1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/poll.h> 20 #include <linux/slab.h> 21 #include <linux/seq_file.h> 22 #include <linux/file.h> 23 #include <linux/bug.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/syscalls.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ioctl.h> 29 #include <linux/security.h> 30 31 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 32 33 enum userfaultfd_state { 34 UFFD_STATE_WAIT_API, 35 UFFD_STATE_RUNNING, 36 }; 37 38 /* 39 * Start with fault_pending_wqh and fault_wqh so they're more likely 40 * to be in the same cacheline. 41 */ 42 struct userfaultfd_ctx { 43 /* waitqueue head for the pending (i.e. not read) userfaults */ 44 wait_queue_head_t fault_pending_wqh; 45 /* waitqueue head for the userfaults */ 46 wait_queue_head_t fault_wqh; 47 /* waitqueue head for the pseudo fd to wakeup poll/read */ 48 wait_queue_head_t fd_wqh; 49 /* waitqueue head for events */ 50 wait_queue_head_t event_wqh; 51 /* a refile sequence protected by fault_pending_wqh lock */ 52 struct seqcount refile_seq; 53 /* pseudo fd refcounting */ 54 atomic_t refcount; 55 /* userfaultfd syscall flags */ 56 unsigned int flags; 57 /* features requested from the userspace */ 58 unsigned int features; 59 /* state machine */ 60 enum userfaultfd_state state; 61 /* released */ 62 bool released; 63 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 64 struct mm_struct *mm; 65 }; 66 67 struct userfaultfd_fork_ctx { 68 struct userfaultfd_ctx *orig; 69 struct userfaultfd_ctx *new; 70 struct list_head list; 71 }; 72 73 struct userfaultfd_wait_queue { 74 struct uffd_msg msg; 75 wait_queue_t wq; 76 struct userfaultfd_ctx *ctx; 77 bool waken; 78 }; 79 80 struct userfaultfd_wake_range { 81 unsigned long start; 82 unsigned long len; 83 }; 84 85 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 86 int wake_flags, void *key) 87 { 88 struct userfaultfd_wake_range *range = key; 89 int ret; 90 struct userfaultfd_wait_queue *uwq; 91 unsigned long start, len; 92 93 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 94 ret = 0; 95 /* len == 0 means wake all */ 96 start = range->start; 97 len = range->len; 98 if (len && (start > uwq->msg.arg.pagefault.address || 99 start + len <= uwq->msg.arg.pagefault.address)) 100 goto out; 101 WRITE_ONCE(uwq->waken, true); 102 /* 103 * The implicit smp_mb__before_spinlock in try_to_wake_up() 104 * renders uwq->waken visible to other CPUs before the task is 105 * waken. 106 */ 107 ret = wake_up_state(wq->private, mode); 108 if (ret) 109 /* 110 * Wake only once, autoremove behavior. 111 * 112 * After the effect of list_del_init is visible to the 113 * other CPUs, the waitqueue may disappear from under 114 * us, see the !list_empty_careful() in 115 * handle_userfault(). try_to_wake_up() has an 116 * implicit smp_mb__before_spinlock, and the 117 * wq->private is read before calling the extern 118 * function "wake_up_state" (which in turns calls 119 * try_to_wake_up). While the spin_lock;spin_unlock; 120 * wouldn't be enough, the smp_mb__before_spinlock is 121 * enough to avoid an explicit smp_mb() here. 122 */ 123 list_del_init(&wq->task_list); 124 out: 125 return ret; 126 } 127 128 /** 129 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 130 * context. 131 * @ctx: [in] Pointer to the userfaultfd context. 132 * 133 * Returns: In case of success, returns not zero. 134 */ 135 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 136 { 137 if (!atomic_inc_not_zero(&ctx->refcount)) 138 BUG(); 139 } 140 141 /** 142 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 143 * context. 144 * @ctx: [in] Pointer to userfaultfd context. 145 * 146 * The userfaultfd context reference must have been previously acquired either 147 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 148 */ 149 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 150 { 151 if (atomic_dec_and_test(&ctx->refcount)) { 152 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 153 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 154 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 155 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 156 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 160 mmdrop(ctx->mm); 161 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 162 } 163 } 164 165 static inline void msg_init(struct uffd_msg *msg) 166 { 167 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 168 /* 169 * Must use memset to zero out the paddings or kernel data is 170 * leaked to userland. 171 */ 172 memset(msg, 0, sizeof(struct uffd_msg)); 173 } 174 175 static inline struct uffd_msg userfault_msg(unsigned long address, 176 unsigned int flags, 177 unsigned long reason) 178 { 179 struct uffd_msg msg; 180 msg_init(&msg); 181 msg.event = UFFD_EVENT_PAGEFAULT; 182 msg.arg.pagefault.address = address; 183 if (flags & FAULT_FLAG_WRITE) 184 /* 185 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 186 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 187 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 188 * was a read fault, otherwise if set it means it's 189 * a write fault. 190 */ 191 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 192 if (reason & VM_UFFD_WP) 193 /* 194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 196 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 197 * a missing fault, otherwise if set it means it's a 198 * write protect fault. 199 */ 200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 201 return msg; 202 } 203 204 /* 205 * Verify the pagetables are still not ok after having reigstered into 206 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 207 * userfault that has already been resolved, if userfaultfd_read and 208 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 209 * threads. 