xref: /openbmc/linux/fs/userfaultfd.c (revision 90794bf19dc19691a16b71bcd75c04094d9e392d)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 
31 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
32 
33 enum userfaultfd_state {
34 	UFFD_STATE_WAIT_API,
35 	UFFD_STATE_RUNNING,
36 };
37 
38 /*
39  * Start with fault_pending_wqh and fault_wqh so they're more likely
40  * to be in the same cacheline.
41  */
42 struct userfaultfd_ctx {
43 	/* waitqueue head for the pending (i.e. not read) userfaults */
44 	wait_queue_head_t fault_pending_wqh;
45 	/* waitqueue head for the userfaults */
46 	wait_queue_head_t fault_wqh;
47 	/* waitqueue head for the pseudo fd to wakeup poll/read */
48 	wait_queue_head_t fd_wqh;
49 	/* waitqueue head for events */
50 	wait_queue_head_t event_wqh;
51 	/* a refile sequence protected by fault_pending_wqh lock */
52 	struct seqcount refile_seq;
53 	/* pseudo fd refcounting */
54 	atomic_t refcount;
55 	/* userfaultfd syscall flags */
56 	unsigned int flags;
57 	/* features requested from the userspace */
58 	unsigned int features;
59 	/* state machine */
60 	enum userfaultfd_state state;
61 	/* released */
62 	bool released;
63 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
64 	struct mm_struct *mm;
65 };
66 
67 struct userfaultfd_fork_ctx {
68 	struct userfaultfd_ctx *orig;
69 	struct userfaultfd_ctx *new;
70 	struct list_head list;
71 };
72 
73 struct userfaultfd_wait_queue {
74 	struct uffd_msg msg;
75 	wait_queue_t wq;
76 	struct userfaultfd_ctx *ctx;
77 	bool waken;
78 };
79 
80 struct userfaultfd_wake_range {
81 	unsigned long start;
82 	unsigned long len;
83 };
84 
85 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
86 				     int wake_flags, void *key)
87 {
88 	struct userfaultfd_wake_range *range = key;
89 	int ret;
90 	struct userfaultfd_wait_queue *uwq;
91 	unsigned long start, len;
92 
93 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
94 	ret = 0;
95 	/* len == 0 means wake all */
96 	start = range->start;
97 	len = range->len;
98 	if (len && (start > uwq->msg.arg.pagefault.address ||
99 		    start + len <= uwq->msg.arg.pagefault.address))
100 		goto out;
101 	WRITE_ONCE(uwq->waken, true);
102 	/*
103 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
104 	 * renders uwq->waken visible to other CPUs before the task is
105 	 * waken.
106 	 */
107 	ret = wake_up_state(wq->private, mode);
108 	if (ret)
109 		/*
110 		 * Wake only once, autoremove behavior.
111 		 *
112 		 * After the effect of list_del_init is visible to the
113 		 * other CPUs, the waitqueue may disappear from under
114 		 * us, see the !list_empty_careful() in
115 		 * handle_userfault(). try_to_wake_up() has an
116 		 * implicit smp_mb__before_spinlock, and the
117 		 * wq->private is read before calling the extern
118 		 * function "wake_up_state" (which in turns calls
119 		 * try_to_wake_up). While the spin_lock;spin_unlock;
120 		 * wouldn't be enough, the smp_mb__before_spinlock is
121 		 * enough to avoid an explicit smp_mb() here.
122 		 */
123 		list_del_init(&wq->task_list);
124 out:
125 	return ret;
126 }
127 
128 /**
129  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
130  * context.
131  * @ctx: [in] Pointer to the userfaultfd context.
132  *
133  * Returns: In case of success, returns not zero.
134  */
135 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
136 {
137 	if (!atomic_inc_not_zero(&ctx->refcount))
138 		BUG();
139 }
140 
141 /**
142  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
143  * context.
144  * @ctx: [in] Pointer to userfaultfd context.
145  *
146  * The userfaultfd context reference must have been previously acquired either
147  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
148  */
149 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
150 {
151 	if (atomic_dec_and_test(&ctx->refcount)) {
152 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
153 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
154 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
155 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
156 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
160 		mmdrop(ctx->mm);
161 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
162 	}
163 }
164 
165 static inline void msg_init(struct uffd_msg *msg)
166 {
167 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
168 	/*
169 	 * Must use memset to zero out the paddings or kernel data is
170 	 * leaked to userland.
171 	 */
172 	memset(msg, 0, sizeof(struct uffd_msg));
173 }
174 
175 static inline struct uffd_msg userfault_msg(unsigned long address,
176 					    unsigned int flags,
177 					    unsigned long reason)
178 {
179 	struct uffd_msg msg;
180 	msg_init(&msg);
181 	msg.event = UFFD_EVENT_PAGEFAULT;
182 	msg.arg.pagefault.address = address;
183 	if (flags & FAULT_FLAG_WRITE)
184 		/*
185 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
186 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
187 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
188 		 * was a read fault, otherwise if set it means it's
189 		 * a write fault.
190 		 */
191 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
192 	if (reason & VM_UFFD_WP)
193 		/*
194 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
196 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
197 		 * a missing fault, otherwise if set it means it's a
198 		 * write protect fault.
199 		 */
200 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
201 	return msg;
202 }
203 
204 /*
205  * Verify the pagetables are still not ok after having reigstered into
206  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
207  * userfault that has already been resolved, if userfaultfd_read and
208  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
209  * threads.
210  */
211 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
212 					 unsigned long address,
213 					 unsigned long flags,
214 					 unsigned long reason)
215 {
216 	struct mm_struct *mm = ctx->mm;
217 	pgd_t *pgd;
218 	pud_t *pud;
219 	pmd_t *pmd, _pmd;
220 	pte_t *pte;
221 	bool ret = true;
222 
223 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
224 
225 	pgd = pgd_offset(mm, address);
226 	if (!pgd_present(*pgd))
227 		goto out;
228 	pud = pud_offset(pgd, address);
229 	if (!pud_present(*pud))
230 		goto out;
231 	pmd = pmd_offset(pud, address);
232 	/*
233 	 * READ_ONCE must function as a barrier with narrower scope
234 	 * and it must be equivalent to:
235 	 *	_pmd = *pmd; barrier();
236 	 *
237 	 * This is to deal with the instability (as in
238 	 * pmd_trans_unstable) of the pmd.
