xref: /openbmc/linux/fs/userfaultfd.c (revision 05ce77249d5068b057082d24ec22d3824f4816ac)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 
31 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
32 
33 enum userfaultfd_state {
34 	UFFD_STATE_WAIT_API,
35 	UFFD_STATE_RUNNING,
36 };
37 
38 /*
39  * Start with fault_pending_wqh and fault_wqh so they're more likely
40  * to be in the same cacheline.
41  */
42 struct userfaultfd_ctx {
43 	/* waitqueue head for the pending (i.e. not read) userfaults */
44 	wait_queue_head_t fault_pending_wqh;
45 	/* waitqueue head for the userfaults */
46 	wait_queue_head_t fault_wqh;
47 	/* waitqueue head for the pseudo fd to wakeup poll/read */
48 	wait_queue_head_t fd_wqh;
49 	/* waitqueue head for events */
50 	wait_queue_head_t event_wqh;
51 	/* a refile sequence protected by fault_pending_wqh lock */
52 	struct seqcount refile_seq;
53 	/* pseudo fd refcounting */
54 	atomic_t refcount;
55 	/* userfaultfd syscall flags */
56 	unsigned int flags;
57 	/* features requested from the userspace */
58 	unsigned int features;
59 	/* state machine */
60 	enum userfaultfd_state state;
61 	/* released */
62 	bool released;
63 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
64 	struct mm_struct *mm;
65 };
66 
67 struct userfaultfd_fork_ctx {
68 	struct userfaultfd_ctx *orig;
69 	struct userfaultfd_ctx *new;
70 	struct list_head list;
71 };
72 
73 struct userfaultfd_wait_queue {
74 	struct uffd_msg msg;
75 	wait_queue_t wq;
76 	struct userfaultfd_ctx *ctx;
77 	bool waken;
78 };
79 
80 struct userfaultfd_wake_range {
81 	unsigned long start;
82 	unsigned long len;
83 };
84 
85 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
86 				     int wake_flags, void *key)
87 {
88 	struct userfaultfd_wake_range *range = key;
89 	int ret;
90 	struct userfaultfd_wait_queue *uwq;
91 	unsigned long start, len;
92 
93 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
94 	ret = 0;
95 	/* len == 0 means wake all */
96 	start = range->start;
97 	len = range->len;
98 	if (len && (start > uwq->msg.arg.pagefault.address ||
99 		    start + len <= uwq->msg.arg.pagefault.address))
100 		goto out;
101 	WRITE_ONCE(uwq->waken, true);
102 	/*
103 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
104 	 * renders uwq->waken visible to other CPUs before the task is
105 	 * waken.
106 	 */
107 	ret = wake_up_state(wq->private, mode);
108 	if (ret)
109 		/*
110 		 * Wake only once, autoremove behavior.
111 		 *
112 		 * After the effect of list_del_init is visible to the
113 		 * other CPUs, the waitqueue may disappear from under
114 		 * us, see the !list_empty_careful() in
115 		 * handle_userfault(). try_to_wake_up() has an
116 		 * implicit smp_mb__before_spinlock, and the
117 		 * wq->private is read before calling the extern
118 		 * function "wake_up_state" (which in turns calls
119 		 * try_to_wake_up). While the spin_lock;spin_unlock;
120 		 * wouldn't be enough, the smp_mb__before_spinlock is
121 		 * enough to avoid an explicit smp_mb() here.
122 		 */
123 		list_del_init(&wq->task_list);
124 out:
125 	return ret;
126 }
127 
128 /**
129  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
130  * context.
131  * @ctx: [in] Pointer to the userfaultfd context.
132  *
133  * Returns: In case of success, returns not zero.
134  */
135 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
136 {
137 	if (!atomic_inc_not_zero(&ctx->refcount))
138 		BUG();
139 }
140 
141 /**
142  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
143  * context.
144  * @ctx: [in] Pointer to userfaultfd context.
145  *
146  * The userfaultfd context reference must have been previously acquired either
147  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
148  */
149 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
150 {
151 	if (atomic_dec_and_test(&ctx->refcount)) {
152 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
153 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
154 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
155 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
156 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
160 		mmdrop(ctx->mm);
161 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
162 	}
163 }
164 
165 static inline void msg_init(struct uffd_msg *msg)
166 {
167 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
168 	/*
169 	 * Must use memset to zero out the paddings or kernel data is
170 	 * leaked to userland.
171 	 */
172 	memset(msg, 0, sizeof(struct uffd_msg));
173 }
174 
175 static inline struct uffd_msg userfault_msg(unsigned long address,
176 					    unsigned int flags,
177 					    unsigned long reason)
178 {
179 	struct uffd_msg msg;
180 	msg_init(&msg);
181 	msg.event = UFFD_EVENT_PAGEFAULT;
182 	msg.arg.pagefault.address = address;
183 	if (flags & FAULT_FLAG_WRITE)
184 		/*
185 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
186 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
187 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
188 		 * was a read fault, otherwise if set it means it's
189 		 * a write fault.
190 		 */
191 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
192 	if (reason & VM_UFFD_WP)
193 		/*
194 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
196 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
197 		 * a missing fault, otherwise if set it means it's a
198 		 * write protect fault.
199 		 */
200 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
201 	return msg;
202 }
203 
204 /*
205  * Verify the pagetables are still not ok after having reigstered into
206  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
207  * userfault that has already been resolved, if userfaultfd_read and
208  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
209  * threads.
210  */
211 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
212 					 unsigned long address,
213 					 unsigned long flags,
214 					 unsigned long reason)
215 {
216 	struct mm_struct *mm = ctx->mm;
217 	pgd_t *pgd;
218 	pud_t *pud;
219 	pmd_t *pmd, _pmd;
220 	pte_t *pte;
221 	bool ret = true;
222 
223 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
224 
225 	pgd = pgd_offset(mm, address);
226 	if (!pgd_present(*pgd))
227 		goto out;
228 	pud = pud_offset(pgd, address);
229 	if (!pud_present(*pud))
230 		goto out;
231 	pmd = pmd_offset(pud, address);
232 	/*
233 	 * READ_ONCE must function as a barrier with narrower scope
234 	 * and it must be equivalent to:
235 	 *	_pmd = *pmd; barrier();
236 	 *
237 	 * This is to deal with the instability (as in
238 	 * pmd_trans_unstable) of the pmd.
239 	 */
240 	_pmd = READ_ONCE(*pmd);
241 	if (!pmd_present(_pmd))
242 		goto out;
243 
244 	ret = false;
245 	if (pmd_trans_huge(_pmd))
246 		goto out;
247 
248 	/*
249 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
250 	 * and use the standard pte_offset_map() instead of parsing _pmd.
