1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/poll.h> 20 #include <linux/slab.h> 21 #include <linux/seq_file.h> 22 #include <linux/file.h> 23 #include <linux/bug.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/syscalls.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ioctl.h> 29 #include <linux/security.h> 30 #include <linux/hugetlb.h> 31 32 int sysctl_unprivileged_userfaultfd __read_mostly; 33 34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 35 36 enum userfaultfd_state { 37 UFFD_STATE_WAIT_API, 38 UFFD_STATE_RUNNING, 39 }; 40 41 /* 42 * Start with fault_pending_wqh and fault_wqh so they're more likely 43 * to be in the same cacheline. 44 * 45 * Locking order: 46 * fd_wqh.lock 47 * fault_pending_wqh.lock 48 * fault_wqh.lock 49 * event_wqh.lock 50 * 51 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 52 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 53 * also taken in IRQ context. 54 */ 55 struct userfaultfd_ctx { 56 /* waitqueue head for the pending (i.e. not read) userfaults */ 57 wait_queue_head_t fault_pending_wqh; 58 /* waitqueue head for the userfaults */ 59 wait_queue_head_t fault_wqh; 60 /* waitqueue head for the pseudo fd to wakeup poll/read */ 61 wait_queue_head_t fd_wqh; 62 /* waitqueue head for events */ 63 wait_queue_head_t event_wqh; 64 /* a refile sequence protected by fault_pending_wqh lock */ 65 seqcount_spinlock_t refile_seq; 66 /* pseudo fd refcounting */ 67 refcount_t refcount; 68 /* userfaultfd syscall flags */ 69 unsigned int flags; 70 /* features requested from the userspace */ 71 unsigned int features; 72 /* state machine */ 73 enum userfaultfd_state state; 74 /* released */ 75 bool released; 76 /* memory mappings are changing because of non-cooperative event */ 77 bool mmap_changing; 78 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 79 struct mm_struct *mm; 80 }; 81 82 struct userfaultfd_fork_ctx { 83 struct userfaultfd_ctx *orig; 84 struct userfaultfd_ctx *new; 85 struct list_head list; 86 }; 87 88 struct userfaultfd_unmap_ctx { 89 struct userfaultfd_ctx *ctx; 90 unsigned long start; 91 unsigned long end; 92 struct list_head list; 93 }; 94 95 struct userfaultfd_wait_queue { 96 struct uffd_msg msg; 97 wait_queue_entry_t wq; 98 struct userfaultfd_ctx *ctx; 99 bool waken; 100 }; 101 102 struct userfaultfd_wake_range { 103 unsigned long start; 104 unsigned long len; 105 }; 106 107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 108 int wake_flags, void *key) 109 { 110 struct userfaultfd_wake_range *range = key; 111 int ret; 112 struct userfaultfd_wait_queue *uwq; 113 unsigned long start, len; 114 115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 116 ret = 0; 117 /* len == 0 means wake all */ 118 start = range->start; 119 len = range->len; 120 if (len && (start > uwq->msg.arg.pagefault.address || 121 start + len <= uwq->msg.arg.pagefault.address)) 122 goto out; 123 WRITE_ONCE(uwq->waken, true); 124 /* 125 * The Program-Order guarantees provided by the scheduler 126 * ensure uwq->waken is visible before the task is woken. 127 */ 128 ret = wake_up_state(wq->private, mode); 129 if (ret) { 130 /* 131 * Wake only once, autoremove behavior. 132 * 133 * After the effect of list_del_init is visible to the other 134 * CPUs, the waitqueue may disappear from under us, see the 135 * !list_empty_careful() in handle_userfault(). 136 * 137 * try_to_wake_up() has an implicit smp_mb(), and the 138 * wq->private is read before calling the extern function 139 * "wake_up_state" (which in turns calls try_to_wake_up). 140 */ 141 list_del_init(&wq->entry); 142 } 143 out: 144 return ret; 145 } 146 147 /** 148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to the userfaultfd context. 151 */ 152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 153 { 154 refcount_inc(&ctx->refcount); 155 } 156 157 /** 158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 159 * context. 160 * @ctx: [in] Pointer to userfaultfd context. 161 * 162 * The userfaultfd context reference must have been previously acquired either 163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 164 */ 165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 166 { 167 if (refcount_dec_and_test(&ctx->refcount)) { 168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 176 mmdrop(ctx->mm); 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 178 } 179 } 180 181 static inline void msg_init(struct uffd_msg *msg) 182 { 183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 184 /* 185 * Must use memset to zero out the paddings or kernel data is 186 * leaked to userland. 187 */ 188 memset(msg, 0, sizeof(struct uffd_msg)); 189 } 190 191 static inline struct uffd_msg userfault_msg(unsigned long address, 192 unsigned int flags, 193 unsigned long reason, 194 unsigned int features) 195 { 196 struct uffd_msg msg; 197 msg_init(&msg); 198 msg.event = UFFD_EVENT_PAGEFAULT; 199 msg.arg.pagefault.address = address; 200 /* 201 * These flags indicate why the userfault occurred: 202 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 203 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 204 * - Neither of these flags being set indicates a MISSING fault. 205 * 206 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 207 * fault. Otherwise, it was a read fault. 208 */ 209 if (flags & FAULT_FLAG_WRITE) 210 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 211 if (reason & VM_UFFD_WP) 212 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 213 if (reason & VM_UFFD_MINOR) 214 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 215 if (features & UFFD_FEATURE_THREAD_ID) 216 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 217 return msg; 218 } 219 220 #ifdef CONFIG_HUGETLB_PAGE 221 /* 222 * Same functionality as userfaultfd_must_wait below with modifications for 223 * hugepmd ranges. 224 */ 225 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 226 struct vm_area_struct *vma, 227 unsigned long address, 228 unsigned long flags, 229 unsigned long reason) 230 { 231 struct mm_struct *mm = ctx->mm; 232 pte_t *ptep, pte; 233 bool ret = true; 234 235 mmap_assert_locked(mm); 236 237 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 238 239 if (!ptep) 240 goto out; 241 242 ret = false; 243 pte = huge_ptep_get(ptep); 244 245 /* 246 * Lockless access: we're in a wait_event so it's ok if it 247 * changes under us. 248 */ 249 if (huge_pte_none(pte)) 250 ret = true; 251 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 252 ret = true; 253 out: 254 return ret; 255 } 256 #else 257 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 258 struct vm_area_struct *vma, 259 unsigned long address, 260 unsigned long flags, 261 unsigned long reason) 262 { 263 return false; /* should never get here */ 264 } 265 #endif /* CONFIG_HUGETLB_PAGE */ 266 267 /* 268 * Verify the pagetables are still not ok after having reigstered into 269 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 270 * userfault that has already been resolved, if userfaultfd_read and 271 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 272 * threads. 