xref: /openbmc/linux/fs/userfaultfd.c (revision 15b726ef048b31a24b3fefb6863083a25fe34800)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 
30 enum userfaultfd_state {
31 	UFFD_STATE_WAIT_API,
32 	UFFD_STATE_RUNNING,
33 };
34 
35 struct userfaultfd_ctx {
36 	/* pseudo fd refcounting */
37 	atomic_t refcount;
38 	/* waitqueue head for the pending (i.e. not read) userfaults */
39 	wait_queue_head_t fault_pending_wqh;
40 	/* waitqueue head for the userfaults */
41 	wait_queue_head_t fault_wqh;
42 	/* waitqueue head for the pseudo fd to wakeup poll/read */
43 	wait_queue_head_t fd_wqh;
44 	/* userfaultfd syscall flags */
45 	unsigned int flags;
46 	/* state machine */
47 	enum userfaultfd_state state;
48 	/* released */
49 	bool released;
50 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
51 	struct mm_struct *mm;
52 };
53 
54 struct userfaultfd_wait_queue {
55 	struct uffd_msg msg;
56 	wait_queue_t wq;
57 	struct userfaultfd_ctx *ctx;
58 };
59 
60 struct userfaultfd_wake_range {
61 	unsigned long start;
62 	unsigned long len;
63 };
64 
65 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
66 				     int wake_flags, void *key)
67 {
68 	struct userfaultfd_wake_range *range = key;
69 	int ret;
70 	struct userfaultfd_wait_queue *uwq;
71 	unsigned long start, len;
72 
73 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
74 	ret = 0;
75 	/* len == 0 means wake all */
76 	start = range->start;
77 	len = range->len;
78 	if (len && (start > uwq->msg.arg.pagefault.address ||
79 		    start + len <= uwq->msg.arg.pagefault.address))
80 		goto out;
81 	ret = wake_up_state(wq->private, mode);
82 	if (ret)
83 		/*
84 		 * Wake only once, autoremove behavior.
85 		 *
86 		 * After the effect of list_del_init is visible to the
87 		 * other CPUs, the waitqueue may disappear from under
88 		 * us, see the !list_empty_careful() in
89 		 * handle_userfault(). try_to_wake_up() has an
90 		 * implicit smp_mb__before_spinlock, and the
91 		 * wq->private is read before calling the extern
92 		 * function "wake_up_state" (which in turns calls
93 		 * try_to_wake_up). While the spin_lock;spin_unlock;
94 		 * wouldn't be enough, the smp_mb__before_spinlock is
95 		 * enough to avoid an explicit smp_mb() here.
96 		 */
97 		list_del_init(&wq->task_list);
98 out:
99 	return ret;
100 }
101 
102 /**
103  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
104  * context.
105  * @ctx: [in] Pointer to the userfaultfd context.
106  *
107  * Returns: In case of success, returns not zero.
108  */
109 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
110 {
111 	if (!atomic_inc_not_zero(&ctx->refcount))
112 		BUG();
113 }
114 
115 /**
116  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
117  * context.
118  * @ctx: [in] Pointer to userfaultfd context.
119  *
120  * The userfaultfd context reference must have been previously acquired either
121  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
122  */
123 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
124 {
125 	if (atomic_dec_and_test(&ctx->refcount)) {
126 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
127 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
128 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
129 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
130 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
131 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
132 		mmput(ctx->mm);
133 		kfree(ctx);
134 	}
135 }
136 
137 static inline void msg_init(struct uffd_msg *msg)
138 {
139 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
140 	/*
141 	 * Must use memset to zero out the paddings or kernel data is
142 	 * leaked to userland.
143 	 */
144 	memset(msg, 0, sizeof(struct uffd_msg));
145 }
146 
147 static inline struct uffd_msg userfault_msg(unsigned long address,
148 					    unsigned int flags,
149 					    unsigned long reason)
150 {
151 	struct uffd_msg msg;
152 	msg_init(&msg);
153 	msg.event = UFFD_EVENT_PAGEFAULT;
154 	msg.arg.pagefault.address = address;
155 	if (flags & FAULT_FLAG_WRITE)
156 		/*
157 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
158 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
159 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
160 		 * was a read fault, otherwise if set it means it's
161 		 * a write fault.
162 		 */
163 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
164 	if (reason & VM_UFFD_WP)
165 		/*
166 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
167 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
168 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
169 		 * a missing fault, otherwise if set it means it's a
170 		 * write protect fault.