251 	 */
252 	pte = pte_offset_map(pmd, address);
253 	/*
254 	 * Lockless access: we're in a wait_event so it's ok if it
255 	 * changes under us.
256 	 */
257 	if (pte_none(*pte))
258 		ret = true;
259 	pte_unmap(pte);
260 
261 out:
262 	return ret;
263 }
264 
265 /*
266  * The locking rules involved in returning VM_FAULT_RETRY depending on
267  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
268  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
269  * recommendation in __lock_page_or_retry is not an understatement.
270  *
271  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
272  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
273  * not set.
274  *
275  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
276  * set, VM_FAULT_RETRY can still be returned if and only if there are
277  * fatal_signal_pending()s, and the mmap_sem must be released before
278  * returning it.
279  */
280 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
281 {
282 	struct mm_struct *mm = vmf->vma->vm_mm;
283 	struct userfaultfd_ctx *ctx;
284 	struct userfaultfd_wait_queue uwq;
285 	int ret;
286 	bool must_wait, return_to_userland;
287 	long blocking_state;
288 
289 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290 
291 	ret = VM_FAULT_SIGBUS;
292 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
293 	if (!ctx)
294 		goto out;
295 
296 	BUG_ON(ctx->mm != mm);
297 
298 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
299 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
300 
301 	/*
302 	 * If it's already released don't get it. This avoids to loop
303 	 * in __get_user_pages if userfaultfd_release waits on the
304 	 * caller of handle_userfault to release the mmap_sem.
305 	 */
306 	if (unlikely(ACCESS_ONCE(ctx->released)))
307 		goto out;
308 
309 	/*
310 	 * We don't do userfault handling for the final child pid update.
311 	 */
312 	if (current->flags & PF_EXITING)
313 		goto out;
314 
315 	/*
316 	 * Check that we can return VM_FAULT_RETRY.
317 	 *
318 	 * NOTE: it should become possible to return VM_FAULT_RETRY
319 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
320 	 * -EBUSY failures, if the userfaultfd is to be extended for
321 	 * VM_UFFD_WP tracking and we intend to arm the userfault
322 	 * without first stopping userland access to the memory. For
323 	 * VM_UFFD_MISSING userfaults this is enough for now.
324 	 */
325 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
326 		/*
327 		 * Validate the invariant that nowait must allow retry
328 		 * to be sure not to return SIGBUS erroneously on
329 		 * nowait invocations.
330 		 */
331 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
332 #ifdef CONFIG_DEBUG_VM
333 		if (printk_ratelimit()) {
334 			printk(KERN_WARNING
335 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
336 			       vmf->flags);
337 			dump_stack();
338 		}
339 #endif
340 		goto out;
341 	}
342 
343 	/*
344 	 * Handle nowait, not much to do other than tell it to retry
345 	 * and wait.
346 	 */
347 	ret = VM_FAULT_RETRY;
348 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
349 		goto out;
350 
351 	/* take the reference before dropping the mmap_sem */
352 	userfaultfd_ctx_get(ctx);
353 
354 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
355 	uwq.wq.private = current;
356 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
357 	uwq.ctx = ctx;
358 	uwq.waken = false;
359 
360 	return_to_userland =
361 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
362 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
363 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
364 			 TASK_KILLABLE;
365 
366 	spin_lock(&ctx->fault_pending_wqh.lock);
367 	/*
368 	 * After the __add_wait_queue the uwq is visible to userland
369 	 * through poll/read().
370 	 */
371 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
372 	/*
373 	 * The smp_mb() after __set_current_state prevents the reads
374 	 * following the spin_unlock to happen before the list_add in
375 	 * __add_wait_queue.
376 	 */
377 	set_current_state(blocking_state);
378 	spin_unlock(&ctx->fault_pending_wqh.lock);
379 
380 	must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
381 					  reason);
382 	up_read(&mm->mmap_sem);
383 
384 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
385 		   (return_to_userland ? !signal_pending(current) :
386 		    !fatal_signal_pending(current)))) {
387 		wake_up_poll(&ctx->fd_wqh, POLLIN);
388 		schedule();
389 		ret |= VM_FAULT_MAJOR;
390 
391 		/*
392 		 * False wakeups can orginate even from rwsem before
393 		 * up_read() however userfaults will wait either for a
394 		 * targeted wakeup on the specific uwq waitqueue from
395 		 * wake_userfault() or for signals or for uffd
396 		 * release.
397 		 */
398 		while (!READ_ONCE(uwq.waken)) {
399 			/*
400 			 * This needs the full smp_store_mb()
401 			 * guarantee as the state write must be
402 			 * visible to other CPUs before reading
403 			 * uwq.waken from other CPUs.
404 			 */
405 			set_current_state(blocking_state);
406 			if (READ_ONCE(uwq.waken) ||
407 			    READ_ONCE(ctx->released) ||
408 			    (return_to_userland ? signal_pending(current) :
409 			     fatal_signal_pending(current)))
410 				break;
411 			schedule();
412 		}
413 	}
414 
415 	__set_current_state(TASK_RUNNING);
416 
417 	if (return_to_userland) {
418 		if (signal_pending(current) &&
419 		    !fatal_signal_pending(current)) {
420 			/*
421 			 * If we got a SIGSTOP or SIGCONT and this is
422 			 * a normal userland page fault, just let
423 			 * userland return so the signal will be
424 			 * handled and gdb debugging works.  The page
425 			 * fault code immediately after we return from
426 			 * this function is going to release the
427 			 * mmap_sem and it's not depending on it
428 			 * (unlike gup would if we were not to return
429 			 * VM_FAULT_RETRY).
430 			 *
431 			 * If a fatal signal is pending we still take
432 			 * the streamlined VM_FAULT_RETRY failure path
433 			 * and there's no need to retake the mmap_sem
434 			 * in such case.
435 			 */
436 			down_read(&mm->mmap_sem);
437 			ret = 0;
438 		}
439 	}
440 
441 	/*
442 	 * Here we race with the list_del; list_add in
443 	 * userfaultfd_ctx_read(), however because we don't ever run
444 	 * list_del_init() to refile across the two lists, the prev
445 	 * and next pointers will never point to self. list_add also
446 	 * would never let any of the two pointers to point to
447 	 * self. So list_empty_careful won't risk to see both pointers
448 	 * pointing to self at any time during the list refile. The
449 	 * only case where list_del_init() is called is the full
450 	 * removal in the wake function and there we don't re-list_add
451 	 * and it's fine not to block on the spinlock. The uwq on this
452 	 * kernel stack can be released after the list_del_init.