273 */ 274 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 275 unsigned long address, 276 unsigned long flags, 277 unsigned long reason) 278 { 279 struct mm_struct *mm = ctx->mm; 280 pgd_t *pgd; 281 p4d_t *p4d; 282 pud_t *pud; 283 pmd_t *pmd, _pmd; 284 pte_t *pte; 285 bool ret = true; 286 287 mmap_assert_locked(mm); 288 289 pgd = pgd_offset(mm, address); 290 if (!pgd_present(*pgd)) 291 goto out; 292 p4d = p4d_offset(pgd, address); 293 if (!p4d_present(*p4d)) 294 goto out; 295 pud = pud_offset(p4d, address); 296 if (!pud_present(*pud)) 297 goto out; 298 pmd = pmd_offset(pud, address); 299 /* 300 * READ_ONCE must function as a barrier with narrower scope 301 * and it must be equivalent to: 302 * _pmd = *pmd; barrier(); 303 * 304 * This is to deal with the instability (as in 305 * pmd_trans_unstable) of the pmd. 306 */ 307 _pmd = READ_ONCE(*pmd); 308 if (pmd_none(_pmd)) 309 goto out; 310 311 ret = false; 312 if (!pmd_present(_pmd)) 313 goto out; 314 315 if (pmd_trans_huge(_pmd)) { 316 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 317 ret = true; 318 goto out; 319 } 320 321 /* 322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 323 * and use the standard pte_offset_map() instead of parsing _pmd. 324 */ 325 pte = pte_offset_map(pmd, address); 326 /* 327 * Lockless access: we're in a wait_event so it's ok if it 328 * changes under us. 329 */ 330 if (pte_none(*pte)) 331 ret = true; 332 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 333 ret = true; 334 pte_unmap(pte); 335 336 out: 337 return ret; 338 } 339 340 static inline long userfaultfd_get_blocking_state(unsigned int flags) 341 { 342 if (flags & FAULT_FLAG_INTERRUPTIBLE) 343 return TASK_INTERRUPTIBLE; 344 345 if (flags & FAULT_FLAG_KILLABLE) 346 return TASK_KILLABLE; 347 348 return TASK_UNINTERRUPTIBLE; 349 } 350 351 /* 352 * The locking rules involved in returning VM_FAULT_RETRY depending on 353 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 354 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 355 * recommendation in __lock_page_or_retry is not an understatement. 356 * 357 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 358 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 359 * not set. 360 * 361 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 362 * set, VM_FAULT_RETRY can still be returned if and only if there are 363 * fatal_signal_pending()s, and the mmap_lock must be released before 364 * returning it. 365 */ 366 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 367 { 368 struct mm_struct *mm = vmf->vma->vm_mm; 369 struct userfaultfd_ctx *ctx; 370 struct userfaultfd_wait_queue uwq; 371 vm_fault_t ret = VM_FAULT_SIGBUS; 372 bool must_wait; 373 long blocking_state; 374 375 /* 376 * We don't do userfault handling for the final child pid update. 377 * 378 * We also don't do userfault handling during 379 * coredumping. hugetlbfs has the special 380 * follow_hugetlb_page() to skip missing pages in the 381 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 382 * the no_page_table() helper in follow_page_mask(), but the 383 * shmem_vm_ops->fault method is invoked even during 384 * coredumping without mmap_lock and it ends up here. 385 */ 386 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 387 goto out; 388 389 /* 390 * Coredumping runs without mmap_lock so we can only check that 391 * the mmap_lock is held, if PF_DUMPCORE was not set. 392 */ 393 mmap_assert_locked(mm); 394 395 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 396 if (!ctx) 397 goto out; 398 399 BUG_ON(ctx->mm != mm); 400 401 /* Any unrecognized flag is a bug. */ 402 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 403 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 404 VM_BUG_ON(!reason || (reason & (reason - 1))); 405 406 if (ctx->features & UFFD_FEATURE_SIGBUS) 407 goto out; 408 if ((vmf->flags & FAULT_FLAG_USER) == 0 && 409 ctx->flags & UFFD_USER_MODE_ONLY) { 410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 411 "sysctl knob to 1 if kernel faults must be handled " 412 "without obtaining CAP_SYS_PTRACE capability\n"); 413 goto out; 414 } 415 416 /* 417 * If it's already released don't get it. This avoids to loop 418 * in __get_user_pages if userfaultfd_release waits on the 419 * caller of handle_userfault to release the mmap_lock. 420 */ 421 if (unlikely(READ_ONCE(ctx->released))) { 422 /* 423 * Don't return VM_FAULT_SIGBUS in this case, so a non 424 * cooperative manager can close the uffd after the 425 * last UFFDIO_COPY, without risking to trigger an 426 * involuntary SIGBUS if the process was starting the 427 * userfaultfd while the userfaultfd was still armed 428 * (but after the last UFFDIO_COPY). If the uffd 429 * wasn't already closed when the userfault reached 430 * this point, that would normally be solved by 431 * userfaultfd_must_wait returning 'false'. 432 * 433 * If we were to return VM_FAULT_SIGBUS here, the non 434 * cooperative manager would be instead forced to 435 * always call UFFDIO_UNREGISTER before it can safely 436 * close the uffd. 437 */ 438 ret = VM_FAULT_NOPAGE; 439 goto out; 440 } 441 442 /* 443 * Check that we can return VM_FAULT_RETRY. 444 * 445 * NOTE: it should become possible to return VM_FAULT_RETRY 446 * even if FAULT_FLAG_TRIED is set without leading to gup() 447 * -EBUSY failures, if the userfaultfd is to be extended for 448 * VM_UFFD_WP tracking and we intend to arm the userfault 449 * without first stopping userland access to the memory. For 450 * VM_UFFD_MISSING userfaults this is enough for now. 451 */ 452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 453 /* 454 * Validate the invariant that nowait must allow retry 455 * to be sure not to return SIGBUS erroneously on 456 * nowait invocations. 457 */ 458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 459 #ifdef CONFIG_DEBUG_VM 460 if (printk_ratelimit()) { 461 printk(KERN_WARNING 462 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 463 vmf->flags); 464 dump_stack(); 465 } 466 #endif 467 goto out; 468 } 469 470 /* 471 * Handle nowait, not much to do other than tell it to retry 472 * and wait. 473 */ 474 ret = VM_FAULT_RETRY; 475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 476 goto out; 477 478 /* take the reference before dropping the mmap_lock */ 479 userfaultfd_ctx_get(ctx); 480 481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 482 uwq.wq.private = current; 483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 484 ctx->features); 485 uwq.ctx = ctx; 486 uwq.waken = false; 487 488 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 489 490 spin_lock_irq(&ctx->fault_pending_wqh.lock); 491 /* 492 * After the __add_wait_queue the uwq is visible to userland 493 * through poll/read(). 494 */ 495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 496 /* 497 * The smp_mb() after __set_current_state prevents the reads 498 * following the spin_unlock to happen before the list_add in 499 * __add_wait_queue. 