210 */ 211 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 212 unsigned long address, 213 unsigned long flags, 214 unsigned long reason) 215 { 216 struct mm_struct *mm = ctx->mm; 217 pgd_t *pgd; 218 pud_t *pud; 219 pmd_t *pmd, _pmd; 220 pte_t *pte; 221 bool ret = true; 222 223 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 224 225 pgd = pgd_offset(mm, address); 226 if (!pgd_present(*pgd)) 227 goto out; 228 pud = pud_offset(pgd, address); 229 if (!pud_present(*pud)) 230 goto out; 231 pmd = pmd_offset(pud, address); 232 /* 233 * READ_ONCE must function as a barrier with narrower scope 234 * and it must be equivalent to: 235 * _pmd = *pmd; barrier(); 236 * 237 * This is to deal with the instability (as in 238 * pmd_trans_unstable) of the pmd. 239 */ 240 _pmd = READ_ONCE(*pmd); 241 if (!pmd_present(_pmd)) 242 goto out; 243 244 ret = false; 245 if (pmd_trans_huge(_pmd)) 246 goto out; 247 248 /* 249 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 250 * and use the standard pte_offset_map() instead of parsing _pmd. 251 */ 252 pte = pte_offset_map(pmd, address); 253 /* 254 * Lockless access: we're in a wait_event so it's ok if it 255 * changes under us. 256 */ 257 if (pte_none(*pte)) 258 ret = true; 259 pte_unmap(pte); 260 261 out: 262 return ret; 263 } 264 265 /* 266 * The locking rules involved in returning VM_FAULT_RETRY depending on 267 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 268 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 269 * recommendation in __lock_page_or_retry is not an understatement. 270 * 271 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 272 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 273 * not set. 274 * 275 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 276 * set, VM_FAULT_RETRY can still be returned if and only if there are 277 * fatal_signal_pending()s, and the mmap_sem must be released before 278 * returning it. 279 */ 280 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 281 { 282 struct mm_struct *mm = vmf->vma->vm_mm; 283 struct userfaultfd_ctx *ctx; 284 struct userfaultfd_wait_queue uwq; 285 int ret; 286 bool must_wait, return_to_userland; 287 long blocking_state; 288 289 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 290 291 ret = VM_FAULT_SIGBUS; 292 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 293 if (!ctx) 294 goto out; 295 296 BUG_ON(ctx->mm != mm); 297 298 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 299 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 300 301 /* 302 * If it's already released don't get it. This avoids to loop 303 * in __get_user_pages if userfaultfd_release waits on the 304 * caller of handle_userfault to release the mmap_sem. 305 */ 306 if (unlikely(ACCESS_ONCE(ctx->released))) 307 goto out; 308 309 /* 310 * We don't do userfault handling for the final child pid update. 311 */ 312 if (current->flags & PF_EXITING) 313 goto out; 314 315 /* 316 * Check that we can return VM_FAULT_RETRY. 317 * 318 * NOTE: it should become possible to return VM_FAULT_RETRY 319 * even if FAULT_FLAG_TRIED is set without leading to gup() 320 * -EBUSY failures, if the userfaultfd is to be extended for 321 * VM_UFFD_WP tracking and we intend to arm the userfault 322 * without first stopping userland access to the memory. For 323 * VM_UFFD_MISSING userfaults this is enough for now. 324 */ 325 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 326 /* 327 * Validate the invariant that nowait must allow retry 328 * to be sure not to return SIGBUS erroneously on 329 * nowait invocations. 330 */ 331 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 332 #ifdef CONFIG_DEBUG_VM 333 if (printk_ratelimit()) { 334 printk(KERN_WARNING 335 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 336 vmf->flags); 337 dump_stack(); 338 } 339 #endif 340 goto out; 341 } 342 343 /* 344 * Handle nowait, not much to do other than tell it to retry 345 * and wait. 346 */ 347 ret = VM_FAULT_RETRY; 348 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 349 goto out; 350 351 /* take the reference before dropping the mmap_sem */ 352 userfaultfd_ctx_get(ctx); 353 354 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 355 uwq.wq.private = current; 356 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 357 uwq.ctx = ctx; 358 uwq.waken = false; 359 360 return_to_userland = 361 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 362 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 363 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 364 TASK_KILLABLE; 365 366 spin_lock(&ctx->fault_pending_wqh.lock); 367 /* 368 * After the __add_wait_queue the uwq is visible to userland 369 * through poll/read(). 370 */ 371 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 372 /* 373 * The smp_mb() after __set_current_state prevents the reads 374 * following the spin_unlock to happen before the list_add in 375 * __add_wait_queue. 376 */ 377 set_current_state(blocking_state); 378 spin_unlock(&ctx->fault_pending_wqh.lock); 379 380 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 381 reason); 382 up_read(&mm->mmap_sem); 383 384 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 385 (return_to_userland ? !signal_pending(current) : 386 !fatal_signal_pending(current)))) { 387 wake_up_poll(&ctx->fd_wqh, POLLIN); 388 schedule(); 389 ret |= VM_FAULT_MAJOR; 390 391 /* 392 * False wakeups can orginate even from rwsem before 393 * up_read() however userfaults will wait either for a 394 * targeted wakeup on the specific uwq waitqueue from 395 * wake_userfault() or for signals or for uffd 396 * release. 397 */ 398 while (!READ_ONCE(uwq.waken)) { 399 /* 400 * This needs the full smp_store_mb() 401 * guarantee as the state write must be 402 * visible to other CPUs before reading 403 * uwq.waken from other CPUs. 404 */ 405 set_current_state(blocking_state); 406 if (READ_ONCE(uwq.waken) || 407 READ_ONCE(ctx->released) || 408 (return_to_userland ? signal_pending(current) : 409 fatal_signal_pending(current))) 410 break; 411 schedule(); 412 } 413 } 414 415 __set_current_state(TASK_RUNNING); 416 417 if (return_to_userland) { 418 if (signal_pending(current) && 419 !fatal_signal_pending(current)) { 420 /* 421 * If we got a SIGSTOP or SIGCONT and this is 422 * a normal userland page fault, just let 423 * userland return so the signal will be 424 * handled and gdb debugging works. The page 425 * fault code immediately after we return from 426 * this function is going to release the 427 * mmap_sem and it's not depending on it 428 * (unlike gup would if we were not to return 429 * VM_FAULT_RETRY). 