1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 struct udf_map_rq; 56 57 static umode_t udf_convert_permissions(struct fileEntry *); 58 static int udf_update_inode(struct inode *, int); 59 static int udf_sync_inode(struct inode *inode); 60 static int udf_alloc_i_data(struct inode *inode, size_t size); 61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 62 static int udf_insert_aext(struct inode *, struct extent_position, 63 struct kernel_lb_addr, uint32_t); 64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 65 struct kernel_long_ad *, int *); 66 static void udf_prealloc_extents(struct inode *, int, int, 67 struct kernel_long_ad *, int *); 68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 70 int, struct extent_position *); 71 static int udf_get_block_wb(struct inode *inode, sector_t block, 72 struct buffer_head *bh_result, int create); 73 74 static void __udf_clear_extent_cache(struct inode *inode) 75 { 76 struct udf_inode_info *iinfo = UDF_I(inode); 77 78 if (iinfo->cached_extent.lstart != -1) { 79 brelse(iinfo->cached_extent.epos.bh); 80 iinfo->cached_extent.lstart = -1; 81 } 82 } 83 84 /* Invalidate extent cache */ 85 static void udf_clear_extent_cache(struct inode *inode) 86 { 87 struct udf_inode_info *iinfo = UDF_I(inode); 88 89 spin_lock(&iinfo->i_extent_cache_lock); 90 __udf_clear_extent_cache(inode); 91 spin_unlock(&iinfo->i_extent_cache_lock); 92 } 93 94 /* Return contents of extent cache */ 95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 96 loff_t *lbcount, struct extent_position *pos) 97 { 98 struct udf_inode_info *iinfo = UDF_I(inode); 99 int ret = 0; 100 101 spin_lock(&iinfo->i_extent_cache_lock); 102 if ((iinfo->cached_extent.lstart <= bcount) && 103 (iinfo->cached_extent.lstart != -1)) { 104 /* Cache hit */ 105 *lbcount = iinfo->cached_extent.lstart; 106 memcpy(pos, &iinfo->cached_extent.epos, 107 sizeof(struct extent_position)); 108 if (pos->bh) 109 get_bh(pos->bh); 110 ret = 1; 111 } 112 spin_unlock(&iinfo->i_extent_cache_lock); 113 return ret; 114 } 115 116 /* Add extent to extent cache */ 117 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 118 struct extent_position *pos) 119 { 120 struct udf_inode_info *iinfo = UDF_I(inode); 121 122 spin_lock(&iinfo->i_extent_cache_lock); 123 /* Invalidate previously cached extent */ 124 __udf_clear_extent_cache(inode); 125 if (pos->bh) 126 get_bh(pos->bh); 127 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 128 iinfo->cached_extent.lstart = estart; 129 switch (iinfo->i_alloc_type) { 130 case ICBTAG_FLAG_AD_SHORT: 131 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 132 break; 133 case ICBTAG_FLAG_AD_LONG: 134 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 135 break; 136 } 137 spin_unlock(&iinfo->i_extent_cache_lock); 138 } 139 140 void udf_evict_inode(struct inode *inode) 141 { 142 struct udf_inode_info *iinfo = UDF_I(inode); 143 int want_delete = 0; 144 145 if (!is_bad_inode(inode)) { 146 if (!inode->i_nlink) { 147 want_delete = 1; 148 udf_setsize(inode, 0); 149 udf_update_inode(inode, IS_SYNC(inode)); 150 } 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, 154 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 } 160 truncate_inode_pages_final(&inode->i_data); 161 invalidate_inode_buffers(inode); 162 clear_inode(inode); 163 kfree(iinfo->i_data); 164 iinfo->i_data = NULL; 165 udf_clear_extent_cache(inode); 166 if (want_delete) { 167 udf_free_inode(inode); 168 } 169 } 170 171 static void udf_write_failed(struct address_space *mapping, loff_t to) 172 { 173 struct inode *inode = mapping->host; 174 struct udf_inode_info *iinfo = UDF_I(inode); 175 loff_t isize = inode->i_size; 176 177 if (to > isize) { 178 truncate_pagecache(inode, isize); 179 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 180 down_write(&iinfo->i_data_sem); 181 udf_clear_extent_cache(inode); 182 udf_truncate_extents(inode); 183 up_write(&iinfo->i_data_sem); 184 } 185 } 186 } 187 188 static int udf_adinicb_writepage(struct page *page, 189 struct writeback_control *wbc, void *data) 190 { 191 struct inode *inode = page->mapping->host; 192 char *kaddr; 193 struct udf_inode_info *iinfo = UDF_I(inode); 194 195 BUG_ON(!PageLocked(page)); 196 197 kaddr = kmap_atomic(page); 198 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, i_size_read(inode)); 199 SetPageUptodate(page); 200 kunmap_atomic(kaddr); 201 unlock_page(page); 202 mark_inode_dirty(inode); 203 204 return 0; 205 } 206 207 int udf_writepages(struct address_space *mapping, struct writeback_control *wbc) 208 { 209 struct inode *inode = mapping->host; 210 struct udf_inode_info *iinfo = UDF_I(inode); 211 212 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 213 return mpage_writepages(mapping, wbc, udf_get_block_wb); 214 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 215 } 216 217 int udf_read_folio(struct file *file, struct folio *folio) 218 { 219 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 220 221 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 222 udf_adinicb_readpage(&folio->page); 223 folio_unlock(folio); 224 return 0; 225 } 226 return mpage_read_folio(folio, udf_get_block); 227 } 228 229 static void udf_readahead(struct readahead_control *rac) 230 { 231 mpage_readahead(rac, udf_get_block); 232 } 233 234 static int udf_write_begin(struct file *file, struct address_space *mapping, 235 loff_t pos, unsigned len, 236 struct page **pagep, void **fsdata) 237 { 238 int ret; 239 240 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block); 241 if (unlikely(ret)) 242 udf_write_failed(mapping, pos + len); 243 return ret; 244 } 245 246 ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 247 { 248 struct file *file = iocb->ki_filp; 249 struct address_space *mapping = file->f_mapping; 250 struct inode *inode = mapping->host; 251 size_t count = iov_iter_count(iter); 252 ssize_t ret; 253 254 /* Fallback to buffered IO for in-ICB files */ 255 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 256 return 0; 257 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 258 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 259 udf_write_failed(mapping, iocb->ki_pos + count); 260 return ret; 