500 */ 501 set_current_state(blocking_state); 502 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 503 504 if (!is_vm_hugetlb_page(vmf->vma)) 505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 506 reason); 507 else 508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 509 vmf->address, 510 vmf->flags, reason); 511 mmap_read_unlock(mm); 512 513 if (likely(must_wait && !READ_ONCE(ctx->released))) { 514 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 515 schedule(); 516 } 517 518 __set_current_state(TASK_RUNNING); 519 520 /* 521 * Here we race with the list_del; list_add in 522 * userfaultfd_ctx_read(), however because we don't ever run 523 * list_del_init() to refile across the two lists, the prev 524 * and next pointers will never point to self. list_add also 525 * would never let any of the two pointers to point to 526 * self. So list_empty_careful won't risk to see both pointers 527 * pointing to self at any time during the list refile. The 528 * only case where list_del_init() is called is the full 529 * removal in the wake function and there we don't re-list_add 530 * and it's fine not to block on the spinlock. The uwq on this 531 * kernel stack can be released after the list_del_init. 532 */ 533 if (!list_empty_careful(&uwq.wq.entry)) { 534 spin_lock_irq(&ctx->fault_pending_wqh.lock); 535 /* 536 * No need of list_del_init(), the uwq on the stack 537 * will be freed shortly anyway. 538 */ 539 list_del(&uwq.wq.entry); 540 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 541 } 542 543 /* 544 * ctx may go away after this if the userfault pseudo fd is 545 * already released. 546 */ 547 userfaultfd_ctx_put(ctx); 548 549 out: 550 return ret; 551 } 552 553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 554 struct userfaultfd_wait_queue *ewq) 555 { 556 struct userfaultfd_ctx *release_new_ctx; 557 558 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 559 goto out; 560 561 ewq->ctx = ctx; 562 init_waitqueue_entry(&ewq->wq, current); 563 release_new_ctx = NULL; 564 565 spin_lock_irq(&ctx->event_wqh.lock); 566 /* 567 * After the __add_wait_queue the uwq is visible to userland 568 * through poll/read(). 569 */ 570 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 571 for (;;) { 572 set_current_state(TASK_KILLABLE); 573 if (ewq->msg.event == 0) 574 break; 575 if (READ_ONCE(ctx->released) || 576 fatal_signal_pending(current)) { 577 /* 578 * &ewq->wq may be queued in fork_event, but 579 * __remove_wait_queue ignores the head 580 * parameter. It would be a problem if it 581 * didn't. 582 */ 583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 584 if (ewq->msg.event == UFFD_EVENT_FORK) { 585 struct userfaultfd_ctx *new; 586 587 new = (struct userfaultfd_ctx *) 588 (unsigned long) 589 ewq->msg.arg.reserved.reserved1; 590 release_new_ctx = new; 591 } 592 break; 593 } 594 595 spin_unlock_irq(&ctx->event_wqh.lock); 596 597 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 598 schedule(); 599 600 spin_lock_irq(&ctx->event_wqh.lock); 601 } 602 __set_current_state(TASK_RUNNING); 603 spin_unlock_irq(&ctx->event_wqh.lock); 604 605 if (release_new_ctx) { 606 struct vm_area_struct *vma; 607 struct mm_struct *mm = release_new_ctx->mm; 608 609 /* the various vma->vm_userfaultfd_ctx still points to it */ 610 mmap_write_lock(mm); 611 for (vma = mm->mmap; vma; vma = vma->vm_next) 612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 614 vma->vm_flags &= ~__VM_UFFD_FLAGS; 615 } 616 mmap_write_unlock(mm); 617 618 userfaultfd_ctx_put(release_new_ctx); 619 } 620 621 /* 622 * ctx may go away after this if the userfault pseudo fd is 623 * already released. 624 */ 625 out: 626 WRITE_ONCE(ctx->mmap_changing, false); 627 userfaultfd_ctx_put(ctx); 628 } 629 630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 631 struct userfaultfd_wait_queue *ewq) 632 { 633 ewq->msg.event = 0; 634 wake_up_locked(&ctx->event_wqh); 635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 636 } 637 638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 639 { 640 struct userfaultfd_ctx *ctx = NULL, *octx; 641 struct userfaultfd_fork_ctx *fctx; 642 643 octx = vma->vm_userfaultfd_ctx.ctx; 644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 646 vma->vm_flags &= ~__VM_UFFD_FLAGS; 647 return 0; 648 } 649 650 list_for_each_entry(fctx, fcs, list) 651 if (fctx->orig == octx) { 652 ctx = fctx->new; 653 break; 654 } 655 656 if (!ctx) { 657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 658 if (!fctx) 659 return -ENOMEM; 660 661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 662 if (!ctx) { 663 kfree(fctx); 664 return -ENOMEM; 665 } 666 667 refcount_set(&ctx->refcount, 1); 668 ctx->flags = octx->flags; 669 ctx->state = UFFD_STATE_RUNNING; 670 ctx->features = octx->features; 671 ctx->released = false; 672 ctx->mmap_changing = false; 673 ctx->mm = vma->vm_mm; 674 mmgrab(ctx->mm); 675 676 userfaultfd_ctx_get(octx); 677 WRITE_ONCE(octx->mmap_changing, true); 678 fctx->orig = octx; 679 fctx->new = ctx; 680 list_add_tail(&fctx->list, fcs); 681 } 682 683 vma->vm_userfaultfd_ctx.ctx = ctx; 684 return 0; 685 } 686 687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 688 { 689 struct userfaultfd_ctx *ctx = fctx->orig; 690 struct userfaultfd_wait_queue ewq; 691 692 msg_init(&ewq.msg); 693 694 ewq.msg.event = UFFD_EVENT_FORK; 695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 696 697 userfaultfd_event_wait_completion(ctx, &ewq); 698 } 699 700 void dup_userfaultfd_complete(struct list_head *fcs) 701 { 702 struct userfaultfd_fork_ctx *fctx, *n; 703 704 list_for_each_entry_safe(fctx, n, fcs, list) { 705 dup_fctx(fctx); 706 list_del(&fctx->list); 707 kfree(fctx); 708 } 709 } 710 711 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 712 struct vm_userfaultfd_ctx *vm_ctx) 713 { 714 struct userfaultfd_ctx *ctx; 715 716 ctx = vma->vm_userfaultfd_ctx.ctx; 717 718 if (!ctx) 719 return; 720 721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 722 vm_ctx->ctx = ctx; 723 userfaultfd_ctx_get(ctx); 724 WRITE_ONCE(ctx->mmap_changing, true); 725 } else { 726 /* Drop uffd context if remap feature not enabled */ 727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 728 vma->vm_flags &= ~__VM_UFFD_FLAGS; 729 } 730 } 731 732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 733 unsigned long from, unsigned long to, 734 unsigned long len) 735 { 736 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 737 struct userfaultfd_wait_queue ewq; 738 739 if (!ctx) 740 return; 741 742 if (to & ~PAGE_MASK) { 743 userfaultfd_ctx_put(ctx); 744 return; 745 } 746 747 msg_init(&ewq.msg); 748 749 ewq.msg.event = UFFD_EVENT_REMAP; 750 ewq.msg.arg.remap.from = from; 751 ewq.msg.arg.remap.to = to; 752 ewq.msg.arg.remap.len = len; 753 754 userfaultfd_event_wait_completion(ctx, &ewq); 755 } 756 757 bool userfaultfd_remove(struct vm_area_struct *vma, 758 unsigned long start, unsigned long end) 759 { 760 struct mm_struct *mm = vma->vm_mm; 761 struct userfaultfd_ctx *ctx; 762 struct userfaultfd_wait_queue ewq; 763 764 ctx = vma->vm_userfaultfd_ctx.ctx; 765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 766 return true; 767 768 userfaultfd_ctx_get(ctx); 769 WRITE_ONCE(ctx->mmap_changing, true); 770 mmap_read_unlock(mm); 771 772 msg_init(&ewq.msg); 773 774 ewq.msg.event = UFFD_EVENT_REMOVE; 775 ewq.msg.arg.remove.start = start; 776 ewq.msg.arg.remove.end = end; 777 778 userfaultfd_event_wait_completion(ctx, &ewq); 