xref: /openbmc/linux/fs/udf/super.c (revision cbf5676a0e0463f05e5073589f3194846dfb02e7)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 static char error_buf[1024];
79 
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static void udf_write_super(struct super_block *);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static int udf_check_valid(struct super_block *, int, int);
86 static int udf_vrs(struct super_block *sb, int silent);
87 static int udf_load_partition(struct super_block *, kernel_lb_addr *);
88 static int udf_load_logicalvol(struct super_block *, struct buffer_head *,
89 			       kernel_lb_addr *);
90 static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad);
91 static void udf_find_anchor(struct super_block *);
92 static int udf_find_fileset(struct super_block *, kernel_lb_addr *,
93 			    kernel_lb_addr *);
94 static void udf_load_pvoldesc(struct super_block *, struct buffer_head *);
95 static void udf_load_fileset(struct super_block *, struct buffer_head *,
96 			     kernel_lb_addr *);
97 static int udf_load_partdesc(struct super_block *, struct buffer_head *);
98 static void udf_open_lvid(struct super_block *);
99 static void udf_close_lvid(struct super_block *);
100 static unsigned int udf_count_free(struct super_block *);
101 static int udf_statfs(struct dentry *, struct kstatfs *);
102 static int udf_show_options(struct seq_file *, struct vfsmount *);
103 static void udf_error(struct super_block *sb, const char *function,
104 		      const char *fmt, ...);
105 
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
107 {
108 	struct logicalVolIntegrityDesc *lvid =
109 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
110 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
111 	__u32 offset = number_of_partitions * 2 *
112 				sizeof(uint32_t)/sizeof(uint8_t);
113 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
114 }
115 
116 /* UDF filesystem type */
117 static int udf_get_sb(struct file_system_type *fs_type,
118 		      int flags, const char *dev_name, void *data,
119 		      struct vfsmount *mnt)
120 {
121 	return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
122 }
123 
124 static struct file_system_type udf_fstype = {
125 	.owner		= THIS_MODULE,
126 	.name		= "udf",
127 	.get_sb		= udf_get_sb,
128 	.kill_sb	= kill_block_super,
129 	.fs_flags	= FS_REQUIRES_DEV,
130 };
131 
132 static struct kmem_cache *udf_inode_cachep;
133 
134 static struct inode *udf_alloc_inode(struct super_block *sb)
135 {
136 	struct udf_inode_info *ei;
137 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
138 	if (!ei)
139 		return NULL;
140 
141 	ei->i_unique = 0;
142 	ei->i_lenExtents = 0;
143 	ei->i_next_alloc_block = 0;
144 	ei->i_next_alloc_goal = 0;
145 	ei->i_strat4096 = 0;
146 
147 	return &ei->vfs_inode;
148 }
149 
150 static void udf_destroy_inode(struct inode *inode)
151 {
152 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
153 }
154 
155 static void init_once(struct kmem_cache *cachep, void *foo)
156 {
157 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
158 
159 	ei->i_ext.i_data = NULL;
160 	inode_init_once(&ei->vfs_inode);
161 }
162 
163 static int init_inodecache(void)
164 {
165 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
166 					     sizeof(struct udf_inode_info),
167 					     0, (SLAB_RECLAIM_ACCOUNT |
168 						 SLAB_MEM_SPREAD),
169 					     init_once);
170 	if (!udf_inode_cachep)
171 		return -ENOMEM;
172 	return 0;
173 }
174 
175 static void destroy_inodecache(void)
176 {
177 	kmem_cache_destroy(udf_inode_cachep);
178 }
179 
180 /* Superblock operations */
181 static const struct super_operations udf_sb_ops = {
182 	.alloc_inode	= udf_alloc_inode,
183 	.destroy_inode	= udf_destroy_inode,
184 	.write_inode	= udf_write_inode,
185 	.delete_inode	= udf_delete_inode,
186 	.clear_inode	= udf_clear_inode,
187 	.put_super	= udf_put_super,
188 	.write_super	= udf_write_super,
189 	.statfs		= udf_statfs,
190 	.remount_fs	= udf_remount_fs,
191 	.show_options	= udf_show_options,
192 };
193 
194 struct udf_options {
195 	unsigned char novrs;
196 	unsigned int blocksize;
197 	unsigned int session;
198 	unsigned int lastblock;
199 	unsigned int anchor;
200 	unsigned int volume;
201 	unsigned short partition;
202 	unsigned int fileset;
203 	unsigned int rootdir;
204 	unsigned int flags;
205 	mode_t umask;
206 	gid_t gid;
207 	uid_t uid;
208 	struct nls_table *nls_map;
209 };
210 
211 static int __init init_udf_fs(void)
212 {
213 	int err;
214 
215 	err = init_inodecache();
216 	if (err)
217 		goto out1;
218 	err = register_filesystem(&udf_fstype);
219 	if (err)
220 		goto out;
221 
222 	return 0;
223 
224 out:
225 	destroy_inodecache();
226 
227 out1:
228 	return err;
229 }
230 
231 static void __exit exit_udf_fs(void)
232 {
233 	unregister_filesystem(&udf_fstype);
234 	destroy_inodecache();
235 }
236 
237 module_init(init_udf_fs)
238 module_exit(exit_udf_fs)
239 
240 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
241 {
242 	struct udf_sb_info *sbi = UDF_SB(sb);
243 
244 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
245 				  GFP_KERNEL);
246 	if (!sbi->s_partmaps) {
247 		udf_error(sb, __FUNCTION__,
248 			  "Unable to allocate space for %d partition maps",
249 			  count);
250 		sbi->s_partitions = 0;
251 		return -ENOMEM;
252 	}
253 
254 	sbi->s_partitions = count;
255 	return 0;
256 }
257 
258 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
259 {
260 	struct super_block *sb = mnt->mnt_sb;
261 	struct udf_sb_info *sbi = UDF_SB(sb);
262 
263 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
264 		seq_puts(seq, ",nostrict");
265 	if (sb->s_blocksize != UDF_DEFAULT_BLOCKSIZE)
266 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
267 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
268 		seq_puts(seq, ",unhide");
269 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
270 		seq_puts(seq, ",undelete");
271 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
272 		seq_puts(seq, ",noadinicb");
273 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
274 		seq_puts(seq, ",shortad");
275 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
276 		seq_puts(seq, ",uid=forget");
277 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
278 		seq_puts(seq, ",uid=ignore");
279 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
280 		seq_puts(seq, ",gid=forget");
281 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
282 		seq_puts(seq, ",gid=ignore");
283 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
284 		seq_printf(seq, ",uid=%u", sbi->s_uid);
285 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
286 		seq_printf(seq, ",gid=%u", sbi->s_gid);
287 	if (sbi->s_umask != 0)
288 		seq_printf(seq, ",umask=%o", sbi->s_umask);
289 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
290 		seq_printf(seq, ",session=%u", sbi->s_session);
291 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
292 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
293 	/*
294 	 * s_anchor[2] could be zeroed out in case there is no anchor
295 	 * in the specified block, but then the "anchor=N" option
296 	 * originally given by the user wasn't effective, so it's OK
297 	 * if we don't show it.
298 	 */
299 	if (sbi->s_anchor[2] != 0)
300 		seq_printf(seq, ",anchor=%u", sbi->s_anchor[2]);
301 	/*
302 	 * volume, partition, fileset and rootdir seem to be ignored
303 	 * currently
304 	 */
305 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
306 		seq_puts(seq, ",utf8");
307 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
308 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
309 
310 	return 0;
311 }
312 
313 /*
314  * udf_parse_options
315  *
316  * PURPOSE
317  *	Parse mount options.
318  *
319  * DESCRIPTION
320  *	The following mount options are supported:
321  *
322  *	gid=		Set the default group.
323  *	umask=		Set the default umask.
324  *	uid=		Set the default user.
325  *	bs=		Set the block size.
326  *	unhide		Show otherwise hidden files.
327  *	undelete	Show deleted files in lists.
328  *	adinicb		Embed data in the inode (default)
329  *	noadinicb	Don't embed data in the inode
330  *	shortad		Use short ad's
331  *	longad		Use long ad's (default)
332  *	nostrict	Unset strict conformance
333  *	iocharset=	Set the NLS character set
334  *
335  *	The remaining are for debugging and disaster recovery:
336  *
337  *	novrs		Skip volume sequence recognition
338  *
339  *	The following expect a offset from 0.
340  *
341  *	session=	Set the CDROM session (default= last session)
342  *	anchor=		Override standard anchor location. (default= 256)
343  *	volume=		Override the VolumeDesc location. (unused)
344  *	partition=	Override the PartitionDesc location. (unused)
345  *	lastblock=	Set the last block of the filesystem/
346  *
347  *	The following expect a offset from the partition root.