239 	 */
240 	_pmd = READ_ONCE(*pmd);
241 	if (!pmd_present(_pmd))
242 		goto out;
243 
244 	ret = false;
245 	if (pmd_trans_huge(_pmd))
246 		goto out;
247 
248 	/*
249 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
250 	 * and use the standard pte_offset_map() instead of parsing _pmd.
251 	 */
252 	pte = pte_offset_map(pmd, address);
253 	/*
254 	 * Lockless access: we're in a wait_event so it's ok if it
255 	 * changes under us.
256 	 */
257 	if (pte_none(*pte))
258 		ret = true;
259 	pte_unmap(pte);
260 
261 out:
262 	return ret;
263 }
264 
265 /*
266  * The locking rules involved in returning VM_FAULT_RETRY depending on
267  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
268  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
269  * recommendation in __lock_page_or_retry is not an understatement.
270  *
271  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
272  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
273  * not set.
274  *
275  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
276  * set, VM_FAULT_RETRY can still be returned if and only if there are
277  * fatal_signal_pending()s, and the mmap_sem must be released before
278  * returning it.
279  */
280 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
281 {
282 	struct mm_struct *mm = vmf->vma->vm_mm;
283 	struct userfaultfd_ctx *ctx;
284 	struct userfaultfd_wait_queue uwq;
285 	int ret;
286 	bool must_wait, return_to_userland;
287 	long blocking_state;
288 
289 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290 
291 	ret = VM_FAULT_SIGBUS;
292 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
293 	if (!ctx)
294 		goto out;
295 
296 	BUG_ON(ctx->mm != mm);
297 
298 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
299 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
300 
301 	/*
302 	 * If it's already released don't get it. This avoids to loop
303 	 * in __get_user_pages if userfaultfd_release waits on the
304 	 * caller of handle_userfault to release the mmap_sem.
305 	 */
306 	if (unlikely(ACCESS_ONCE(ctx->released)))
307 		goto out;
308 
309 	/*
310 	 * We don't do userfault handling for the final child pid update.
311 	 */
312 	if (current->flags & PF_EXITING)
313 		goto out;
314 
315 	/*
316 	 * Check that we can return VM_FAULT_RETRY.
317 	 *
318 	 * NOTE: it should become possible to return VM_FAULT_RETRY
319 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
320 	 * -EBUSY failures, if the userfaultfd is to be extended for
321 	 * VM_UFFD_WP tracking and we intend to arm the userfault
322 	 * without first stopping userland access to the memory. For
323 	 * VM_UFFD_MISSING userfaults this is enough for now.
324 	 */
325 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
326 		/*
327 		 * Validate the invariant that nowait must allow retry
328 		 * to be sure not to return SIGBUS erroneously on
329 		 * nowait invocations.
330 		 */
331 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
332 #ifdef CONFIG_DEBUG_VM
333 		if (printk_ratelimit()) {
334 			printk(KERN_WARNING
335 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
336 			       vmf->flags);
337 			dump_stack();
338 		}
339 #endif
340 		goto out;
341 	}
342 
343 	/*
344 	 * Handle nowait, not much to do other than tell it to retry
345 	 * and wait.
346 	 */
347 	ret = VM_FAULT_RETRY;
348 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
349 		goto out;
350 
351 	/* take the reference before dropping the mmap_sem */
352 	userfaultfd_ctx_get(ctx);
353 
354 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
355 	uwq.wq.private = current;
356 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
357 	uwq.ctx = ctx;
358 	uwq.waken = false;
359 
360 	return_to_userland =
361 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
362 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
363 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
364 			 TASK_KILLABLE;
365 
366 	spin_lock(&ctx->fault_pending_wqh.lock);
367 	/*
368 	 * After the __add_wait_queue the uwq is visible to userland
369 	 * through poll/read().
370 	 */
371 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
372 	/*
373 	 * The smp_mb() after __set_current_state prevents the reads
374 	 * following the spin_unlock to happen before the list_add in
375 	 * __add_wait_queue.
376 	 */
377 	set_current_state(blocking_state);
378 	spin_unlock(&ctx->fault_pending_wqh.lock);
379 
380 	must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
381 					  reason);
382 	up_read(&mm->mmap_sem);
383 
384 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
385 		   (return_to_userland ? !signal_pending(current) :
386 		    !fatal_signal_pending(current)))) {
387 		wake_up_poll(&ctx->fd_wqh, POLLIN);
388 		schedule();
389 		ret |= VM_FAULT_MAJOR;
390 
391 		/*
392 		 * False wakeups can orginate even from rwsem before
393 		 * up_read() however userfaults will wait either for a
394 		 * targeted wakeup on the specific uwq waitqueue from
395 		 * wake_userfault() or for signals or for uffd
396 		 * release.
397 		 */
398 		while (!READ_ONCE(uwq.waken)) {
399 			/*
400 			 * This needs the full smp_store_mb()
401 			 * guarantee as the state write must be
402 			 * visible to other CPUs before reading
403 			 * uwq.waken from other CPUs.
404 			 */
405 			set_current_state(blocking_state);
406 			if (READ_ONCE(uwq.waken) ||
407 			    READ_ONCE(ctx->released) ||
408 			    (return_to_userland ? signal_pending(current) :
409 			     fatal_signal_pending(current)))
410 				break;
411 			schedule();
412 		}
413 	}
414 
415 	__set_current_state(TASK_RUNNING);
416 
417 	if (return_to_userland) {
418 		if (signal_pending(current) &&
419 		    !fatal_signal_pending(current)) {
420 			/*
421 			 * If we got a SIGSTOP or SIGCONT and this is
422 			 * a normal userland page fault, just let
423 			 * userland return so the signal will be
424 			 * handled and gdb debugging works.  The page
425 			 * fault code immediately after we return from
426 			 * this function is going to release the
427 			 * mmap_sem and it's not depending on it
428 			 * (unlike gup would if we were not to return
429 			 * VM_FAULT_RETRY).
430 			 *
431 			 * If a fatal signal is pending we still take
432 			 * the streamlined VM_FAULT_RETRY failure path
433 			 * and there's no need to retake the mmap_sem
434 			 * in such case.
435 			 */
436 			down_read(&mm->mmap_sem);
437 			ret = 0;
438 		}
439 	}
440 
441 	/*
442 	 * Here we race with the list_del; list_add in
443 	 * userfaultfd_ctx_read(), however because we don't ever run
444 	 * list_del_init() to refile across the two lists, the prev
445 	 * and next pointers will never point to self. list_add also
446 	 * would never let any of the two pointers to point to
447 	 * self. So list_empty_careful won't risk to see both pointers
448 	 * pointing to self at any time during the list refile. The
449 	 * only case where list_del_init() is called is the full
450 	 * removal in the wake function and there we don't re-list_add
451 	 * and it's fine not to block on the spinlock. The uwq on this
452 	 * kernel stack can be released after the list_del_init.