171 		 */
172 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
173 	return msg;
174 }
175 
176 /*
177  * The locking rules involved in returning VM_FAULT_RETRY depending on
178  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
179  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
180  * recommendation in __lock_page_or_retry is not an understatement.
181  *
182  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
183  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
184  * not set.
185  *
186  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
187  * set, VM_FAULT_RETRY can still be returned if and only if there are
188  * fatal_signal_pending()s, and the mmap_sem must be released before
189  * returning it.
190  */
191 int handle_userfault(struct vm_area_struct *vma, unsigned long address,
192 		     unsigned int flags, unsigned long reason)
193 {
194 	struct mm_struct *mm = vma->vm_mm;
195 	struct userfaultfd_ctx *ctx;
196 	struct userfaultfd_wait_queue uwq;
197 	int ret;
198 
199 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
200 
201 	ret = VM_FAULT_SIGBUS;
202 	ctx = vma->vm_userfaultfd_ctx.ctx;
203 	if (!ctx)
204 		goto out;
205 
206 	BUG_ON(ctx->mm != mm);
207 
208 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
209 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
210 
211 	/*
212 	 * If it's already released don't get it. This avoids to loop
213 	 * in __get_user_pages if userfaultfd_release waits on the
214 	 * caller of handle_userfault to release the mmap_sem.
215 	 */
216 	if (unlikely(ACCESS_ONCE(ctx->released)))
217 		goto out;
218 
219 	/*
220 	 * Check that we can return VM_FAULT_RETRY.
221 	 *
222 	 * NOTE: it should become possible to return VM_FAULT_RETRY
223 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
224 	 * -EBUSY failures, if the userfaultfd is to be extended for
225 	 * VM_UFFD_WP tracking and we intend to arm the userfault
226 	 * without first stopping userland access to the memory. For
227 	 * VM_UFFD_MISSING userfaults this is enough for now.
228 	 */
229 	if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
230 		/*
231 		 * Validate the invariant that nowait must allow retry
232 		 * to be sure not to return SIGBUS erroneously on
233 		 * nowait invocations.
234 		 */
235 		BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
236 #ifdef CONFIG_DEBUG_VM
237 		if (printk_ratelimit()) {
238 			printk(KERN_WARNING
239 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
240 			dump_stack();
241 		}
242 #endif
243 		goto out;
244 	}
245 
246 	/*
247 	 * Handle nowait, not much to do other than tell it to retry
248 	 * and wait.
249 	 */
250 	ret = VM_FAULT_RETRY;
251 	if (flags & FAULT_FLAG_RETRY_NOWAIT)
252 		goto out;
253 
254 	/* take the reference before dropping the mmap_sem */
255 	userfaultfd_ctx_get(ctx);
256 
257 	/* be gentle and immediately relinquish the mmap_sem */
258 	up_read(&mm->mmap_sem);
259 
260 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
261 	uwq.wq.private = current;
262 	uwq.msg = userfault_msg(address, flags, reason);
263 	uwq.ctx = ctx;
264 
265 	spin_lock(&ctx->fault_pending_wqh.lock);
266 	/*
267 	 * After the __add_wait_queue the uwq is visible to userland
268 	 * through poll/read().
269 	 */
270 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
271 	/*
272 	 * The smp_mb() after __set_current_state prevents the reads
273 	 * following the spin_unlock to happen before the list_add in
274 	 * __add_wait_queue.
275 	 */
276 	set_current_state(TASK_KILLABLE);
277 	spin_unlock(&ctx->fault_pending_wqh.lock);
278 
279 	if (likely(!ACCESS_ONCE(ctx->released) &&
280 		   !fatal_signal_pending(current))) {
281 		wake_up_poll(&ctx->fd_wqh, POLLIN);
282 		schedule();
283 		ret |= VM_FAULT_MAJOR;
284 	}
285 
286 	__set_current_state(TASK_RUNNING);
287 
288 	/*
289 	 * Here we race with the list_del; list_add in
290 	 * userfaultfd_ctx_read(), however because we don't ever run
291 	 * list_del_init() to refile across the two lists, the prev
292 	 * and next pointers will never point to self. list_add also
293 	 * would never let any of the two pointers to point to
294 	 * self. So list_empty_careful won't risk to see both pointers
295 	 * pointing to self at any time during the list refile. The
296 	 * only case where list_del_init() is called is the full
297 	 * removal in the wake function and there we don't re-list_add
298 	 * and it's fine not to block on the spinlock. The uwq on this
299 	 * kernel stack can be released after the list_del_init.