453 	 */
454 	if (!list_empty_careful(&uwq.wq.task_list)) {
455 		spin_lock(&ctx->fault_pending_wqh.lock);
456 		/*
457 		 * No need of list_del_init(), the uwq on the stack
458 		 * will be freed shortly anyway.
459 		 */
460 		list_del(&uwq.wq.task_list);
461 		spin_unlock(&ctx->fault_pending_wqh.lock);
462 	}
463 
464 	/*
465 	 * ctx may go away after this if the userfault pseudo fd is
466 	 * already released.
467 	 */
468 	userfaultfd_ctx_put(ctx);
469 
470 out:
471 	return ret;
472 }
473 
474 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
475 					     struct userfaultfd_wait_queue *ewq)
476 {
477 	int ret = 0;
478 
479 	ewq->ctx = ctx;
480 	init_waitqueue_entry(&ewq->wq, current);
481 
482 	spin_lock(&ctx->event_wqh.lock);
483 	/*
484 	 * After the __add_wait_queue the uwq is visible to userland
485 	 * through poll/read().
486 	 */
487 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
488 	for (;;) {
489 		set_current_state(TASK_KILLABLE);
490 		if (ewq->msg.event == 0)
491 			break;
492 		if (ACCESS_ONCE(ctx->released) ||
493 		    fatal_signal_pending(current)) {
494 			ret = -1;
495 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
496 			break;
497 		}
498 
499 		spin_unlock(&ctx->event_wqh.lock);
500 
501 		wake_up_poll(&ctx->fd_wqh, POLLIN);
502 		schedule();
503 
504 		spin_lock(&ctx->event_wqh.lock);
505 	}
506 	__set_current_state(TASK_RUNNING);
507 	spin_unlock(&ctx->event_wqh.lock);
508 
509 	/*
510 	 * ctx may go away after this if the userfault pseudo fd is
511 	 * already released.
512 	 */
513 
514 	userfaultfd_ctx_put(ctx);
515 	return ret;
516 }
517 
518 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
519 				       struct userfaultfd_wait_queue *ewq)
520 {
521 	ewq->msg.event = 0;
522 	wake_up_locked(&ctx->event_wqh);
523 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
524 }
525 
526 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
527 {
528 	struct userfaultfd_ctx *ctx = NULL, *octx;
529 	struct userfaultfd_fork_ctx *fctx;
530 
531 	octx = vma->vm_userfaultfd_ctx.ctx;
532 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
533 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
534 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
535 		return 0;
536 	}
537 
538 	list_for_each_entry(fctx, fcs, list)
539 		if (fctx->orig == octx) {
540 			ctx = fctx->new;
541 			break;
542 		}
543 
544 	if (!ctx) {
545 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
546 		if (!fctx)
547 			return -ENOMEM;
548 
549 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
550 		if (!ctx) {
551 			kfree(fctx);
552 			return -ENOMEM;
553 		}
554 
555 		atomic_set(&ctx->refcount, 1);
556 		ctx->flags = octx->flags;
557 		ctx->state = UFFD_STATE_RUNNING;
558 		ctx->features = octx->features;
559 		ctx->released = false;
560 		ctx->mm = vma->vm_mm;
561 		atomic_inc(&ctx->mm->mm_count);
562 
563 		userfaultfd_ctx_get(octx);
564 		fctx->orig = octx;
565 		fctx->new = ctx;
566 		list_add_tail(&fctx->list, fcs);
567 	}
568 
569 	vma->vm_userfaultfd_ctx.ctx = ctx;
570 	return 0;
571 }
572 
573 static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
574 {
575 	struct userfaultfd_ctx *ctx = fctx->orig;
576 	struct userfaultfd_wait_queue ewq;
577 
578 	msg_init(&ewq.msg);
579 
580 	ewq.msg.event = UFFD_EVENT_FORK;
581 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
582 
583 	return userfaultfd_event_wait_completion(ctx, &ewq);
584 }
585 
586 void dup_userfaultfd_complete(struct list_head *fcs)
587 {
588 	int ret = 0;
589 	struct userfaultfd_fork_ctx *fctx, *n;
590 
591 	list_for_each_entry_safe(fctx, n, fcs, list) {
592 		if (!ret)
593 			ret = dup_fctx(fctx);
594 		list_del(&fctx->list);
595 		kfree(fctx);
596 	}
597 }
598 
599 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
600 			     struct vm_userfaultfd_ctx *vm_ctx)
601 {
602 	struct userfaultfd_ctx *ctx;
603 
604 	ctx = vma->vm_userfaultfd_ctx.ctx;
605 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
606 		vm_ctx->ctx = ctx;
607 		userfaultfd_ctx_get(ctx);
608 	}
609 }
610 
611 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
612 				 unsigned long from, unsigned long to,
613 				 unsigned long len)
614 {
615 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
616 	struct userfaultfd_wait_queue ewq;
617 
618 	if (!ctx)
619 		return;
620 
621 	if (to & ~PAGE_MASK) {
622 		userfaultfd_ctx_put(ctx);
623 		return;
624 	}
625 
626 	msg_init(&ewq.msg);
627 
628 	ewq.msg.event = UFFD_EVENT_REMAP;
629 	ewq.msg.arg.remap.from = from;
630 	ewq.msg.arg.remap.to = to;
631 	ewq.msg.arg.remap.len = len;
632 
633 	userfaultfd_event_wait_completion(ctx, &ewq);
634 }
635 
636 void madvise_userfault_dontneed(struct vm_area_struct *vma,
637 				struct vm_area_struct **prev,
638 				unsigned long start, unsigned long end)
639 {
640 	struct mm_struct *mm = vma->vm_mm;
641 	struct userfaultfd_ctx *ctx;
642 	struct userfaultfd_wait_queue ewq;
643 
644 	ctx = vma->vm_userfaultfd_ctx.ctx;
645 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_MADVDONTNEED))
646 		return;
647 
648 	userfaultfd_ctx_get(ctx);
649 	up_read(&mm->mmap_sem);
650 
651 	*prev = NULL; /* We wait for ACK w/o the mmap semaphore */
652 
653 	msg_init(&ewq.msg);
654 
655 	ewq.msg.event = UFFD_EVENT_MADVDONTNEED;
656 	ewq.msg.arg.madv_dn.start = start;
657 	ewq.msg.arg.madv_dn.end = end;
658 
659 	userfaultfd_event_wait_completion(ctx, &ewq);
660 
661 	down_read(&mm->mmap_sem);
662 }
663 
664 static int userfaultfd_release(struct inode *inode, struct file *file)
665 {
666 	struct userfaultfd_ctx *ctx = file->private_data;
667 	struct mm_struct *mm = ctx->mm;
668 	struct vm_area_struct *vma, *prev;
669 	/* len == 0 means wake all */
670 	struct userfaultfd_wake_range range = { .len = 0, };
671 	unsigned long new_flags;
672 
673 	ACCESS_ONCE(ctx->released) = true;
674 
675 	if (!mmget_not_zero(mm))
676 		goto wakeup;
677 
678 	/*
679 	 * Flush page faults out of all CPUs. NOTE: all page faults
680 	 * must be retried without returning VM_FAULT_SIGBUS if
681 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
682 	 * changes while handle_userfault released the mmap_sem. So
683 	 * it's critical that released is set to true (above), before
684 	 * taking the mmap_sem for writing.