453 	 */
454 	if (!list_empty_careful(&uwq.wq.task_list)) {
455 		spin_lock(&ctx->fault_pending_wqh.lock);
456 		/*
457 		 * No need of list_del_init(), the uwq on the stack
458 		 * will be freed shortly anyway.
459 		 */
460 		list_del(&uwq.wq.task_list);
461 		spin_unlock(&ctx->fault_pending_wqh.lock);
462 	}
463 
464 	/*
465 	 * ctx may go away after this if the userfault pseudo fd is
466 	 * already released.
467 	 */
468 	userfaultfd_ctx_put(ctx);
469 
470 out:
471 	return ret;
472 }
473 
474 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
475 					     struct userfaultfd_wait_queue *ewq)
476 {
477 	int ret = 0;
478 
479 	ewq->ctx = ctx;
480 	init_waitqueue_entry(&ewq->wq, current);
481 
482 	spin_lock(&ctx->event_wqh.lock);
483 	/*
484 	 * After the __add_wait_queue the uwq is visible to userland
485 	 * through poll/read().
486 	 */
487 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
488 	for (;;) {
489 		set_current_state(TASK_KILLABLE);
490 		if (ewq->msg.event == 0)
491 			break;
492 		if (ACCESS_ONCE(ctx->released) ||
493 		    fatal_signal_pending(current)) {
494 			ret = -1;
495 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
496 			break;
497 		}
498 
499 		spin_unlock(&ctx->event_wqh.lock);
500 
501 		wake_up_poll(&ctx->fd_wqh, POLLIN);
502 		schedule();
503 
504 		spin_lock(&ctx->event_wqh.lock);
505 	}
506 	__set_current_state(TASK_RUNNING);
507 	spin_unlock(&ctx->event_wqh.lock);
508 
509 	/*
510 	 * ctx may go away after this if the userfault pseudo fd is
511 	 * already released.
512 	 */
513 
514 	userfaultfd_ctx_put(ctx);
515 	return ret;
516 }
517 
518 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
519 				       struct userfaultfd_wait_queue *ewq)
520 {
521 	ewq->msg.event = 0;
522 	wake_up_locked(&ctx->event_wqh);
523 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
524 }
525 
526 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
527 {
528 	struct userfaultfd_ctx *ctx = NULL, *octx;
529 	struct userfaultfd_fork_ctx *fctx;
530 
531 	octx = vma->vm_userfaultfd_ctx.ctx;
532 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
533 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
534 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
535 		return 0;
536 	}
537 
538 	list_for_each_entry(fctx, fcs, list)
539 		if (fctx->orig == octx) {
540 			ctx = fctx->new;
541 			break;
542 		}
543 
544 	if (!ctx) {
545 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
546 		if (!fctx)
547 			return -ENOMEM;
548 
549 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
550 		if (!ctx) {
551 			kfree(fctx);
552 			return -ENOMEM;
553 		}
554 
555 		atomic_set(&ctx->refcount, 1);
556 		ctx->flags = octx->flags;
557 		ctx->state = UFFD_STATE_RUNNING;
558 		ctx->features = octx->features;
559 		ctx->released = false;
560 		ctx->mm = vma->vm_mm;
561 		atomic_inc(&ctx->mm->mm_count);
562 
563 		userfaultfd_ctx_get(octx);
564 		fctx->orig = octx;
565 		fctx->new = ctx;
566 		list_add_tail(&fctx->list, fcs);
567 	}
568 
569 	vma->vm_userfaultfd_ctx.ctx = ctx;
570 	return 0;
571 }
572 
573 static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
574 {
575 	struct userfaultfd_ctx *ctx = fctx->orig;
576 	struct userfaultfd_wait_queue ewq;
577 
578 	msg_init(&ewq.msg);
579 
580 	ewq.msg.event = UFFD_EVENT_FORK;
581 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
582 
583 	return userfaultfd_event_wait_completion(ctx, &ewq);
584 }
585 
586 void dup_userfaultfd_complete(struct list_head *fcs)
587 {
588 	int ret = 0;
589 	struct userfaultfd_fork_ctx *fctx, *n;
590 
591 	list_for_each_entry_safe(fctx, n, fcs, list) {
592 		if (!ret)
593 			ret = dup_fctx(fctx);
594 		list_del(&fctx->list);
595 		kfree(fctx);
596 	}
597 }
598 
599 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
600 			     struct vm_userfaultfd_ctx *vm_ctx)
601 {
602 	struct userfaultfd_ctx *ctx;
603 
604 	ctx = vma->vm_userfaultfd_ctx.ctx;
605 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
606 		vm_ctx->ctx = ctx;
607 		userfaultfd_ctx_get(ctx);
608 	}
609 }
610 
611 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
612 				 unsigned long from, unsigned long to,
613 				 unsigned long len)
614 {
615 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
616 	struct userfaultfd_wait_queue ewq;
617 
618 	if (!ctx)
619 		return;
620 
621 	if (to & ~PAGE_MASK) {
622 		userfaultfd_ctx_put(ctx);
623 		return;
624 	}
625 
626 	msg_init(&ewq.msg);
627 
628 	ewq.msg.event = UFFD_EVENT_REMAP;
629 	ewq.msg.arg.remap.from = from;
630 	ewq.msg.arg.remap.to = to;
631 	ewq.msg.arg.remap.len = len;
632 
633 	userfaultfd_event_wait_completion(ctx, &ewq);
634 }
635 
636 static int userfaultfd_release(struct inode *inode, struct file *file)
637 {
638 	struct userfaultfd_ctx *ctx = file->private_data;
639 	struct mm_struct *mm = ctx->mm;
640 	struct vm_area_struct *vma, *prev;
641 	/* len == 0 means wake all */
642 	struct userfaultfd_wake_range range = { .len = 0, };
643 	unsigned long new_flags;
644 
645 	ACCESS_ONCE(ctx->released) = true;
646 
647 	if (!mmget_not_zero(mm))
648 		goto wakeup;
649 
650 	/*
651 	 * Flush page faults out of all CPUs. NOTE: all page faults
652 	 * must be retried without returning VM_FAULT_SIGBUS if
653 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
654 	 * changes while handle_userfault released the mmap_sem. So
655 	 * it's critical that released is set to true (above), before
656 	 * taking the mmap_sem for writing.