261 } 262 263 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 264 { 265 return generic_block_bmap(mapping, block, udf_get_block); 266 } 267 268 const struct address_space_operations udf_aops = { 269 .dirty_folio = block_dirty_folio, 270 .invalidate_folio = block_invalidate_folio, 271 .read_folio = udf_read_folio, 272 .readahead = udf_readahead, 273 .writepages = udf_writepages, 274 .write_begin = udf_write_begin, 275 .write_end = generic_write_end, 276 .direct_IO = udf_direct_IO, 277 .bmap = udf_bmap, 278 .migrate_folio = buffer_migrate_folio, 279 }; 280 281 /* 282 * Expand file stored in ICB to a normal one-block-file 283 * 284 * This function requires i_mutex held 285 */ 286 int udf_expand_file_adinicb(struct inode *inode) 287 { 288 struct page *page; 289 char *kaddr; 290 struct udf_inode_info *iinfo = UDF_I(inode); 291 int err; 292 293 WARN_ON_ONCE(!inode_is_locked(inode)); 294 if (!iinfo->i_lenAlloc) { 295 down_write(&iinfo->i_data_sem); 296 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 298 else 299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 300 /* from now on we have normal address_space methods */ 301 inode->i_data.a_ops = &udf_aops; 302 up_write(&iinfo->i_data_sem); 303 mark_inode_dirty(inode); 304 return 0; 305 } 306 307 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 308 if (!page) 309 return -ENOMEM; 310 311 if (!PageUptodate(page)) { 312 kaddr = kmap_atomic(page); 313 memset(kaddr + iinfo->i_lenAlloc, 0x00, 314 PAGE_SIZE - iinfo->i_lenAlloc); 315 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 316 iinfo->i_lenAlloc); 317 flush_dcache_page(page); 318 SetPageUptodate(page); 319 kunmap_atomic(kaddr); 320 } 321 down_write(&iinfo->i_data_sem); 322 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 323 iinfo->i_lenAlloc); 324 iinfo->i_lenAlloc = 0; 325 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 326 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 327 else 328 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 329 /* from now on we have normal address_space methods */ 330 inode->i_data.a_ops = &udf_aops; 331 set_page_dirty(page); 332 unlock_page(page); 333 up_write(&iinfo->i_data_sem); 334 err = filemap_fdatawrite(inode->i_mapping); 335 if (err) { 336 /* Restore everything back so that we don't lose data... */ 337 lock_page(page); 338 down_write(&iinfo->i_data_sem); 339 kaddr = kmap_atomic(page); 340 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 341 kunmap_atomic(kaddr); 342 unlock_page(page); 343 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 344 inode->i_data.a_ops = &udf_adinicb_aops; 345 iinfo->i_lenAlloc = inode->i_size; 346 up_write(&iinfo->i_data_sem); 347 } 348 put_page(page); 349 mark_inode_dirty(inode); 350 351 return err; 352 } 353 354 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 355 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 356 357 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 358 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 359 360 struct udf_map_rq { 361 sector_t lblk; 362 udf_pblk_t pblk; 363 int iflags; /* UDF_MAP_ flags determining behavior */ 364 int oflags; /* UDF_BLK_ flags reporting results */ 365 }; 366 367 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 368 { 369 int err; 370 struct udf_inode_info *iinfo = UDF_I(inode); 371 372 map->oflags = 0; 373 if (!(map->iflags & UDF_MAP_CREATE)) { 374 struct kernel_lb_addr eloc; 375 uint32_t elen; 376 sector_t offset; 377 struct extent_position epos = {}; 378 379 down_read(&iinfo->i_data_sem); 380 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 381 == (EXT_RECORDED_ALLOCATED >> 30)) { 382 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 383 offset); 384 map->oflags |= UDF_BLK_MAPPED; 385 } 386 up_read(&iinfo->i_data_sem); 387 brelse(epos.bh); 388 389 return 0; 390 } 391 392 down_write(&iinfo->i_data_sem); 393 /* 394 * Block beyond EOF and prealloc extents? Just discard preallocation 395 * as it is not useful and complicates things. 396 */ 397 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 398 udf_discard_prealloc(inode); 399 udf_clear_extent_cache(inode); 400 err = inode_getblk(inode, map); 401 up_write(&iinfo->i_data_sem); 402 return err; 403 } 404 405 static int __udf_get_block(struct inode *inode, sector_t block, 406 struct buffer_head *bh_result, int flags) 407 { 408 int err; 409 struct udf_map_rq map = { 410 .lblk = block, 411 .iflags = flags, 412 }; 413 414 err = udf_map_block(inode, &map); 415 if (err < 0) 416 return err; 417 if (map.oflags & UDF_BLK_MAPPED) { 418 map_bh(bh_result, inode->i_sb, map.pblk); 419 if (map.oflags & UDF_BLK_NEW) 420 set_buffer_new(bh_result); 421 } 422 return 0; 423 } 424 425 int udf_get_block(struct inode *inode, sector_t block, 426 struct buffer_head *bh_result, int create) 427 { 428 int flags = create ? UDF_MAP_CREATE : 0; 429 430 /* 431 * We preallocate blocks only for regular files. It also makes sense 432 * for directories but there's a problem when to drop the 433 * preallocation. We might use some delayed work for that but I feel 434 * it's overengineering for a filesystem like UDF. 435 */ 436 if (!S_ISREG(inode->i_mode)) 437 flags |= UDF_MAP_NOPREALLOC; 438 return __udf_get_block(inode, block, bh_result, flags); 439 } 440 441 /* 442 * We shouldn't be allocating blocks on page writeback since we allocate them 443 * on page fault. We can spot dirty buffers without allocated blocks though 444 * when truncate expands file. These however don't have valid data so we can 445 * safely ignore them. So never allocate blocks from page writeback. 