779 780 return false; 781 } 782 783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 784 unsigned long start, unsigned long end) 785 { 786 struct userfaultfd_unmap_ctx *unmap_ctx; 787 788 list_for_each_entry(unmap_ctx, unmaps, list) 789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 790 unmap_ctx->end == end) 791 return true; 792 793 return false; 794 } 795 796 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 797 unsigned long start, unsigned long end, 798 struct list_head *unmaps) 799 { 800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 801 struct userfaultfd_unmap_ctx *unmap_ctx; 802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 803 804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 805 has_unmap_ctx(ctx, unmaps, start, end)) 806 continue; 807 808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 809 if (!unmap_ctx) 810 return -ENOMEM; 811 812 userfaultfd_ctx_get(ctx); 813 WRITE_ONCE(ctx->mmap_changing, true); 814 unmap_ctx->ctx = ctx; 815 unmap_ctx->start = start; 816 unmap_ctx->end = end; 817 list_add_tail(&unmap_ctx->list, unmaps); 818 } 819 820 return 0; 821 } 822 823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 824 { 825 struct userfaultfd_unmap_ctx *ctx, *n; 826 struct userfaultfd_wait_queue ewq; 827 828 list_for_each_entry_safe(ctx, n, uf, list) { 829 msg_init(&ewq.msg); 830 831 ewq.msg.event = UFFD_EVENT_UNMAP; 832 ewq.msg.arg.remove.start = ctx->start; 833 ewq.msg.arg.remove.end = ctx->end; 834 835 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 836 837 list_del(&ctx->list); 838 kfree(ctx); 839 } 840 } 841 842 static int userfaultfd_release(struct inode *inode, struct file *file) 843 { 844 struct userfaultfd_ctx *ctx = file->private_data; 845 struct mm_struct *mm = ctx->mm; 846 struct vm_area_struct *vma, *prev; 847 /* len == 0 means wake all */ 848 struct userfaultfd_wake_range range = { .len = 0, }; 849 unsigned long new_flags; 850 851 WRITE_ONCE(ctx->released, true); 852 853 if (!mmget_not_zero(mm)) 854 goto wakeup; 855 856 /* 857 * Flush page faults out of all CPUs. NOTE: all page faults 858 * must be retried without returning VM_FAULT_SIGBUS if 859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 860 * changes while handle_userfault released the mmap_lock. So 861 * it's critical that released is set to true (above), before 862 * taking the mmap_lock for writing. 863 */ 864 mmap_write_lock(mm); 865 prev = NULL; 866 for (vma = mm->mmap; vma; vma = vma->vm_next) { 867 cond_resched(); 868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 869 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 870 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 871 prev = vma; 872 continue; 873 } 874 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 876 new_flags, vma->anon_vma, 877 vma->vm_file, vma->vm_pgoff, 878 vma_policy(vma), 879 NULL_VM_UFFD_CTX); 880 if (prev) 881 vma = prev; 882 else 883 prev = vma; 884 vma->vm_flags = new_flags; 885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 886 } 887 mmap_write_unlock(mm); 888 mmput(mm); 889 wakeup: 890 /* 891 * After no new page faults can wait on this fault_*wqh, flush 892 * the last page faults that may have been already waiting on 893 * the fault_*wqh. 894 */ 895 spin_lock_irq(&ctx->fault_pending_wqh.lock); 896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 898 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 899 900 /* Flush pending events that may still wait on event_wqh */ 901 wake_up_all(&ctx->event_wqh); 902 903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 904 userfaultfd_ctx_put(ctx); 905 return 0; 906 } 907 908 /* fault_pending_wqh.lock must be hold by the caller */ 909 static inline struct userfaultfd_wait_queue *find_userfault_in( 910 wait_queue_head_t *wqh) 911 { 912 wait_queue_entry_t *wq; 913 struct userfaultfd_wait_queue *uwq; 914 915 lockdep_assert_held(&wqh->lock); 916 917 uwq = NULL; 918 if (!waitqueue_active(wqh)) 919 goto out; 920 /* walk in reverse to provide FIFO behavior to read userfaults */ 921 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 923 out: 924 return uwq; 925 } 926 927 static inline struct userfaultfd_wait_queue *find_userfault( 928 struct userfaultfd_ctx *ctx) 929 { 930 return find_userfault_in(&ctx->fault_pending_wqh); 931 } 932 933 static inline struct userfaultfd_wait_queue *find_userfault_evt( 934 struct userfaultfd_ctx *ctx) 935 { 936 return find_userfault_in(&ctx->event_wqh); 937 } 938 939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 940 { 941 struct userfaultfd_ctx *ctx = file->private_data; 942 __poll_t ret; 943 944 poll_wait(file, &ctx->fd_wqh, wait); 945 946 switch (ctx->state) { 947 case UFFD_STATE_WAIT_API: 948 return EPOLLERR; 949 case UFFD_STATE_RUNNING: 950 /* 951 * poll() never guarantees that read won't block. 952 * userfaults can be waken before they're read(). 953 */ 954 if (unlikely(!(file->f_flags & O_NONBLOCK))) 955 return EPOLLERR; 956 /* 957 * lockless access to see if there are pending faults 958 * __pollwait last action is the add_wait_queue but 959 * the spin_unlock would allow the waitqueue_active to 960 * pass above the actual list_add inside 961 * add_wait_queue critical section. So use a full 962 * memory barrier to serialize the list_add write of 963 * add_wait_queue() with the waitqueue_active read 964 * below. 965 */ 966 ret = 0; 967 smp_mb(); 968 if (waitqueue_active(&ctx->fault_pending_wqh)) 969 ret = EPOLLIN; 970 else if (waitqueue_active(&ctx->event_wqh)) 971 ret = EPOLLIN; 972 973 return ret; 974 default: 975 WARN_ON_ONCE(1); 976 return EPOLLERR; 977 } 978 } 979 980 static const struct file_operations userfaultfd_fops; 981 982 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 983 struct inode *inode, 984 struct uffd_msg *msg) 985 { 986 int fd; 987 988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 990 if (fd < 0) 991 return fd; 992 993 msg->arg.reserved.reserved1 = 0; 994 msg->arg.fork.ufd = fd; 995 return 0; 996 } 997 998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 999 struct uffd_msg *msg, struct inode *inode) 1000 { 1001 ssize_t ret; 1002 DECLARE_WAITQUEUE(wait, current); 1003 struct userfaultfd_wait_queue *uwq; 1004 /* 1005 * Handling fork event requires sleeping operations, so 1006 * we drop the event_wqh lock, then do these ops, then 1007 * lock it back and wake up the waiter. While the lock is 1008 * dropped the ewq may go away so we keep track of it 1009 * carefully. 1010 */ 1011 LIST_HEAD(fork_event); 1012 struct userfaultfd_ctx *fork_nctx = NULL; 1013 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1015 spin_lock_irq(&ctx->fd_wqh.lock); 1016 __add_wait_queue(&ctx->fd_wqh, &wait); 1017 for (;;) { 1018 set_current_state(TASK_INTERRUPTIBLE); 1019 spin_lock(&ctx->fault_pending_wqh.lock); 1020 uwq = find_userfault(ctx); 1021 if (uwq) { 1022 /* 1023 * Use a seqcount to repeat the lockless check 1024 * in wake_userfault() to avoid missing 1025 * wakeups because during the refile both 1026 * waitqueue could become empty if this is the 1027 * only userfault. 