657 	 */
658 	down_write(&mm->mmap_sem);
659 	prev = NULL;
660 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
661 		cond_resched();
662 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
663 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
664 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
665 			prev = vma;
666 			continue;
667 		}
668 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
669 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
670 				 new_flags, vma->anon_vma,
671 				 vma->vm_file, vma->vm_pgoff,
672 				 vma_policy(vma),
673 				 NULL_VM_UFFD_CTX);
674 		if (prev)
675 			vma = prev;
676 		else
677 			prev = vma;
678 		vma->vm_flags = new_flags;
679 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 	}
681 	up_write(&mm->mmap_sem);
682 	mmput(mm);
683 wakeup:
684 	/*
685 	 * After no new page faults can wait on this fault_*wqh, flush
686 	 * the last page faults that may have been already waiting on
687 	 * the fault_*wqh.
688 	 */
689 	spin_lock(&ctx->fault_pending_wqh.lock);
690 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
691 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
692 	spin_unlock(&ctx->fault_pending_wqh.lock);
693 
694 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
695 	userfaultfd_ctx_put(ctx);
696 	return 0;
697 }
698 
699 /* fault_pending_wqh.lock must be hold by the caller */
700 static inline struct userfaultfd_wait_queue *find_userfault_in(
701 		wait_queue_head_t *wqh)
702 {
703 	wait_queue_t *wq;
704 	struct userfaultfd_wait_queue *uwq;
705 
706 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
707 
708 	uwq = NULL;
709 	if (!waitqueue_active(wqh))
710 		goto out;
711 	/* walk in reverse to provide FIFO behavior to read userfaults */
712 	wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
713 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
714 out:
715 	return uwq;
716 }
717 
718 static inline struct userfaultfd_wait_queue *find_userfault(
719 		struct userfaultfd_ctx *ctx)
720 {
721 	return find_userfault_in(&ctx->fault_pending_wqh);
722 }
723 
724 static inline struct userfaultfd_wait_queue *find_userfault_evt(
725 		struct userfaultfd_ctx *ctx)
726 {
727 	return find_userfault_in(&ctx->event_wqh);
728 }
729 
730 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
731 {
732 	struct userfaultfd_ctx *ctx = file->private_data;
733 	unsigned int ret;
734 
735 	poll_wait(file, &ctx->fd_wqh, wait);
736 
737 	switch (ctx->state) {
738 	case UFFD_STATE_WAIT_API:
739 		return POLLERR;
740 	case UFFD_STATE_RUNNING:
741 		/*
742 		 * poll() never guarantees that read won't block.
743 		 * userfaults can be waken before they're read().
744 		 */
745 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
746 			return POLLERR;
747 		/*
748 		 * lockless access to see if there are pending faults
749 		 * __pollwait last action is the add_wait_queue but
750 		 * the spin_unlock would allow the waitqueue_active to
751 		 * pass above the actual list_add inside
752 		 * add_wait_queue critical section. So use a full
753 		 * memory barrier to serialize the list_add write of
754 		 * add_wait_queue() with the waitqueue_active read
755 		 * below.
756 		 */
757 		ret = 0;
758 		smp_mb();
759 		if (waitqueue_active(&ctx->fault_pending_wqh))
760 			ret = POLLIN;
761 		else if (waitqueue_active(&ctx->event_wqh))
762 			ret = POLLIN;
763 
764 		return ret;
765 	default:
766 		WARN_ON_ONCE(1);
767 		return POLLERR;
768 	}
769 }
770 
771 static const struct file_operations userfaultfd_fops;
772 
773 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
774 				  struct userfaultfd_ctx *new,
775 				  struct uffd_msg *msg)
776 {
777 	int fd;
778 	struct file *file;
779 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
780 
781 	fd = get_unused_fd_flags(flags);
782 	if (fd < 0)
783 		return fd;
784 
785 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
786 				  O_RDWR | flags);
787 	if (IS_ERR(file)) {
788 		put_unused_fd(fd);
789 		return PTR_ERR(file);
790 	}
791 
792 	fd_install(fd, file);
793 	msg->arg.reserved.reserved1 = 0;
794 	msg->arg.fork.ufd = fd;
795 
796 	return 0;
797 }
798 
799 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
800 				    struct uffd_msg *msg)
801 {
802 	ssize_t ret;
803 	DECLARE_WAITQUEUE(wait, current);
804 	struct userfaultfd_wait_queue *uwq;
805 	/*
806 	 * Handling fork event requires sleeping operations, so
807 	 * we drop the event_wqh lock, then do these ops, then
808 	 * lock it back and wake up the waiter. While the lock is
809 	 * dropped the ewq may go away so we keep track of it
810 	 * carefully.
811 	 */
812 	LIST_HEAD(fork_event);
813 	struct userfaultfd_ctx *fork_nctx = NULL;
814 
815 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
816 	spin_lock(&ctx->fd_wqh.lock);
817 	__add_wait_queue(&ctx->fd_wqh, &wait);
818 	for (;;) {
819 		set_current_state(TASK_INTERRUPTIBLE);
820 		spin_lock(&ctx->fault_pending_wqh.lock);
821 		uwq = find_userfault(ctx);
822 		if (uwq) {
823 			/*
824 			 * Use a seqcount to repeat the lockless check
825 			 * in wake_userfault() to avoid missing
826 			 * wakeups because during the refile both
827 			 * waitqueue could become empty if this is the
828 			 * only userfault.
829 			 */
830 			write_seqcount_begin(&ctx->refile_seq);
831 
832 			/*
833 			 * The fault_pending_wqh.lock prevents the uwq
834 			 * to disappear from under us.
835 			 *
836 			 * Refile this userfault from
837 			 * fault_pending_wqh to fault_wqh, it's not
838 			 * pending anymore after we read it.
839 			 *
840 			 * Use list_del() by hand (as
841 			 * userfaultfd_wake_function also uses
842 			 * list_del_init() by hand) to be sure nobody
843 			 * changes __remove_wait_queue() to use
844 			 * list_del_init() in turn breaking the
845 			 * !list_empty_careful() check in
846 			 * handle_userfault(). The uwq->wq.task_list
847 			 * must never be empty at any time during the
848 			 * refile, or the waitqueue could disappear
849 			 * from under us. The "wait_queue_head_t"
850 			 * parameter of __remove_wait_queue() is unused
851 			 * anyway.