430 * 431 * If a fatal signal is pending we still take 432 * the streamlined VM_FAULT_RETRY failure path 433 * and there's no need to retake the mmap_sem 434 * in such case. 435 */ 436 down_read(&mm->mmap_sem); 437 ret = 0; 438 } 439 } 440 441 /* 442 * Here we race with the list_del; list_add in 443 * userfaultfd_ctx_read(), however because we don't ever run 444 * list_del_init() to refile across the two lists, the prev 445 * and next pointers will never point to self. list_add also 446 * would never let any of the two pointers to point to 447 * self. So list_empty_careful won't risk to see both pointers 448 * pointing to self at any time during the list refile. The 449 * only case where list_del_init() is called is the full 450 * removal in the wake function and there we don't re-list_add 451 * and it's fine not to block on the spinlock. The uwq on this 452 * kernel stack can be released after the list_del_init. 453 */ 454 if (!list_empty_careful(&uwq.wq.task_list)) { 455 spin_lock(&ctx->fault_pending_wqh.lock); 456 /* 457 * No need of list_del_init(), the uwq on the stack 458 * will be freed shortly anyway. 459 */ 460 list_del(&uwq.wq.task_list); 461 spin_unlock(&ctx->fault_pending_wqh.lock); 462 } 463 464 /* 465 * ctx may go away after this if the userfault pseudo fd is 466 * already released. 467 */ 468 userfaultfd_ctx_put(ctx); 469 470 out: 471 return ret; 472 } 473 474 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 475 struct userfaultfd_wait_queue *ewq) 476 { 477 int ret = 0; 478 479 ewq->ctx = ctx; 480 init_waitqueue_entry(&ewq->wq, current); 481 482 spin_lock(&ctx->event_wqh.lock); 483 /* 484 * After the __add_wait_queue the uwq is visible to userland 485 * through poll/read(). 486 */ 487 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 488 for (;;) { 489 set_current_state(TASK_KILLABLE); 490 if (ewq->msg.event == 0) 491 break; 492 if (ACCESS_ONCE(ctx->released) || 493 fatal_signal_pending(current)) { 494 ret = -1; 495 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 496 break; 497 } 498 499 spin_unlock(&ctx->event_wqh.lock); 500 501 wake_up_poll(&ctx->fd_wqh, POLLIN); 502 schedule(); 503 504 spin_lock(&ctx->event_wqh.lock); 505 } 506 __set_current_state(TASK_RUNNING); 507 spin_unlock(&ctx->event_wqh.lock); 508 509 /* 510 * ctx may go away after this if the userfault pseudo fd is 511 * already released. 512 */ 513 514 userfaultfd_ctx_put(ctx); 515 return ret; 516 } 517 518 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 519 struct userfaultfd_wait_queue *ewq) 520 { 521 ewq->msg.event = 0; 522 wake_up_locked(&ctx->event_wqh); 523 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 524 } 525 526 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 527 { 528 struct userfaultfd_ctx *ctx = NULL, *octx; 529 struct userfaultfd_fork_ctx *fctx; 530 531 octx = vma->vm_userfaultfd_ctx.ctx; 532 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 533 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 534 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 535 return 0; 536 } 537 538 list_for_each_entry(fctx, fcs, list) 539 if (fctx->orig == octx) { 540 ctx = fctx->new; 541 break; 542 } 543 544 if (!ctx) { 545 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 546 if (!fctx) 547 return -ENOMEM; 548 549 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 550 if (!ctx) { 551 kfree(fctx); 552 return -ENOMEM; 553 } 554 555 atomic_set(&ctx->refcount, 1); 556 ctx->flags = octx->flags; 557 ctx->state = UFFD_STATE_RUNNING; 558 ctx->features = octx->features; 559 ctx->released = false; 560 ctx->mm = vma->vm_mm; 561 atomic_inc(&ctx->mm->mm_count); 562 563 userfaultfd_ctx_get(octx); 564 fctx->orig = octx; 565 fctx->new = ctx; 566 list_add_tail(&fctx->list, fcs); 567 } 568 569 vma->vm_userfaultfd_ctx.ctx = ctx; 570 return 0; 571 } 572 573 static int dup_fctx(struct userfaultfd_fork_ctx *fctx) 574 { 575 struct userfaultfd_ctx *ctx = fctx->orig; 576 struct userfaultfd_wait_queue ewq; 577 578 msg_init(&ewq.msg); 579 580 ewq.msg.event = UFFD_EVENT_FORK; 581 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 582 583 return userfaultfd_event_wait_completion(ctx, &ewq); 584 } 585 586 void dup_userfaultfd_complete(struct list_head *fcs) 587 { 588 int ret = 0; 589 struct userfaultfd_fork_ctx *fctx, *n; 590 591 list_for_each_entry_safe(fctx, n, fcs, list) { 592 if (!ret) 593 ret = dup_fctx(fctx); 594 list_del(&fctx->list); 595 kfree(fctx); 596 } 597 } 598 599 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 600 struct vm_userfaultfd_ctx *vm_ctx) 601 { 602 struct userfaultfd_ctx *ctx; 603 604 ctx = vma->vm_userfaultfd_ctx.ctx; 605 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 606 vm_ctx->ctx = ctx; 607 userfaultfd_ctx_get(ctx); 608 } 609 } 610 611 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 612 unsigned long from, unsigned long to, 613 unsigned long len) 614 { 615 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 616 struct userfaultfd_wait_queue ewq; 617 618 if (!ctx) 619 return; 620 621 if (to & ~PAGE_MASK) { 622 userfaultfd_ctx_put(ctx); 623 return; 624 } 625 626 msg_init(&ewq.msg); 627 628 ewq.msg.event = UFFD_EVENT_REMAP; 629 ewq.msg.arg.remap.from = from; 630 ewq.msg.arg.remap.to = to; 631 ewq.msg.arg.remap.len = len; 632 633 userfaultfd_event_wait_completion(ctx, &ewq); 634 } 635 636 void madvise_userfault_dontneed(struct vm_area_struct *vma, 637 struct vm_area_struct **prev, 638 unsigned long start, unsigned long end) 639 { 640 struct mm_struct *mm = vma->vm_mm; 641 struct userfaultfd_ctx *ctx; 642 struct userfaultfd_wait_queue ewq; 643 644 ctx = vma->vm_userfaultfd_ctx.ctx; 645 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_MADVDONTNEED)) 646 return; 647 648 userfaultfd_ctx_get(ctx); 649 up_read(&mm->mmap_sem); 650 651 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */ 652 653 msg_init(&ewq.msg); 654 655 ewq.msg.event = UFFD_EVENT_MADVDONTNEED; 656 ewq.msg.arg.madv_dn.start = start; 657 ewq.msg.arg.madv_dn.end = end; 658 659 userfaultfd_event_wait_completion(ctx, &ewq); 660 661 down_read(&mm->mmap_sem); 662 } 663 664 static int userfaultfd_release(struct inode *inode, struct file *file) 665 { 666 struct userfaultfd_ctx *ctx = file->private_data; 667 struct mm_struct *mm = ctx->mm; 668 struct vm_area_struct *vma, *prev; 669 /* len == 0 means wake all */ 670 struct userfaultfd_wake_range range = { .len = 0, }; 671 unsigned long new_flags; 672 673 ACCESS_ONCE(ctx->released) = true; 674 675 if (!mmget_not_zero(mm)) 676 goto wakeup; 677 678 /* 679 * Flush page faults out of all CPUs. NOTE: all page faults 680 * must be retried without returning VM_FAULT_SIGBUS if 681 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 682 * changes while handle_userfault released the mmap_sem. So 683 * it's critical that released is set to true (above), before 684 * taking the mmap_sem for writing. 685 */ 686 down_write(&mm->mmap_sem); 687 prev = NULL; 688 for (vma = mm->mmap; vma; vma = vma->vm_next) { 689 cond_resched(); 690 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 691 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 692 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 693 prev = vma; 694 continue; 695 } 696 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 697 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 698 new_flags, vma->anon_vma, 699 vma->vm_file, vma->vm_pgoff, 700 vma_policy(vma), 701 NULL_VM_UFFD_CTX); 702 if (prev) 703 vma = prev; 704 else 705 prev = vma; 706 vma->vm_flags = new_flags; 707 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 708 } 709 up_write(&mm->mmap_sem); 710 mmput(mm); 711 wakeup: 712 /* 713 * After no new page faults can wait on this fault_*wqh, flush 714 * the last page faults that may have been already waiting on 715 * the fault_*wqh. 716 */ 717 spin_lock(&ctx->fault_pending_wqh.lock); 718 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 719 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 720 spin_unlock(&ctx->fault_pending_wqh.lock); 721 722 wake_up_poll(&ctx->fd_wqh, POLLHUP); 723 userfaultfd_ctx_put(ctx); 724 return 0; 725 } 726 727 /* fault_pending_wqh.lock must be hold by the caller */ 728 static inline struct userfaultfd_wait_queue *find_userfault_in( 729 wait_queue_head_t *wqh) 730 { 731 wait_queue_t *wq; 732 struct userfaultfd_wait_queue *uwq; 733 734 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 735 736 uwq = NULL; 737 if (!waitqueue_active(wqh)) 738 goto out; 739 /* walk in reverse to provide FIFO behavior to read userfaults */ 740 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 741 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 742 out: 743 return uwq; 744 } 745 746 static inline struct userfaultfd_wait_queue *find_userfault( 747 struct userfaultfd_ctx *ctx) 748 { 749 return find_userfault_in(&ctx->fault_pending_wqh); 750 } 751 752 static inline struct userfaultfd_wait_queue *find_userfault_evt( 753 struct userfaultfd_ctx *ctx) 754 { 755 return find_userfault_in(&ctx->event_wqh); 756 } 757 758 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 759 { 760 struct userfaultfd_ctx *ctx = file->private_data; 761 unsigned int ret; 762 763 poll_wait(file, &ctx->fd_wqh, wait); 764 765 switch (ctx->state) { 766 case UFFD_STATE_WAIT_API: 767 return POLLERR; 768 case UFFD_STATE_RUNNING: 769 /* 770 * poll() never guarantees that read won't block. 771 * userfaults can be waken before they're read(). 772 */ 773 if (unlikely(!(file->f_flags & O_NONBLOCK))) 774 return POLLERR; 775 /* 776 * lockless access to see if there are pending faults 777 * __pollwait last action is the add_wait_queue but 778 * the spin_unlock would allow the waitqueue_active to 779 * pass above the actual list_add inside 780 * add_wait_queue critical section. So use a full 781 * memory barrier to serialize the list_add write of 782 * add_wait_queue() with the waitqueue_active read 783 * below. 784 */ 785 ret = 0; 786 smp_mb(); 787 if (waitqueue_active(&ctx->fault_pending_wqh)) 788 ret = POLLIN; 789 else if (waitqueue_active(&ctx->event_wqh)) 790 ret = POLLIN; 791 792 return ret; 793 default: 794 WARN_ON_ONCE(1); 795 return POLLERR; 796 } 797 } 798 799 static const struct file_operations userfaultfd_fops; 800 801 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 802 struct userfaultfd_ctx *new, 803 struct uffd_msg *msg) 804 { 805 int fd; 806 struct file *file; 807 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 808 809 fd = get_unused_fd_flags(flags); 810 if (fd < 0) 811 return fd; 812 813 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 814 O_RDWR | flags); 815 if (IS_ERR(file)) { 816 put_unused_fd(fd); 817 return PTR_ERR(file); 818 } 819 820 fd_install(fd, file); 821 msg->arg.reserved.reserved1 = 0; 822 msg->arg.fork.ufd = fd; 823 824 return 0; 825 } 826 827 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 828 struct uffd_msg *msg) 829 { 830 ssize_t ret; 831 DECLARE_WAITQUEUE(wait, current); 832 struct userfaultfd_wait_queue *uwq; 833 /* 834 * Handling fork event requires sleeping operations, so 835 * we drop the event_wqh lock, then do these ops, then 836 * lock it back and wake up the waiter. While the lock is 837 * dropped the ewq may go away so we keep track of it 838 * carefully. 