348  *
349  *	fileset=	Override the fileset block location. (unused)
350  *	rootdir=	Override the root directory location. (unused)
351  *		WARNING: overriding the rootdir to a non-directory may
352  *		yield highly unpredictable results.
353  *
354  * PRE-CONDITIONS
355  *	options		Pointer to mount options string.
356  *	uopts		Pointer to mount options variable.
357  *
358  * POST-CONDITIONS
359  *	<return>	1	Mount options parsed okay.
360  *	<return>	0	Error parsing mount options.
361  *
362  * HISTORY
363  *	July 1, 1997 - Andrew E. Mileski
364  *	Written, tested, and released.
365  */
366 
367 enum {
368 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
369 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
370 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
371 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
372 	Opt_rootdir, Opt_utf8, Opt_iocharset,
373 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore
374 };
375 
376 static match_table_t tokens = {
377 	{Opt_novrs,	"novrs"},
378 	{Opt_nostrict,	"nostrict"},
379 	{Opt_bs,	"bs=%u"},
380 	{Opt_unhide,	"unhide"},
381 	{Opt_undelete,	"undelete"},
382 	{Opt_noadinicb,	"noadinicb"},
383 	{Opt_adinicb,	"adinicb"},
384 	{Opt_shortad,	"shortad"},
385 	{Opt_longad,	"longad"},
386 	{Opt_uforget,	"uid=forget"},
387 	{Opt_uignore,	"uid=ignore"},
388 	{Opt_gforget,	"gid=forget"},
389 	{Opt_gignore,	"gid=ignore"},
390 	{Opt_gid,	"gid=%u"},
391 	{Opt_uid,	"uid=%u"},
392 	{Opt_umask,	"umask=%o"},
393 	{Opt_session,	"session=%u"},
394 	{Opt_lastblock,	"lastblock=%u"},
395 	{Opt_anchor,	"anchor=%u"},
396 	{Opt_volume,	"volume=%u"},
397 	{Opt_partition,	"partition=%u"},
398 	{Opt_fileset,	"fileset=%u"},
399 	{Opt_rootdir,	"rootdir=%u"},
400 	{Opt_utf8,	"utf8"},
401 	{Opt_iocharset,	"iocharset=%s"},
402 	{Opt_err,	NULL}
403 };
404 
405 static int udf_parse_options(char *options, struct udf_options *uopt,
406 			     bool remount)
407 {
408 	char *p;
409 	int option;
410 
411 	uopt->novrs = 0;
412 	uopt->blocksize = UDF_DEFAULT_BLOCKSIZE;
413 	uopt->partition = 0xFFFF;
414 	uopt->session = 0xFFFFFFFF;
415 	uopt->lastblock = 0;
416 	uopt->anchor = 0;
417 	uopt->volume = 0xFFFFFFFF;
418 	uopt->rootdir = 0xFFFFFFFF;
419 	uopt->fileset = 0xFFFFFFFF;
420 	uopt->nls_map = NULL;
421 
422 	if (!options)
423 		return 1;
424 
425 	while ((p = strsep(&options, ",")) != NULL) {
426 		substring_t args[MAX_OPT_ARGS];
427 		int token;
428 		if (!*p)
429 			continue;
430 
431 		token = match_token(p, tokens, args);
432 		switch (token) {
433 		case Opt_novrs:
434 			uopt->novrs = 1;
435 		case Opt_bs:
436 			if (match_int(&args[0], &option))
437 				return 0;
438 			uopt->blocksize = option;
439 			break;
440 		case Opt_unhide:
441 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
442 			break;
443 		case Opt_undelete:
444 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
445 			break;
446 		case Opt_noadinicb:
447 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
448 			break;
449 		case Opt_adinicb:
450 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
451 			break;
452 		case Opt_shortad:
453 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
454 			break;
455 		case Opt_longad:
456 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
457 			break;
458 		case Opt_gid:
459 			if (match_int(args, &option))
460 				return 0;
461 			uopt->gid = option;
462 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
463 			break;
464 		case Opt_uid:
465 			if (match_int(args, &option))
466 				return 0;
467 			uopt->uid = option;
468 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
469 			break;
470 		case Opt_umask:
471 			if (match_octal(args, &option))
472 				return 0;
473 			uopt->umask = option;
474 			break;
475 		case Opt_nostrict:
476 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
477 			break;
478 		case Opt_session:
479 			if (match_int(args, &option))
480 				return 0;
481 			uopt->session = option;
482 			if (!remount)
483 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
484 			break;
485 		case Opt_lastblock:
486 			if (match_int(args, &option))
487 				return 0;
488 			uopt->lastblock = option;
489 			if (!remount)
490 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
491 			break;
492 		case Opt_anchor:
493 			if (match_int(args, &option))
494 				return 0;
495 			uopt->anchor = option;
496 			break;
497 		case Opt_volume:
498 			if (match_int(args, &option))
499 				return 0;
500 			uopt->volume = option;
501 			break;
502 		case Opt_partition:
503 			if (match_int(args, &option))
504 				return 0;
505 			uopt->partition = option;
506 			break;
507 		case Opt_fileset:
508 			if (match_int(args, &option))
509 				return 0;
510 			uopt->fileset = option;
511 			break;
512 		case Opt_rootdir:
513 			if (match_int(args, &option))
514 				return 0;
515 			uopt->rootdir = option;
516 			break;
517 		case Opt_utf8:
518 			uopt->flags |= (1 << UDF_FLAG_UTF8);
519 			break;
520 #ifdef CONFIG_UDF_NLS
521 		case Opt_iocharset:
522 			uopt->nls_map = load_nls(args[0].from);
523 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
524 			break;
525 #endif
526 		case Opt_uignore:
527 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
528 			break;
529 		case Opt_uforget:
530 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
531 			break;
532 		case Opt_gignore:
533 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
534 			break;
535 		case Opt_gforget:
536 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
537 			break;
538 		default:
539 			printk(KERN_ERR "udf: bad mount option \"%s\" "
540 			       "or missing value\n", p);
541 			return 0;
542 		}
543 	}
544 	return 1;
545 }
546 
547 static void udf_write_super(struct super_block *sb)
548 {
549 	lock_kernel();
550 
551 	if (!(sb->s_flags & MS_RDONLY))
552 		udf_open_lvid(sb);
553 	sb->s_dirt = 0;
554 
555 	unlock_kernel();
556 }
557 
558 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
559 {
560 	struct udf_options uopt;
561 	struct udf_sb_info *sbi = UDF_SB(sb);
562 
563 	uopt.flags = sbi->s_flags;
564 	uopt.uid   = sbi->s_uid;
565 	uopt.gid   = sbi->s_gid;
566 	uopt.umask = sbi->s_umask;
567 
568 	if (!udf_parse_options(options, &uopt, true))
569 		return -EINVAL;
570 
571 	sbi->s_flags = uopt.flags;
572 	sbi->s_uid   = uopt.uid;
573 	sbi->s_gid   = uopt.gid;
574 	sbi->s_umask = uopt.umask;
575 
576 	if (sbi->s_lvid_bh) {
577 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
578 		if (write_rev > UDF_MAX_WRITE_VERSION)
579 			*flags |= MS_RDONLY;
580 	}
581 
582 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
583 		return 0;
584 	if (*flags & MS_RDONLY)
585 		udf_close_lvid(sb);
586 	else
587 		udf_open_lvid(sb);
588 
589 	return 0;
590 }
591 
592 static int udf_vrs(struct super_block *sb, int silent)
593 {
594 	struct volStructDesc *vsd = NULL;
595 	int sector = 32768;
596 	int sectorsize;
597 	struct buffer_head *bh = NULL;
598 	int iso9660 = 0;
599 	int nsr02 = 0;
600 	int nsr03 = 0;
601 	struct udf_sb_info *sbi;
602 
603 	/* Block size must be a multiple of 512 */
604 	if (sb->s_blocksize & 511)
605 		return 0;
606 	sbi = UDF_SB(sb);
607 
608 	if (sb->s_blocksize < sizeof(struct volStructDesc))
609 		sectorsize = sizeof(struct volStructDesc);
610 	else
611 		sectorsize = sb->s_blocksize;
612 
613 	sector += (sbi->s_session << sb->s_blocksize_bits);
614 
615 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
616 		  (sector >> sb->s_blocksize_bits), sb->s_blocksize);
617 	/* Process the sequence (if applicable) */
618 	for (; !nsr02 && !nsr03; sector += sectorsize) {
619 		/* Read a block */
620 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
621 		if (!bh)
622 			break;
623 
624 		/* Look for ISO  descriptors */
625 		vsd = (struct volStructDesc *)(bh->b_data +
626 					      (sector & (sb->s_blocksize - 1)));
627 
628 		if (vsd->stdIdent[0] == 0) {
629 			brelse(bh);
630 			break;
631 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
632 				    VSD_STD_ID_LEN)) {
633 			iso9660 = sector;
634 			switch (vsd->structType) {
635 			case 0:
636 				udf_debug("ISO9660 Boot Record found\n");
637 				break;
638 			case 1:
639 				udf_debug("ISO9660 Primary Volume Descriptor "
640 					  "found\n");
641 				break;
642 			case 2:
643 				udf_debug("ISO9660 Supplementary Volume "
644 					  "Descriptor found\n");
645 				break;
646 			case 3:
647 				udf_debug("ISO9660 Volume Partition Descriptor "
648 					  "found\n");
649 				break;
650 			case 255:
651 				udf_debug("ISO9660 Volume Descriptor Set "
652 					  "Terminator found\n");
653 				break;
654 			default:
655 				udf_debug("ISO9660 VRS (%u) found\n",
656 					  vsd->structType);
657 				break;
658 			}
659 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
660 				    VSD_STD_ID_LEN))
661 			; /* nothing */
662 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
663 				    VSD_STD_ID_LEN)) {
664 			brelse(bh);
665 			break;
666 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
667 				    VSD_STD_ID_LEN))
668 			nsr02 = sector;
669 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
670 				    VSD_STD_ID_LEN))
671 			nsr03 = sector;
672 		brelse(bh);
673 	}
674 
675 	if (nsr03)
676 		return nsr03;
677 	else if (nsr02)
678 		return nsr02;
679 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
680 		return -1;
681 	else
682 		return 0;
683 }
684 
685 /*
686  * udf_find_anchor
687  *
688  * PURPOSE
689  *	Find an anchor volume descriptor.