300 	 */
301 	if (!list_empty_careful(&uwq.wq.task_list)) {
302 		spin_lock(&ctx->fault_pending_wqh.lock);
303 		/*
304 		 * No need of list_del_init(), the uwq on the stack
305 		 * will be freed shortly anyway.
306 		 */
307 		list_del(&uwq.wq.task_list);
308 		spin_unlock(&ctx->fault_pending_wqh.lock);
309 	}
310 
311 	/*
312 	 * ctx may go away after this if the userfault pseudo fd is
313 	 * already released.
314 	 */
315 	userfaultfd_ctx_put(ctx);
316 
317 out:
318 	return ret;
319 }
320 
321 static int userfaultfd_release(struct inode *inode, struct file *file)
322 {
323 	struct userfaultfd_ctx *ctx = file->private_data;
324 	struct mm_struct *mm = ctx->mm;
325 	struct vm_area_struct *vma, *prev;
326 	/* len == 0 means wake all */
327 	struct userfaultfd_wake_range range = { .len = 0, };
328 	unsigned long new_flags;
329 
330 	ACCESS_ONCE(ctx->released) = true;
331 
332 	/*
333 	 * Flush page faults out of all CPUs. NOTE: all page faults
334 	 * must be retried without returning VM_FAULT_SIGBUS if
335 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
336 	 * changes while handle_userfault released the mmap_sem. So
337 	 * it's critical that released is set to true (above), before
338 	 * taking the mmap_sem for writing.
339 	 */
340 	down_write(&mm->mmap_sem);
341 	prev = NULL;
342 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
343 		cond_resched();
344 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
345 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
346 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
347 			prev = vma;
348 			continue;
349 		}
350 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
351 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
352 				 new_flags, vma->anon_vma,
353 				 vma->vm_file, vma->vm_pgoff,
354 				 vma_policy(vma),
355 				 NULL_VM_UFFD_CTX);
356 		if (prev)
357 			vma = prev;
358 		else
359 			prev = vma;
360 		vma->vm_flags = new_flags;
361 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
362 	}
363 	up_write(&mm->mmap_sem);
364 
365 	/*
366 	 * After no new page faults can wait on this fault_*wqh, flush
367 	 * the last page faults that may have been already waiting on
368 	 * the fault_*wqh.
369 	 */
370 	spin_lock(&ctx->fault_pending_wqh.lock);
371 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0, &range);
372 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, &range);
373 	spin_unlock(&ctx->fault_pending_wqh.lock);
374 
375 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
376 	userfaultfd_ctx_put(ctx);
377 	return 0;
378 }
379 
380 /* fault_pending_wqh.lock must be hold by the caller */
381 static inline struct userfaultfd_wait_queue *find_userfault(
382 	struct userfaultfd_ctx *ctx)
383 {
384 	wait_queue_t *wq;
385 	struct userfaultfd_wait_queue *uwq;
386 
387 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
388 
389 	uwq = NULL;
390 	if (!waitqueue_active(&ctx->fault_pending_wqh))
391 		goto out;
392 	/* walk in reverse to provide FIFO behavior to read userfaults */
393 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
394 			     typeof(*wq), task_list);
395 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
396 out:
397 	return uwq;
398 }
399 
400 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
401 {
402 	struct userfaultfd_ctx *ctx = file->private_data;
403 	unsigned int ret;
404 
405 	poll_wait(file, &ctx->fd_wqh, wait);
406 
407 	switch (ctx->state) {
408 	case UFFD_STATE_WAIT_API:
409 		return POLLERR;
410 	case UFFD_STATE_RUNNING:
411 		/*
412 		 * poll() never guarantees that read won't block.
413 		 * userfaults can be waken before they're read().
414 		 */
415 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
416 			return POLLERR;
417 		/*
418 		 * lockless access to see if there are pending faults
419 		 * __pollwait last action is the add_wait_queue but
420 		 * the spin_unlock would allow the waitqueue_active to
421 		 * pass above the actual list_add inside
422 		 * add_wait_queue critical section. So use a full
423 		 * memory barrier to serialize the list_add write of
424 		 * add_wait_queue() with the waitqueue_active read
425 		 * below.