852 			 */
853 			list_del(&uwq->wq.task_list);
854 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
855 
856 			write_seqcount_end(&ctx->refile_seq);
857 
858 			/* careful to always initialize msg if ret == 0 */
859 			*msg = uwq->msg;
860 			spin_unlock(&ctx->fault_pending_wqh.lock);
861 			ret = 0;
862 			break;
863 		}
864 		spin_unlock(&ctx->fault_pending_wqh.lock);
865 
866 		spin_lock(&ctx->event_wqh.lock);
867 		uwq = find_userfault_evt(ctx);
868 		if (uwq) {
869 			*msg = uwq->msg;
870 
871 			if (uwq->msg.event == UFFD_EVENT_FORK) {
872 				fork_nctx = (struct userfaultfd_ctx *)
873 					(unsigned long)
874 					uwq->msg.arg.reserved.reserved1;
875 				list_move(&uwq->wq.task_list, &fork_event);
876 				spin_unlock(&ctx->event_wqh.lock);
877 				ret = 0;
878 				break;
879 			}
880 
881 			userfaultfd_event_complete(ctx, uwq);
882 			spin_unlock(&ctx->event_wqh.lock);
883 			ret = 0;
884 			break;
885 		}
886 		spin_unlock(&ctx->event_wqh.lock);
887 
888 		if (signal_pending(current)) {
889 			ret = -ERESTARTSYS;
890 			break;
891 		}
892 		if (no_wait) {
893 			ret = -EAGAIN;
894 			break;
895 		}
896 		spin_unlock(&ctx->fd_wqh.lock);
897 		schedule();
898 		spin_lock(&ctx->fd_wqh.lock);
899 	}
900 	__remove_wait_queue(&ctx->fd_wqh, &wait);
901 	__set_current_state(TASK_RUNNING);
902 	spin_unlock(&ctx->fd_wqh.lock);
903 
904 	if (!ret && msg->event == UFFD_EVENT_FORK) {
905 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
906 
907 		if (!ret) {
908 			spin_lock(&ctx->event_wqh.lock);
909 			if (!list_empty(&fork_event)) {
910 				uwq = list_first_entry(&fork_event,
911 						       typeof(*uwq),
912 						       wq.task_list);
913 				list_del(&uwq->wq.task_list);
914 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
915 				userfaultfd_event_complete(ctx, uwq);
916 			}
917 			spin_unlock(&ctx->event_wqh.lock);
918 		}
919 	}
920 
921 	return ret;
922 }
923 
924 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
925 				size_t count, loff_t *ppos)
926 {
927 	struct userfaultfd_ctx *ctx = file->private_data;
928 	ssize_t _ret, ret = 0;
929 	struct uffd_msg msg;
930 	int no_wait = file->f_flags & O_NONBLOCK;
931 
932 	if (ctx->state == UFFD_STATE_WAIT_API)
933 		return -EINVAL;
934 
935 	for (;;) {
936 		if (count < sizeof(msg))
937 			return ret ? ret : -EINVAL;
938 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
939 		if (_ret < 0)
940 			return ret ? ret : _ret;
941 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
942 			return ret ? ret : -EFAULT;
943 		ret += sizeof(msg);
944 		buf += sizeof(msg);
945 		count -= sizeof(msg);
946 		/*
947 		 * Allow to read more than one fault at time but only
948 		 * block if waiting for the very first one.
949 		 */
950 		no_wait = O_NONBLOCK;
951 	}
952 }
953 
954 static void __wake_userfault(struct userfaultfd_ctx *ctx,
955 			     struct userfaultfd_wake_range *range)
956 {
957 	unsigned long start, end;
958 
959 	start = range->start;
960 	end = range->start + range->len;
961 
962 	spin_lock(&ctx->fault_pending_wqh.lock);
963 	/* wake all in the range and autoremove */
964 	if (waitqueue_active(&ctx->fault_pending_wqh))
965 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
966 				     range);
967 	if (waitqueue_active(&ctx->fault_wqh))
968 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
969 	spin_unlock(&ctx->fault_pending_wqh.lock);
970 }
971 
972 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
973 					   struct userfaultfd_wake_range *range)
974 {
975 	unsigned seq;
976 	bool need_wakeup;
977 
978 	/*
979 	 * To be sure waitqueue_active() is not reordered by the CPU
980 	 * before the pagetable update, use an explicit SMP memory
981 	 * barrier here. PT lock release or up_read(mmap_sem) still
982 	 * have release semantics that can allow the
983 	 * waitqueue_active() to be reordered before the pte update.
984 	 */
985 	smp_mb();
986 
987 	/*
988 	 * Use waitqueue_active because it's very frequent to
989 	 * change the address space atomically even if there are no
990 	 * userfaults yet. So we take the spinlock only when we're
991 	 * sure we've userfaults to wake.
992 	 */
993 	do {
994 		seq = read_seqcount_begin(&ctx->refile_seq);
995 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
996 			waitqueue_active(&ctx->fault_wqh);
997 		cond_resched();
998 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
999 	if (need_wakeup)
1000 		__wake_userfault(ctx, range);
1001 }
1002 
1003 static __always_inline int validate_range(struct mm_struct *mm,
1004 					  __u64 start, __u64 len)
1005 {
1006 	__u64 task_size = mm->task_size;
1007 
1008 	if (start & ~PAGE_MASK)
1009 		return -EINVAL;
1010 	if (len & ~PAGE_MASK)
1011 		return -EINVAL;
1012 	if (!len)
1013 		return -EINVAL;
1014 	if (start < mmap_min_addr)
1015 		return -EINVAL;
1016 	if (start >= task_size)
1017 		return -EINVAL;
1018 	if (len > task_size - start)
1019 		return -EINVAL;
1020 	return 0;
1021 }
1022 
1023 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1024 				unsigned long arg)
1025 {
1026 	struct mm_struct *mm = ctx->mm;
1027 	struct vm_area_struct *vma, *prev, *cur;
1028 	int ret;
1029 	struct uffdio_register uffdio_register;
1030 	struct uffdio_register __user *user_uffdio_register;
1031 	unsigned long vm_flags, new_flags;
1032 	bool found;
1033 	unsigned long start, end, vma_end;
1034 
1035 	user_uffdio_register = (struct uffdio_register __user *) arg;
1036 
1037 	ret = -EFAULT;
1038 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1039 			   sizeof(uffdio_register)-sizeof(__u64)))
1040 		goto out;
1041 
1042 	ret = -EINVAL;
1043 	if (!uffdio_register.mode)
1044 		goto out;
1045 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1046 				     UFFDIO_REGISTER_MODE_WP))
1047 		goto out;
1048 	vm_flags = 0;
1049 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1050 		vm_flags |= VM_UFFD_MISSING;
1051 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1052 		vm_flags |= VM_UFFD_WP;
1053 		/*
1054 		 * FIXME: remove the below error constraint by
1055 		 * implementing the wprotect tracking mode.