690  *
691  * PRE-CONDITIONS
692  *	sb			Pointer to _locked_ superblock.
693  *	lastblock		Last block on media.
694  *
695  * POST-CONDITIONS
696  *	<return>		1 if not found, 0 if ok
697  *
698  * HISTORY
699  *	July 1, 1997 - Andrew E. Mileski
700  *	Written, tested, and released.
701  */
702 static void udf_find_anchor(struct super_block *sb)
703 {
704 	int lastblock;
705 	struct buffer_head *bh = NULL;
706 	uint16_t ident;
707 	uint32_t location;
708 	int i;
709 	struct udf_sb_info *sbi;
710 
711 	sbi = UDF_SB(sb);
712 	lastblock = sbi->s_last_block;
713 
714 	if (lastblock) {
715 		int varlastblock = udf_variable_to_fixed(lastblock);
716 		int last[] =  { lastblock, lastblock - 2,
717 				lastblock - 150, lastblock - 152,
718 				varlastblock, varlastblock - 2,
719 				varlastblock - 150, varlastblock - 152 };
720 
721 		lastblock = 0;
722 
723 		/* Search for an anchor volume descriptor pointer */
724 
725 		/*  according to spec, anchor is in either:
726 		 *     block 256
727 		 *     lastblock-256
728 		 *     lastblock
729 		 *  however, if the disc isn't closed, it could be 512 */
730 
731 		for (i = 0; !lastblock && i < ARRAY_SIZE(last); i++) {
732 			ident = location = 0;
733 			if (last[i] >= 0) {
734 				bh = sb_bread(sb, last[i]);
735 				if (bh) {
736 					tag *t = (tag *)bh->b_data;
737 					ident = le16_to_cpu(t->tagIdent);
738 					location = le32_to_cpu(t->tagLocation);
739 					brelse(bh);
740 				}
741 			}
742 
743 			if (ident == TAG_IDENT_AVDP) {
744 				if (location == last[i] - sbi->s_session) {
745 					lastblock = last[i] - sbi->s_session;
746 					sbi->s_anchor[0] = lastblock;
747 					sbi->s_anchor[1] = lastblock - 256;
748 				} else if (location ==
749 						udf_variable_to_fixed(last[i]) -
750 							sbi->s_session) {
751 					UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
752 					lastblock =
753 						udf_variable_to_fixed(last[i]) -
754 							sbi->s_session;
755 					sbi->s_anchor[0] = lastblock;
756 					sbi->s_anchor[1] = lastblock - 256 -
757 								sbi->s_session;
758 				} else {
759 					udf_debug("Anchor found at block %d, "
760 						  "location mismatch %d.\n",
761 						  last[i], location);
762 				}
763 			} else if (ident == TAG_IDENT_FE ||
764 					ident == TAG_IDENT_EFE) {
765 				lastblock = last[i];
766 				sbi->s_anchor[3] = 512;
767 			} else {
768 				ident = location = 0;
769 				if (last[i] >= 256) {
770 					bh = sb_bread(sb, last[i] - 256);
771 					if (bh) {
772 						tag *t = (tag *)bh->b_data;
773 						ident = le16_to_cpu(
774 								t->tagIdent);
775 						location = le32_to_cpu(
776 								t->tagLocation);
777 						brelse(bh);
778 					}
779 				}
780 
781 				if (ident == TAG_IDENT_AVDP &&
782 				    location == last[i] - 256 -
783 						sbi->s_session) {
784 					lastblock = last[i];
785 					sbi->s_anchor[1] = last[i] - 256;
786 				} else {
787 					ident = location = 0;
788 					if (last[i] >= 312 + sbi->s_session) {
789 						bh = sb_bread(sb,
790 								last[i] - 312 -
791 								sbi->s_session);
792 						if (bh) {
793 							tag *t = (tag *)
794 								 bh->b_data;
795 							ident = le16_to_cpu(
796 								t->tagIdent);
797 							location = le32_to_cpu(
798 								t->tagLocation);
799 							brelse(bh);
800 						}
801 					}
802 
803 					if (ident == TAG_IDENT_AVDP &&
804 					    location == udf_variable_to_fixed(last[i]) - 256) {
805 						UDF_SET_FLAG(sb,
806 							     UDF_FLAG_VARCONV);
807 						lastblock = udf_variable_to_fixed(last[i]);
808 						sbi->s_anchor[1] = lastblock - 256;
809 					}
810 				}
811 			}
812 		}
813 	}
814 
815 	if (!lastblock) {
816 		/* We haven't found the lastblock. check 312 */
817 		bh = sb_bread(sb, 312 + sbi->s_session);
818 		if (bh) {
819 			tag *t = (tag *)bh->b_data;
820 			ident = le16_to_cpu(t->tagIdent);
821 			location = le32_to_cpu(t->tagLocation);
822 			brelse(bh);
823 
824 			if (ident == TAG_IDENT_AVDP && location == 256)
825 				UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
826 		}
827 	}
828 
829 	for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
830 		if (sbi->s_anchor[i]) {
831 			bh = udf_read_tagged(sb, sbi->s_anchor[i],
832 					     sbi->s_anchor[i], &ident);
833 			if (!bh)
834 				sbi->s_anchor[i] = 0;
835 			else {
836 				brelse(bh);
837 				if ((ident != TAG_IDENT_AVDP) &&
838 				    (i || (ident != TAG_IDENT_FE &&
839 					   ident != TAG_IDENT_EFE)))
840 					sbi->s_anchor[i] = 0;
841 			}
842 		}
843 	}
844 
845 	sbi->s_last_block = lastblock;
846 }
847 
848 static int udf_find_fileset(struct super_block *sb,
849 			    kernel_lb_addr *fileset,
850 			    kernel_lb_addr *root)
851 {
852 	struct buffer_head *bh = NULL;
853 	long lastblock;
854 	uint16_t ident;
855 	struct udf_sb_info *sbi;
856 
857 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
858 	    fileset->partitionReferenceNum != 0xFFFF) {
859 		bh = udf_read_ptagged(sb, *fileset, 0, &ident);
860 
861 		if (!bh) {
862 			return 1;
863 		} else if (ident != TAG_IDENT_FSD) {
864 			brelse(bh);
865 			return 1;
866 		}
867 
868 	}
869 
870 	sbi = UDF_SB(sb);
871 	if (!bh) {
872 		/* Search backwards through the partitions */
873 		kernel_lb_addr newfileset;
874 
875 /* --> cvg: FIXME - is it reasonable? */
876 		return 1;
877 
878 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
879 		     (newfileset.partitionReferenceNum != 0xFFFF &&
880 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
881 		      fileset->partitionReferenceNum == 0xFFFF);
882 		     newfileset.partitionReferenceNum--) {
883 			lastblock = sbi->s_partmaps
884 					[newfileset.partitionReferenceNum]
885 						.s_partition_len;
886 			newfileset.logicalBlockNum = 0;
887 
888 			do {
889 				bh = udf_read_ptagged(sb, newfileset, 0,
890 						      &ident);
891 				if (!bh) {
892 					newfileset.logicalBlockNum++;
893 					continue;
894 				}
895 
896 				switch (ident) {
897 				case TAG_IDENT_SBD:
898 				{
899 					struct spaceBitmapDesc *sp;
900 					sp = (struct spaceBitmapDesc *)
901 								bh->b_data;
902 					newfileset.logicalBlockNum += 1 +
903 						((le32_to_cpu(sp->numOfBytes) +
904 						  sizeof(struct spaceBitmapDesc)
905 						  - 1) >> sb->s_blocksize_bits);
906 					brelse(bh);
907 					break;
908 				}
909 				case TAG_IDENT_FSD:
910 					*fileset = newfileset;
911 					break;
912 				default:
913 					newfileset.logicalBlockNum++;
914 					brelse(bh);
915 					bh = NULL;
916 					break;
917 				}
918 			} while (newfileset.logicalBlockNum < lastblock &&