1028 */ 1029 write_seqcount_begin(&ctx->refile_seq); 1030 1031 /* 1032 * The fault_pending_wqh.lock prevents the uwq 1033 * to disappear from under us. 1034 * 1035 * Refile this userfault from 1036 * fault_pending_wqh to fault_wqh, it's not 1037 * pending anymore after we read it. 1038 * 1039 * Use list_del() by hand (as 1040 * userfaultfd_wake_function also uses 1041 * list_del_init() by hand) to be sure nobody 1042 * changes __remove_wait_queue() to use 1043 * list_del_init() in turn breaking the 1044 * !list_empty_careful() check in 1045 * handle_userfault(). The uwq->wq.head list 1046 * must never be empty at any time during the 1047 * refile, or the waitqueue could disappear 1048 * from under us. The "wait_queue_head_t" 1049 * parameter of __remove_wait_queue() is unused 1050 * anyway. 1051 */ 1052 list_del(&uwq->wq.entry); 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1054 1055 write_seqcount_end(&ctx->refile_seq); 1056 1057 /* careful to always initialize msg if ret == 0 */ 1058 *msg = uwq->msg; 1059 spin_unlock(&ctx->fault_pending_wqh.lock); 1060 ret = 0; 1061 break; 1062 } 1063 spin_unlock(&ctx->fault_pending_wqh.lock); 1064 1065 spin_lock(&ctx->event_wqh.lock); 1066 uwq = find_userfault_evt(ctx); 1067 if (uwq) { 1068 *msg = uwq->msg; 1069 1070 if (uwq->msg.event == UFFD_EVENT_FORK) { 1071 fork_nctx = (struct userfaultfd_ctx *) 1072 (unsigned long) 1073 uwq->msg.arg.reserved.reserved1; 1074 list_move(&uwq->wq.entry, &fork_event); 1075 /* 1076 * fork_nctx can be freed as soon as 1077 * we drop the lock, unless we take a 1078 * reference on it. 1079 */ 1080 userfaultfd_ctx_get(fork_nctx); 1081 spin_unlock(&ctx->event_wqh.lock); 1082 ret = 0; 1083 break; 1084 } 1085 1086 userfaultfd_event_complete(ctx, uwq); 1087 spin_unlock(&ctx->event_wqh.lock); 1088 ret = 0; 1089 break; 1090 } 1091 spin_unlock(&ctx->event_wqh.lock); 1092 1093 if (signal_pending(current)) { 1094 ret = -ERESTARTSYS; 1095 break; 1096 } 1097 if (no_wait) { 1098 ret = -EAGAIN; 1099 break; 1100 } 1101 spin_unlock_irq(&ctx->fd_wqh.lock); 1102 schedule(); 1103 spin_lock_irq(&ctx->fd_wqh.lock); 1104 } 1105 __remove_wait_queue(&ctx->fd_wqh, &wait); 1106 __set_current_state(TASK_RUNNING); 1107 spin_unlock_irq(&ctx->fd_wqh.lock); 1108 1109 if (!ret && msg->event == UFFD_EVENT_FORK) { 1110 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1111 spin_lock_irq(&ctx->event_wqh.lock); 1112 if (!list_empty(&fork_event)) { 1113 /* 1114 * The fork thread didn't abort, so we can 1115 * drop the temporary refcount. 1116 */ 1117 userfaultfd_ctx_put(fork_nctx); 1118 1119 uwq = list_first_entry(&fork_event, 1120 typeof(*uwq), 1121 wq.entry); 1122 /* 1123 * If fork_event list wasn't empty and in turn 1124 * the event wasn't already released by fork 1125 * (the event is allocated on fork kernel 1126 * stack), put the event back to its place in 1127 * the event_wq. fork_event head will be freed 1128 * as soon as we return so the event cannot 1129 * stay queued there no matter the current 1130 * "ret" value. 1131 */ 1132 list_del(&uwq->wq.entry); 1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1134 1135 /* 1136 * Leave the event in the waitqueue and report 1137 * error to userland if we failed to resolve 1138 * the userfault fork. 1139 */ 1140 if (likely(!ret)) 1141 userfaultfd_event_complete(ctx, uwq); 1142 } else { 1143 /* 1144 * Here the fork thread aborted and the 1145 * refcount from the fork thread on fork_nctx 1146 * has already been released. We still hold 1147 * the reference we took before releasing the 1148 * lock above. If resolve_userfault_fork 1149 * failed we've to drop it because the 1150 * fork_nctx has to be freed in such case. If 1151 * it succeeded we'll hold it because the new 1152 * uffd references it. 1153 */ 1154 if (ret) 1155 userfaultfd_ctx_put(fork_nctx); 1156 } 1157 spin_unlock_irq(&ctx->event_wqh.lock); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1164 size_t count, loff_t *ppos) 1165 { 1166 struct userfaultfd_ctx *ctx = file->private_data; 1167 ssize_t _ret, ret = 0; 1168 struct uffd_msg msg; 1169 int no_wait = file->f_flags & O_NONBLOCK; 1170 struct inode *inode = file_inode(file); 1171 1172 if (ctx->state == UFFD_STATE_WAIT_API) 1173 return -EINVAL; 1174 1175 for (;;) { 1176 if (count < sizeof(msg)) 1177 return ret ? ret : -EINVAL; 1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1179 if (_ret < 0) 1180 return ret ? ret : _ret; 1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1182 return ret ? ret : -EFAULT; 1183 ret += sizeof(msg); 1184 buf += sizeof(msg); 1185 count -= sizeof(msg); 1186 /* 1187 * Allow to read more than one fault at time but only 1188 * block if waiting for the very first one. 1189 */ 1190 no_wait = O_NONBLOCK; 1191 } 1192 } 1193 1194 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1195 struct userfaultfd_wake_range *range) 1196 { 1197 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1198 /* wake all in the range and autoremove */ 1199 if (waitqueue_active(&ctx->fault_pending_wqh)) 1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1201 range); 1202 if (waitqueue_active(&ctx->fault_wqh)) 1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1205 } 1206 1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1208 struct userfaultfd_wake_range *range) 1209 { 1210 unsigned seq; 1211 bool need_wakeup; 1212 1213 /* 1214 * To be sure waitqueue_active() is not reordered by the CPU 1215 * before the pagetable update, use an explicit SMP memory 1216 * barrier here. PT lock release or mmap_read_unlock(mm) still 1217 * have release semantics that can allow the 1218 * waitqueue_active() to be reordered before the pte update. 1219 */ 1220 smp_mb(); 1221 1222 /* 1223 * Use waitqueue_active because it's very frequent to 1224 * change the address space atomically even if there are no 1225 * userfaults yet. So we take the spinlock only when we're 1226 * sure we've userfaults to wake. 1227 */ 1228 do { 1229 seq = read_seqcount_begin(&ctx->refile_seq); 1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1231 waitqueue_active(&ctx->fault_wqh); 1232 cond_resched(); 1233 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1234 if (need_wakeup) 1235 __wake_userfault(ctx, range); 1236 } 1237 1238 static __always_inline int validate_range(struct mm_struct *mm, 1239 __u64 *start, __u64 len) 1240 { 1241 __u64 task_size = mm->task_size; 1242 1243 *start = untagged_addr(*start); 1244 1245 if (*start & ~PAGE_MASK) 1246 return -EINVAL; 1247 if (len & ~PAGE_MASK) 1248 return -EINVAL; 1249 if (!len) 1250 return -EINVAL; 1251 if (*start < mmap_min_addr) 1252 return -EINVAL; 1253 if (*start >= task_size) 1254 return -EINVAL; 1255 if (len > task_size - *start) 1256 return -EINVAL; 1257 return 0; 1258 } 1259 1260 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1261 unsigned long vm_flags) 1262 { 1263 /* FIXME: add WP support to hugetlbfs and shmem */ 1264 if (vm_flags & VM_UFFD_WP) { 1265 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) 1266 return false; 1267 } 1268 1269 if (vm_flags & VM_UFFD_MINOR) { 1270 /* FIXME: Add minor fault interception for shmem. */ 1271 if (!is_vm_hugetlb_page(vma)) 1272 return false; 1273 } 1274 1275 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1276 