret) 1422 goto out; 1423 ret = -EINVAL; 1424 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1425 goto out; 1426 1427 if (mmget_not_zero(ctx->mm)) { 1428 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1429 uffdio_zeropage.range.len); 1430 mmput(ctx->mm); 1431 } 1432 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1433 return -EFAULT; 1434 if (ret < 0) 1435 goto out; 1436 /* len == 0 would wake all */ 1437 BUG_ON(!ret); 1438 range.len = ret; 1439 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1440 range.start = uffdio_zeropage.range.start; 1441 wake_userfault(ctx, &range); 1442 } 1443 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1444 out: 1445 return ret; 1446 } 1447 1448 static inline unsigned int uffd_ctx_features(__u64 user_features) 1449 { 1450 /* 1451 * For the current set of features the bits just coincide 1452 */ 1453 return (unsigned int)user_features; 1454 } 1455 1456 /* 1457 * userland asks for a certain API version and we return which bits 1458 * and ioctl commands are implemented in this kernel for such API 1459 * version or -EINVAL if unknown. 1460 */ 1461 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1462 unsigned long arg) 1463 { 1464 struct uffdio_api uffdio_api; 1465 void __user *buf = (void __user *)arg; 1466 int ret; 1467 __u64 features; 1468 1469 ret = -EINVAL; 1470 if (ctx->state != UFFD_STATE_WAIT_API) 1471 goto out; 1472 ret = -EFAULT; 1473 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1474 goto out; 1475 features = uffdio_api.features; 1476 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1477 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1478 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1479 goto out; 1480 ret = -EINVAL; 1481 goto out; 1482 } 1483 /* report all available features and ioctls to userland */ 1484 uffdio_api.features = UFFD_API_FEATURES; 1485 uffdio_api.ioctls = UFFD_API_IOCTLS; 1486 ret = -EFAULT; 1487 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1488 goto out; 1489 ctx->state = UFFD_STATE_RUNNING; 1490 /* only enable the requested features for this uffd context */ 1491 ctx->features = uffd_ctx_features(features); 1492 ret = 0; 1493 out: 1494 return ret; 1495 } 1496 1497 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1498 unsigned long arg) 1499 { 1500 int ret = -EINVAL; 1501 struct userfaultfd_ctx *ctx = file->private_data; 1502 1503 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1504 return -EINVAL; 1505 1506 switch(cmd) { 1507 case UFFDIO_API: 1508 ret = userfaultfd_api(ctx, arg); 1509 break; 1510 case UFFDIO_REGISTER: 1511 ret = userfaultfd_register(ctx, arg); 1512 break; 1513 case UFFDIO_UNREGISTER: 1514 ret = userfaultfd_unregister(ctx, arg); 1515 break; 1516 case UFFDIO_WAKE: 1517 ret = userfaultfd_wake(ctx, arg); 1518 break; 1519 case UFFDIO_COPY: 1520 ret = userfaultfd_copy(ctx, arg); 1521 break; 1522 case UFFDIO_ZEROPAGE: 1523 ret = userfaultfd_zeropage(ctx, arg); 1524 break; 1525 } 1526 return ret; 1527 } 1528 1529 #ifdef CONFIG_PROC_FS 1530 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1531 { 1532 struct userfaultfd_ctx *ctx = f->private_data; 1533 wait_queue_t *wq; 1534 struct userfaultfd_wait_queue *uwq; 1535 unsigned long pending = 0, total = 0; 1536 1537 spin_lock(&ctx->fault_pending_wqh.lock); 1538 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1539 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1540 pending++; 1541 total++; 1542 } 1543 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1544 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1545 total++; 1546 } 1547 spin_unlock(&ctx->fault_pending_wqh.lock); 1548 1549 /* 1550 * If more protocols will be added, there will be all shown 1551 * separated by a space. Like this: 1552 * protocols: aa:... bb:... 1553 */ 1554 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1555 pending, total, UFFD_API, UFFD_API_FEATURES, 1556 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1557 } 1558 #endif 1559 1560 static const struct file_operations userfaultfd_fops = { 1561 #ifdef CONFIG_PROC_FS 1562 .show_fdinfo = userfaultfd_show_fdinfo, 1563 #endif 1564 .release = userfaultfd_release, 1565 .poll = userfaultfd_poll, 1566 .read = userfaultfd_read, 1567 .unlocked_ioctl = userfaultfd_ioctl, 1568 .compat_ioctl = userfaultfd_ioctl, 1569 .llseek = noop_llseek, 1570 }; 1571 1572 static void init_once_userfaultfd_ctx(void *mem) 1573 { 1574 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1575 1576 init_waitqueue_head(&ctx->fault_pending_wqh); 1577 init_waitqueue_head(&ctx->fault_wqh); 1578 init_waitqueue_head(&ctx->event_wqh); 1579 init_waitqueue_head(&ctx->fd_wqh); 1580 seqcount_init(&ctx->refile_seq); 1581 } 1582 1583 /** 1584 * userfaultfd_file_create - Creates an userfaultfd file pointer. 1585 * @flags: Flags for the userfaultfd file. 1586 * 1587 * This function creates an userfaultfd file pointer, w/out installing 1588 * it into the fd table. This is useful when the userfaultfd file is 1589 * used during the initialization of data structures that require 1590 * extra setup after the userfaultfd creation. So the userfaultfd 1591 * creation is split into the file pointer creation phase, and the 1592 * file descriptor installation phase. In this way races with 1593 * userspace closing the newly installed file descriptor can be 1594 * avoided. Returns an userfaultfd file pointer, or a proper error 1595 * pointer. 1596 */ 1597 static struct file *userfaultfd_file_create(int flags) 1598 { 1599 struct file *file; 1600 struct userfaultfd_ctx *ctx; 1601 1602 BUG_ON(!current->mm); 1603 1604 /* Check the UFFD_* constants for consistency. */ 1605 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1606 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1607 1608 file = ERR_PTR(-EINVAL); 1609 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1610 goto out; 1611 1612 file = ERR_PTR(-ENOMEM); 1613 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1614 if (!ctx) 1615 goto out; 1616 1617 atomic_set(&ctx->refcount, 1); 1618 ctx->flags = flags; 1619 ctx->features = 0; 1620 ctx->state = UFFD_STATE_WAIT_API; 1621 ctx->released = false; 1622 ctx->mm = current->mm; 1623 /* prevent the mm struct to be freed */ 1624 atomic_inc(&ctx->mm->mm_count); 1625 1626 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1627 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1628 if (IS_ERR(file)) { 1629 mmdrop(ctx->mm); 1630 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1631 } 1632 out: 1633 return file; 1634 } 1635 1636 SYSCALL_DEFINE1(userfaultfd, int, flags) 1637 { 1638 int fd, error; 1639 struct file *file; 1640 1641 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1642 if (error < 0) 1643 return error; 1644 fd = error; 1645 1646 file = userfaultfd_file_create(flags); 1647 if (IS_ERR(file)) { 1648 error = PTR_ERR(file); 1649 goto err_put_unused_fd; 1650 } 1651 fd_install(fd, file); 1652 1653 return fd; 1654 1655 err_put_unused_fd: 1656 put_unused_fd(fd); 1657 1658 return error; 1659 } 1660 1661 static int __init userfaultfd_init(void) 1662 { 1663 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1664 sizeof(struct userfaultfd_ctx), 1665 0, 1666 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1667 init_once_userfaultfd_ctx); 1668 return 0; 1669 } 1670 __initcall(userfaultfd_init); 1671