919 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
920 				 fileset->partitionReferenceNum == 0xFFFF);
921 		}
922 	}
923 
924 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
925 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
926 		udf_debug("Fileset at block=%d, partition=%d\n",
927 			  fileset->logicalBlockNum,
928 			  fileset->partitionReferenceNum);
929 
930 		sbi->s_partition = fileset->partitionReferenceNum;
931 		udf_load_fileset(sb, bh, root);
932 		brelse(bh);
933 		return 0;
934 	}
935 	return 1;
936 }
937 
938 static void udf_load_pvoldesc(struct super_block *sb, struct buffer_head *bh)
939 {
940 	struct primaryVolDesc *pvoldesc;
941 	struct ustr instr;
942 	struct ustr outstr;
943 
944 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
945 
946 	if (udf_stamp_to_time(&UDF_SB(sb)->s_record_time,
947 			      lets_to_cpu(pvoldesc->recordingDateAndTime))) {
948 		kernel_timestamp ts;
949 		ts = lets_to_cpu(pvoldesc->recordingDateAndTime);
950 		udf_debug("recording time %04u/%02u/%02u"
951 			  " %02u:%02u (%x)\n",
952 			  ts.year, ts.month, ts.day, ts.hour,
953 			  ts.minute, ts.typeAndTimezone);
954 	}
955 
956 	if (!udf_build_ustr(&instr, pvoldesc->volIdent, 32))
957 		if (udf_CS0toUTF8(&outstr, &instr)) {
958 			strncpy(UDF_SB(sb)->s_volume_ident, outstr.u_name,
959 				outstr.u_len > 31 ? 31 : outstr.u_len);
960 			udf_debug("volIdent[] = '%s'\n",
961 					UDF_SB(sb)->s_volume_ident);
962 		}
963 
964 	if (!udf_build_ustr(&instr, pvoldesc->volSetIdent, 128))
965 		if (udf_CS0toUTF8(&outstr, &instr))
966 			udf_debug("volSetIdent[] = '%s'\n", outstr.u_name);
967 }
968 
969 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
970 			     kernel_lb_addr *root)
971 {
972 	struct fileSetDesc *fset;
973 
974 	fset = (struct fileSetDesc *)bh->b_data;
975 
976 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
977 
978 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
979 
980 	udf_debug("Rootdir at block=%d, partition=%d\n",
981 		  root->logicalBlockNum, root->partitionReferenceNum);
982 }
983 
984 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
985 {
986 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
987 	return DIV_ROUND_UP(map->s_partition_len +
988 			    (sizeof(struct spaceBitmapDesc) << 3),
989 			    sb->s_blocksize * 8);
990 }
991 
992 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
993 {
994 	struct udf_bitmap *bitmap;
995 	int nr_groups;
996 	int size;
997 
998 	nr_groups = udf_compute_nr_groups(sb, index);
999 	size = sizeof(struct udf_bitmap) +
1000 		(sizeof(struct buffer_head *) * nr_groups);
1001 
1002 	if (size <= PAGE_SIZE)
1003 		bitmap = kmalloc(size, GFP_KERNEL);
1004 	else
1005 		bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
1006 
1007 	if (bitmap == NULL) {
1008 		udf_error(sb, __FUNCTION__,
1009 			  "Unable to allocate space for bitmap "
1010 			  "and %d buffer_head pointers", nr_groups);
1011 		return NULL;
1012 	}
1013 
1014 	memset(bitmap, 0x00, size);
1015 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1016 	bitmap->s_nr_groups = nr_groups;
1017 	return bitmap;
1018 }
1019 
1020 static int udf_load_partdesc(struct super_block *sb, struct buffer_head *bh)
1021 {
1022 	struct partitionDesc *p;
1023 	int i;
1024 	struct udf_part_map *map;
1025 	struct udf_sb_info *sbi;
1026 
1027 	p = (struct partitionDesc *)bh->b_data;
1028 	sbi = UDF_SB(sb);
1029 
1030 	for (i = 0; i < sbi->s_partitions; i++) {
1031 		map = &sbi->s_partmaps[i];
1032 		udf_debug("Searching map: (%d == %d)\n",
1033 			  map->s_partition_num,
1034 			  le16_to_cpu(p->partitionNumber));
1035 		if (map->s_partition_num ==
1036 				le16_to_cpu(p->partitionNumber)) {
1037 			map->s_partition_len =
1038 				le32_to_cpu(p->partitionLength); /* blocks */
1039 			map->s_partition_root =
1040 				le32_to_cpu(p->partitionStartingLocation);
1041 			if (p->accessType ==
1042 					cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1043 				map->s_partition_flags |=
1044 						UDF_PART_FLAG_READ_ONLY;
1045 			if (p->accessType ==
1046 					cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1047 				map->s_partition_flags |=
1048 						UDF_PART_FLAG_WRITE_ONCE;
1049 			if (p->accessType ==
1050 					cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1051 				map->s_partition_flags |=
1052 						UDF_PART_FLAG_REWRITABLE;
1053 			if (p->accessType ==
1054 				    cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1055 				map->s_partition_flags |=
1056 						UDF_PART_FLAG_OVERWRITABLE;
1057 
1058 			if (!strcmp(p->partitionContents.ident,
1059 				    PD_PARTITION_CONTENTS_NSR02) ||
1060 			    !strcmp(p->partitionContents.ident,
1061 				    PD_PARTITION_CONTENTS_NSR03)) {
1062 				struct partitionHeaderDesc *phd;
1063 
1064 				phd = (struct partitionHeaderDesc *)
1065 						(p->partitionContentsUse);
1066 				if (phd->unallocSpaceTable.extLength) {
1067 					kernel_lb_addr loc = {
1068 						.logicalBlockNum = le32_to_cpu(phd->unallocSpaceTable.extPosition),
1069 						.partitionReferenceNum = i,
1070 					};
1071 
1072 					map->s_uspace.s_table =
1073 						udf_iget(sb, loc);
1074 					if (!map->s_uspace.s_table) {
1075 						udf_debug("cannot load unallocSpaceTable (part %d)\n", i);
1076 						return 1;
1077 					}
1078 					map->s_partition_flags |=
1079 						UDF_PART_FLAG_UNALLOC_TABLE;
1080 					udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1081 						  i, map->s_uspace.s_table->i_ino);
1082 				}
1083 				if (phd->unallocSpaceBitmap.extLength) {
1084 					struct udf_bitmap *bitmap =
1085 						udf_sb_alloc_bitmap(sb, i);
1086 					map->s_uspace.s_bitmap = bitmap;
1087 					if (bitmap != NULL) {
1088 						bitmap->s_extLength =
1089 							le32_to_cpu(phd->unallocSpaceBitmap.extLength);
1090 						bitmap->s_extPosition =
1091 							le32_to_cpu(phd->unallocSpaceBitmap.extPosition);
1092 						map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1093 						udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1094 							  i, bitmap->s_extPosition);
1095 					}
1096 				}
1097 				if (phd->partitionIntegrityTable.extLength)
1098 					udf_debug("partitionIntegrityTable (part %d)\n", i);
1099 				if (phd->freedSpaceTable.extLength) {
1100 					kernel_lb_addr loc = {
1101 						.logicalBlockNum = le32_to_cpu(phd->freedSpaceTable.extPosition),
1102 						.partitionReferenceNum = i,
1103 					};
1104 
1105 					map->s_fspace.s_table =
1106 						udf_iget(sb, loc);