839 */ 840 LIST_HEAD(fork_event); 841 struct userfaultfd_ctx *fork_nctx = NULL; 842 843 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 844 spin_lock(&ctx->fd_wqh.lock); 845 __add_wait_queue(&ctx->fd_wqh, &wait); 846 for (;;) { 847 set_current_state(TASK_INTERRUPTIBLE); 848 spin_lock(&ctx->fault_pending_wqh.lock); 849 uwq = find_userfault(ctx); 850 if (uwq) { 851 /* 852 * Use a seqcount to repeat the lockless check 853 * in wake_userfault() to avoid missing 854 * wakeups because during the refile both 855 * waitqueue could become empty if this is the 856 * only userfault. 857 */ 858 write_seqcount_begin(&ctx->refile_seq); 859 860 /* 861 * The fault_pending_wqh.lock prevents the uwq 862 * to disappear from under us. 863 * 864 * Refile this userfault from 865 * fault_pending_wqh to fault_wqh, it's not 866 * pending anymore after we read it. 867 * 868 * Use list_del() by hand (as 869 * userfaultfd_wake_function also uses 870 * list_del_init() by hand) to be sure nobody 871 * changes __remove_wait_queue() to use 872 * list_del_init() in turn breaking the 873 * !list_empty_careful() check in 874 * handle_userfault(). The uwq->wq.task_list 875 * must never be empty at any time during the 876 * refile, or the waitqueue could disappear 877 * from under us. The "wait_queue_head_t" 878 * parameter of __remove_wait_queue() is unused 879 * anyway. 880 */ 881 list_del(&uwq->wq.task_list); 882 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 883 884 write_seqcount_end(&ctx->refile_seq); 885 886 /* careful to always initialize msg if ret == 0 */ 887 *msg = uwq->msg; 888 spin_unlock(&ctx->fault_pending_wqh.lock); 889 ret = 0; 890 break; 891 } 892 spin_unlock(&ctx->fault_pending_wqh.lock); 893 894 spin_lock(&ctx->event_wqh.lock); 895 uwq = find_userfault_evt(ctx); 896 if (uwq) { 897 *msg = uwq->msg; 898 899 if (uwq->msg.event == UFFD_EVENT_FORK) { 900 fork_nctx = (struct userfaultfd_ctx *) 901 (unsigned long) 902 uwq->msg.arg.reserved.reserved1; 903 list_move(&uwq->wq.task_list, &fork_event); 904 spin_unlock(&ctx->event_wqh.lock); 905 ret = 0; 906 break; 907 } 908 909 userfaultfd_event_complete(ctx, uwq); 910 spin_unlock(&ctx->event_wqh.lock); 911 ret = 0; 912 break; 913 } 914 spin_unlock(&ctx->event_wqh.lock); 915 916 if (signal_pending(current)) { 917 ret = -ERESTARTSYS; 918 break; 919 } 920 if (no_wait) { 921 ret = -EAGAIN; 922 break; 923 } 924 spin_unlock(&ctx->fd_wqh.lock); 925 schedule(); 926 spin_lock(&ctx->fd_wqh.lock); 927 } 928 __remove_wait_queue(&ctx->fd_wqh, &wait); 929 __set_current_state(TASK_RUNNING); 930 spin_unlock(&ctx->fd_wqh.lock); 931 932 if (!ret && msg->event == UFFD_EVENT_FORK) { 933 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 934 935 if (!ret) { 936 spin_lock(&ctx->event_wqh.lock); 937 if (!list_empty(&fork_event)) { 938 uwq = list_first_entry(&fork_event, 939 typeof(*uwq), 940 wq.task_list); 941 list_del(&uwq->wq.task_list); 942 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 943 userfaultfd_event_complete(ctx, uwq); 944 } 945 spin_unlock(&ctx->event_wqh.lock); 946 } 947 } 948 949 return ret; 950 } 951 952 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 953 size_t count, loff_t *ppos) 954 { 955 struct userfaultfd_ctx *ctx = file->private_data; 956 ssize_t _ret, ret = 0; 957 struct uffd_msg msg; 958 int no_wait = file->f_flags & O_NONBLOCK; 959 960 if (ctx->state == UFFD_STATE_WAIT_API) 961 return -EINVAL; 962 963 for (;;) { 964 if (count < sizeof(msg)) 965 return ret ? ret : -EINVAL; 966 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 967 if (_ret < 0) 968 return ret ? ret : _ret; 969 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 970 return ret ? ret : -EFAULT; 971 ret += sizeof(msg); 972 buf += sizeof(msg); 973 count -= sizeof(msg); 974 /* 975 * Allow to read more than one fault at time but only 976 * block if waiting for the very first one. 977 */ 978 no_wait = O_NONBLOCK; 979 } 980 } 981 982 static void __wake_userfault(struct userfaultfd_ctx *ctx, 983 struct userfaultfd_wake_range *range) 984 { 985 unsigned long start, end; 986 987 start = range->start; 988 end = range->start + range->len; 989 990 spin_lock(&ctx->fault_pending_wqh.lock); 991 /* wake all in the range and autoremove */ 992 if (waitqueue_active(&ctx->fault_pending_wqh)) 993 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 994 range); 995 if (waitqueue_active(&ctx->fault_wqh)) 996 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 997 spin_unlock(&ctx->fault_pending_wqh.lock); 998 } 999 1000 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1001 struct userfaultfd_wake_range *range) 1002 { 1003 unsigned seq; 1004 bool need_wakeup; 1005 1006 /* 1007 * To be sure waitqueue_active() is not reordered by the CPU 1008 * before the pagetable update, use an explicit SMP memory 1009 * barrier here. PT lock release or up_read(mmap_sem) still 1010 * have release semantics that can allow the 1011 * waitqueue_active() to be reordered before the pte update. 1012 */ 1013 smp_mb(); 1014 1015 /* 1016 * Use waitqueue_active because it's very frequent to 1017 * change the address space atomically even if there are no 1018 * userfaults yet. So we take the spinlock only when we're 1019 * sure we've userfaults to wake. 1020 */ 1021 do { 1022 seq = read_seqcount_begin(&ctx->refile_seq); 1023 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1024 waitqueue_active(&ctx->fault_wqh); 1025 cond_resched(); 1026 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1027 if (need_wakeup) 1028 __wake_userfault(ctx, range); 1029 } 1030 1031 static __always_inline int validate_range(struct mm_struct *mm, 1032 __u64 start, __u64 len) 1033 { 1034 __u64 task_size = mm->task_size; 1035 1036 if (start & ~PAGE_MASK) 1037 return -EINVAL; 1038 if (len & ~PAGE_MASK) 1039 return -EINVAL; 1040 if (!len) 1041 return -EINVAL; 1042 if (start < mmap_min_addr) 1043 return -EINVAL; 1044 if (start >= task_size) 1045 return -EINVAL; 1046 if (len > task_size - start) 1047 return -EINVAL; 1048 return 0; 1049 } 1050 1051 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1052 unsigned long arg) 1053 { 1054 struct mm_struct *mm = ctx->mm; 1055 struct vm_area_struct *vma, *prev, *cur; 1056 int ret; 1057 struct uffdio_register uffdio_register; 