426 		 */
427 		ret = 0;
428 		smp_mb();
429 		if (waitqueue_active(&ctx->fault_pending_wqh))
430 			ret = POLLIN;
431 		return ret;
432 	default:
433 		BUG();
434 	}
435 }
436 
437 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
438 				    struct uffd_msg *msg)
439 {
440 	ssize_t ret;
441 	DECLARE_WAITQUEUE(wait, current);
442 	struct userfaultfd_wait_queue *uwq;
443 
444 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
445 	spin_lock(&ctx->fd_wqh.lock);
446 	__add_wait_queue(&ctx->fd_wqh, &wait);
447 	for (;;) {
448 		set_current_state(TASK_INTERRUPTIBLE);
449 		spin_lock(&ctx->fault_pending_wqh.lock);
450 		uwq = find_userfault(ctx);
451 		if (uwq) {
452 			/*
453 			 * The fault_pending_wqh.lock prevents the uwq
454 			 * to disappear from under us.
455 			 *
456 			 * Refile this userfault from
457 			 * fault_pending_wqh to fault_wqh, it's not
458 			 * pending anymore after we read it.
459 			 *
460 			 * Use list_del() by hand (as
461 			 * userfaultfd_wake_function also uses
462 			 * list_del_init() by hand) to be sure nobody
463 			 * changes __remove_wait_queue() to use
464 			 * list_del_init() in turn breaking the
465 			 * !list_empty_careful() check in
466 			 * handle_userfault(). The uwq->wq.task_list
467 			 * must never be empty at any time during the
468 			 * refile, or the waitqueue could disappear
469 			 * from under us. The "wait_queue_head_t"
470 			 * parameter of __remove_wait_queue() is unused
471 			 * anyway.
472 			 */
473 			list_del(&uwq->wq.task_list);
474 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
475 
476 			/* careful to always initialize msg if ret == 0 */
477 			*msg = uwq->msg;
478 			spin_unlock(&ctx->fault_pending_wqh.lock);
479 			ret = 0;
480 			break;
481 		}
482 		spin_unlock(&ctx->fault_pending_wqh.lock);
483 		if (signal_pending(current)) {
484 			ret = -ERESTARTSYS;
485 			break;
486 		}
487 		if (no_wait) {
488 			ret = -EAGAIN;
489 			break;
490 		}
491 		spin_unlock(&ctx->fd_wqh.lock);
492 		schedule();
493 		spin_lock(&ctx->fd_wqh.lock);
494 	}
495 	__remove_wait_queue(&ctx->fd_wqh, &wait);
496 	__set_current_state(TASK_RUNNING);
497 	spin_unlock(&ctx->fd_wqh.lock);
498 
499 	return ret;
500 }
501 
502 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
503 				size_t count, loff_t *ppos)
504 {
505 	struct userfaultfd_ctx *ctx = file->private_data;
506 	ssize_t _ret, ret = 0;
507 	struct uffd_msg msg;
508 	int no_wait = file->f_flags & O_NONBLOCK;
509 
510 	if (ctx->state == UFFD_STATE_WAIT_API)
511 		return -EINVAL;
512 	BUG_ON(ctx->state != UFFD_STATE_RUNNING);
513 
514 	for (;;) {
515 		if (count < sizeof(msg))
516 			return ret ? ret : -EINVAL;
517 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
518 		if (_ret < 0)
519 			return ret ? ret : _ret;
520 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
521 			return ret ? ret : -EFAULT;
522 		ret += sizeof(msg);
523 		buf += sizeof(msg);
524 		count -= sizeof(msg);
525 		/*
526 		 * Allow to read more than one fault at time but only
527 		 * block if waiting for the very first one.
528 		 */
529 		no_wait = O_NONBLOCK;
530 	}
531 }
532 
533 static void __wake_userfault(struct userfaultfd_ctx *ctx,
534 			     struct userfaultfd_wake_range *range)
535 {
536 	unsigned long start, end;
537 
538 	start = range->start;
539 	end = range->start + range->len;
540 
541 	spin_lock(&ctx->fault_pending_wqh.lock);
542 	/* wake all in the range and autoremove */
543 	if (waitqueue_active(&ctx->fault_pending_wqh))
544 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0,
545 				     range);
546 	if (waitqueue_active(&ctx->fault_wqh))
547 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, range);
548 	spin_unlock(&ctx->fault_pending_wqh.lock);
549 }
550 
551 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
552 					   struct userfaultfd_wake_range *range)
553 {
554 	/*
555 	 * To be sure waitqueue_active() is not reordered by the CPU
556 	 * before the pagetable update, use an explicit SMP memory
557 	 * barrier here. PT lock release or up_read(mmap_sem) still
558 	 * have release semantics that can allow the
559 	 * waitqueue_active() to be reordered before the pte update.