685 	 */
686 	down_write(&mm->mmap_sem);
687 	prev = NULL;
688 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
689 		cond_resched();
690 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
691 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
692 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
693 			prev = vma;
694 			continue;
695 		}
696 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
697 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
698 				 new_flags, vma->anon_vma,
699 				 vma->vm_file, vma->vm_pgoff,
700 				 vma_policy(vma),
701 				 NULL_VM_UFFD_CTX);
702 		if (prev)
703 			vma = prev;
704 		else
705 			prev = vma;
706 		vma->vm_flags = new_flags;
707 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
708 	}
709 	up_write(&mm->mmap_sem);
710 	mmput(mm);
711 wakeup:
712 	/*
713 	 * After no new page faults can wait on this fault_*wqh, flush
714 	 * the last page faults that may have been already waiting on
715 	 * the fault_*wqh.
716 	 */
717 	spin_lock(&ctx->fault_pending_wqh.lock);
718 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
719 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
720 	spin_unlock(&ctx->fault_pending_wqh.lock);
721 
722 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
723 	userfaultfd_ctx_put(ctx);
724 	return 0;
725 }
726 
727 /* fault_pending_wqh.lock must be hold by the caller */
728 static inline struct userfaultfd_wait_queue *find_userfault_in(
729 		wait_queue_head_t *wqh)
730 {
731 	wait_queue_t *wq;
732 	struct userfaultfd_wait_queue *uwq;
733 
734 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
735 
736 	uwq = NULL;
737 	if (!waitqueue_active(wqh))
738 		goto out;
739 	/* walk in reverse to provide FIFO behavior to read userfaults */
740 	wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
741 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
742 out:
743 	return uwq;
744 }
745 
746 static inline struct userfaultfd_wait_queue *find_userfault(
747 		struct userfaultfd_ctx *ctx)
748 {
749 	return find_userfault_in(&ctx->fault_pending_wqh);
750 }
751 
752 static inline struct userfaultfd_wait_queue *find_userfault_evt(
753 		struct userfaultfd_ctx *ctx)
754 {
755 	return find_userfault_in(&ctx->event_wqh);
756 }
757 
758 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
759 {
760 	struct userfaultfd_ctx *ctx = file->private_data;
761 	unsigned int ret;
762 
763 	poll_wait(file, &ctx->fd_wqh, wait);
764 
765 	switch (ctx->state) {
766 	case UFFD_STATE_WAIT_API:
767 		return POLLERR;
768 	case UFFD_STATE_RUNNING:
769 		/*
770 		 * poll() never guarantees that read won't block.
771 		 * userfaults can be waken before they're read().
772 		 */
773 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
774 			return POLLERR;
775 		/*
776 		 * lockless access to see if there are pending faults
777 		 * __pollwait last action is the add_wait_queue but
778 		 * the spin_unlock would allow the waitqueue_active to
779 		 * pass above the actual list_add inside
780 		 * add_wait_queue critical section. So use a full
781 		 * memory barrier to serialize the list_add write of
782 		 * add_wait_queue() with the waitqueue_active read
783 		 * below.
784 		 */
785 		ret = 0;
786 		smp_mb();
787 		if (waitqueue_active(&ctx->fault_pending_wqh))
788 			ret = POLLIN;
789 		else if (waitqueue_active(&ctx->event_wqh))
790 			ret = POLLIN;
791 
792 		return ret;
793 	default:
794 		WARN_ON_ONCE(1);
795 		return POLLERR;
796 	}
797 }
798 
799 static const struct file_operations userfaultfd_fops;
800 
801 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
802 				  struct userfaultfd_ctx *new,
803 				  struct uffd_msg *msg)
804 {
805 	int fd;
806 	struct file *file;
807 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
808 
809 	fd = get_unused_fd_flags(flags);
810 	if (fd < 0)
811 		return fd;
812 
813 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
814 				  O_RDWR | flags);
815 	if (IS_ERR(file)) {
816 		put_unused_fd(fd);
817 		return PTR_ERR(file);
818 	}
819 
820 	fd_install(fd, file);
821 	msg->arg.reserved.reserved1 = 0;
822 	msg->arg.fork.ufd = fd;
823 
824 	return 0;
825 }
826 
827 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
828 				    struct uffd_msg *msg)
829 {
830 	ssize_t ret;
831 	DECLARE_WAITQUEUE(wait, current);
832 	struct userfaultfd_wait_queue *uwq;
833 	/*
834 	 * Handling fork event requires sleeping operations, so
835 	 * we drop the event_wqh lock, then do these ops, then
836 	 * lock it back and wake up the waiter. While the lock is
837 	 * dropped the ewq may go away so we keep track of it
838 	 * carefully.
839 	 */
840 	LIST_HEAD(fork_event);
841 	struct userfaultfd_ctx *fork_nctx = NULL;
842 
843 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
844 	spin_lock(&ctx->fd_wqh.lock);
845 	__add_wait_queue(&ctx->fd_wqh, &wait);
846 	for (;;) {
847 		set_current_state(TASK_INTERRUPTIBLE);
848 		spin_lock(&ctx->fault_pending_wqh.lock);
849 		uwq = find_userfault(ctx);
850 		if (uwq) {
851 			/*
852 			 * Use a seqcount to repeat the lockless check
853 			 * in wake_userfault() to avoid missing
854 			 * wakeups because during the refile both
855 			 * waitqueue could become empty if this is the
856 			 * only userfault.
857 			 */
858 			write_seqcount_begin(&ctx->refile_seq);
859 
860 			/*
861 			 * The fault_pending_wqh.lock prevents the uwq
862 			 * to disappear from under us.
863 			 *
864 			 * Refile this userfault from
865 			 * fault_pending_wqh to fault_wqh, it's not
866 			 * pending anymore after we read it.