1058 struct uffdio_register __user *user_uffdio_register; 1059 unsigned long vm_flags, new_flags; 1060 bool found; 1061 unsigned long start, end, vma_end; 1062 1063 user_uffdio_register = (struct uffdio_register __user *) arg; 1064 1065 ret = -EFAULT; 1066 if (copy_from_user(&uffdio_register, user_uffdio_register, 1067 sizeof(uffdio_register)-sizeof(__u64))) 1068 goto out; 1069 1070 ret = -EINVAL; 1071 if (!uffdio_register.mode) 1072 goto out; 1073 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1074 UFFDIO_REGISTER_MODE_WP)) 1075 goto out; 1076 vm_flags = 0; 1077 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1078 vm_flags |= VM_UFFD_MISSING; 1079 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1080 vm_flags |= VM_UFFD_WP; 1081 /* 1082 * FIXME: remove the below error constraint by 1083 * implementing the wprotect tracking mode. 1084 */ 1085 ret = -EINVAL; 1086 goto out; 1087 } 1088 1089 ret = validate_range(mm, uffdio_register.range.start, 1090 uffdio_register.range.len); 1091 if (ret) 1092 goto out; 1093 1094 start = uffdio_register.range.start; 1095 end = start + uffdio_register.range.len; 1096 1097 ret = -ENOMEM; 1098 if (!mmget_not_zero(mm)) 1099 goto out; 1100 1101 down_write(&mm->mmap_sem); 1102 vma = find_vma_prev(mm, start, &prev); 1103 if (!vma) 1104 goto out_unlock; 1105 1106 /* check that there's at least one vma in the range */ 1107 ret = -EINVAL; 1108 if (vma->vm_start >= end) 1109 goto out_unlock; 1110 1111 /* 1112 * Search for not compatible vmas. 1113 * 1114 * FIXME: this shall be relaxed later so that it doesn't fail 1115 * on tmpfs backed vmas (in addition to the current allowance 1116 * on anonymous vmas). 1117 */ 1118 found = false; 1119 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1120 cond_resched(); 1121 1122 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1123 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1124 1125 /* check not compatible vmas */ 1126 ret = -EINVAL; 1127 if (!vma_is_anonymous(cur)) 1128 goto out_unlock; 1129 1130 /* 1131 * Check that this vma isn't already owned by a 1132 * different userfaultfd. We can't allow more than one 1133 * userfaultfd to own a single vma simultaneously or we 1134 * wouldn't know which one to deliver the userfaults to. 1135 */ 1136 ret = -EBUSY; 1137 if (cur->vm_userfaultfd_ctx.ctx && 1138 cur->vm_userfaultfd_ctx.ctx != ctx) 1139 goto out_unlock; 1140 1141 found = true; 1142 } 1143 BUG_ON(!found); 1144 1145 if (vma->vm_start < start) 1146 prev = vma; 1147 1148 ret = 0; 1149 do { 1150 cond_resched(); 1151 1152 BUG_ON(!vma_is_anonymous(vma)); 1153 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1154 vma->vm_userfaultfd_ctx.ctx != ctx); 1155 1156 /* 1157 * Nothing to do: this vma is already registered into this 1158 * userfaultfd and with the right tracking mode too. 1159 */ 1160 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1161 (vma->vm_flags & vm_flags) == vm_flags) 1162 goto skip; 1163 1164 if (vma->vm_start > start) 1165 start = vma->vm_start; 1166 vma_end = min(end, vma->vm_end); 1167 1168 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1169 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1170 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1171 vma_policy(vma), 1172 ((struct vm_userfaultfd_ctx){ ctx })); 1173 if (prev) { 1174 vma = prev; 1175 goto next; 1176 } 1177 if (vma->vm_start < start) { 1178 ret = split_vma(mm, vma, start, 1); 1179 if (ret) 1180 break; 1181 } 1182 if (vma->vm_end > end) { 1183 ret = split_vma(mm, vma, end, 0); 1184 if (ret) 1185 break; 1186 } 1187 next: 1188 /* 1189 * In the vma_merge() successful mprotect-like case 8: 1190 * the next vma was merged into the current one and 1191 * the current one has not been updated yet. 1192 */ 1193 vma->vm_flags = new_flags; 1194 vma->vm_userfaultfd_ctx.ctx = ctx; 1195 1196 skip: 1197 prev = vma; 1198 start = vma->vm_end; 1199 vma = vma->vm_next; 1200 } while (vma && vma->vm_start < end); 1201 out_unlock: 1202 up_write(&mm->mmap_sem); 1203 mmput(mm); 1204 if (!ret) { 1205 /* 1206 * Now that we scanned all vmas we can already tell 1207 * userland which ioctls methods are guaranteed to 1208 * succeed on this range. 1209 */ 1210 if (put_user(UFFD_API_RANGE_IOCTLS, 1211 &user_uffdio_register->ioctls)) 1212 ret = -EFAULT; 1213 } 1214 out: 1215 return ret; 1216 } 1217 1218 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1219 unsigned long arg) 1220 { 1221 struct mm_struct *mm = ctx->mm; 1222 struct vm_area_struct *vma, *prev, *cur; 1223 int ret; 1224 struct uffdio_range uffdio_unregister; 1225 unsigned long new_flags; 1226 bool found; 1227 unsigned long start, end, vma_end; 1228 const void __user *buf = (void __user *)arg; 1229 1230 ret = -EFAULT; 1231 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1232 goto out; 1233 1234 ret = validate_range(mm, uffdio_unregister.start, 1235 uffdio_unregister.len); 1236 if (ret) 1237 goto out; 1238 1239 start = uffdio_unregister.start; 1240 end = start + uffdio_unregister.len; 1241 1242 ret = -ENOMEM; 1243 if (!mmget_not_zero(mm)) 1244 goto out; 1245 1246 down_write(&mm->mmap_sem); 1247 vma = find_vma_prev(mm, start, &prev); 1248 if (!vma) 1249 goto out_unlock; 1250 1251 /* check that there's at least one vma in the range */ 1252 ret = -EINVAL; 1253 if (vma->vm_start >= end) 1254 goto out_unlock; 1255 1256 /* 1257 * Search for not compatible vmas. 1258 * 1259 * FIXME: this shall be relaxed later so that it doesn't fail 1260 * on tmpfs backed vmas (in addition to the current allowance 1261 * on anonymous vmas). 1262 */ 1263 found = false; 1264 ret = -EINVAL; 1265 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1266 cond_resched(); 1267 1268 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1269 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1270 1271 /* 1272 * Check not compatible vmas, not strictly required 1273 * here as not compatible vmas cannot have an 1274 * userfaultfd_ctx registered on them, but this 1275 * provides for more strict behavior to notice 1276 * unregistration errors. 