vma_is_shmem(vma); 1277 } 1278 1279 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1280 unsigned long arg) 1281 { 1282 struct mm_struct *mm = ctx->mm; 1283 struct vm_area_struct *vma, *prev, *cur; 1284 int ret; 1285 struct uffdio_register uffdio_register; 1286 struct uffdio_register __user *user_uffdio_register; 1287 unsigned long vm_flags, new_flags; 1288 bool found; 1289 bool basic_ioctls; 1290 unsigned long start, end, vma_end; 1291 1292 user_uffdio_register = (struct uffdio_register __user *) arg; 1293 1294 ret = -EFAULT; 1295 if (copy_from_user(&uffdio_register, user_uffdio_register, 1296 sizeof(uffdio_register)-sizeof(__u64))) 1297 goto out; 1298 1299 ret = -EINVAL; 1300 if (!uffdio_register.mode) 1301 goto out; 1302 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1303 goto out; 1304 vm_flags = 0; 1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1306 vm_flags |= VM_UFFD_MISSING; 1307 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1308 vm_flags |= VM_UFFD_WP; 1309 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1310 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1311 goto out; 1312 #endif 1313 vm_flags |= VM_UFFD_MINOR; 1314 } 1315 1316 ret = validate_range(mm, &uffdio_register.range.start, 1317 uffdio_register.range.len); 1318 if (ret) 1319 goto out; 1320 1321 start = uffdio_register.range.start; 1322 end = start + uffdio_register.range.len; 1323 1324 ret = -ENOMEM; 1325 if (!mmget_not_zero(mm)) 1326 goto out; 1327 1328 mmap_write_lock(mm); 1329 vma = find_vma_prev(mm, start, &prev); 1330 if (!vma) 1331 goto out_unlock; 1332 1333 /* check that there's at least one vma in the range */ 1334 ret = -EINVAL; 1335 if (vma->vm_start >= end) 1336 goto out_unlock; 1337 1338 /* 1339 * If the first vma contains huge pages, make sure start address 1340 * is aligned to huge page size. 1341 */ 1342 if (is_vm_hugetlb_page(vma)) { 1343 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1344 1345 if (start & (vma_hpagesize - 1)) 1346 goto out_unlock; 1347 } 1348 1349 /* 1350 * Search for not compatible vmas. 1351 */ 1352 found = false; 1353 basic_ioctls = false; 1354 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1355 cond_resched(); 1356 1357 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1358 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1359 1360 /* check not compatible vmas */ 1361 ret = -EINVAL; 1362 if (!vma_can_userfault(cur, vm_flags)) 1363 goto out_unlock; 1364 1365 /* 1366 * UFFDIO_COPY will fill file holes even without 1367 * PROT_WRITE. This check enforces that if this is a 1368 * MAP_SHARED, the process has write permission to the backing 1369 * file. If VM_MAYWRITE is set it also enforces that on a 1370 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1371 * F_WRITE_SEAL can be taken until the vma is destroyed. 1372 */ 1373 ret = -EPERM; 1374 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1375 goto out_unlock; 1376 1377 /* 1378 * If this vma contains ending address, and huge pages 1379 * check alignment. 1380 */ 1381 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1382 end > cur->vm_start) { 1383 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1384 1385 ret = -EINVAL; 1386 1387 if (end & (vma_hpagesize - 1)) 1388 goto out_unlock; 1389 } 1390 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1391 goto out_unlock; 1392 1393 /* 1394 * Check that this vma isn't already owned by a 1395 * different userfaultfd. We can't allow more than one 1396 * userfaultfd to own a single vma simultaneously or we 1397 * wouldn't know which one to deliver the userfaults to. 1398 */ 1399 ret = -EBUSY; 1400 if (cur->vm_userfaultfd_ctx.ctx && 1401 cur->vm_userfaultfd_ctx.ctx != ctx) 1402 goto out_unlock; 1403 1404 /* 1405 * Note vmas containing huge pages 1406 */ 1407 if (is_vm_hugetlb_page(cur)) 1408 basic_ioctls = true; 1409 1410 found = true; 1411 } 1412 BUG_ON(!found); 1413 1414 if (vma->vm_start < start) 1415 prev = vma; 1416 1417 ret = 0; 1418 do { 1419 cond_resched(); 1420 1421 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1422 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1423 vma->vm_userfaultfd_ctx.ctx != ctx); 1424 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1425 1426 /* 1427 * Nothing to do: this vma is already registered into this 1428 * userfaultfd and with the right tracking mode too. 1429 */ 1430 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1431 (vma->vm_flags & vm_flags) == vm_flags) 1432 goto skip; 1433 1434 if (vma->vm_start > start) 1435 start = vma->vm_start; 1436 vma_end = min(end, vma->vm_end); 1437 1438 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1439 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1440 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1441 vma_policy(vma), 1442 ((struct vm_userfaultfd_ctx){ ctx })); 1443 if (prev) { 1444 vma = prev; 1445 goto next; 1446 } 1447 if (vma->vm_start < start) { 1448 ret = split_vma(mm, vma, start, 1); 1449 if (ret) 1450 break; 1451 } 1452 if (vma->vm_end > end) { 1453 ret = split_vma(mm, vma, end, 0); 1454 if (ret) 1455 break; 1456 } 1457 next: 1458 /* 1459 * In the vma_merge() successful mprotect-like case 8: 1460 * the next vma was merged into the current one and 1461 * the current one has not been updated yet. 1462 */ 1463 vma->vm_flags = new_flags; 1464 vma->vm_userfaultfd_ctx.ctx = ctx; 1465 1466 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1467 hugetlb_unshare_all_pmds(vma); 1468 1469 skip: 1470 prev = vma; 1471 start = vma->vm_end; 1472 vma = vma->vm_next; 1473 } while (vma && vma->vm_start < end); 1474 out_unlock: 1475 mmap_write_unlock(mm); 1476 mmput(mm); 1477 if (!ret) { 1478 __u64 ioctls_out; 1479 1480 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1481 UFFD_API_RANGE_IOCTLS; 1482 1483 /* 1484 * Declare the WP ioctl only if the WP mode is 1485 * specified and all checks passed with the range 1486 */ 1487 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1488 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1489 1490 /* 1491 * Now that we scanned all vmas we can already tell 1492 * userland which ioctls methods are guaranteed to 1493 * succeed on this range. 