560 	 */
561 	smp_mb();
562 
563 	/*
564 	 * Use waitqueue_active because it's very frequent to
565 	 * change the address space atomically even if there are no
566 	 * userfaults yet. So we take the spinlock only when we're
567 	 * sure we've userfaults to wake.
568 	 */
569 	if (waitqueue_active(&ctx->fault_pending_wqh) ||
570 	    waitqueue_active(&ctx->fault_wqh))
571 		__wake_userfault(ctx, range);
572 }
573 
574 static __always_inline int validate_range(struct mm_struct *mm,
575 					  __u64 start, __u64 len)
576 {
577 	__u64 task_size = mm->task_size;
578 
579 	if (start & ~PAGE_MASK)
580 		return -EINVAL;
581 	if (len & ~PAGE_MASK)
582 		return -EINVAL;
583 	if (!len)
584 		return -EINVAL;
585 	if (start < mmap_min_addr)
586 		return -EINVAL;
587 	if (start >= task_size)
588 		return -EINVAL;
589 	if (len > task_size - start)
590 		return -EINVAL;
591 	return 0;
592 }
593 
594 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
595 				unsigned long arg)
596 {
597 	struct mm_struct *mm = ctx->mm;
598 	struct vm_area_struct *vma, *prev, *cur;
599 	int ret;
600 	struct uffdio_register uffdio_register;
601 	struct uffdio_register __user *user_uffdio_register;
602 	unsigned long vm_flags, new_flags;
603 	bool found;
604 	unsigned long start, end, vma_end;
605 
606 	user_uffdio_register = (struct uffdio_register __user *) arg;
607 
608 	ret = -EFAULT;
609 	if (copy_from_user(&uffdio_register, user_uffdio_register,
610 			   sizeof(uffdio_register)-sizeof(__u64)))
611 		goto out;
612 
613 	ret = -EINVAL;
614 	if (!uffdio_register.mode)
615 		goto out;
616 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
617 				     UFFDIO_REGISTER_MODE_WP))
618 		goto out;
619 	vm_flags = 0;
620 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
621 		vm_flags |= VM_UFFD_MISSING;
622 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
623 		vm_flags |= VM_UFFD_WP;
624 		/*
625 		 * FIXME: remove the below error constraint by
626 		 * implementing the wprotect tracking mode.
627 		 */
628 		ret = -EINVAL;
629 		goto out;
630 	}
631 
632 	ret = validate_range(mm, uffdio_register.range.start,
633 			     uffdio_register.range.len);
634 	if (ret)
635 		goto out;
636 
637 	start = uffdio_register.range.start;
638 	end = start + uffdio_register.range.len;
639 
640 	down_write(&mm->mmap_sem);
641 	vma = find_vma_prev(mm, start, &prev);
642 
643 	ret = -ENOMEM;
644 	if (!vma)
645 		goto out_unlock;
646 
647 	/* check that there's at least one vma in the range */
648 	ret = -EINVAL;
649 	if (vma->vm_start >= end)
650 		goto out_unlock;
651 
652 	/*
653 	 * Search for not compatible vmas.
654 	 *
655 	 * FIXME: this shall be relaxed later so that it doesn't fail
656 	 * on tmpfs backed vmas (in addition to the current allowance
657 	 * on anonymous vmas).
658 	 */
659 	found = false;
660 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
661 		cond_resched();
662 
663 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
664 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
665 
666 		/* check not compatible vmas */
667 		ret = -EINVAL;
668 		if (cur->vm_ops)
669 			goto out_unlock;
670 
671 		/*
672 		 * Check that this vma isn't already owned by a
673 		 * different userfaultfd. We can't allow more than one
674 		 * userfaultfd to own a single vma simultaneously or we
675 		 * wouldn't know which one to deliver the userfaults to.