1277 */ 1278 if (!vma_is_anonymous(cur)) 1279 goto out_unlock; 1280 1281 found = true; 1282 } 1283 BUG_ON(!found); 1284 1285 if (vma->vm_start < start) 1286 prev = vma; 1287 1288 ret = 0; 1289 do { 1290 cond_resched(); 1291 1292 BUG_ON(!vma_is_anonymous(vma)); 1293 1294 /* 1295 * Nothing to do: this vma is already registered into this 1296 * userfaultfd and with the right tracking mode too. 1297 */ 1298 if (!vma->vm_userfaultfd_ctx.ctx) 1299 goto skip; 1300 1301 if (vma->vm_start > start) 1302 start = vma->vm_start; 1303 vma_end = min(end, vma->vm_end); 1304 1305 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1306 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1307 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1308 vma_policy(vma), 1309 NULL_VM_UFFD_CTX); 1310 if (prev) { 1311 vma = prev; 1312 goto next; 1313 } 1314 if (vma->vm_start < start) { 1315 ret = split_vma(mm, vma, start, 1); 1316 if (ret) 1317 break; 1318 } 1319 if (vma->vm_end > end) { 1320 ret = split_vma(mm, vma, end, 0); 1321 if (ret) 1322 break; 1323 } 1324 next: 1325 /* 1326 * In the vma_merge() successful mprotect-like case 8: 1327 * the next vma was merged into the current one and 1328 * the current one has not been updated yet. 1329 */ 1330 vma->vm_flags = new_flags; 1331 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1332 1333 skip: 1334 prev = vma; 1335 start = vma->vm_end; 1336 vma = vma->vm_next; 1337 } while (vma && vma->vm_start < end); 1338 out_unlock: 1339 up_write(&mm->mmap_sem); 1340 mmput(mm); 1341 out: 1342 return ret; 1343 } 1344 1345 /* 1346 * userfaultfd_wake may be used in combination with the 1347 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1348 */ 1349 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1350 unsigned long arg) 1351 { 1352 int ret; 1353 struct uffdio_range uffdio_wake; 1354 struct userfaultfd_wake_range range; 1355 const void __user *buf = (void __user *)arg; 1356 1357 ret = -EFAULT; 1358 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1359 goto out; 1360 1361 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1362 if (ret) 1363 goto out; 1364 1365 range.start = uffdio_wake.start; 1366 range.len = uffdio_wake.len; 1367 1368 /* 1369 * len == 0 means wake all and we don't want to wake all here, 1370 * so check it again to be sure. 1371 */ 1372 VM_BUG_ON(!range.len); 1373 1374 wake_userfault(ctx, &range); 1375 ret = 0; 1376 1377 out: 1378 return ret; 1379 } 1380 1381 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1382 unsigned long arg) 1383 { 1384 __s64 ret; 1385 struct uffdio_copy uffdio_copy; 1386 struct uffdio_copy __user *user_uffdio_copy; 1387 struct userfaultfd_wake_range range; 1388 1389 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1390 1391 ret = -EFAULT; 1392 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1393 /* don't copy "copy" last field */ 1394 sizeof(uffdio_copy)-sizeof(__s64))) 1395 goto out; 1396 1397 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1398 if (ret) 1399 goto out; 1400 /* 1401 * double check for wraparound just in case. copy_from_user() 1402 * will later check uffdio_copy.src + uffdio_copy.len to fit 1403 * in the userland range. 1404 */ 1405 ret = -EINVAL; 1406 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1407 goto out; 1408 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1409 goto out; 1410 if (mmget_not_zero(ctx->mm)) { 1411 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1412 uffdio_copy.len); 1413 mmput(ctx->mm); 1414 } 1415 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1416 return -EFAULT; 1417 if (ret < 0) 1418 goto out; 1419 BUG_ON(!ret); 1420 /* len == 0 would wake all */ 1421 range.len = ret; 1422 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1423 range.start = uffdio_copy.dst; 1424 wake_userfault(ctx, &range); 1425 } 1426 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1427 out: 1428 return ret; 1429 } 1430 1431 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1432 unsigned long arg) 1433 { 1434 __s64 ret; 1435 struct uffdio_zeropage uffdio_zeropage; 1436 struct uffdio_zeropage __user *user_uffdio_zeropage; 1437 struct userfaultfd_wake_range range; 1438 1439 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1440 1441 ret = -EFAULT; 1442 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1443 /* don't copy "zeropage" last field */ 1444 sizeof(uffdio_zeropage)-sizeof(__s64))) 1445 goto out; 1446 1447 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1448 uffdio_zeropage.range.len); 1449 if (ret) 1450 goto out; 1451 ret = -EINVAL; 1452 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1453 goto out; 1454 1455 if (mmget_not_zero(ctx->mm)) { 1456 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1457 uffdio_zeropage.range.len); 1458 mmput(ctx->mm); 1459 } 1460 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1461 return -EFAULT; 1462 if (ret < 0) 1463 goto out; 1464 /* len == 0 would wake all */ 1465 BUG_ON(!ret); 1466 range.len = ret; 1467 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1468 range.start = uffdio_zeropage.range.start; 1469 wake_userfault(ctx, &range); 1470 } 1471 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1472 out: 1473 return ret; 1474 } 1475 1476 static inline unsigned int uffd_ctx_features(__u64 user_features) 1477 { 1478 /* 1479 * For the current set of features the bits just coincide 1480 */ 1481 return (unsigned int)user_features; 1482 } 1483 1484 /* 1485 * userland asks for a certain API version and we return which bits 1486 * and ioctl commands are implemented in this kernel for such API 1487 * version or -EINVAL if unknown. 