1107 					if (!map->s_fspace.s_table) {
1108 						udf_debug("cannot load freedSpaceTable (part %d)\n", i);
1109 						return 1;
1110 					}
1111 					map->s_partition_flags |=
1112 						UDF_PART_FLAG_FREED_TABLE;
1113 					udf_debug("freedSpaceTable (part %d) @ %ld\n",
1114 						  i, map->s_fspace.s_table->i_ino);
1115 				}
1116 				if (phd->freedSpaceBitmap.extLength) {
1117 					struct udf_bitmap *bitmap =
1118 						udf_sb_alloc_bitmap(sb, i);
1119 					map->s_fspace.s_bitmap = bitmap;
1120 					if (bitmap != NULL) {
1121 						bitmap->s_extLength =
1122 							le32_to_cpu(phd->freedSpaceBitmap.extLength);
1123 						bitmap->s_extPosition =
1124 							le32_to_cpu(phd->freedSpaceBitmap.extPosition);
1125 						map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1126 						udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1127 							  i, bitmap->s_extPosition);
1128 					}
1129 				}
1130 			}
1131 			break;
1132 		}
1133 	}
1134 	if (i == sbi->s_partitions)
1135 		udf_debug("Partition (%d) not found in partition map\n",
1136 			  le16_to_cpu(p->partitionNumber));
1137 	else
1138 		udf_debug("Partition (%d:%d type %x) starts at physical %d, "
1139 			  "block length %d\n",
1140 			  le16_to_cpu(p->partitionNumber), i,
1141 			  map->s_partition_type,
1142 			  map->s_partition_root,
1143 			  map->s_partition_len);
1144 	return 0;
1145 }
1146 
1147 static int udf_load_logicalvol(struct super_block *sb, struct buffer_head *bh,
1148 			       kernel_lb_addr *fileset)
1149 {
1150 	struct logicalVolDesc *lvd;
1151 	int i, j, offset;
1152 	uint8_t type;
1153 	struct udf_sb_info *sbi = UDF_SB(sb);
1154 	struct genericPartitionMap *gpm;
1155 
1156 	lvd = (struct logicalVolDesc *)bh->b_data;
1157 
1158 	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1159 	if (i != 0)
1160 		return i;
1161 
1162 	for (i = 0, offset = 0;
1163 	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1164 	     i++, offset += gpm->partitionMapLength) {
1165 		struct udf_part_map *map = &sbi->s_partmaps[i];
1166 		gpm = (struct genericPartitionMap *)
1167 				&(lvd->partitionMaps[offset]);
1168 		type = gpm->partitionMapType;
1169 		if (type == 1) {
1170 			struct genericPartitionMap1 *gpm1 =
1171 				(struct genericPartitionMap1 *)gpm;
1172 			map->s_partition_type = UDF_TYPE1_MAP15;
1173 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1174 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1175 			map->s_partition_func = NULL;
1176 		} else if (type == 2) {
1177 			struct udfPartitionMap2 *upm2 =
1178 						(struct udfPartitionMap2 *)gpm;
1179 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1180 						strlen(UDF_ID_VIRTUAL))) {
1181 				u16 suf =
1182 					le16_to_cpu(((__le16 *)upm2->partIdent.
1183 							identSuffix)[0]);
1184 				if (suf == 0x0150) {
1185 					map->s_partition_type =
1186 							UDF_VIRTUAL_MAP15;
1187 					map->s_partition_func =
1188 							udf_get_pblock_virt15;
1189 				} else if (suf == 0x0200) {
1190 					map->s_partition_type =
1191 							UDF_VIRTUAL_MAP20;
1192 					map->s_partition_func =
1193 							udf_get_pblock_virt20;
1194 				}
1195 			} else if (!strncmp(upm2->partIdent.ident,
1196 						UDF_ID_SPARABLE,
1197 						strlen(UDF_ID_SPARABLE))) {
1198 				uint32_t loc;
1199 				uint16_t ident;
1200 				struct sparingTable *st;
1201 				struct sparablePartitionMap *spm =
1202 					(struct sparablePartitionMap *)gpm;
1203 
1204 				map->s_partition_type = UDF_SPARABLE_MAP15;
1205 				map->s_type_specific.s_sparing.s_packet_len =
1206 						le16_to_cpu(spm->packetLength);
1207 				for (j = 0; j < spm->numSparingTables; j++) {
1208 					struct buffer_head *bh2;
1209 
1210 					loc = le32_to_cpu(
1211 						spm->locSparingTable[j]);
1212 					bh2 = udf_read_tagged(sb, loc, loc,
1213 							     &ident);
1214 					map->s_type_specific.s_sparing.
1215 							s_spar_map[j] = bh2;
1216 
1217 					if (bh2 != NULL) {
1218 						st = (struct sparingTable *)
1219 								bh2->b_data;
1220 						if (ident != 0 || strncmp(
1221 							st->sparingIdent.ident,
1222 							UDF_ID_SPARING,
1223 							strlen(UDF_ID_SPARING))) {
1224 							brelse(bh2);
1225 							map->s_type_specific.
1226 								s_sparing.
1227 								s_spar_map[j] =
1228 									NULL;
1229 						}
1230 					}
1231 				}
1232 				map->s_partition_func = udf_get_pblock_spar15;
1233 			} else {
1234 				udf_debug("Unknown ident: %s\n",
1235 					  upm2->partIdent.ident);
1236 				continue;
1237 			}
1238 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1239 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1240 		}
1241 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1242 			  i, map->s_partition_num, type,
1243 			  map->s_volumeseqnum);
1244 	}
1245 
1246 	if (fileset) {
1247 		long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]);
1248 
1249 		*fileset = lelb_to_cpu(la->extLocation);
1250 		udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1251 			  "partition=%d\n", fileset->logicalBlockNum,
1252 			  fileset->partitionReferenceNum);
1253 	}
1254 	if (lvd->integritySeqExt.extLength)
1255 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1256 
1257 	return 0;
1258 }
1259 
1260 /*
1261  * udf_load_logicalvolint
1262  *
1263  */
1264 static void udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc)
1265 {
1266 	struct buffer_head *bh = NULL;
1267 	uint16_t ident;
1268 	struct udf_sb_info *sbi = UDF_SB(sb);
1269 	struct logicalVolIntegrityDesc *lvid;
1270 
1271 	while (loc.extLength > 0 &&
1272 	       (bh = udf_read_tagged(sb, loc.extLocation,
1273 				     loc.extLocation, &ident)) &&
1274 	       ident == TAG_IDENT_LVID) {
1275 		sbi->s_lvid_bh = bh;
1276 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1277 
1278 		if (lvid->nextIntegrityExt.extLength)
1279 			udf_load_logicalvolint(sb,
1280 				leea_to_cpu(lvid->nextIntegrityExt));
1281 
1282 		if (sbi->s_lvid_bh != bh)
1283 			brelse(bh);
1284 		loc.extLength -= sb->s_blocksize;
1285 		loc.extLocation++;
1286 	}
1287 	if (sbi->s_lvid_bh != bh)
1288 		brelse(bh);
1289 }
1290 
1291 /*
1292  * udf_process_sequence
1293  *
1294  * PURPOSE
1295  *	Process a main/reserve volume descriptor sequence.
1296  *
1297  * PRE-CONDITIONS
1298  *	sb			Pointer to _locked_ superblock.
1299  *	block			First block of first extent of the sequence.
1300  *	lastblock		Lastblock of first extent of the sequence.
1301  *
1302  * HISTORY
1303  *	July 1, 1997 - Andrew E. Mileski
1304  *	Written, tested, and released.