867 			 *
868 			 * Use list_del() by hand (as
869 			 * userfaultfd_wake_function also uses
870 			 * list_del_init() by hand) to be sure nobody
871 			 * changes __remove_wait_queue() to use
872 			 * list_del_init() in turn breaking the
873 			 * !list_empty_careful() check in
874 			 * handle_userfault(). The uwq->wq.task_list
875 			 * must never be empty at any time during the
876 			 * refile, or the waitqueue could disappear
877 			 * from under us. The "wait_queue_head_t"
878 			 * parameter of __remove_wait_queue() is unused
879 			 * anyway.
880 			 */
881 			list_del(&uwq->wq.task_list);
882 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
883 
884 			write_seqcount_end(&ctx->refile_seq);
885 
886 			/* careful to always initialize msg if ret == 0 */
887 			*msg = uwq->msg;
888 			spin_unlock(&ctx->fault_pending_wqh.lock);
889 			ret = 0;
890 			break;
891 		}
892 		spin_unlock(&ctx->fault_pending_wqh.lock);
893 
894 		spin_lock(&ctx->event_wqh.lock);
895 		uwq = find_userfault_evt(ctx);
896 		if (uwq) {
897 			*msg = uwq->msg;
898 
899 			if (uwq->msg.event == UFFD_EVENT_FORK) {
900 				fork_nctx = (struct userfaultfd_ctx *)
901 					(unsigned long)
902 					uwq->msg.arg.reserved.reserved1;
903 				list_move(&uwq->wq.task_list, &fork_event);
904 				spin_unlock(&ctx->event_wqh.lock);
905 				ret = 0;
906 				break;
907 			}
908 
909 			userfaultfd_event_complete(ctx, uwq);
910 			spin_unlock(&ctx->event_wqh.lock);
911 			ret = 0;
912 			break;
913 		}
914 		spin_unlock(&ctx->event_wqh.lock);
915 
916 		if (signal_pending(current)) {
917 			ret = -ERESTARTSYS;
918 			break;
919 		}
920 		if (no_wait) {
921 			ret = -EAGAIN;
922 			break;
923 		}
924 		spin_unlock(&ctx->fd_wqh.lock);
925 		schedule();
926 		spin_lock(&ctx->fd_wqh.lock);
927 	}
928 	__remove_wait_queue(&ctx->fd_wqh, &wait);
929 	__set_current_state(TASK_RUNNING);
930 	spin_unlock(&ctx->fd_wqh.lock);
931 
932 	if (!ret && msg->event == UFFD_EVENT_FORK) {
933 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
934 
935 		if (!ret) {
936 			spin_lock(&ctx->event_wqh.lock);
937 			if (!list_empty(&fork_event)) {
938 				uwq = list_first_entry(&fork_event,
939 						       typeof(*uwq),
940 						       wq.task_list);
941 				list_del(&uwq->wq.task_list);
942 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
943 				userfaultfd_event_complete(ctx, uwq);
944 			}
945 			spin_unlock(&ctx->event_wqh.lock);
946 		}
947 	}
948 
949 	return ret;
950 }
951 
952 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
953 				size_t count, loff_t *ppos)
954 {
955 	struct userfaultfd_ctx *ctx = file->private_data;
956 	ssize_t _ret, ret = 0;
957 	struct uffd_msg msg;
958 	int no_wait = file->f_flags & O_NONBLOCK;
959 
960 	if (ctx->state == UFFD_STATE_WAIT_API)
961 		return -EINVAL;
962 
963 	for (;;) {
964 		if (count < sizeof(msg))
965 			return ret ? ret : -EINVAL;
966 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
967 		if (_ret < 0)
968 			return ret ? ret : _ret;
969 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
970 			return ret ? ret : -EFAULT;
971 		ret += sizeof(msg);
972 		buf += sizeof(msg);
973 		count -= sizeof(msg);
974 		/*
975 		 * Allow to read more than one fault at time but only
976 		 * block if waiting for the very first one.
977 		 */
978 		no_wait = O_NONBLOCK;
979 	}
980 }
981 
982 static void __wake_userfault(struct userfaultfd_ctx *ctx,
983 			     struct userfaultfd_wake_range *range)
984 {
985 	unsigned long start, end;
986 
987 	start = range->start;
988 	end = range->start + range->len;
989 
990 	spin_lock(&ctx->fault_pending_wqh.lock);
991 	/* wake all in the range and autoremove */
992 	if (waitqueue_active(&ctx->fault_pending_wqh))
993 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
994 				     range);
995 	if (waitqueue_active(&ctx->fault_wqh))
996 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
997 	spin_unlock(&ctx->fault_pending_wqh.lock);
998 }
999 
1000 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1001 					   struct userfaultfd_wake_range *range)
1002 {
1003 	unsigned seq;
1004 	bool need_wakeup;
1005 
1006 	/*
1007 	 * To be sure waitqueue_active() is not reordered by the CPU
1008 	 * before the pagetable update, use an explicit SMP memory
1009 	 * barrier here. PT lock release or up_read(mmap_sem) still
1010 	 * have release semantics that can allow the
1011 	 * waitqueue_active() to be reordered before the pte update.
1012 	 */
1013 	smp_mb();
1014 
1015 	/*
1016 	 * Use waitqueue_active because it's very frequent to
1017 	 * change the address space atomically even if there are no
1018 	 * userfaults yet. So we take the spinlock only when we're
1019 	 * sure we've userfaults to wake.
1020 	 */
1021 	do {
1022 		seq = read_seqcount_begin(&ctx->refile_seq);
1023 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1024 			waitqueue_active(&ctx->fault_wqh);
1025 		cond_resched();
1026 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1027 	if (need_wakeup)
1028 		__wake_userfault(ctx, range);
1029 }
1030 
1031 static __always_inline int validate_range(struct mm_struct *mm,
1032 					  __u64 start, __u64 len)
1033 {
1034 	__u64 task_size = mm->task_size;
1035 
1036 	if (start & ~PAGE_MASK)
1037 		return -EINVAL;
1038 	if (len & ~PAGE_MASK)
1039 		return -EINVAL;
1040 	if (!len)
1041 		return -EINVAL;
1042 	if (start < mmap_min_addr)
1043 		return -EINVAL;
1044 	if (start >= task_size)
1045 		return -EINVAL;
1046 	if (len > task_size - start)
1047 		return -EINVAL;
1048 	return 0;
1049 }
1050 
1051 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1052 				unsigned long arg)
1053 {
1054 	struct mm_struct *mm = ctx->mm;
1055 	struct vm_area_struct *vma, *prev, *cur;
1056 	int ret;
1057 	struct uffdio_register uffdio_register;
1058 	struct uffdio_register __user *user_uffdio_register;
1059 	unsigned long vm_flags, new_flags;
1060 	bool found;
1061 	unsigned long start, end, vma_end;
1062 
1063 	user_uffdio_register = (struct uffdio_register __user *) arg;
1064 
1065 	ret = -EFAULT;
1066 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1067 			   sizeof(uffdio_register)-sizeof(__u64)))
1068 		goto out;
1069 
1070 	ret = -EINVAL;
1071 	if (!uffdio_register.mode)
1072 		goto out;
1073 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1074 				     UFFDIO_REGISTER_MODE_WP))
1075 		goto out;
1076 	vm_flags = 0;
1077 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1078 		vm_flags |= VM_UFFD_MISSING;
1079 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1080 		vm_flags |= VM_UFFD_WP;
1081 		/*
1082 		 * FIXME: remove the below error constraint by
1083 		 * implementing the wprotect tracking mode.