1488 */ 1489 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1490 unsigned long arg) 1491 { 1492 struct uffdio_api uffdio_api; 1493 void __user *buf = (void __user *)arg; 1494 int ret; 1495 __u64 features; 1496 1497 ret = -EINVAL; 1498 if (ctx->state != UFFD_STATE_WAIT_API) 1499 goto out; 1500 ret = -EFAULT; 1501 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1502 goto out; 1503 features = uffdio_api.features; 1504 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1505 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1506 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1507 goto out; 1508 ret = -EINVAL; 1509 goto out; 1510 } 1511 /* report all available features and ioctls to userland */ 1512 uffdio_api.features = UFFD_API_FEATURES; 1513 uffdio_api.ioctls = UFFD_API_IOCTLS; 1514 ret = -EFAULT; 1515 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1516 goto out; 1517 ctx->state = UFFD_STATE_RUNNING; 1518 /* only enable the requested features for this uffd context */ 1519 ctx->features = uffd_ctx_features(features); 1520 ret = 0; 1521 out: 1522 return ret; 1523 } 1524 1525 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1526 unsigned long arg) 1527 { 1528 int ret = -EINVAL; 1529 struct userfaultfd_ctx *ctx = file->private_data; 1530 1531 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1532 return -EINVAL; 1533 1534 switch(cmd) { 1535 case UFFDIO_API: 1536 ret = userfaultfd_api(ctx, arg); 1537 break; 1538 case UFFDIO_REGISTER: 1539 ret = userfaultfd_register(ctx, arg); 1540 break; 1541 case UFFDIO_UNREGISTER: 1542 ret = userfaultfd_unregister(ctx, arg); 1543 break; 1544 case UFFDIO_WAKE: 1545 ret = userfaultfd_wake(ctx, arg); 1546 break; 1547 case UFFDIO_COPY: 1548 ret = userfaultfd_copy(ctx, arg); 1549 break; 1550 case UFFDIO_ZEROPAGE: 1551 ret = userfaultfd_zeropage(ctx, arg); 1552 break; 1553 } 1554 return ret; 1555 } 1556 1557 #ifdef CONFIG_PROC_FS 1558 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1559 { 1560 struct userfaultfd_ctx *ctx = f->private_data; 1561 wait_queue_t *wq; 1562 struct userfaultfd_wait_queue *uwq; 1563 unsigned long pending = 0, total = 0; 1564 1565 spin_lock(&ctx->fault_pending_wqh.lock); 1566 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1567 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1568 pending++; 1569 total++; 1570 } 1571 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1572 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1573 total++; 1574 } 1575 spin_unlock(&ctx->fault_pending_wqh.lock); 1576 1577 /* 1578 * If more protocols will be added, there will be all shown 1579 * separated by a space. Like this: 1580 * protocols: aa:... bb:... 1581 */ 1582 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1583 pending, total, UFFD_API, UFFD_API_FEATURES, 1584 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1585 } 1586 #endif 1587 1588 static const struct file_operations userfaultfd_fops = { 1589 #ifdef CONFIG_PROC_FS 1590 .show_fdinfo = userfaultfd_show_fdinfo, 1591 #endif 1592 .release = userfaultfd_release, 1593 .poll = userfaultfd_poll, 1594 .read = userfaultfd_read, 1595 .unlocked_ioctl = userfaultfd_ioctl, 1596 .compat_ioctl = userfaultfd_ioctl, 1597 .llseek = noop_llseek, 1598 }; 1599 1600 static void init_once_userfaultfd_ctx(void *mem) 1601 { 1602 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1603 1604 init_waitqueue_head(&ctx->fault_pending_wqh); 1605 init_waitqueue_head(&ctx->fault_wqh); 1606 init_waitqueue_head(&ctx->event_wqh); 1607 init_waitqueue_head(&ctx->fd_wqh); 1608 seqcount_init(&ctx->refile_seq); 1609 } 1610 1611 /** 1612 * userfaultfd_file_create - Creates an userfaultfd file pointer. 1613 * @flags: Flags for the userfaultfd file. 1614 * 1615 * This function creates an userfaultfd file pointer, w/out installing 1616 * it into the fd table. This is useful when the userfaultfd file is 1617 * used during the initialization of data structures that require 1618 * extra setup after the userfaultfd creation. So the userfaultfd 1619 * creation is split into the file pointer creation phase, and the 1620 * file descriptor installation phase. In this way races with 1621 * userspace closing the newly installed file descriptor can be 1622 * avoided. Returns an userfaultfd file pointer, or a proper error 1623 * pointer. 1624 */ 1625 static struct file *userfaultfd_file_create(int flags) 1626 { 1627 struct file *file; 1628 struct userfaultfd_ctx *ctx; 1629 1630 BUG_ON(!current->mm); 1631 1632 /* Check the UFFD_* constants for consistency. */ 1633 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1634 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1635 1636 file = ERR_PTR(-EINVAL); 1637 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1638 goto out; 1639 1640 file = ERR_PTR(-ENOMEM); 1641 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1642 if (!ctx) 1643 goto out; 1644 1645 atomic_set(&ctx->refcount, 1); 1646 ctx->flags = flags; 1647 ctx->features = 0; 1648 ctx->state = UFFD_STATE_WAIT_API; 1649 ctx->released = false; 1650 ctx->mm = current->mm; 1651 /* prevent the mm struct to be freed */ 1652 atomic_inc(&ctx->mm->mm_count); 1653 1654 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1655 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1656 if (IS_ERR(file)) { 1657 mmdrop(ctx->mm); 1658 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1659 } 1660 out: 1661 return file; 1662 } 1663 1664 SYSCALL_DEFINE1(userfaultfd, int, flags) 1665 { 1666 int fd, error; 1667 struct file *file; 1668 1669 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1670 if (error < 0) 1671 return error; 1672 fd = error; 1673 1674 file = userfaultfd_file_create(flags); 1675 if (IS_ERR(file)) { 1676 error = PTR_ERR(file); 1677 goto err_put_unused_fd; 1678 } 1679 fd_install(fd, file); 1680 1681 return fd; 1682 1683 err_put_unused_fd: 1684 put_unused_fd(fd); 1685 1686 return error; 1687 } 1688 1689 static int __init userfaultfd_init(void) 1690 { 1691 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1692 sizeof(struct userfaultfd_ctx), 1693 0, 1694 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1695 init_once_userfaultfd_ctx); 1696 return 0; 1697 } 1698 __initcall(userfaultfd_init); 1699