446 */ 447 static int udf_get_block_wb(struct inode *inode, sector_t block, 448 struct buffer_head *bh_result, int create) 449 { 450 return __udf_get_block(inode, block, bh_result, 0); 451 } 452 453 /* Extend the file with new blocks totaling 'new_block_bytes', 454 * return the number of extents added 455 */ 456 static int udf_do_extend_file(struct inode *inode, 457 struct extent_position *last_pos, 458 struct kernel_long_ad *last_ext, 459 loff_t new_block_bytes) 460 { 461 uint32_t add; 462 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 463 struct super_block *sb = inode->i_sb; 464 struct udf_inode_info *iinfo; 465 int err; 466 467 /* The previous extent is fake and we should not extend by anything 468 * - there's nothing to do... */ 469 if (!new_block_bytes && fake) 470 return 0; 471 472 iinfo = UDF_I(inode); 473 /* Round the last extent up to a multiple of block size */ 474 if (last_ext->extLength & (sb->s_blocksize - 1)) { 475 last_ext->extLength = 476 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 477 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 478 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 479 iinfo->i_lenExtents = 480 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 481 ~(sb->s_blocksize - 1); 482 } 483 484 add = 0; 485 /* Can we merge with the previous extent? */ 486 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 487 EXT_NOT_RECORDED_NOT_ALLOCATED) { 488 add = (1 << 30) - sb->s_blocksize - 489 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 if (add > new_block_bytes) 491 add = new_block_bytes; 492 new_block_bytes -= add; 493 last_ext->extLength += add; 494 } 495 496 if (fake) { 497 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 498 last_ext->extLength, 1); 499 if (err < 0) 500 goto out_err; 501 count++; 502 } else { 503 struct kernel_lb_addr tmploc; 504 uint32_t tmplen; 505 506 udf_write_aext(inode, last_pos, &last_ext->extLocation, 507 last_ext->extLength, 1); 508 509 /* 510 * We've rewritten the last extent. If we are going to add 511 * more extents, we may need to enter possible following 512 * empty indirect extent. 513 */ 514 if (new_block_bytes) 515 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 516 } 517 iinfo->i_lenExtents += add; 518 519 /* Managed to do everything necessary? */ 520 if (!new_block_bytes) 521 goto out; 522 523 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 524 last_ext->extLocation.logicalBlockNum = 0; 525 last_ext->extLocation.partitionReferenceNum = 0; 526 add = (1 << 30) - sb->s_blocksize; 527 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 528 529 /* Create enough extents to cover the whole hole */ 530 while (new_block_bytes > add) { 531 new_block_bytes -= add; 532 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 533 last_ext->extLength, 1); 534 if (err) 535 goto out_err; 536 iinfo->i_lenExtents += add; 537 count++; 538 } 539 if (new_block_bytes) { 540 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 541 new_block_bytes; 542 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 543 last_ext->extLength, 1); 544 if (err) 545 goto out_err; 546 iinfo->i_lenExtents += new_block_bytes; 547 count++; 548 } 549 550 out: 551 /* last_pos should point to the last written extent... */ 552 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 553 last_pos->offset -= sizeof(struct short_ad); 554 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 555 last_pos->offset -= sizeof(struct long_ad); 556 else 557 return -EIO; 558 559 return count; 560 out_err: 561 /* Remove extents we've created so far */ 562 udf_clear_extent_cache(inode); 563 udf_truncate_extents(inode); 564 return err; 565 } 566 567 /* Extend the final block of the file to final_block_len bytes */ 568 static void udf_do_extend_final_block(struct inode *inode, 569 struct extent_position *last_pos, 570 struct kernel_long_ad *last_ext, 571 uint32_t new_elen) 572 { 573 uint32_t added_bytes; 574 575 /* 576 * Extent already large enough? It may be already rounded up to block 577 * size... 578 */ 579 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 580 return; 581 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 582 last_ext->extLength += added_bytes; 583 UDF_I(inode)->i_lenExtents += added_bytes; 584 585 udf_write_aext(inode, last_pos, &last_ext->extLocation, 586 last_ext->extLength, 1); 587 } 588 589 static int udf_extend_file(struct inode *inode, loff_t newsize) 590 { 591 592 struct extent_position epos; 593 struct kernel_lb_addr eloc; 594 uint32_t elen; 595 int8_t etype; 596 struct super_block *sb = inode->i_sb; 597 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 598 loff_t new_elen; 599 int adsize; 600 struct udf_inode_info *iinfo = UDF_I(inode); 601 struct kernel_long_ad extent; 602 int err = 0; 603 bool within_last_ext; 604 605 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 606 adsize = sizeof(struct short_ad); 607 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 608 adsize = sizeof(struct long_ad); 609 else 610 BUG(); 611 612 down_write(&iinfo->i_data_sem); 613 /* 614 * When creating hole in file, just don't bother with preserving 615 * preallocation. It likely won't be very useful anyway. 616 */ 617 udf_discard_prealloc(inode); 618 619 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 620 within_last_ext = (etype != -1); 621 /* We don't expect extents past EOF... */ 622 WARN_ON_ONCE(within_last_ext && 623 elen > ((loff_t)offset + 1) << inode->i_blkbits); 624 625 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 626 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 627 /* File has no extents at all or has empty last 628 * indirect extent! Create a fake extent... */ 629 extent.extLocation.logicalBlockNum = 0; 630 extent.extLocation.partitionReferenceNum = 0; 631 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 632 } else { 633 epos.offset -= adsize; 634 etype = udf_next_aext(inode, &epos, &extent.extLocation, 635 &extent.extLength, 0); 636 extent.extLength |= etype << 30; 637 } 638 639 new_elen = ((loff_t)offset << inode->i_blkbits) | 640 (newsize & (sb->s_blocksize - 1)); 641 642 /* File has extent covering the new size (could happen when extending 643 * inside a block)? 