1056 		 */
1057 		ret = -EINVAL;
1058 		goto out;
1059 	}
1060 
1061 	ret = validate_range(mm, uffdio_register.range.start,
1062 			     uffdio_register.range.len);
1063 	if (ret)
1064 		goto out;
1065 
1066 	start = uffdio_register.range.start;
1067 	end = start + uffdio_register.range.len;
1068 
1069 	ret = -ENOMEM;
1070 	if (!mmget_not_zero(mm))
1071 		goto out;
1072 
1073 	down_write(&mm->mmap_sem);
1074 	vma = find_vma_prev(mm, start, &prev);
1075 	if (!vma)
1076 		goto out_unlock;
1077 
1078 	/* check that there's at least one vma in the range */
1079 	ret = -EINVAL;
1080 	if (vma->vm_start >= end)
1081 		goto out_unlock;
1082 
1083 	/*
1084 	 * Search for not compatible vmas.
1085 	 *
1086 	 * FIXME: this shall be relaxed later so that it doesn't fail
1087 	 * on tmpfs backed vmas (in addition to the current allowance
1088 	 * on anonymous vmas).
1089 	 */
1090 	found = false;
1091 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1092 		cond_resched();
1093 
1094 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1095 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1096 
1097 		/* check not compatible vmas */
1098 		ret = -EINVAL;
1099 		if (!vma_is_anonymous(cur))
1100 			goto out_unlock;
1101 
1102 		/*
1103 		 * Check that this vma isn't already owned by a
1104 		 * different userfaultfd. We can't allow more than one
1105 		 * userfaultfd to own a single vma simultaneously or we
1106 		 * wouldn't know which one to deliver the userfaults to.
1107 		 */
1108 		ret = -EBUSY;
1109 		if (cur->vm_userfaultfd_ctx.ctx &&
1110 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1111 			goto out_unlock;
1112 
1113 		found = true;
1114 	}
1115 	BUG_ON(!found);
1116 
1117 	if (vma->vm_start < start)
1118 		prev = vma;
1119 
1120 	ret = 0;
1121 	do {
1122 		cond_resched();
1123 
1124 		BUG_ON(!vma_is_anonymous(vma));
1125 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1126 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1127 
1128 		/*
1129 		 * Nothing to do: this vma is already registered into this
1130 		 * userfaultfd and with the right tracking mode too.
1131 		 */
1132 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1133 		    (vma->vm_flags & vm_flags) == vm_flags)
1134 			goto skip;
1135 
1136 		if (vma->vm_start > start)
1137 			start = vma->vm_start;
1138 		vma_end = min(end, vma->vm_end);
1139 
1140 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1141 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1142 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1143 				 vma_policy(vma),
1144 				 ((struct vm_userfaultfd_ctx){ ctx }));
1145 		if (prev) {
1146 			vma = prev;
1147 			goto next;
1148 		}
1149 		if (vma->vm_start < start) {
1150 			ret = split_vma(mm, vma, start, 1);
1151 			if (ret)
1152 				break;
1153 		}
1154 		if (vma->vm_end > end) {
1155 			ret = split_vma(mm, vma, end, 0);
1156 			if (ret)
1157 				break;
1158 		}
1159 	next:
1160 		/*
1161 		 * In the vma_merge() successful mprotect-like case 8:
1162 		 * the next vma was merged into the current one and
1163 		 * the current one has not been updated yet.
1164 		 */
1165 		vma->vm_flags = new_flags;
1166 		vma->vm_userfaultfd_ctx.ctx = ctx;
1167 
1168 	skip:
1169 		prev = vma;
1170 		start = vma->vm_end;
1171 		vma = vma->vm_next;
1172 	} while (vma && vma->vm_start < end);
1173 out_unlock:
1174 	up_write(&mm->mmap_sem);
1175 	mmput(mm);
1176 	if (!ret) {
1177 		/*
1178 		 * Now that we scanned all vmas we can already tell
1179 		 * userland which ioctls methods are guaranteed to
1180 		 * succeed on this range.
1181 		 */
1182 		if (put_user(UFFD_API_RANGE_IOCTLS,
1183 			     &user_uffdio_register->ioctls))
1184 			ret = -EFAULT;
1185 	}
1186 out:
1187 	return ret;
1188 }
1189 
1190 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1191 				  unsigned long arg)
1192 {
1193 	struct mm_struct *mm = ctx->mm;
1194 	struct vm_area_struct *vma, *prev, *cur;
1195 	int ret;
1196 	struct uffdio_range uffdio_unregister;
1197 	unsigned long new_flags;
1198 	bool found;
1199 	unsigned long start, end, vma_end;
1200 	const void __user *buf = (void __user *)arg;
1201 
1202 	ret = -EFAULT;
1203 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1204 		goto out;
1205 
1206 	ret = validate_range(mm, uffdio_unregister.start,
1207 			     uffdio_unregister.len);
1208 	if (ret)
1209 		goto out;
1210 
1211 	start = uffdio_unregister.start;
1212 	end = start + uffdio_unregister.len;
1213 
1214 	ret = -ENOMEM;
1215 	if (!mmget_not_zero(mm))
1216 		goto out;
1217 
1218 	down_write(&mm->mmap_sem);
1219 	vma = find_vma_prev(mm, start, &prev);
1220 	if (!vma)
1221 		goto out_unlock;
1222 
1223 	/* check that there's at least one vma in the range */
1224 	ret = -EINVAL;
1225 	if (vma->vm_start >= end)
1226 		goto out_unlock;
1227 
1228 	/*
1229 	 * Search for not compatible vmas.
1230 	 *
1231 	 * FIXME: this shall be relaxed later so that it doesn't fail
1232 	 * on tmpfs backed vmas (in addition to the current allowance
1233 	 * on anonymous vmas).