1084 		 */
1085 		ret = -EINVAL;
1086 		goto out;
1087 	}
1088 
1089 	ret = validate_range(mm, uffdio_register.range.start,
1090 			     uffdio_register.range.len);
1091 	if (ret)
1092 		goto out;
1093 
1094 	start = uffdio_register.range.start;
1095 	end = start + uffdio_register.range.len;
1096 
1097 	ret = -ENOMEM;
1098 	if (!mmget_not_zero(mm))
1099 		goto out;
1100 
1101 	down_write(&mm->mmap_sem);
1102 	vma = find_vma_prev(mm, start, &prev);
1103 	if (!vma)
1104 		goto out_unlock;
1105 
1106 	/* check that there's at least one vma in the range */
1107 	ret = -EINVAL;
1108 	if (vma->vm_start >= end)
1109 		goto out_unlock;
1110 
1111 	/*
1112 	 * Search for not compatible vmas.
1113 	 *
1114 	 * FIXME: this shall be relaxed later so that it doesn't fail
1115 	 * on tmpfs backed vmas (in addition to the current allowance
1116 	 * on anonymous vmas).
1117 	 */
1118 	found = false;
1119 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1120 		cond_resched();
1121 
1122 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1123 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1124 
1125 		/* check not compatible vmas */
1126 		ret = -EINVAL;
1127 		if (!vma_is_anonymous(cur))
1128 			goto out_unlock;
1129 
1130 		/*
1131 		 * Check that this vma isn't already owned by a
1132 		 * different userfaultfd. We can't allow more than one
1133 		 * userfaultfd to own a single vma simultaneously or we
1134 		 * wouldn't know which one to deliver the userfaults to.
1135 		 */
1136 		ret = -EBUSY;
1137 		if (cur->vm_userfaultfd_ctx.ctx &&
1138 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1139 			goto out_unlock;
1140 
1141 		found = true;
1142 	}
1143 	BUG_ON(!found);
1144 
1145 	if (vma->vm_start < start)
1146 		prev = vma;
1147 
1148 	ret = 0;
1149 	do {
1150 		cond_resched();
1151 
1152 		BUG_ON(!vma_is_anonymous(vma));
1153 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1154 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1155 
1156 		/*
1157 		 * Nothing to do: this vma is already registered into this
1158 		 * userfaultfd and with the right tracking mode too.
1159 		 */
1160 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1161 		    (vma->vm_flags & vm_flags) == vm_flags)
1162 			goto skip;
1163 
1164 		if (vma->vm_start > start)
1165 			start = vma->vm_start;
1166 		vma_end = min(end, vma->vm_end);
1167 
1168 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1169 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1170 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1171 				 vma_policy(vma),
1172 				 ((struct vm_userfaultfd_ctx){ ctx }));
1173 		if (prev) {
1174 			vma = prev;
1175 			goto next;
1176 		}
1177 		if (vma->vm_start < start) {
1178 			ret = split_vma(mm, vma, start, 1);
1179 			if (ret)
1180 				break;
1181 		}
1182 		if (vma->vm_end > end) {
1183 			ret = split_vma(mm, vma, end, 0);
1184 			if (ret)
1185 				break;
1186 		}
1187 	next:
1188 		/*
1189 		 * In the vma_merge() successful mprotect-like case 8:
1190 		 * the next vma was merged into the current one and
1191 		 * the current one has not been updated yet.
1192 		 */
1193 		vma->vm_flags = new_flags;
1194 		vma->vm_userfaultfd_ctx.ctx = ctx;
1195 
1196 	skip:
1197 		prev = vma;
1198 		start = vma->vm_end;
1199 		vma = vma->vm_next;
1200 	} while (vma && vma->vm_start < end);
1201 out_unlock:
1202 	up_write(&mm->mmap_sem);
1203 	mmput(mm);
1204 	if (!ret) {
1205 		/*
1206 		 * Now that we scanned all vmas we can already tell
1207 		 * userland which ioctls methods are guaranteed to
1208 		 * succeed on this range.
1209 		 */
1210 		if (put_user(UFFD_API_RANGE_IOCTLS,
1211 			     &user_uffdio_register->ioctls))
1212 			ret = -EFAULT;
1213 	}
1214 out:
1215 	return ret;
1216 }
1217 
1218 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1219 				  unsigned long arg)
1220 {
1221 	struct mm_struct *mm = ctx->mm;
1222 	struct vm_area_struct *vma, *prev, *cur;
1223 	int ret;
1224 	struct uffdio_range uffdio_unregister;
1225 	unsigned long new_flags;
1226 	bool found;
1227 	unsigned long start, end, vma_end;
1228 	const void __user *buf = (void __user *)arg;
1229 
1230 	ret = -EFAULT;
1231 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1232 		goto out;
1233 
1234 	ret = validate_range(mm, uffdio_unregister.start,
1235 			     uffdio_unregister.len);
1236 	if (ret)
1237 		goto out;
1238 
1239 	start = uffdio_unregister.start;
1240 	end = start + uffdio_unregister.len;
1241 
1242 	ret = -ENOMEM;
1243 	if (!mmget_not_zero(mm))
1244 		goto out;
1245 
1246 	down_write(&mm->mmap_sem);
1247 	vma = find_vma_prev(mm, start, &prev);
1248 	if (!vma)
1249 		goto out_unlock;
1250 
1251 	/* check that there's at least one vma in the range */
1252 	ret = -EINVAL;
1253 	if (vma->vm_start >= end)
1254 		goto out_unlock;
1255 
1256 	/*
1257 	 * Search for not compatible vmas.