644 */ 645 if (within_last_ext) { 646 /* Extending file within the last file block */ 647 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 648 } else { 649 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 650 } 651 652 if (err < 0) 653 goto out; 654 err = 0; 655 out: 656 brelse(epos.bh); 657 up_write(&iinfo->i_data_sem); 658 return err; 659 } 660 661 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 662 { 663 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 664 struct extent_position prev_epos, cur_epos, next_epos; 665 int count = 0, startnum = 0, endnum = 0; 666 uint32_t elen = 0, tmpelen; 667 struct kernel_lb_addr eloc, tmpeloc; 668 int c = 1; 669 loff_t lbcount = 0, b_off = 0; 670 udf_pblk_t newblocknum; 671 sector_t offset = 0; 672 int8_t etype; 673 struct udf_inode_info *iinfo = UDF_I(inode); 674 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 675 int lastblock = 0; 676 bool isBeyondEOF; 677 int ret = 0; 678 679 prev_epos.offset = udf_file_entry_alloc_offset(inode); 680 prev_epos.block = iinfo->i_location; 681 prev_epos.bh = NULL; 682 cur_epos = next_epos = prev_epos; 683 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 684 685 /* find the extent which contains the block we are looking for. 686 alternate between laarr[0] and laarr[1] for locations of the 687 current extent, and the previous extent */ 688 do { 689 if (prev_epos.bh != cur_epos.bh) { 690 brelse(prev_epos.bh); 691 get_bh(cur_epos.bh); 692 prev_epos.bh = cur_epos.bh; 693 } 694 if (cur_epos.bh != next_epos.bh) { 695 brelse(cur_epos.bh); 696 get_bh(next_epos.bh); 697 cur_epos.bh = next_epos.bh; 698 } 699 700 lbcount += elen; 701 702 prev_epos.block = cur_epos.block; 703 cur_epos.block = next_epos.block; 704 705 prev_epos.offset = cur_epos.offset; 706 cur_epos.offset = next_epos.offset; 707 708 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 709 if (etype == -1) 710 break; 711 712 c = !c; 713 714 laarr[c].extLength = (etype << 30) | elen; 715 laarr[c].extLocation = eloc; 716 717 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 718 pgoal = eloc.logicalBlockNum + 719 ((elen + inode->i_sb->s_blocksize - 1) >> 720 inode->i_sb->s_blocksize_bits); 721 722 count++; 723 } while (lbcount + elen <= b_off); 724 725 b_off -= lbcount; 726 offset = b_off >> inode->i_sb->s_blocksize_bits; 727 /* 728 * Move prev_epos and cur_epos into indirect extent if we are at 729 * the pointer to it 730 */ 731 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 732 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 733 734 /* if the extent is allocated and recorded, return the block 735 if the extent is not a multiple of the blocksize, round up */ 736 737 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 738 if (elen & (inode->i_sb->s_blocksize - 1)) { 739 elen = EXT_RECORDED_ALLOCATED | 740 ((elen + inode->i_sb->s_blocksize - 1) & 741 ~(inode->i_sb->s_blocksize - 1)); 742 iinfo->i_lenExtents = 743 ALIGN(iinfo->i_lenExtents, 744 inode->i_sb->s_blocksize); 745 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 746 } 747 map->oflags = UDF_BLK_MAPPED; 748 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 749 goto out_free; 750 } 751 752 /* Are we beyond EOF and preallocated extent? */ 753 if (etype == -1) { 754 loff_t hole_len; 755 756 isBeyondEOF = true; 757 if (count) { 758 if (c) 759 laarr[0] = laarr[1]; 760 startnum = 1; 761 } else { 762 /* Create a fake extent when there's not one */ 763 memset(&laarr[0].extLocation, 0x00, 764 sizeof(struct kernel_lb_addr)); 765 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 766 /* Will udf_do_extend_file() create real extent from 767 a fake one? */ 768 startnum = (offset > 0); 769 } 770 /* Create extents for the hole between EOF and offset */ 771 hole_len = (loff_t)offset << inode->i_blkbits; 772 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 773 if (ret < 0) 774 goto out_free; 775 c = 0; 776 offset = 0; 777 count += ret; 778 /* 779 * Is there any real extent? - otherwise we overwrite the fake 780 * one... 781 */ 782 if (count) 783 c = !c; 784 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 785 inode->i_sb->s_blocksize; 786 memset(&laarr[c].extLocation, 0x00, 787 sizeof(struct kernel_lb_addr)); 788 count++; 789 endnum = c + 1; 790 lastblock = 1; 791 } else { 792 isBeyondEOF = false; 793 endnum = startnum = ((count > 2) ? 2 : count); 794 795 /* if the current extent is in position 0, 796 swap it with the previous */ 797 if (!c && count != 1) { 798 laarr[2] = laarr[0]; 799 laarr[0] = laarr[1]; 800 laarr[1] = laarr[2]; 801 c = 1; 802 } 803 804 /* if the current block is located in an extent, 805 read the next extent */ 806 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 807 if (etype != -1) { 808 laarr[c + 1].extLength = (etype << 30) | elen; 809 laarr[c + 1].extLocation = eloc; 810 count++; 811 startnum++; 812 endnum++; 813 } else 814 lastblock = 1; 815 } 816 817 /* if the current extent is not recorded but allocated, get the 818 * block in the extent corresponding to the requested block */ 819 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 820 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 821 else { /* otherwise, allocate a new block */ 822 if (iinfo->i_next_alloc_block == map->lblk) 823 goal = iinfo->i_next_alloc_goal; 824 825 if (!goal) { 826 if (!(goal = pgoal)) /* XXX: what was intended here? */ 827 goal = iinfo->i_location.logicalBlockNum + 1; 828 } 829 830 newblocknum = udf_new_block(inode->i_sb, inode, 831 iinfo->i_location.partitionReferenceNum, 832 goal, &ret); 833 if (!newblocknum) 834 goto out_free; 835 if (isBeyondEOF) 836 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 837 } 838 839 /* if the extent the requsted block is located in contains multiple 840 * blocks, split the extent into at most three extents. blocks prior 841 * to requested block, requested block, and blocks after requested 842 * block */ 843 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 844 845 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 846 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 847 848 /* merge any continuous blocks in laarr */ 849 udf_merge_extents(inode, laarr, &endnum); 850 851 /* write back the new extents, inserting new extents if the new number 852 * of extents is greater than the old number, and deleting extents if 853 * the new number of extents is less than the old number */ 854 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 855 if (ret < 0) 856 goto out_free; 857 858 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 859 iinfo->i_location.partitionReferenceNum, 0); 860 if (!map->pblk) { 861 ret = -EFSCORRUPTED; 862 goto out_free; 863 } 864 