1234 	 */
1235 	found = false;
1236 	ret = -EINVAL;
1237 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1238 		cond_resched();
1239 
1240 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1241 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1242 
1243 		/*
1244 		 * Check not compatible vmas, not strictly required
1245 		 * here as not compatible vmas cannot have an
1246 		 * userfaultfd_ctx registered on them, but this
1247 		 * provides for more strict behavior to notice
1248 		 * unregistration errors.
1249 		 */
1250 		if (!vma_is_anonymous(cur))
1251 			goto out_unlock;
1252 
1253 		found = true;
1254 	}
1255 	BUG_ON(!found);
1256 
1257 	if (vma->vm_start < start)
1258 		prev = vma;
1259 
1260 	ret = 0;
1261 	do {
1262 		cond_resched();
1263 
1264 		BUG_ON(!vma_is_anonymous(vma));
1265 
1266 		/*
1267 		 * Nothing to do: this vma is already registered into this
1268 		 * userfaultfd and with the right tracking mode too.
1269 		 */
1270 		if (!vma->vm_userfaultfd_ctx.ctx)
1271 			goto skip;
1272 
1273 		if (vma->vm_start > start)
1274 			start = vma->vm_start;
1275 		vma_end = min(end, vma->vm_end);
1276 
1277 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1278 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1279 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1280 				 vma_policy(vma),
1281 				 NULL_VM_UFFD_CTX);
1282 		if (prev) {
1283 			vma = prev;
1284 			goto next;
1285 		}
1286 		if (vma->vm_start < start) {
1287 			ret = split_vma(mm, vma, start, 1);
1288 			if (ret)
1289 				break;
1290 		}
1291 		if (vma->vm_end > end) {
1292 			ret = split_vma(mm, vma, end, 0);
1293 			if (ret)
1294 				break;
1295 		}
1296 	next:
1297 		/*
1298 		 * In the vma_merge() successful mprotect-like case 8:
1299 		 * the next vma was merged into the current one and
1300 		 * the current one has not been updated yet.
1301 		 */
1302 		vma->vm_flags = new_flags;
1303 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1304 
1305 	skip:
1306 		prev = vma;
1307 		start = vma->vm_end;
1308 		vma = vma->vm_next;
1309 	} while (vma && vma->vm_start < end);
1310 out_unlock:
1311 	up_write(&mm->mmap_sem);
1312 	mmput(mm);
1313 out:
1314 	return ret;
1315 }
1316 
1317 /*
1318  * userfaultfd_wake may be used in combination with the
1319  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1320  */
1321 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1322 			    unsigned long arg)
1323 {
1324 	int ret;
1325 	struct uffdio_range uffdio_wake;
1326 	struct userfaultfd_wake_range range;
1327 	const void __user *buf = (void __user *)arg;
1328 
1329 	ret = -EFAULT;
1330 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1331 		goto out;
1332 
1333 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1334 	if (ret)
1335 		goto out;
1336 
1337 	range.start = uffdio_wake.start;
1338 	range.len = uffdio_wake.len;
1339 
1340 	/*
1341 	 * len == 0 means wake all and we don't want to wake all here,
1342 	 * so check it again to be sure.
1343 	 */
1344 	VM_BUG_ON(!range.len);
1345 
1346 	wake_userfault(ctx, &range);
1347 	ret = 0;
1348 
1349 out:
1350 	return ret;
1351 }
1352 
1353 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1354 			    unsigned long arg)
1355 {
1356 	__s64 ret;
1357 	struct uffdio_copy uffdio_copy;
1358 	struct uffdio_copy __user *user_uffdio_copy;
1359 	struct userfaultfd_wake_range range;
1360 
1361 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1362 
1363 	ret = -EFAULT;
1364 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1365 			   /* don't copy "copy" last field */
1366 			   sizeof(uffdio_copy)-sizeof(__s64)))
1367 		goto out;
1368 
1369 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1370 	if (ret)
1371 		goto out;
1372 	/*
1373 	 * double check for wraparound just in case. copy_from_user()
1374 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1375 	 * in the userland range.
1376 	 */
1377 	ret = -EINVAL;
1378 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1379 		goto out;
1380 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1381 		goto out;
1382 	if (mmget_not_zero(ctx->mm)) {
1383 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1384 				   uffdio_copy.len);
1385 		mmput(ctx->mm);
1386 	}
1387 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1388 		return -EFAULT;
1389 	if (ret < 0)
1390 		goto out;
1391 	BUG_ON(!ret);
1392 	/* len == 0 would wake all */
1393 	range.len = ret;
1394 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1395 		range.start = uffdio_copy.dst;
1396 		wake_userfault(ctx, &range);
1397 	}
1398 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1399 out:
1400 	return ret;
1401 }
1402 
1403 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1404 				unsigned long arg)
1405 {
1406 	__s64 ret;
1407 	struct uffdio_zeropage uffdio_zeropage;
1408 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1409 	struct userfaultfd_wake_range range;
1410 
1411 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1412 
1413 	ret = -EFAULT;
1414 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1415 			   /* don't copy "zeropage" last field */
1416 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1417 		goto out;
1418 
1419 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1420 			     uffdio_zeropage.range.len);
1421 	if (ret)
1422 		goto out;
1423 	ret = -EINVAL;
1424 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1425 		goto out;
1426 
1427 	if (mmget_not_zero(ctx->mm)) {
1428 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1429 				     uffdio_zeropage.range.len);
1430 		mmput(ctx->mm);
1431 	}
1432 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1433 		return -EFAULT;
1434 	if (ret < 0)
1435 		goto out;
1436 	/* len == 0 would wake all */
1437 	BUG_ON(!ret);
1438 	range.len = ret;
1439 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1440 		range.start = uffdio_zeropage.range.start;
1441 		wake_userfault(ctx, &range);
1442 	}
1443 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1444 out:
1445 	return ret;
1446 }
1447 
1448 static inline unsigned int uffd_ctx_features(__u64 user_features)
1449 {
1450 	/*
1451 	 * For the current set of features the bits just coincide
1452 	 */
1453 	return (unsigned int)user_features;
1454 }
1455 
1456 /*
1457  * userland asks for a certain API version and we return which bits
1458  * and ioctl commands are implemented in this kernel for such API
1459  * version or -EINVAL if unknown.