1258 	 *
1259 	 * FIXME: this shall be relaxed later so that it doesn't fail
1260 	 * on tmpfs backed vmas (in addition to the current allowance
1261 	 * on anonymous vmas).
1262 	 */
1263 	found = false;
1264 	ret = -EINVAL;
1265 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1266 		cond_resched();
1267 
1268 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1269 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1270 
1271 		/*
1272 		 * Check not compatible vmas, not strictly required
1273 		 * here as not compatible vmas cannot have an
1274 		 * userfaultfd_ctx registered on them, but this
1275 		 * provides for more strict behavior to notice
1276 		 * unregistration errors.
1277 		 */
1278 		if (!vma_is_anonymous(cur))
1279 			goto out_unlock;
1280 
1281 		found = true;
1282 	}
1283 	BUG_ON(!found);
1284 
1285 	if (vma->vm_start < start)
1286 		prev = vma;
1287 
1288 	ret = 0;
1289 	do {
1290 		cond_resched();
1291 
1292 		BUG_ON(!vma_is_anonymous(vma));
1293 
1294 		/*
1295 		 * Nothing to do: this vma is already registered into this
1296 		 * userfaultfd and with the right tracking mode too.
1297 		 */
1298 		if (!vma->vm_userfaultfd_ctx.ctx)
1299 			goto skip;
1300 
1301 		if (vma->vm_start > start)
1302 			start = vma->vm_start;
1303 		vma_end = min(end, vma->vm_end);
1304 
1305 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1306 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1307 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1308 				 vma_policy(vma),
1309 				 NULL_VM_UFFD_CTX);
1310 		if (prev) {
1311 			vma = prev;
1312 			goto next;
1313 		}
1314 		if (vma->vm_start < start) {
1315 			ret = split_vma(mm, vma, start, 1);
1316 			if (ret)
1317 				break;
1318 		}
1319 		if (vma->vm_end > end) {
1320 			ret = split_vma(mm, vma, end, 0);
1321 			if (ret)
1322 				break;
1323 		}
1324 	next:
1325 		/*
1326 		 * In the vma_merge() successful mprotect-like case 8:
1327 		 * the next vma was merged into the current one and
1328 		 * the current one has not been updated yet.
1329 		 */
1330 		vma->vm_flags = new_flags;
1331 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1332 
1333 	skip:
1334 		prev = vma;
1335 		start = vma->vm_end;
1336 		vma = vma->vm_next;
1337 	} while (vma && vma->vm_start < end);
1338 out_unlock:
1339 	up_write(&mm->mmap_sem);
1340 	mmput(mm);
1341 out:
1342 	return ret;
1343 }
1344 
1345 /*
1346  * userfaultfd_wake may be used in combination with the
1347  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1348  */
1349 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1350 			    unsigned long arg)
1351 {
1352 	int ret;
1353 	struct uffdio_range uffdio_wake;
1354 	struct userfaultfd_wake_range range;
1355 	const void __user *buf = (void __user *)arg;
1356 
1357 	ret = -EFAULT;
1358 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1359 		goto out;
1360 
1361 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1362 	if (ret)
1363 		goto out;
1364 
1365 	range.start = uffdio_wake.start;
1366 	range.len = uffdio_wake.len;
1367 
1368 	/*
1369 	 * len == 0 means wake all and we don't want to wake all here,
1370 	 * so check it again to be sure.
1371 	 */
1372 	VM_BUG_ON(!range.len);
1373 
1374 	wake_userfault(ctx, &range);
1375 	ret = 0;
1376 
1377 out:
1378 	return ret;
1379 }
1380 
1381 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1382 			    unsigned long arg)
1383 {
1384 	__s64 ret;
1385 	struct uffdio_copy uffdio_copy;
1386 	struct uffdio_copy __user *user_uffdio_copy;
1387 	struct userfaultfd_wake_range range;
1388 
1389 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1390 
1391 	ret = -EFAULT;
1392 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1393 			   /* don't copy "copy" last field */
1394 			   sizeof(uffdio_copy)-sizeof(__s64)))
1395 		goto out;
1396 
1397 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1398 	if (ret)
1399 		goto out;
1400 	/*
1401 	 * double check for wraparound just in case. copy_from_user()
1402 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1403 	 * in the userland range.
1404 	 */
1405 	ret = -EINVAL;
1406 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1407 		goto out;
1408 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1409 		goto out;
1410 	if (mmget_not_zero(ctx->mm)) {
1411 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1412 				   uffdio_copy.len);
1413 		mmput(ctx->mm);
1414 	}
1415 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1416 		return -EFAULT;
1417 	if (ret < 0)
1418 		goto out;
1419 	BUG_ON(!ret);
1420 	/* len == 0 would wake all */
1421 	range.len = ret;
1422 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1423 		range.start = uffdio_copy.dst;
1424 		wake_userfault(ctx, &range);
1425 	}
1426 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1427 out:
1428 	return ret;
1429 }
1430 
1431 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1432 				unsigned long arg)
1433 {
1434 	__s64 ret;
1435 	struct uffdio_zeropage uffdio_zeropage;
1436 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1437 	struct userfaultfd_wake_range range;
1438 
1439 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1440 
1441 	ret = -EFAULT;
1442 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1443 			   /* don't copy "zeropage" last field */
1444 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1445 		goto out;
1446 
1447 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1448 			     uffdio_zeropage.range.len);
1449 	if (ret)
1450 		goto out;
1451 	ret = -EINVAL;
1452 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1453 		goto out;
1454 
1455 	if (mmget_not_zero(ctx->mm)) {
1456 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1457 				     uffdio_zeropage.range.len);
1458 		mmput(ctx->mm);
1459 	}
1460 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1461 		return -EFAULT;
1462 	if (ret < 0)
1463 		goto out;
1464 	/* len == 0 would wake all */
1465 	BUG_ON(!ret);
1466 	range.len = ret;
1467 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1468 		range.start = uffdio_zeropage.range.start;
1469 		wake_userfault(ctx, &range);
1470 	}
1471 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1472 out:
1473 	return ret;
1474 }
1475 
1476 static inline unsigned int uffd_ctx_features(__u64 user_features)
1477 {
1478 	/*
1479 	 * For the current set of features the bits just coincide
1480 	 */
1481 	return (unsigned int)user_features;
1482 }
1483 
1484 /*
1485  * userland asks for a certain API version and we return which bits
1486  * and ioctl commands are implemented in this kernel for such API
1487  * version or -EINVAL if unknown.