1494 */ 1495 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1496 ret = -EFAULT; 1497 } 1498 out: 1499 return ret; 1500 } 1501 1502 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1503 unsigned long arg) 1504 { 1505 struct mm_struct *mm = ctx->mm; 1506 struct vm_area_struct *vma, *prev, *cur; 1507 int ret; 1508 struct uffdio_range uffdio_unregister; 1509 unsigned long new_flags; 1510 bool found; 1511 unsigned long start, end, vma_end; 1512 const void __user *buf = (void __user *)arg; 1513 1514 ret = -EFAULT; 1515 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1516 goto out; 1517 1518 ret = validate_range(mm, &uffdio_unregister.start, 1519 uffdio_unregister.len); 1520 if (ret) 1521 goto out; 1522 1523 start = uffdio_unregister.start; 1524 end = start + uffdio_unregister.len; 1525 1526 ret = -ENOMEM; 1527 if (!mmget_not_zero(mm)) 1528 goto out; 1529 1530 mmap_write_lock(mm); 1531 vma = find_vma_prev(mm, start, &prev); 1532 if (!vma) 1533 goto out_unlock; 1534 1535 /* check that there's at least one vma in the range */ 1536 ret = -EINVAL; 1537 if (vma->vm_start >= end) 1538 goto out_unlock; 1539 1540 /* 1541 * If the first vma contains huge pages, make sure start address 1542 * is aligned to huge page size. 1543 */ 1544 if (is_vm_hugetlb_page(vma)) { 1545 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1546 1547 if (start & (vma_hpagesize - 1)) 1548 goto out_unlock; 1549 } 1550 1551 /* 1552 * Search for not compatible vmas. 1553 */ 1554 found = false; 1555 ret = -EINVAL; 1556 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1557 cond_resched(); 1558 1559 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1560 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1561 1562 /* 1563 * Check not compatible vmas, not strictly required 1564 * here as not compatible vmas cannot have an 1565 * userfaultfd_ctx registered on them, but this 1566 * provides for more strict behavior to notice 1567 * unregistration errors. 1568 */ 1569 if (!vma_can_userfault(cur, cur->vm_flags)) 1570 goto out_unlock; 1571 1572 found = true; 1573 } 1574 BUG_ON(!found); 1575 1576 if (vma->vm_start < start) 1577 prev = vma; 1578 1579 ret = 0; 1580 do { 1581 cond_resched(); 1582 1583 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1584 1585 /* 1586 * Nothing to do: this vma is already registered into this 1587 * userfaultfd and with the right tracking mode too. 1588 */ 1589 if (!vma->vm_userfaultfd_ctx.ctx) 1590 goto skip; 1591 1592 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1593 1594 if (vma->vm_start > start) 1595 start = vma->vm_start; 1596 vma_end = min(end, vma->vm_end); 1597 1598 if (userfaultfd_missing(vma)) { 1599 /* 1600 * Wake any concurrent pending userfault while 1601 * we unregister, so they will not hang 1602 * permanently and it avoids userland to call 1603 * UFFDIO_WAKE explicitly. 1604 */ 1605 struct userfaultfd_wake_range range; 1606 range.start = start; 1607 range.len = vma_end - start; 1608 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1609 } 1610 1611 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1612 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1613 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1614 vma_policy(vma), 1615 NULL_VM_UFFD_CTX); 1616 if (prev) { 1617 vma = prev; 1618 goto next; 1619 } 1620 if (vma->vm_start < start) { 1621 ret = split_vma(mm, vma, start, 1); 1622 if (ret) 1623 break; 1624 } 1625 if (vma->vm_end > end) { 1626 ret = split_vma(mm, vma, end, 0); 1627 if (ret) 1628 break; 1629 } 1630 next: 1631 /* 1632 * In the vma_merge() successful mprotect-like case 8: 1633 * the next vma was merged into the current one and 1634 * the current one has not been updated yet. 1635 */ 1636 vma->vm_flags = new_flags; 1637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1638 1639 skip: 1640 prev = vma; 1641 start = vma->vm_end; 1642 vma = vma->vm_next; 1643 } while (vma && vma->vm_start < end); 1644 out_unlock: 1645 mmap_write_unlock(mm); 1646 mmput(mm); 1647 out: 1648 return ret; 1649 } 1650 1651 /* 1652 * userfaultfd_wake may be used in combination with the 1653 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1654 */ 1655 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1656 unsigned long arg) 1657 { 1658 int ret; 1659 struct uffdio_range uffdio_wake; 1660 struct userfaultfd_wake_range range; 1661 const void __user *buf = (void __user *)arg; 1662 1663 ret = -EFAULT; 1664 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1665 goto out; 1666 1667 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1668 if (ret) 1669 goto out; 1670 1671 range.start = uffdio_wake.start; 1672 range.len = uffdio_wake.len; 1673 1674 /* 1675 * len == 0 means wake all and we don't want to wake all here, 1676 * so check it again to be sure. 1677 */ 1678 VM_BUG_ON(!range.len); 1679 1680 wake_userfault(ctx, &range); 1681 ret = 0; 1682 1683 out: 1684 return ret; 1685 } 1686 1687 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1688 unsigned long arg) 1689 { 1690 __s64 ret; 1691 struct uffdio_copy uffdio_copy; 1692 struct uffdio_copy __user *user_uffdio_copy; 1693 struct userfaultfd_wake_range range; 1694 1695 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1696 1697 ret = -EAGAIN; 1698 if (READ_ONCE(ctx->mmap_changing)) 1699 goto out; 1700 1701 ret = -EFAULT; 1702 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1703 /* don't copy "copy" last field */ 1704 sizeof(uffdio_copy)-sizeof(__s64))) 1705 goto out; 1706 1707 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1708 if (ret) 1709 goto out; 1710 /* 1711 * double check for wraparound just in case. copy_from_user() 1712 * will later check uffdio_copy.src + uffdio_copy.len to fit 1713 * in the userland range. 1714 */ 1715 ret = -EINVAL; 1716 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1717 goto out; 1718 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1719 goto out; 1720 if (mmget_not_zero(ctx->mm)) { 1721 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1722 uffdio_copy.len, &ctx->mmap_changing, 1723 uffdio_copy.mode); 1724 mmput(ctx->mm); 1725 } else { 1726 return -ESRCH; 1727 } 1728 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1729 return -EFAULT; 1730 if (ret < 0) 1731 goto out; 1732 BUG_ON(!ret); 1733 /* len == 0 would wake all */ 1734 range.len = ret; 1735 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1736 range.start = uffdio_copy.dst; 1737 wake_userfault(ctx, &range); 1738 } 1739 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1740 out: 1741 return ret; 1742 } 1743 1744 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1745 unsigned long arg) 1746 { 1747 __s64 ret; 1748 struct uffdio_zeropage uffdio_zeropage; 1749 struct uffdio_zeropage __user *user_uffdio_zeropage; 1750 struct userfaultfd_wake_range range; 1751 1752 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1753 1754 ret = -EAGAIN; 1755 if (READ_ONCE(ctx->mmap_changing)) 1756 goto out; 1757 1758 ret = -EFAULT; 1759 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1760 /* don't copy "zeropage" last field */ 1761 sizeof(uffdio_zeropage)-sizeof(__s64))) 1762 goto out; 1763 1764 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1765 uffdio_zeropage.range.len); 1766 if (ret) 1767 goto out; 1768 ret = -EINVAL; 1769 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1770 goto out; 1771 1772 if (mmget_not_zero(ctx->mm)) { 1773 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1774 uffdio_zeropage.range.len, 1775 &ctx->mmap_changing); 1776 mmput(ctx->mm); 1777 } else { 1778 return -ESRCH; 1779 } 1780 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1781 return -EFAULT; 1782 if (ret < 0) 1783 goto out; 1784 /* len == 0 would wake all */ 1785 BUG_ON(!ret); 1786 range.len = ret; 1787 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1788 range.start = uffdio_zeropage.range.start; 1789 wake_userfault(ctx, &range); 1790 } 1791 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1792 out: 1793 return ret; 1794 } 1795 1796 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1797 unsigned long arg) 1798 { 1799 int ret; 1800 