1305  */
1306 static int udf_process_sequence(struct super_block *sb, long block,
1307 				long lastblock, kernel_lb_addr *fileset)
1308 {
1309 	struct buffer_head *bh = NULL;
1310 	struct udf_vds_record vds[VDS_POS_LENGTH];
1311 	struct udf_vds_record *curr;
1312 	struct generic_desc *gd;
1313 	struct volDescPtr *vdp;
1314 	int done = 0;
1315 	int i, j;
1316 	uint32_t vdsn;
1317 	uint16_t ident;
1318 	long next_s = 0, next_e = 0;
1319 
1320 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1321 
1322 	/* Read the main descriptor sequence */
1323 	for (; (!done && block <= lastblock); block++) {
1324 
1325 		bh = udf_read_tagged(sb, block, block, &ident);
1326 		if (!bh)
1327 			break;
1328 
1329 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1330 		gd = (struct generic_desc *)bh->b_data;
1331 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1332 		switch (ident) {
1333 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1334 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1335 			if (vdsn >= curr->volDescSeqNum) {
1336 				curr->volDescSeqNum = vdsn;
1337 				curr->block = block;
1338 			}
1339 			break;
1340 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1341 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1342 			if (vdsn >= curr->volDescSeqNum) {
1343 				curr->volDescSeqNum = vdsn;
1344 				curr->block = block;
1345 
1346 				vdp = (struct volDescPtr *)bh->b_data;
1347 				next_s = le32_to_cpu(
1348 					vdp->nextVolDescSeqExt.extLocation);
1349 				next_e = le32_to_cpu(
1350 					vdp->nextVolDescSeqExt.extLength);
1351 				next_e = next_e >> sb->s_blocksize_bits;
1352 				next_e += next_s;
1353 			}
1354 			break;
1355 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1356 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1357 			if (vdsn >= curr->volDescSeqNum) {
1358 				curr->volDescSeqNum = vdsn;
1359 				curr->block = block;
1360 			}
1361 			break;
1362 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1363 			curr = &vds[VDS_POS_PARTITION_DESC];
1364 			if (!curr->block)
1365 				curr->block = block;
1366 			break;
1367 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1368 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1369 			if (vdsn >= curr->volDescSeqNum) {
1370 				curr->volDescSeqNum = vdsn;
1371 				curr->block = block;
1372 			}
1373 			break;
1374 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1375 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1376 			if (vdsn >= curr->volDescSeqNum) {
1377 				curr->volDescSeqNum = vdsn;
1378 				curr->block = block;
1379 			}
1380 			break;
1381 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1382 			vds[VDS_POS_TERMINATING_DESC].block = block;
1383 			if (next_e) {
1384 				block = next_s;
1385 				lastblock = next_e;
1386 				next_s = next_e = 0;
1387 			} else
1388 				done = 1;
1389 			break;
1390 		}
1391 		brelse(bh);
1392 	}
1393 	for (i = 0; i < VDS_POS_LENGTH; i++) {
1394 		if (vds[i].block) {
1395 			bh = udf_read_tagged(sb, vds[i].block, vds[i].block,
1396 					     &ident);
1397 
1398 			if (i == VDS_POS_PRIMARY_VOL_DESC) {
1399 				udf_load_pvoldesc(sb, bh);
1400 			} else if (i == VDS_POS_LOGICAL_VOL_DESC) {
1401 				if (udf_load_logicalvol(sb, bh, fileset)) {
1402 					brelse(bh);
1403 					return 1;
1404 				}
1405 			} else if (i == VDS_POS_PARTITION_DESC) {
1406 				struct buffer_head *bh2 = NULL;
1407 				if (udf_load_partdesc(sb, bh)) {
1408 					brelse(bh);
1409 					return 1;
1410 				}
1411 				for (j = vds[i].block + 1;
1412 				     j <  vds[VDS_POS_TERMINATING_DESC].block;
1413 				     j++) {
1414 					bh2 = udf_read_tagged(sb, j, j, &ident);
1415 					gd = (struct generic_desc *)bh2->b_data;
1416 					if (ident == TAG_IDENT_PD)
1417 						if (udf_load_partdesc(sb,
1418 								      bh2)) {
1419 							brelse(bh);
1420 							brelse(bh2);
1421 							return 1;
1422 						}
1423 					brelse(bh2);
1424 				}
1425 			}
1426 			brelse(bh);
1427 		}
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * udf_check_valid()
1435  */
1436 static int udf_check_valid(struct super_block *sb, int novrs, int silent)
1437 {
1438 	long block;
1439 
1440 	if (novrs) {
1441 		udf_debug("Validity check skipped because of novrs option\n");
1442 		return 0;
1443 	}
1444 	/* Check that it is NSR02 compliant */
1445 	/* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
1446 	else {
1447 		block = udf_vrs(sb, silent);
1448 		if (block == -1) {
1449 			struct udf_sb_info *sbi = UDF_SB(sb);
1450 			udf_debug("Failed to read byte 32768. Assuming open "
1451 				  "disc. Skipping validity check\n");
1452 			if (!sbi->s_last_block)
1453 				sbi->s_last_block = udf_get_last_block(sb);
1454 			return 0;
1455 		} else
1456 			return !block;
1457 	}
1458 }
1459 
1460 static int udf_load_partition(struct super_block *sb, kernel_lb_addr *fileset)
1461 {
1462 	struct anchorVolDescPtr *anchor;
1463 	uint16_t ident;
1464 	struct buffer_head *bh;
1465 	long main_s, main_e, reserve_s, reserve_e;
1466 	int i, j;
1467 	struct udf_sb_info *sbi;
1468 
1469 	if (!sb)
1470 		return 1;
1471 	sbi = UDF_SB(sb);
1472 
1473 	for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
1474 		if (!sbi->s_anchor[i])
1475 			continue;
1476 		bh = udf_read_tagged(sb, sbi->s_anchor[i], sbi->s_anchor[i],
1477 				     &ident);
1478 		if (!bh)
1479 			continue;
1480 
1481 		anchor = (struct anchorVolDescPtr *)bh->b_data;
1482 
1483 		/* Locate the main sequence */
1484 		main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1485 		main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1486 		main_e = main_e >> sb->s_blocksize_bits;
1487 		main_e += main_s;
1488 
1489 		/* Locate the reserve sequence */
1490 		reserve_s = le32_to_cpu(
1491 				anchor->reserveVolDescSeqExt.extLocation);
1492 		reserve_e = le32_to_cpu(
1493 				anchor->reserveVolDescSeqExt.extLength);
1494 		reserve_e = reserve_e >> sb->s_blocksize_bits;
1495 		reserve_e += reserve_s;
1496 
1497 		brelse(bh);
1498 
1499 		/* Process the main & reserve sequences */
1500 		/* responsible for finding the PartitionDesc(s) */
1501 		if (!(udf_process_sequence(sb, main_s, main_e,
1502 					   fileset) &&
1503 		      udf_process_sequence(sb, reserve_s, reserve_e,
1504 					   fileset)))
1505 			break;
1506 	}
1507 
1508 	if (i == ARRAY_SIZE(sbi->s_anchor)) {
1509 		udf_debug("No Anchor block found\n");
1510 		return 1;
1511 	}
1512 	udf_debug("Using anchor in block %d\n", sbi->s_anchor[i]);
1513 
1514 	for (i = 0; i < sbi->s_partitions; i++) {
1515 		kernel_lb_addr uninitialized_var(ino);
1516 		struct udf_part_map *map = &sbi->s_partmaps[i];
1517 		switch (map->s_partition_type) {
1518 		case UDF_VIRTUAL_MAP15:
1519 		case UDF_VIRTUAL_MAP20:
1520 			if (!sbi->s_last_block) {
1521 				sbi->s_last_block = udf_get_last_block(sb);
1522 				udf_find_anchor(sb);
1523 			}
1524 
1525 			if (!sbi->s_last_block) {
1526 				udf_debug("Unable to determine Lastblock (For "
1527 					  "Virtual Partition)\n");
1528 				return 1;
1529 			}
1530 
1531 			for (j = 0; j < sbi->s_partitions; j++) {
1532 				struct udf_part_map *map2 = &sbi->s_partmaps[j];
1533 				if (j != i &&
1534 				    map->s_volumeseqnum ==
1535 						map2->s_volumeseqnum &&
1536 				    map->s_partition_num ==
1537 						map2->s_partition_num) {
1538 					ino.partitionReferenceNum = j;
1539 					ino.logicalBlockNum =
1540 						sbi->s_last_block -
1541 							map2->s_partition_root;
1542 					break;
1543 				}
1544 			}
1545 
1546 			if (j == sbi->s_partitions)
1547 				return 1;
1548 
1549 			sbi->s_vat_inode = udf_iget(sb, ino);
1550 			if (!sbi->s_vat_inode)
1551 				return 1;
1552 
1553 			if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1554 				map->s_type_specific.s_virtual.s_start_offset =
1555 					udf_ext0_offset(sbi->s_vat_inode);
1556 				map->s_type_specific.s_virtual.s_num_entries =
1557 					(sbi->s_vat_inode->i_size - 36) >> 2;
1558 			} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1559 				uint32_t pos;
1560 				struct virtualAllocationTable20 *vat20;
1561 
1562 				pos = udf_block_map(sbi->s_vat_inode, 0);
1563 				bh = sb_bread(sb, pos);
1564 				if (!bh)
1565 					return 1;
1566 				vat20 = (struct virtualAllocationTable20 *)
1567 					bh->b_data +
1568 					udf_ext0_offset(sbi->s_vat_inode);
1569 				map->s_type_specific.s_virtual.s_start_offset =
1570 					le16_to_cpu(vat20->lengthHeader) +
1571 					udf_ext0_offset(sbi->s_vat_inode);
1572 				map->s_type_specific.s_virtual.s_num_entries =
1573 					(sbi->s_vat_inode->i_size -
1574 					 map->s_type_specific.s_virtual.