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 865 iinfo->i_next_alloc_block = map->lblk + 1; 866 iinfo->i_next_alloc_goal = newblocknum + 1; 867 inode->i_ctime = current_time(inode); 868 869 if (IS_SYNC(inode)) 870 udf_sync_inode(inode); 871 else 872 mark_inode_dirty(inode); 873 ret = 0; 874 out_free: 875 brelse(prev_epos.bh); 876 brelse(cur_epos.bh); 877 brelse(next_epos.bh); 878 return ret; 879 } 880 881 static void udf_split_extents(struct inode *inode, int *c, int offset, 882 udf_pblk_t newblocknum, 883 struct kernel_long_ad *laarr, int *endnum) 884 { 885 unsigned long blocksize = inode->i_sb->s_blocksize; 886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 887 888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 889 (laarr[*c].extLength >> 30) == 890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 891 int curr = *c; 892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 893 blocksize - 1) >> blocksize_bits; 894 int8_t etype = (laarr[curr].extLength >> 30); 895 896 if (blen == 1) 897 ; 898 else if (!offset || blen == offset + 1) { 899 laarr[curr + 2] = laarr[curr + 1]; 900 laarr[curr + 1] = laarr[curr]; 901 } else { 902 laarr[curr + 3] = laarr[curr + 1]; 903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 904 } 905 906 if (offset) { 907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 908 udf_free_blocks(inode->i_sb, inode, 909 &laarr[curr].extLocation, 910 0, offset); 911 laarr[curr].extLength = 912 EXT_NOT_RECORDED_NOT_ALLOCATED | 913 (offset << blocksize_bits); 914 laarr[curr].extLocation.logicalBlockNum = 0; 915 laarr[curr].extLocation. 916 partitionReferenceNum = 0; 917 } else 918 laarr[curr].extLength = (etype << 30) | 919 (offset << blocksize_bits); 920 curr++; 921 (*c)++; 922 (*endnum)++; 923 } 924 925 laarr[curr].extLocation.logicalBlockNum = newblocknum; 926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 927 laarr[curr].extLocation.partitionReferenceNum = 928 UDF_I(inode)->i_location.partitionReferenceNum; 929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 930 blocksize; 931 curr++; 932 933 if (blen != offset + 1) { 934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 935 laarr[curr].extLocation.logicalBlockNum += 936 offset + 1; 937 laarr[curr].extLength = (etype << 30) | 938 ((blen - (offset + 1)) << blocksize_bits); 939 curr++; 940 (*endnum)++; 941 } 942 } 943 } 944 945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 946 struct kernel_long_ad *laarr, 947 int *endnum) 948 { 949 int start, length = 0, currlength = 0, i; 950 951 if (*endnum >= (c + 1)) { 952 if (!lastblock) 953 return; 954 else 955 start = c; 956 } else { 957 if ((laarr[c + 1].extLength >> 30) == 958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 959 start = c + 1; 960 length = currlength = 961 (((laarr[c + 1].extLength & 962 UDF_EXTENT_LENGTH_MASK) + 963 inode->i_sb->s_blocksize - 1) >> 964 inode->i_sb->s_blocksize_bits); 965 } else 966 start = c; 967 } 968 969 for (i = start + 1; i <= *endnum; i++) { 970 if (i == *endnum) { 971 if (lastblock) 972 length += UDF_DEFAULT_PREALLOC_BLOCKS; 973 } else if ((laarr[i].extLength >> 30) == 974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 975 length += (((laarr[i].extLength & 976 UDF_EXTENT_LENGTH_MASK) + 977 inode->i_sb->s_blocksize - 1) >> 978 inode->i_sb->s_blocksize_bits); 979 } else 980 break; 981 } 982 983 if (length) { 984 int next = laarr[start].extLocation.logicalBlockNum + 985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 986 inode->i_sb->s_blocksize - 1) >> 987 inode->i_sb->s_blocksize_bits); 988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 989 laarr[start].extLocation.partitionReferenceNum, 990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 991 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 992 currlength); 993 if (numalloc) { 994 if (start == (c + 1)) 995 laarr[start].extLength += 996 (numalloc << 997 inode->i_sb->s_blocksize_bits); 998 else { 999 memmove(&laarr[c + 2], &laarr[c + 1], 1000 sizeof(struct long_ad) * (*endnum - (c + 1))); 1001 (*endnum)++; 1002 laarr[c + 1].extLocation.logicalBlockNum = next; 1003 laarr[c + 1].extLocation.partitionReferenceNum = 1004 laarr[c].extLocation. 1005 partitionReferenceNum; 1006 laarr[c + 1].extLength = 1007 EXT_NOT_RECORDED_ALLOCATED | 1008 (numalloc << 1009 inode->i_sb->s_blocksize_bits); 1010 start = c + 1; 1011 } 1012 1013 for (i = start + 1; numalloc && i < *endnum; i++) { 1014 int elen = ((laarr[i].extLength & 1015 UDF_EXTENT_LENGTH_MASK) + 1016 inode->i_sb->s_blocksize - 1) >> 1017 inode->i_sb->s_blocksize_bits; 1018 1019 if (elen > numalloc) { 1020 laarr[i].extLength -= 1021 (numalloc << 1022 inode->i_sb->s_blocksize_bits); 1023 numalloc = 0; 1024 } else { 1025 numalloc -= elen; 1026 if (*endnum > (i + 1)) 1027 memmove(&laarr[i], 1028 &laarr[i + 1], 1029 sizeof(struct long_ad) * 1030 (*endnum - (i + 1))); 1031 i--; 1032 (*endnum)--; 1033 } 1034 } 1035 UDF_I(inode)->i_lenExtents += 1036 numalloc << inode->i_sb->s_blocksize_bits; 1037 } 1038 } 1039 } 1040 1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1042 int *endnum) 1043 { 1044 int i; 1045 unsigned long blocksize = inode->i_sb->s_blocksize; 1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1047 1048 for (i = 0; i < (*endnum - 1); i++) { 1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1051 1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1053 (((li->extLength >> 30) == 1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1055 ((lip1->extLocation.logicalBlockNum - 1056 li->extLocation.logicalBlockNum) == 1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1058 blocksize - 1) >> blocksize_bits)))) { 1059 1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1062 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1063 li->extLength = lip1->extLength + 1064 (((li->extLength & 1065 UDF_EXTENT_LENGTH_MASK) + 1066 blocksize - 1) & ~(blocksize - 1)); 1067 if (*endnum > (i + 2)) 1068 memmove(&laarr[i + 1], &laarr[i + 2], 1069 sizeof(struct long_ad) * 1070 (*endnum - (i + 2))); 1071 i--; 1072 (*endnum)--; 1073 } 1074 } else if (((li->extLength >> 30) == 1075 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1076 ((lip1->extLength >> 30) == 1077 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1078 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1079 ((li->extLength & 1080 UDF_EXTENT_LENGTH_MASK) + 1081 blocksize - 1) >> blocksize_bits); 1082 li->extLocation.logicalBlockNum = 0; 1083 li->extLocation.partitionReferenceNum = 0; 1084 1085 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1086 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1087 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1088 lip1->extLength = (lip1->extLength - 1089 (li->extLength & 1090 UDF_EXTENT_LENGTH_MASK) + 1091 UDF_EXTENT_LENGTH_MASK) & 1092 ~(blocksize - 1); 1093 li->extLength = (li->extLength & 1094 UDF_EXTENT_FLAG_MASK) + 1095 (UDF_EXTENT_LENGTH_MASK + 1) - 1096 blocksize; 1097 } else { 1098 li->extLength = lip1->extLength + 1099 (((li->extLength & 1100 UDF_EXTENT_LENGTH_MASK) + 1101 blocksize - 1) & ~(blocksize - 1)); 1102 if (*endnum > (i + 2)) 1103 memmove(&laarr[i + 1], &laarr[i + 2], 1104 sizeof(struct long_ad) * 1105 (*endnum - (i + 2))); 1106 i--; 1107 (*endnum)--; 1108 } 1109 } else if ((li->extLength >> 30) == 1110 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1111 udf_free_blocks(inode->i_sb, inode, 1112 &li->extLocation, 0, 1113 ((li->extLength & 1114 UDF_EXTENT_LENGTH_MASK) + 1115 blocksize - 1) >> blocksize_bits); 1116 li->extLocation.logicalBlockNum = 0; 1117 li->extLocation.partitionReferenceNum = 0; 1118 li->extLength = (li->extLength & 1119 UDF_EXTENT_LENGTH_MASK) | 1120 EXT_NOT_RECORDED_NOT_ALLOCATED; 1121 } 1122 } 1123 } 1124 1125 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1126 int startnum, int endnum, 1127 struct extent_position *epos) 1128 { 1129 int start = 0, i; 1130 struct kernel_lb_addr tmploc; 1131 uint32_t tmplen; 1132 int err; 1133 1134 if (startnum > endnum) { 1135 for (i = 0; i < (startnum - endnum); i++) 1136 udf_delete_aext(inode, *epos); 1137 } else if (startnum < endnum) { 1138 for (i = 0; i < (endnum - startnum); i++) { 1139 err = udf_insert_aext(inode, *epos, 1140 laarr[i].extLocation, 1141 laarr[i].extLength); 1142 /* 1143 * If we fail here, we are likely corrupting the extent 1144 * list and leaking blocks. At least stop early to 1145 * limit the damage. 1146 */ 1147 if (err < 0) 1148 return err; 1149 udf_next_aext(inode, epos, &laarr[i].extLocation, 1150 &laarr[i].extLength, 1); 1151 start++; 1152 } 1153 } 1154 1155 for (i = start; i < endnum; i++) { 1156 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1157 udf_write_aext(inode, epos, &laarr[i].extLocation, 1158 laarr[i].extLength, 1); 1159 } 1160 return 0; 1161 } 1162 1163 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1164 int create, int *err) 1165 { 1166 struct buffer_head *bh = NULL; 1167 struct udf_map_rq map = { 1168 .lblk = block, 1169 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1170 }; 1171 1172 *err = udf_map_block(inode, &map); 1173 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1174 return NULL; 1175 1176 bh = sb_getblk(inode->i_sb, map.pblk); 1177 if (!bh) { 1178 *err = -ENOMEM; 1179 return NULL; 1180 } 1181 if (map.oflags & UDF_BLK_NEW) { 1182 lock_buffer(bh); 1183 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1184 set_buffer_uptodate(bh); 1185 unlock_buffer(bh); 1186 mark_buffer_dirty_inode(bh, inode); 1187 return bh; 1188 } 1189 1190 if (bh_read(bh, 0) >= 0) 1191 return bh; 1192 1193 brelse(bh); 1194 *err = -EIO; 1195 return NULL; 1196 } 1197 1198 int udf_setsize(struct inode *inode, loff_t newsize) 1199 { 1200 int err = 0; 1201 struct udf_inode_info *iinfo; 1202 unsigned int bsize = i_blocksize(inode); 1203 1204 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1205 S_ISLNK(inode->i_mode))) 1206 return -EINVAL; 1207 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1208 return -EPERM; 1209 1210 filemap_invalidate_lock(inode->i_mapping); 1211 iinfo = UDF_I(inode); 1212 if (newsize > inode->i_size) { 1213 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1214 if (bsize >= 1215 (udf_file_entry_alloc_offset(inode) + newsize)) { 1216 down_write(&iinfo->i_data_sem); 1217 iinfo->i_lenAlloc = newsize; 1218 up_write(&iinfo->i_data_sem); 1219 goto set_size; 1220 } 1221 err = udf_expand_file_adinicb(inode); 1222 if (err) 1223 goto out_unlock; 1224 } 1225 err = udf_extend_file(inode, newsize); 1226 if (err) 1227 goto out_unlock; 1228 set_size: 1229 truncate_setsize(inode, newsize); 1230 } else { 1231 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1232 down_write(&iinfo->i_data_sem); 1233 udf_clear_extent_cache(inode); 1234 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1235 0x00, bsize - newsize - 1236 udf_file_entry_alloc_offset(inode)); 1237 iinfo->i_lenAlloc = newsize; 1238 truncate_setsize(inode, newsize); 1239 up_write(&iinfo->i_data_sem); 1240 goto update_time; 1241 } 1242 err = block_truncate_page(inode->i_mapping, newsize, 1243 udf_get_block); 1244 if (err) 1245 goto out_unlock; 1246 truncate_setsize(inode, newsize); 1247 down_write(&iinfo->i_data_sem); 1248 udf_clear_extent_cache(inode); 1249 err = udf_truncate_extents(inode); 1250 up_write(&iinfo->i_data_sem); 1251 if (err) 1252 goto out_unlock; 1253 } 1254 update_time: 1255 inode->i_mtime = inode->i_ctime = current_time(inode); 1256 if (IS_SYNC(inode)) 1257 udf_sync_inode(inode); 1258 else 1259 mark_inode_dirty(inode); 1260 out_unlock: 1261 filemap_invalidate_unlock(inode->i_mapping); 1262 return err; 1263 } 1264 1265 /* 1266 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1267 * arbitrary - just that we hopefully don't limit any real use of rewritten 1268 * inode on write-once media but avoid looping for too long on corrupted media. 