1488  */
1489 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1490 			   unsigned long arg)
1491 {
1492 	struct uffdio_api uffdio_api;
1493 	void __user *buf = (void __user *)arg;
1494 	int ret;
1495 	__u64 features;
1496 
1497 	ret = -EINVAL;
1498 	if (ctx->state != UFFD_STATE_WAIT_API)
1499 		goto out;
1500 	ret = -EFAULT;
1501 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1502 		goto out;
1503 	features = uffdio_api.features;
1504 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1505 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1506 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1507 			goto out;
1508 		ret = -EINVAL;
1509 		goto out;
1510 	}
1511 	/* report all available features and ioctls to userland */
1512 	uffdio_api.features = UFFD_API_FEATURES;
1513 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1514 	ret = -EFAULT;
1515 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1516 		goto out;
1517 	ctx->state = UFFD_STATE_RUNNING;
1518 	/* only enable the requested features for this uffd context */
1519 	ctx->features = uffd_ctx_features(features);
1520 	ret = 0;
1521 out:
1522 	return ret;
1523 }
1524 
1525 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1526 			      unsigned long arg)
1527 {
1528 	int ret = -EINVAL;
1529 	struct userfaultfd_ctx *ctx = file->private_data;
1530 
1531 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1532 		return -EINVAL;
1533 
1534 	switch(cmd) {
1535 	case UFFDIO_API:
1536 		ret = userfaultfd_api(ctx, arg);
1537 		break;
1538 	case UFFDIO_REGISTER:
1539 		ret = userfaultfd_register(ctx, arg);
1540 		break;
1541 	case UFFDIO_UNREGISTER:
1542 		ret = userfaultfd_unregister(ctx, arg);
1543 		break;
1544 	case UFFDIO_WAKE:
1545 		ret = userfaultfd_wake(ctx, arg);
1546 		break;
1547 	case UFFDIO_COPY:
1548 		ret = userfaultfd_copy(ctx, arg);
1549 		break;
1550 	case UFFDIO_ZEROPAGE:
1551 		ret = userfaultfd_zeropage(ctx, arg);
1552 		break;
1553 	}
1554 	return ret;
1555 }
1556 
1557 #ifdef CONFIG_PROC_FS
1558 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1559 {
1560 	struct userfaultfd_ctx *ctx = f->private_data;
1561 	wait_queue_t *wq;
1562 	struct userfaultfd_wait_queue *uwq;
1563 	unsigned long pending = 0, total = 0;
1564 
1565 	spin_lock(&ctx->fault_pending_wqh.lock);
1566 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1567 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1568 		pending++;
1569 		total++;
1570 	}
1571 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1572 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1573 		total++;
1574 	}
1575 	spin_unlock(&ctx->fault_pending_wqh.lock);
1576 
1577 	/*
1578 	 * If more protocols will be added, there will be all shown
1579 	 * separated by a space. Like this:
1580 	 *	protocols: aa:... bb:...
1581 	 */
1582 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1583 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1584 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1585 }
1586 #endif
1587 
1588 static const struct file_operations userfaultfd_fops = {
1589 #ifdef CONFIG_PROC_FS
1590 	.show_fdinfo	= userfaultfd_show_fdinfo,
1591 #endif
1592 	.release	= userfaultfd_release,
1593 	.poll		= userfaultfd_poll,
1594 	.read		= userfaultfd_read,
1595 	.unlocked_ioctl = userfaultfd_ioctl,
1596 	.compat_ioctl	= userfaultfd_ioctl,
1597 	.llseek		= noop_llseek,
1598 };
1599 
1600 static void init_once_userfaultfd_ctx(void *mem)
1601 {
1602 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1603 
1604 	init_waitqueue_head(&ctx->fault_pending_wqh);
1605 	init_waitqueue_head(&ctx->fault_wqh);
1606 	init_waitqueue_head(&ctx->event_wqh);
1607 	init_waitqueue_head(&ctx->fd_wqh);
1608 	seqcount_init(&ctx->refile_seq);
1609 }
1610 
1611 /**
1612  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1613  * @flags: Flags for the userfaultfd file.
1614  *
1615  * This function creates an userfaultfd file pointer, w/out installing
1616  * it into the fd table. This is useful when the userfaultfd file is
1617  * used during the initialization of data structures that require
1618  * extra setup after the userfaultfd creation. So the userfaultfd
1619  * creation is split into the file pointer creation phase, and the
1620  * file descriptor installation phase.  In this way races with
1621  * userspace closing the newly installed file descriptor can be
1622  * avoided.  Returns an userfaultfd file pointer, or a proper error
1623  * pointer.
1624  */
1625 static struct file *userfaultfd_file_create(int flags)
1626 {
1627 	struct file *file;
1628 	struct userfaultfd_ctx *ctx;
1629 
1630 	BUG_ON(!current->mm);
1631 
1632 	/* Check the UFFD_* constants for consistency.  */
1633 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1634 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1635 
1636 	file = ERR_PTR(-EINVAL);
1637 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1638 		goto out;
1639 
1640 	file = ERR_PTR(-ENOMEM);
1641 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1642 	if (!ctx)
1643 		goto out;
1644 
1645 	atomic_set(&ctx->refcount, 1);
1646 	ctx->flags = flags;
1647 	ctx->features = 0;
1648 	ctx->state = UFFD_STATE_WAIT_API;
1649 	ctx->released = false;
1650 	ctx->mm = current->mm;
1651 	/* prevent the mm struct to be freed */
1652 	atomic_inc(&ctx->mm->mm_count);
1653 
1654 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1655 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1656 	if (IS_ERR(file)) {
1657 		mmdrop(ctx->mm);
1658 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1659 	}
1660 out:
1661 	return file;
1662 }
1663 
1664 SYSCALL_DEFINE1(userfaultfd, int, flags)
1665 {
1666 	int fd, error;
1667 	struct file *file;
1668 
1669 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1670 	if (error < 0)
1671 		return error;
1672 	fd = error;
1673 
1674 	file = userfaultfd_file_create(flags);
1675 	if (IS_ERR(file)) {
1676 		error = PTR_ERR(file);
1677 		goto err_put_unused_fd;
1678 	}
1679 	fd_install(fd, file);
1680 
1681 	return fd;
1682 
1683 err_put_unused_fd:
1684 	put_unused_fd(fd);
1685 
1686 	return error;
1687 }
1688 
1689 static int __init userfaultfd_init(void)
1690 {
1691 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1692 						sizeof(struct userfaultfd_ctx),
1693 						0,
1694 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1695 						init_once_userfaultfd_ctx);
1696 	return 0;
1697 }
1698 __initcall(userfaultfd_init);
1699