1575 							s_start_offset) >> 2;
1576 				brelse(bh);
1577 			}
1578 			map->s_partition_root = udf_get_pblock(sb, 0, i, 0);
1579 			map->s_partition_len =
1580 				sbi->s_partmaps[ino.partitionReferenceNum].
1581 								s_partition_len;
1582 		}
1583 	}
1584 	return 0;
1585 }
1586 
1587 static void udf_open_lvid(struct super_block *sb)
1588 {
1589 	struct udf_sb_info *sbi = UDF_SB(sb);
1590 	struct buffer_head *bh = sbi->s_lvid_bh;
1591 	if (bh) {
1592 		kernel_timestamp cpu_time;
1593 		struct logicalVolIntegrityDesc *lvid =
1594 				(struct logicalVolIntegrityDesc *)bh->b_data;
1595 		struct logicalVolIntegrityDescImpUse *lvidiu =
1596 							udf_sb_lvidiu(sbi);
1597 
1598 		lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1599 		lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1600 		if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
1601 			lvid->recordingDateAndTime = cpu_to_lets(cpu_time);
1602 		lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN;
1603 
1604 		lvid->descTag.descCRC = cpu_to_le16(
1605 			udf_crc((char *)lvid + sizeof(tag),
1606 				le16_to_cpu(lvid->descTag.descCRCLength),
1607 				0));
1608 
1609 		lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1610 		mark_buffer_dirty(bh);
1611 	}
1612 }
1613 
1614 static void udf_close_lvid(struct super_block *sb)
1615 {
1616 	kernel_timestamp cpu_time;
1617 	struct udf_sb_info *sbi = UDF_SB(sb);
1618 	struct buffer_head *bh = sbi->s_lvid_bh;
1619 	struct logicalVolIntegrityDesc *lvid;
1620 
1621 	if (!bh)
1622 		return;
1623 
1624 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1625 
1626 	if (lvid->integrityType == LVID_INTEGRITY_TYPE_OPEN) {
1627 		struct logicalVolIntegrityDescImpUse *lvidiu =
1628 							udf_sb_lvidiu(sbi);
1629 		lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1630 		lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1631 		if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
1632 			lvid->recordingDateAndTime = cpu_to_lets(cpu_time);
1633 		if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1634 			lvidiu->maxUDFWriteRev =
1635 					cpu_to_le16(UDF_MAX_WRITE_VERSION);
1636 		if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1637 			lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1638 		if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1639 			lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1640 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1641 
1642 		lvid->descTag.descCRC = cpu_to_le16(
1643 			udf_crc((char *)lvid + sizeof(tag),
1644 				le16_to_cpu(lvid->descTag.descCRCLength),
1645 				0));
1646 
1647 		lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1648 		mark_buffer_dirty(bh);
1649 	}
1650 }
1651 
1652 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1653 {
1654 	int i;
1655 	int nr_groups = bitmap->s_nr_groups;
1656 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1657 						nr_groups);
1658 
1659 	for (i = 0; i < nr_groups; i++)
1660 		if (bitmap->s_block_bitmap[i])
1661 			brelse(bitmap->s_block_bitmap[i]);
1662 
1663 	if (size <= PAGE_SIZE)
1664 		kfree(bitmap);
1665 	else
1666 		vfree(bitmap);
1667 }
1668 
1669 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1670 {
1671 	int i;
1672 	struct inode *inode = NULL;
1673 	struct udf_options uopt;
1674 	kernel_lb_addr rootdir, fileset;
1675 	struct udf_sb_info *sbi;
1676 
1677 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1678 	uopt.uid = -1;
1679 	uopt.gid = -1;
1680 	uopt.umask = 0;
1681 
1682 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1683 	if (!sbi)
1684 		return -ENOMEM;
1685 
1686 	sb->s_fs_info = sbi;
1687 
1688 	mutex_init(&sbi->s_alloc_mutex);
1689 
1690 	if (!udf_parse_options((char *)options, &uopt, false))
1691 		goto error_out;
1692 
1693 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1694 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1695 		udf_error(sb, "udf_read_super",
1696 			  "utf8 cannot be combined with iocharset\n");
1697 		goto error_out;
1698 	}
1699 #ifdef CONFIG_UDF_NLS
1700 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1701 		uopt.nls_map = load_nls_default();
1702 		if (!uopt.nls_map)
1703 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1704 		else
1705 			udf_debug("Using default NLS map\n");
1706 	}
1707 #endif
1708 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1709 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1710 
1711 	fileset.logicalBlockNum = 0xFFFFFFFF;
1712 	fileset.partitionReferenceNum = 0xFFFF;
1713 
1714 	sbi->s_flags = uopt.flags;
1715 	sbi->s_uid = uopt.uid;
1716 	sbi->s_gid = uopt.gid;
1717 	sbi->s_umask = uopt.umask;
1718 	sbi->s_nls_map = uopt.nls_map;
1719 
1720 	/* Set the block size for all transfers */
1721 	if (!sb_min_blocksize(sb, uopt.blocksize)) {
1722 		udf_debug("Bad block size (%d)\n", uopt.blocksize);
1723 		printk(KERN_ERR "udf: bad block size (%d)\n", uopt.blocksize);
1724 		goto error_out;
1725 	}
1726 
1727 	if (uopt.session == 0xFFFFFFFF)
1728 		sbi->s_session = udf_get_last_session(sb);
1729 	else
1730 		sbi->s_session = uopt.session;
1731 
1732 	udf_debug("Multi-session=%d\n", sbi->s_session);
1733 
1734 	sbi->s_last_block = uopt.lastblock;
1735 	sbi->s_anchor[0] = sbi->s_anchor[1] = 0;
1736 	sbi->s_anchor[2] = uopt.anchor;
1737 	sbi->s_anchor[3] = 256;
1738 
1739 	if (udf_check_valid(sb, uopt.novrs, silent)) {
1740 		/* read volume recognition sequences */
1741 		printk(KERN_WARNING "UDF-fs: No VRS found\n");
1742 		goto error_out;
1743 	}
1744 
1745 	udf_find_anchor(sb);
1746 
1747 	/* Fill in the rest of the superblock */
1748 	sb->s_op = &udf_sb_ops;
1749 	sb->dq_op = NULL;
1750 	sb->s_dirt = 0;
1751 	sb->s_magic = UDF_SUPER_MAGIC;
1752 	sb->s_time_gran = 1000;
1753 
1754 	if (udf_load_partition(sb, &fileset)) {
1755 		printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1756 		goto error_out;
1757 	}
1758 
1759 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
1760 
1761 	if (sbi->s_lvid_bh) {
1762 		struct logicalVolIntegrityDescImpUse *lvidiu =
1763 							udf_sb_lvidiu(sbi);
1764 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1765 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1766 		/* uint16_t maxUDFWriteRev =
1767 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
1768 
1769 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1770 			printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1771 					"(max is %x)\n",
1772 			       le16_to_cpu(lvidiu->minUDFReadRev),
1773 			       UDF_MAX_READ_VERSION);
1774 			goto error_out;
1775 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1776 			sb->s_flags |= MS_RDONLY;
1777 
1778 		sbi->s_udfrev = minUDFWriteRev;
1779 
1780 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1781 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1782 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1783 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1784 	}
1785 
1786 	if (!sbi->s_partitions) {
1787 		printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1788 		goto error_out;
1789 	}
1790 
1791 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1792 			UDF_PART_FLAG_READ_ONLY) {
1793 		printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1794 				   "forcing readonly mount\n");
1795 		sb->s_flags |= MS_RDONLY;
1796 	}
1797 
1798 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
1799 		printk(KERN_WARNING "UDF-fs: No fileset found\n");
1800 		goto error_out;
1801 	}
1802 
1803 	if (!silent) {
1804 		kernel_timestamp ts;
1805 		udf_time_to_stamp(&ts, sbi->s_record_time);
1806 		udf_info("UDF: Mounting volume '%s', "
1807 			 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1808 			 sbi->s_volume_ident, ts.year, ts.month, ts.day,
1809 			 ts.hour, ts.minute, ts.typeAndTimezone);
1810 	}
1811 	if (!(sb->s_flags & MS_RDONLY))
1812 		udf_open_lvid(sb);
1813 
1814 	/* Assign the root inode */
1815 	/* assign inodes by physical block number */
1816 	/* perhaps it's not extensible enough, but for now ... */
1817 	inode = udf_iget(sb, rootdir);
1818 	if (!inode) {
1819 		printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
1820 				"partition=%d\n",
1821 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
1822 		goto error_out;
1823 	}
1824 
1825 	/* Allocate a dentry for the root inode */
1826 	sb->s_root = d_alloc_root(inode);
1827 	if (!sb->s_root) {
1828 		printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
1829 		iput(inode);
1830 		goto error_out;
1831 	}
1832 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1833 	return 0;
1834 
1835 error_out:
1836 	if (sbi->s_vat_inode)
1837 		iput(sbi->s_vat_inode);
1838 	if (sbi->s_partitions) {
1839 		struct udf_part_map *map = &sbi->s_partmaps[sbi->s_partition];
1840 		if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1841 			iput(map->s_uspace.s_table);
1842 		if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1843 			iput(map->s_fspace.s_table);
1844 		if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1845 			udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1846 		if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1847 			udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1848 		if (map->s_partition_type == UDF_SPARABLE_MAP15)
1849 			for (i = 0; i < 4; i++)
1850 				brelse(map->s_type_specific.s_sparing.