struct uffdio_writeprotect uffdio_wp; 1801 struct uffdio_writeprotect __user *user_uffdio_wp; 1802 struct userfaultfd_wake_range range; 1803 bool mode_wp, mode_dontwake; 1804 1805 if (READ_ONCE(ctx->mmap_changing)) 1806 return -EAGAIN; 1807 1808 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1809 1810 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1811 sizeof(struct uffdio_writeprotect))) 1812 return -EFAULT; 1813 1814 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1815 uffdio_wp.range.len); 1816 if (ret) 1817 return ret; 1818 1819 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1820 UFFDIO_WRITEPROTECT_MODE_WP)) 1821 return -EINVAL; 1822 1823 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1824 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1825 1826 if (mode_wp && mode_dontwake) 1827 return -EINVAL; 1828 1829 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1830 uffdio_wp.range.len, mode_wp, 1831 &ctx->mmap_changing); 1832 if (ret) 1833 return ret; 1834 1835 if (!mode_wp && !mode_dontwake) { 1836 range.start = uffdio_wp.range.start; 1837 range.len = uffdio_wp.range.len; 1838 wake_userfault(ctx, &range); 1839 } 1840 return ret; 1841 } 1842 1843 static inline unsigned int uffd_ctx_features(__u64 user_features) 1844 { 1845 /* 1846 * For the current set of features the bits just coincide 1847 */ 1848 return (unsigned int)user_features; 1849 } 1850 1851 /* 1852 * userland asks for a certain API version and we return which bits 1853 * and ioctl commands are implemented in this kernel for such API 1854 * version or -EINVAL if unknown. 1855 */ 1856 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1857 unsigned long arg) 1858 { 1859 struct uffdio_api uffdio_api; 1860 void __user *buf = (void __user *)arg; 1861 int ret; 1862 __u64 features; 1863 1864 ret = -EINVAL; 1865 if (ctx->state != UFFD_STATE_WAIT_API) 1866 goto out; 1867 ret = -EFAULT; 1868 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1869 goto out; 1870 features = uffdio_api.features; 1871 ret = -EINVAL; 1872 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1873 goto err_out; 1874 ret = -EPERM; 1875 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1876 goto err_out; 1877 /* report all available features and ioctls to userland */ 1878 uffdio_api.features = UFFD_API_FEATURES; 1879 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1880 uffdio_api.features &= ~UFFD_FEATURE_MINOR_HUGETLBFS; 1881 #endif 1882 uffdio_api.ioctls = UFFD_API_IOCTLS; 1883 ret = -EFAULT; 1884 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1885 goto out; 1886 ctx->state = UFFD_STATE_RUNNING; 1887 /* only enable the requested features for this uffd context */ 1888 ctx->features = uffd_ctx_features(features); 1889 ret = 0; 1890 out: 1891 return ret; 1892 err_out: 1893 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1894 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1895 ret = -EFAULT; 1896 goto out; 1897 } 1898 1899 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1900 unsigned long arg) 1901 { 1902 int ret = -EINVAL; 1903 struct userfaultfd_ctx *ctx = file->private_data; 1904 1905 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1906 return -EINVAL; 1907 1908 switch(cmd) { 1909 case UFFDIO_API: 1910 ret = userfaultfd_api(ctx, arg); 1911 break; 1912 case UFFDIO_REGISTER: 1913 ret = userfaultfd_register(ctx, arg); 1914 break; 1915 case UFFDIO_UNREGISTER: 1916 ret = userfaultfd_unregister(ctx, arg); 1917 break; 1918 case UFFDIO_WAKE: 1919 ret = userfaultfd_wake(ctx, arg); 1920 break; 1921 case UFFDIO_COPY: 1922 ret = userfaultfd_copy(ctx, arg); 1923 break; 1924 case UFFDIO_ZEROPAGE: 1925 ret = userfaultfd_zeropage(ctx, arg); 1926 break; 1927 case UFFDIO_WRITEPROTECT: 1928 ret = userfaultfd_writeprotect(ctx, arg); 1929 break; 1930 } 1931 return ret; 1932 } 1933 1934 #ifdef CONFIG_PROC_FS 1935 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1936 { 1937 struct userfaultfd_ctx *ctx = f->private_data; 1938 wait_queue_entry_t *wq; 1939 unsigned long pending = 0, total = 0; 1940 1941 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1942 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1943 pending++; 1944 total++; 1945 } 1946 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1947 total++; 1948 } 1949 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1950 1951 /* 1952 * If more protocols will be added, there will be all shown 1953 * separated by a space. Like this: 1954 * protocols: aa:... bb:... 1955 */ 1956 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1957 pending, total, UFFD_API, ctx->features, 1958 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1959 } 1960 #endif 1961 1962 static const struct file_operations userfaultfd_fops = { 1963 #ifdef CONFIG_PROC_FS 1964 .show_fdinfo = userfaultfd_show_fdinfo, 1965 #endif 1966 .release = userfaultfd_release, 1967 .poll = userfaultfd_poll, 1968 .read = userfaultfd_read, 1969 .unlocked_ioctl = userfaultfd_ioctl, 1970 .compat_ioctl = compat_ptr_ioctl, 1971 .llseek = noop_llseek, 1972 }; 1973 1974 static void init_once_userfaultfd_ctx(void *mem) 1975 { 1976 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1977 1978 init_waitqueue_head(&ctx->fault_pending_wqh); 1979 init_waitqueue_head(&ctx->fault_wqh); 1980 init_waitqueue_head(&ctx->event_wqh); 1981 init_waitqueue_head(&ctx->fd_wqh); 1982 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 1983 } 1984 1985 SYSCALL_DEFINE1(userfaultfd, int, flags) 1986 { 1987 struct userfaultfd_ctx *ctx; 1988 int fd; 1989 1990 if (!sysctl_unprivileged_userfaultfd && 1991 (flags & UFFD_USER_MODE_ONLY) == 0 && 1992 !capable(CAP_SYS_PTRACE)) { 1993 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 1994 "sysctl knob to 1 if kernel faults must be handled " 1995 "without obtaining CAP_SYS_PTRACE capability\n"); 1996 return -EPERM; 1997 } 1998 1999 BUG_ON(!current->mm); 2000 2001 /* Check the UFFD_* constants for consistency. */ 2002 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2003 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2004 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2005 2006 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2007 return -EINVAL; 2008 2009 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2010 if (!ctx) 2011 return -ENOMEM; 2012 2013 refcount_set(&ctx->refcount, 1); 2014 ctx->flags = flags; 2015 ctx->features = 0; 2016 ctx->state = UFFD_STATE_WAIT_API; 2017 ctx->released = false; 2018 ctx->mmap_changing = false; 2019 ctx->mm = current->mm; 2020 /* prevent the mm struct to be freed */ 2021 mmgrab(ctx->mm); 2022 2023 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2024 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2025 if (fd < 0) { 2026 mmdrop(ctx->mm); 2027 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2028 } 2029 return fd; 2030 } 2031 2032 static int __init userfaultfd_init(void) 2033 { 2034 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2035 sizeof(struct userfaultfd_ctx), 2036 0, 2037 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2038 init_once_userfaultfd_ctx); 2039 return 0; 2040 } 2041 __initcall(userfaultfd_init); 2042