676 		 */
677 		ret = -EBUSY;
678 		if (cur->vm_userfaultfd_ctx.ctx &&
679 		    cur->vm_userfaultfd_ctx.ctx != ctx)
680 			goto out_unlock;
681 
682 		found = true;
683 	}
684 	BUG_ON(!found);
685 
686 	if (vma->vm_start < start)
687 		prev = vma;
688 
689 	ret = 0;
690 	do {
691 		cond_resched();
692 
693 		BUG_ON(vma->vm_ops);
694 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
695 		       vma->vm_userfaultfd_ctx.ctx != ctx);
696 
697 		/*
698 		 * Nothing to do: this vma is already registered into this
699 		 * userfaultfd and with the right tracking mode too.
700 		 */
701 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
702 		    (vma->vm_flags & vm_flags) == vm_flags)
703 			goto skip;
704 
705 		if (vma->vm_start > start)
706 			start = vma->vm_start;
707 		vma_end = min(end, vma->vm_end);
708 
709 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
710 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
711 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
712 				 vma_policy(vma),
713 				 ((struct vm_userfaultfd_ctx){ ctx }));
714 		if (prev) {
715 			vma = prev;
716 			goto next;
717 		}
718 		if (vma->vm_start < start) {
719 			ret = split_vma(mm, vma, start, 1);
720 			if (ret)
721 				break;
722 		}
723 		if (vma->vm_end > end) {
724 			ret = split_vma(mm, vma, end, 0);
725 			if (ret)
726 				break;
727 		}
728 	next:
729 		/*
730 		 * In the vma_merge() successful mprotect-like case 8:
731 		 * the next vma was merged into the current one and
732 		 * the current one has not been updated yet.
733 		 */
734 		vma->vm_flags = new_flags;
735 		vma->vm_userfaultfd_ctx.ctx = ctx;
736 
737 	skip:
738 		prev = vma;
739 		start = vma->vm_end;
740 		vma = vma->vm_next;
741 	} while (vma && vma->vm_start < end);
742 out_unlock:
743 	up_write(&mm->mmap_sem);
744 	if (!ret) {
745 		/*
746 		 * Now that we scanned all vmas we can already tell
747 		 * userland which ioctls methods are guaranteed to
748 		 * succeed on this range.
749 		 */
750 		if (put_user(UFFD_API_RANGE_IOCTLS,
751 			     &user_uffdio_register->ioctls))
752 			ret = -EFAULT;
753 	}
754 out:
755 	return ret;
756 }
757 
758 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
759 				  unsigned long arg)
760 {
761 	struct mm_struct *mm = ctx->mm;
762 	struct vm_area_struct *vma, *prev, *cur;
763 	int ret;
764 	struct uffdio_range uffdio_unregister;
765 	unsigned long new_flags;
766 	bool found;
767 	unsigned long start, end, vma_end;
768 	const void __user *buf = (void __user *)arg;
769 
770 	ret = -EFAULT;
771 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
772 		goto out;
773 
774 	ret = validate_range(mm, uffdio_unregister.start,
775 			     uffdio_unregister.len);
776 	if (ret)
777 		goto out;
778 
779 	start = uffdio_unregister.start;
780 	end = start + uffdio_unregister.len;
781 
782 	down_write(&mm->mmap_sem);
783 	vma = find_vma_prev(mm, start, &prev);
784 
785 	ret = -ENOMEM;
786 	if (!vma)
787 		goto out_unlock;
788 
789 	/* check that there's at least one vma in the range */
790 	ret = -EINVAL;
791 	if (vma->vm_start >= end)
792 		goto out_unlock;
793 
794 	/*
795 	 * Search for not compatible vmas.
796 	 *
797 	 * FIXME: this shall be relaxed later so that it doesn't fail
798 	 * on tmpfs backed vmas (in addition to the current allowance
799 	 * on anonymous vmas).
800 	 */
801 	found = false;
802 	ret = -EINVAL;
803 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
804 		cond_resched();
805 
806 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
807 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
808 
809 		/*
810 		 * Check not compatible vmas, not strictly required
811 		 * here as not compatible vmas cannot have an
812 		 * userfaultfd_ctx registered on them, but this
813 		 * provides for more strict behavior to notice
814 		 * unregistration errors.
815 		 */
816 		if (cur->vm_ops)
817 			goto out_unlock;
818 
819 		found = true;
820 	}
821 	BUG_ON(!found);
822 
823 	if (vma->vm_start < start)
824 		prev = vma;
825 
826 	ret = 0;
827 	do {
828 		cond_resched();
829 
830 		BUG_ON(vma->vm_ops);
831 
832 		/*
833 		 * Nothing to do: this vma is already registered into this
834 		 * userfaultfd and with the right tracking mode too.