1851 						s_spar_map[i]);
1852 	}
1853 #ifdef CONFIG_UDF_NLS
1854 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
1855 		unload_nls(sbi->s_nls_map);
1856 #endif
1857 	if (!(sb->s_flags & MS_RDONLY))
1858 		udf_close_lvid(sb);
1859 	brelse(sbi->s_lvid_bh);
1860 
1861 	kfree(sbi->s_partmaps);
1862 	kfree(sbi);
1863 	sb->s_fs_info = NULL;
1864 
1865 	return -EINVAL;
1866 }
1867 
1868 static void udf_error(struct super_block *sb, const char *function,
1869 		      const char *fmt, ...)
1870 {
1871 	va_list args;
1872 
1873 	if (!(sb->s_flags & MS_RDONLY)) {
1874 		/* mark sb error */
1875 		sb->s_dirt = 1;
1876 	}
1877 	va_start(args, fmt);
1878 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
1879 	va_end(args);
1880 	printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
1881 		sb->s_id, function, error_buf);
1882 }
1883 
1884 void udf_warning(struct super_block *sb, const char *function,
1885 		 const char *fmt, ...)
1886 {
1887 	va_list args;
1888 
1889 	va_start(args, fmt);
1890 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
1891 	va_end(args);
1892 	printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
1893 	       sb->s_id, function, error_buf);
1894 }
1895 
1896 static void udf_put_super(struct super_block *sb)
1897 {
1898 	int i;
1899 	struct udf_sb_info *sbi;
1900 
1901 	sbi = UDF_SB(sb);
1902 	if (sbi->s_vat_inode)
1903 		iput(sbi->s_vat_inode);
1904 	if (sbi->s_partitions) {
1905 		struct udf_part_map *map = &sbi->s_partmaps[sbi->s_partition];
1906 		if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1907 			iput(map->s_uspace.s_table);
1908 		if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1909 			iput(map->s_fspace.s_table);
1910 		if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1911 			udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1912 		if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1913 			udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1914 		if (map->s_partition_type == UDF_SPARABLE_MAP15)
1915 			for (i = 0; i < 4; i++)
1916 				brelse(map->s_type_specific.s_sparing.
1917 						s_spar_map[i]);
1918 	}
1919 #ifdef CONFIG_UDF_NLS
1920 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
1921 		unload_nls(sbi->s_nls_map);
1922 #endif
1923 	if (!(sb->s_flags & MS_RDONLY))
1924 		udf_close_lvid(sb);
1925 	brelse(sbi->s_lvid_bh);
1926 	kfree(sbi->s_partmaps);
1927 	kfree(sb->s_fs_info);
1928 	sb->s_fs_info = NULL;
1929 }
1930 
1931 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
1932 {
1933 	struct super_block *sb = dentry->d_sb;
1934 	struct udf_sb_info *sbi = UDF_SB(sb);
1935 	struct logicalVolIntegrityDescImpUse *lvidiu;
1936 
1937 	if (sbi->s_lvid_bh != NULL)
1938 		lvidiu = udf_sb_lvidiu(sbi);
1939 	else
1940 		lvidiu = NULL;
1941 
1942 	buf->f_type = UDF_SUPER_MAGIC;
1943 	buf->f_bsize = sb->s_blocksize;
1944 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
1945 	buf->f_bfree = udf_count_free(sb);
1946 	buf->f_bavail = buf->f_bfree;
1947 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
1948 					  le32_to_cpu(lvidiu->numDirs)) : 0)
1949 			+ buf->f_bfree;
1950 	buf->f_ffree = buf->f_bfree;
1951 	/* __kernel_fsid_t f_fsid */
1952 	buf->f_namelen = UDF_NAME_LEN - 2;
1953 
1954 	return 0;
1955 }
1956 
1957 static unsigned int udf_count_free_bitmap(struct super_block *sb,
1958 					  struct udf_bitmap *bitmap)
1959 {
1960 	struct buffer_head *bh = NULL;
1961 	unsigned int accum = 0;
1962 	int index;
1963 	int block = 0, newblock;
1964 	kernel_lb_addr loc;
1965 	uint32_t bytes;
1966 	uint8_t *ptr;
1967 	uint16_t ident;
1968 	struct spaceBitmapDesc *bm;
1969 
1970 	lock_kernel();
1971 
1972 	loc.logicalBlockNum = bitmap->s_extPosition;
1973 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
1974 	bh = udf_read_ptagged(sb, loc, 0, &ident);
1975 
1976 	if (!bh) {
1977 		printk(KERN_ERR "udf: udf_count_free failed\n");
1978 		goto out;
1979 	} else if (ident != TAG_IDENT_SBD) {
1980 		brelse(bh);
1981 		printk(KERN_ERR "udf: udf_count_free failed\n");
1982 		goto out;
1983 	}
1984 
1985 	bm = (struct spaceBitmapDesc *)bh->b_data;
1986 	bytes = le32_to_cpu(bm->numOfBytes);
1987 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
1988 	ptr = (uint8_t *)bh->b_data;
1989 
1990 	while (bytes > 0) {
1991 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
1992 		accum += bitmap_weight((const unsigned long *)(ptr + index),
1993 					cur_bytes * 8);
1994 		bytes -= cur_bytes;
1995 		if (bytes) {
1996 			brelse(bh);
1997 			newblock = udf_get_lb_pblock(sb, loc, ++block);
1998 			bh = udf_tread(sb, newblock);
1999 			if (!bh) {
2000 				udf_debug("read failed\n");
2001 				goto out;
2002 			}
2003 			index = 0;
2004 			ptr = (uint8_t *)bh->b_data;
2005 		}
2006 	}
2007 	brelse(bh);
2008 
2009 out:
2010 	unlock_kernel();
2011 
2012 	return accum;
2013 }
2014 
2015 static unsigned int udf_count_free_table(struct super_block *sb,
2016 					 struct inode *table)
2017 {
2018 	unsigned int accum = 0;
2019 	uint32_t elen;
2020 	kernel_lb_addr eloc;
2021 	int8_t etype;
2022 	struct extent_position epos;
2023 
2024 	lock_kernel();
2025 
2026 	epos.block = UDF_I(table)->i_location;
2027 	epos.offset = sizeof(struct unallocSpaceEntry);
2028 	epos.bh = NULL;
2029 
2030 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2031 		accum += (elen >> table->i_sb->s_blocksize_bits);
2032 
2033 	brelse(epos.bh);
2034 
2035 	unlock_kernel();
2036 
2037 	return accum;
2038 }
2039 
2040 static unsigned int udf_count_free(struct super_block *sb)
2041 {
2042 	unsigned int accum = 0;
2043 	struct udf_sb_info *sbi;
2044 	struct udf_part_map *map;
2045 
2046 	sbi = UDF_SB(sb);
2047 	if (sbi->s_lvid_bh) {
2048 		struct logicalVolIntegrityDesc *lvid =
2049 			(struct logicalVolIntegrityDesc *)
2050 			sbi->s_lvid_bh->b_data;
2051 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2052 			accum = le32_to_cpu(
2053 					lvid->freeSpaceTable[sbi->s_partition]);
2054 			if (accum == 0xFFFFFFFF)
2055 				accum = 0;
2056 		}
2057 	}
2058 
2059 	if (accum)
2060 		return accum;
2061 
2062 	map = &sbi->s_partmaps[sbi->s_partition];
2063 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2064 		accum += udf_count_free_bitmap(sb,
2065 					       map->s_uspace.s_bitmap);
2066 	}
2067 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2068 		accum += udf_count_free_bitmap(sb,
2069 					       map->s_fspace.s_bitmap);
2070 	}
2071 	if (accum)
2072 		return accum;
2073 
2074 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2075 		accum += udf_count_free_table(sb,
2076 					      map->s_uspace.s_table);
2077 	}
2078 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2079 		accum += udf_count_free_table(sb,
2080 					      map->s_fspace.s_table);
2081 	}
2082 
2083 	return accum;
2084 }
2085