1269 */ 1270 #define UDF_MAX_ICB_NESTING 1024 1271 1272 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1273 { 1274 struct buffer_head *bh = NULL; 1275 struct fileEntry *fe; 1276 struct extendedFileEntry *efe; 1277 uint16_t ident; 1278 struct udf_inode_info *iinfo = UDF_I(inode); 1279 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1280 struct kernel_lb_addr *iloc = &iinfo->i_location; 1281 unsigned int link_count; 1282 unsigned int indirections = 0; 1283 int bs = inode->i_sb->s_blocksize; 1284 int ret = -EIO; 1285 uint32_t uid, gid; 1286 1287 reread: 1288 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1289 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1290 iloc->partitionReferenceNum, sbi->s_partitions); 1291 return -EIO; 1292 } 1293 1294 if (iloc->logicalBlockNum >= 1295 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1296 udf_debug("block=%u, partition=%u out of range\n", 1297 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1298 return -EIO; 1299 } 1300 1301 /* 1302 * Set defaults, but the inode is still incomplete! 1303 * Note: get_new_inode() sets the following on a new inode: 1304 * i_sb = sb 1305 * i_no = ino 1306 * i_flags = sb->s_flags 1307 * i_state = 0 1308 * clean_inode(): zero fills and sets 1309 * i_count = 1 1310 * i_nlink = 1 1311 * i_op = NULL; 1312 */ 1313 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1314 if (!bh) { 1315 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1316 return -EIO; 1317 } 1318 1319 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1320 ident != TAG_IDENT_USE) { 1321 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1322 inode->i_ino, ident); 1323 goto out; 1324 } 1325 1326 fe = (struct fileEntry *)bh->b_data; 1327 efe = (struct extendedFileEntry *)bh->b_data; 1328 1329 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1330 struct buffer_head *ibh; 1331 1332 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1333 if (ident == TAG_IDENT_IE && ibh) { 1334 struct kernel_lb_addr loc; 1335 struct indirectEntry *ie; 1336 1337 ie = (struct indirectEntry *)ibh->b_data; 1338 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1339 1340 if (ie->indirectICB.extLength) { 1341 brelse(ibh); 1342 memcpy(&iinfo->i_location, &loc, 1343 sizeof(struct kernel_lb_addr)); 1344 if (++indirections > UDF_MAX_ICB_NESTING) { 1345 udf_err(inode->i_sb, 1346 "too many ICBs in ICB hierarchy" 1347 " (max %d supported)\n", 1348 UDF_MAX_ICB_NESTING); 1349 goto out; 1350 } 1351 brelse(bh); 1352 goto reread; 1353 } 1354 } 1355 brelse(ibh); 1356 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1357 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1358 le16_to_cpu(fe->icbTag.strategyType)); 1359 goto out; 1360 } 1361 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1362 iinfo->i_strat4096 = 0; 1363 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1364 iinfo->i_strat4096 = 1; 1365 1366 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1367 ICBTAG_FLAG_AD_MASK; 1368 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1369 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1370 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1371 ret = -EIO; 1372 goto out; 1373 } 1374 iinfo->i_hidden = hidden_inode; 1375 iinfo->i_unique = 0; 1376 iinfo->i_lenEAttr = 0; 1377 iinfo->i_lenExtents = 0; 1378 iinfo->i_lenAlloc = 0; 1379 iinfo->i_next_alloc_block = 0; 1380 iinfo->i_next_alloc_goal = 0; 1381 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1382 iinfo->i_efe = 1; 1383 iinfo->i_use = 0; 1384 ret = udf_alloc_i_data(inode, bs - 1385 sizeof(struct extendedFileEntry)); 1386 if (ret) 1387 goto out; 1388 memcpy(iinfo->i_data, 1389 bh->b_data + sizeof(struct extendedFileEntry), 1390 bs - sizeof(struct extendedFileEntry)); 1391 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1392 iinfo->i_efe = 0; 1393 iinfo->i_use = 0; 1394 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1395 if (ret) 1396 goto out; 1397 memcpy(iinfo->i_data, 1398 bh->b_data + sizeof(struct fileEntry), 1399 bs - sizeof(struct fileEntry)); 1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1401 iinfo->i_efe = 0; 1402 iinfo->i_use = 1; 1403 iinfo->i_lenAlloc = le32_to_cpu( 1404 ((struct unallocSpaceEntry *)bh->b_data)-> 1405 lengthAllocDescs); 1406 ret = udf_alloc_i_data(inode, bs - 1407 sizeof(struct unallocSpaceEntry)); 1408 if (ret) 1409 goto out; 1410 memcpy(iinfo->i_data, 1411 bh->b_data + sizeof(struct unallocSpaceEntry), 1412 bs - sizeof(struct unallocSpaceEntry)); 1413 return 0; 1414 } 1415 1416 ret = -EIO; 1417 read_lock(&sbi->s_cred_lock); 1418 uid = le32_to_cpu(fe->uid); 1419 if (uid == UDF_INVALID_ID || 1420 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1421 inode->i_uid = sbi->s_uid; 1422 else 1423 i_uid_write(inode, uid); 1424 1425 gid = le32_to_cpu(fe->gid); 1426 if (gid == UDF_INVALID_ID || 1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1428 inode->i_gid = sbi->s_gid; 1429 else 1430 i_gid_write(inode, gid); 1431 1432 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1433 sbi->s_fmode != UDF_INVALID_MODE) 1434 inode->i_mode = sbi->s_fmode; 1435 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1436 sbi->s_dmode != UDF_INVALID_MODE) 1437 inode->i_mode = sbi->s_dmode; 1438 else 1439 inode->i_mode = udf_convert_permissions(fe); 1440 inode->i_mode &= ~sbi->s_umask; 1441 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1442 1443 read_unlock(&sbi->s_cred_lock); 1444 1445 link_count = le16_to_cpu(fe->fileLinkCount); 1446 if (!link_count) { 1447 if (!hidden_inode) { 1448 ret = -ESTALE; 1449 goto out; 1450 } 1451 link_count = 1; 1452 } 1453 set_nlink(inode, link_count); 1454 1455 inode->i_size = le64_to_cpu(fe->informationLength); 1456 iinfo->i_lenExtents = inode->i_size; 1457 1458 if (iinfo->i_efe == 0) { 1459 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1460 (inode->i_sb->s_blocksize_bits - 9); 1461 1462 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1463 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1464 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1465 1466 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1467 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1468 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1469 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1470 iinfo->i_streamdir = 0; 1471 iinfo->i_lenStreams = 0; 1472 } else { 1473 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1474 (inode->i_sb->s_blocksize_bits - 9); 1475 1476 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1477 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1478 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1479 