835 		 */
836 		if (!vma->vm_userfaultfd_ctx.ctx)
837 			goto skip;
838 
839 		if (vma->vm_start > start)
840 			start = vma->vm_start;
841 		vma_end = min(end, vma->vm_end);
842 
843 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
844 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
845 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
846 				 vma_policy(vma),
847 				 NULL_VM_UFFD_CTX);
848 		if (prev) {
849 			vma = prev;
850 			goto next;
851 		}
852 		if (vma->vm_start < start) {
853 			ret = split_vma(mm, vma, start, 1);
854 			if (ret)
855 				break;
856 		}
857 		if (vma->vm_end > end) {
858 			ret = split_vma(mm, vma, end, 0);
859 			if (ret)
860 				break;
861 		}
862 	next:
863 		/*
864 		 * In the vma_merge() successful mprotect-like case 8:
865 		 * the next vma was merged into the current one and
866 		 * the current one has not been updated yet.
867 		 */
868 		vma->vm_flags = new_flags;
869 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
870 
871 	skip:
872 		prev = vma;
873 		start = vma->vm_end;
874 		vma = vma->vm_next;
875 	} while (vma && vma->vm_start < end);
876 out_unlock:
877 	up_write(&mm->mmap_sem);
878 out:
879 	return ret;
880 }
881 
882 /*
883  * userfaultfd_wake is needed in case an userfault is in flight by the
884  * time a UFFDIO_COPY (or other ioctl variants) completes. The page
885  * may be well get mapped and the page fault if repeated wouldn't lead
886  * to a userfault anymore, but before scheduling in TASK_KILLABLE mode
887  * handle_userfault() doesn't recheck the pagetables and it doesn't
888  * serialize against UFFDO_COPY (or other ioctl variants). Ultimately
889  * the knowledge of which pages are mapped is left to userland who is
890  * responsible for handling the race between read() userfaults and
891  * background UFFDIO_COPY (or other ioctl variants), if done by
892  * separate concurrent threads.
893  *
894  * userfaultfd_wake may be used in combination with the
895  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
896  */
897 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
898 			    unsigned long arg)
899 {
900 	int ret;
901 	struct uffdio_range uffdio_wake;
902 	struct userfaultfd_wake_range range;
903 	const void __user *buf = (void __user *)arg;
904 
905 	ret = -EFAULT;
906 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
907 		goto out;
908 
909 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
910 	if (ret)
911 		goto out;
912 
913 	range.start = uffdio_wake.start;
914 	range.len = uffdio_wake.len;
915 
916 	/*
917 	 * len == 0 means wake all and we don't want to wake all here,
918 	 * so check it again to be sure.
919 	 */
920 	VM_BUG_ON(!range.len);
921 
922 	wake_userfault(ctx, &range);
923 	ret = 0;
924 
925 out:
926 	return ret;
927 }
928 
929 /*
930  * userland asks for a certain API version and we return which bits
931  * and ioctl commands are implemented in this kernel for such API
932  * version or -EINVAL if unknown.