1460  */
1461 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1462 			   unsigned long arg)
1463 {
1464 	struct uffdio_api uffdio_api;
1465 	void __user *buf = (void __user *)arg;
1466 	int ret;
1467 	__u64 features;
1468 
1469 	ret = -EINVAL;
1470 	if (ctx->state != UFFD_STATE_WAIT_API)
1471 		goto out;
1472 	ret = -EFAULT;
1473 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1474 		goto out;
1475 	features = uffdio_api.features;
1476 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1477 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1478 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1479 			goto out;
1480 		ret = -EINVAL;
1481 		goto out;
1482 	}
1483 	/* report all available features and ioctls to userland */
1484 	uffdio_api.features = UFFD_API_FEATURES;
1485 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1486 	ret = -EFAULT;
1487 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1488 		goto out;
1489 	ctx->state = UFFD_STATE_RUNNING;
1490 	/* only enable the requested features for this uffd context */
1491 	ctx->features = uffd_ctx_features(features);
1492 	ret = 0;
1493 out:
1494 	return ret;
1495 }
1496 
1497 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1498 			      unsigned long arg)
1499 {
1500 	int ret = -EINVAL;
1501 	struct userfaultfd_ctx *ctx = file->private_data;
1502 
1503 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1504 		return -EINVAL;
1505 
1506 	switch(cmd) {
1507 	case UFFDIO_API:
1508 		ret = userfaultfd_api(ctx, arg);
1509 		break;
1510 	case UFFDIO_REGISTER:
1511 		ret = userfaultfd_register(ctx, arg);
1512 		break;
1513 	case UFFDIO_UNREGISTER:
1514 		ret = userfaultfd_unregister(ctx, arg);
1515 		break;
1516 	case UFFDIO_WAKE:
1517 		ret = userfaultfd_wake(ctx, arg);
1518 		break;
1519 	case UFFDIO_COPY:
1520 		ret = userfaultfd_copy(ctx, arg);
1521 		break;
1522 	case UFFDIO_ZEROPAGE:
1523 		ret = userfaultfd_zeropage(ctx, arg);
1524 		break;
1525 	}
1526 	return ret;
1527 }
1528 
1529 #ifdef CONFIG_PROC_FS
1530 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1531 {
1532 	struct userfaultfd_ctx *ctx = f->private_data;
1533 	wait_queue_t *wq;
1534 	struct userfaultfd_wait_queue *uwq;
1535 	unsigned long pending = 0, total = 0;
1536 
1537 	spin_lock(&ctx->fault_pending_wqh.lock);
1538 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1539 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1540 		pending++;
1541 		total++;
1542 	}
1543 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1544 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1545 		total++;
1546 	}
1547 	spin_unlock(&ctx->fault_pending_wqh.lock);
1548 
1549 	/*
1550 	 * If more protocols will be added, there will be all shown
1551 	 * separated by a space. Like this:
1552 	 *	protocols: aa:... bb:...
1553 	 */
1554 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1555 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1556 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1557 }
1558 #endif
1559 
1560 static const struct file_operations userfaultfd_fops = {
1561 #ifdef CONFIG_PROC_FS
1562 	.show_fdinfo	= userfaultfd_show_fdinfo,
1563 #endif
1564 	.release	= userfaultfd_release,
1565 	.poll		= userfaultfd_poll,
1566 	.read		= userfaultfd_read,
1567 	.unlocked_ioctl = userfaultfd_ioctl,
1568 	.compat_ioctl	= userfaultfd_ioctl,
1569 	.llseek		= noop_llseek,
1570 };
1571 
1572 static void init_once_userfaultfd_ctx(void *mem)
1573 {
1574 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1575 
1576 	init_waitqueue_head(&ctx->fault_pending_wqh);
1577 	init_waitqueue_head(&ctx->fault_wqh);
1578 	init_waitqueue_head(&ctx->event_wqh);
1579 	init_waitqueue_head(&ctx->fd_wqh);
1580 	seqcount_init(&ctx->refile_seq);
1581 }
1582 
1583 /**
1584  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1585  * @flags: Flags for the userfaultfd file.
1586  *
1587  * This function creates an userfaultfd file pointer, w/out installing
1588  * it into the fd table. This is useful when the userfaultfd file is
1589  * used during the initialization of data structures that require
1590  * extra setup after the userfaultfd creation. So the userfaultfd
1591  * creation is split into the file pointer creation phase, and the
1592  * file descriptor installation phase.  In this way races with
1593  * userspace closing the newly installed file descriptor can be
1594  * avoided.  Returns an userfaultfd file pointer, or a proper error
1595  * pointer.
1596  */
1597 static struct file *userfaultfd_file_create(int flags)
1598 {
1599 	struct file *file;
1600 	struct userfaultfd_ctx *ctx;
1601 
1602 	BUG_ON(!current->mm);
1603 
1604 	/* Check the UFFD_* constants for consistency.  */
1605 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1606 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1607 
1608 	file = ERR_PTR(-EINVAL);
1609 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1610 		goto out;
1611 
1612 	file = ERR_PTR(-ENOMEM);
1613 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1614 	if (!ctx)
1615 		goto out;
1616 
1617 	atomic_set(&ctx->refcount, 1);
1618 	ctx->flags = flags;
1619 	ctx->features = 0;
1620 	ctx->state = UFFD_STATE_WAIT_API;
1621 	ctx->released = false;
1622 	ctx->mm = current->mm;
1623 	/* prevent the mm struct to be freed */
1624 	atomic_inc(&ctx->mm->mm_count);
1625 
1626 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1627 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1628 	if (IS_ERR(file)) {
1629 		mmdrop(ctx->mm);
1630 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1631 	}
1632 out:
1633 	return file;
1634 }
1635 
1636 SYSCALL_DEFINE1(userfaultfd, int, flags)
1637 {
1638 	int fd, error;
1639 	struct file *file;
1640 
1641 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1642 	if (error < 0)
1643 		return error;
1644 	fd = error;
1645 
1646 	file = userfaultfd_file_create(flags);
1647 	if (IS_ERR(file)) {
1648 		error = PTR_ERR(file);
1649 		goto err_put_unused_fd;
1650 	}
1651 	fd_install(fd, file);
1652 
1653 	return fd;
1654 
1655 err_put_unused_fd:
1656 	put_unused_fd(fd);
1657 
1658 	return error;
1659 }
1660 
1661 static int __init userfaultfd_init(void)
1662 {
1663 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1664 						sizeof(struct userfaultfd_ctx),
1665 						0,
1666 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1667 						init_once_userfaultfd_ctx);
1668 	return 0;
1669 }
1670 __initcall(userfaultfd_init);
1671