933  */
934 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
935 			   unsigned long arg)
936 {
937 	struct uffdio_api uffdio_api;
938 	void __user *buf = (void __user *)arg;
939 	int ret;
940 
941 	ret = -EINVAL;
942 	if (ctx->state != UFFD_STATE_WAIT_API)
943 		goto out;
944 	ret = -EFAULT;
945 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
946 		goto out;
947 	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
948 		memset(&uffdio_api, 0, sizeof(uffdio_api));
949 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
950 			goto out;
951 		ret = -EINVAL;
952 		goto out;
953 	}
954 	uffdio_api.features = UFFD_API_FEATURES;
955 	uffdio_api.ioctls = UFFD_API_IOCTLS;
956 	ret = -EFAULT;
957 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
958 		goto out;
959 	ctx->state = UFFD_STATE_RUNNING;
960 	ret = 0;
961 out:
962 	return ret;
963 }
964 
965 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
966 			      unsigned long arg)
967 {
968 	int ret = -EINVAL;
969 	struct userfaultfd_ctx *ctx = file->private_data;
970 
971 	switch(cmd) {
972 	case UFFDIO_API:
973 		ret = userfaultfd_api(ctx, arg);
974 		break;
975 	case UFFDIO_REGISTER:
976 		ret = userfaultfd_register(ctx, arg);
977 		break;
978 	case UFFDIO_UNREGISTER:
979 		ret = userfaultfd_unregister(ctx, arg);
980 		break;
981 	case UFFDIO_WAKE:
982 		ret = userfaultfd_wake(ctx, arg);
983 		break;
984 	}
985 	return ret;
986 }
987 
988 #ifdef CONFIG_PROC_FS
989 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
990 {
991 	struct userfaultfd_ctx *ctx = f->private_data;
992 	wait_queue_t *wq;
993 	struct userfaultfd_wait_queue *uwq;
994 	unsigned long pending = 0, total = 0;
995 
996 	spin_lock(&ctx->fault_pending_wqh.lock);
997 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
998 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
999 		pending++;
1000 		total++;
1001 	}
1002 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1003 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1004 		total++;
1005 	}
1006 	spin_unlock(&ctx->fault_pending_wqh.lock);
1007 
1008 	/*
1009 	 * If more protocols will be added, there will be all shown
1010 	 * separated by a space. Like this:
1011 	 *	protocols: aa:... bb:...
1012 	 */
1013 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1014 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1015 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1016 }
1017 #endif
1018 
1019 static const struct file_operations userfaultfd_fops = {
1020 #ifdef CONFIG_PROC_FS
1021 	.show_fdinfo	= userfaultfd_show_fdinfo,
1022 #endif
1023 	.release	= userfaultfd_release,
1024 	.poll		= userfaultfd_poll,
1025 	.read		= userfaultfd_read,
1026 	.unlocked_ioctl = userfaultfd_ioctl,
1027 	.compat_ioctl	= userfaultfd_ioctl,
1028 	.llseek		= noop_llseek,
1029 };
1030 
1031 /**
1032  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1033  * @flags: Flags for the userfaultfd file.
1034  *
1035  * This function creates an userfaultfd file pointer, w/out installing
1036  * it into the fd table. This is useful when the userfaultfd file is
1037  * used during the initialization of data structures that require
1038  * extra setup after the userfaultfd creation. So the userfaultfd
1039  * creation is split into the file pointer creation phase, and the
1040  * file descriptor installation phase.  In this way races with
1041  * userspace closing the newly installed file descriptor can be
1042  * avoided.  Returns an userfaultfd file pointer, or a proper error
1043  * pointer.
1044  */
1045 static struct file *userfaultfd_file_create(int flags)
1046 {
1047 	struct file *file;
1048 	struct userfaultfd_ctx *ctx;
1049 
1050 	BUG_ON(!current->mm);
1051 
1052 	/* Check the UFFD_* constants for consistency.  */
1053 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1054 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1055 
1056 	file = ERR_PTR(-EINVAL);
1057 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1058 		goto out;
1059 
1060 	file = ERR_PTR(-ENOMEM);
1061 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
1062 	if (!ctx)
1063 		goto out;
1064 
1065 	atomic_set(&ctx->refcount, 1);
1066 	init_waitqueue_head(&ctx->fault_pending_wqh);
1067 	init_waitqueue_head(&ctx->fault_wqh);
1068 	init_waitqueue_head(&ctx->fd_wqh);
1069 	ctx->flags = flags;
1070 	ctx->state = UFFD_STATE_WAIT_API;
1071 	ctx->released = false;
1072 	ctx->mm = current->mm;
1073 	/* prevent the mm struct to be freed */
1074 	atomic_inc(&ctx->mm->mm_users);
1075 
1076 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1077 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1078 	if (IS_ERR(file))
1079 		kfree(ctx);
1080 out:
1081 	return file;
1082 }
1083 
1084 SYSCALL_DEFINE1(userfaultfd, int, flags)
1085 {
1086 	int fd, error;
1087 	struct file *file;
1088 
1089 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1090 	if (error < 0)
1091 		return error;
1092 	fd = error;
1093 
1094 	file = userfaultfd_file_create(flags);
1095 	if (IS_ERR(file)) {
1096 		error = PTR_ERR(file);
1097 		goto err_put_unused_fd;
1098 	}
1099 	fd_install(fd, file);
1100 
1101 	return fd;
1102 
1103 err_put_unused_fd:
1104 	put_unused_fd(fd);
1105 
1106 	return error;
1107 }
1108