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1480 1481 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1482 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1483 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1484 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1485 1486 /* Named streams */ 1487 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1488 iinfo->i_locStreamdir = 1489 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1490 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1491 if (iinfo->i_lenStreams >= inode->i_size) 1492 iinfo->i_lenStreams -= inode->i_size; 1493 else 1494 iinfo->i_lenStreams = 0; 1495 } 1496 inode->i_generation = iinfo->i_unique; 1497 1498 /* 1499 * Sanity check length of allocation descriptors and extended attrs to 1500 * avoid integer overflows 1501 */ 1502 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1503 goto out; 1504 /* Now do exact checks */ 1505 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1506 goto out; 1507 /* Sanity checks for files in ICB so that we don't get confused later */ 1508 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1509 /* 1510 * For file in ICB data is stored in allocation descriptor 1511 * so sizes should match 1512 */ 1513 if (iinfo->i_lenAlloc != inode->i_size) 1514 goto out; 1515 /* File in ICB has to fit in there... */ 1516 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1517 goto out; 1518 } 1519 1520 switch (fe->icbTag.fileType) { 1521 case ICBTAG_FILE_TYPE_DIRECTORY: 1522 inode->i_op = &udf_dir_inode_operations; 1523 inode->i_fop = &udf_dir_operations; 1524 inode->i_mode |= S_IFDIR; 1525 inc_nlink(inode); 1526 break; 1527 case ICBTAG_FILE_TYPE_REALTIME: 1528 case ICBTAG_FILE_TYPE_REGULAR: 1529 case ICBTAG_FILE_TYPE_UNDEF: 1530 case ICBTAG_FILE_TYPE_VAT20: 1531 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1532 inode->i_data.a_ops = &udf_adinicb_aops; 1533 else 1534 inode->i_data.a_ops = &udf_aops; 1535 inode->i_op = &udf_file_inode_operations; 1536 inode->i_fop = &udf_file_operations; 1537 inode->i_mode |= S_IFREG; 1538 break; 1539 case ICBTAG_FILE_TYPE_BLOCK: 1540 inode->i_mode |= S_IFBLK; 1541 break; 1542 case ICBTAG_FILE_TYPE_CHAR: 1543 inode->i_mode |= S_IFCHR; 1544 break; 1545 case ICBTAG_FILE_TYPE_FIFO: 1546 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1547 break; 1548 case ICBTAG_FILE_TYPE_SOCKET: 1549 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1550 break; 1551 case ICBTAG_FILE_TYPE_SYMLINK: 1552 inode->i_data.a_ops = &udf_symlink_aops; 1553 inode->i_op = &udf_symlink_inode_operations; 1554 inode_nohighmem(inode); 1555 inode->i_mode = S_IFLNK | 0777; 1556 break; 1557 case ICBTAG_FILE_TYPE_MAIN: 1558 udf_debug("METADATA FILE-----\n"); 1559 break; 1560 case ICBTAG_FILE_TYPE_MIRROR: 1561 udf_debug("METADATA MIRROR FILE-----\n"); 1562 break; 1563 case ICBTAG_FILE_TYPE_BITMAP: 1564 udf_debug("METADATA BITMAP FILE-----\n"); 1565 break; 1566 default: 1567 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1568 inode->i_ino, fe->icbTag.fileType); 1569 goto out; 1570 } 1571 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1572 struct deviceSpec *dsea = 1573 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1574 if (dsea) { 1575 init_special_inode(inode, inode->i_mode, 1576 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1577 le32_to_cpu(dsea->minorDeviceIdent))); 1578 /* Developer ID ??? */ 1579 } else 1580 goto out; 1581 } 1582 ret = 0; 1583 out: 1584 brelse(bh); 1585 return ret; 1586 } 1587 1588 static int udf_alloc_i_data(struct inode *inode, size_t size) 1589 { 1590 struct udf_inode_info *iinfo = UDF_I(inode); 1591 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1592 if (!iinfo->i_data) 1593 return -ENOMEM; 1594 return 0; 1595 } 1596 1597 static umode_t udf_convert_permissions(struct fileEntry *fe) 1598 { 1599 umode_t mode; 1600 uint32_t permissions; 1601 uint32_t flags; 1602 1603 permissions = le32_to_cpu(fe->permissions); 1604 flags = le16_to_cpu(fe->icbTag.flags); 1605 1606 mode = ((permissions) & 0007) | 1607 ((permissions >> 2) & 0070) | 1608 ((permissions >> 4) & 0700) | 1609 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1610 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1611 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1612 1613 return mode; 1614 } 1615 1616 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1617 { 1618 struct udf_inode_info *iinfo = UDF_I(inode); 1619 1620 /* 1621 * UDF 2.01 sec. 3.3.3.3 Note 2: 1622 * In Unix, delete permission tracks write 1623 */ 1624 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1625 if (mode & 0200) 1626 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1627 if (mode & 0020) 1628 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1629 if (mode & 0002) 1630 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1631 } 1632 1633 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1634 { 1635 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1636 } 1637 1638 static int udf_sync_inode(struct inode *inode) 1639 { 1640 return udf_update_inode(inode, 1); 1641 } 1642 1643 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1644 { 1645 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1646 (iinfo->i_crtime.tv_sec == time.tv_sec && 1647 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1648 iinfo->i_crtime = time; 1649 } 1650 1651 static int udf_update_inode(struct inode *inode, int do_sync) 1652 { 1653 struct buffer_head *bh = NULL; 1654 struct fileEntry *fe; 1655 struct extendedFileEntry *efe; 1656 uint64_t lb_recorded; 1657 uint32_t udfperms; 1658 uint16_t icbflags; 1659 uint16_t crclen; 1660 int err = 0; 1661 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1662 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1663 struct udf_inode_info *iinfo = UDF_I(inode); 1664 1665 bh = sb_getblk(inode->i_sb, 1666 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1667 if (!bh) { 1668 udf_debug("getblk failure\n"); 1669 return -EIO; 1670 } 1671 1672 lock_buffer(bh); 1673 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1674 fe = (struct fileEntry *)bh->b_data; 1675 efe = (struct extendedFileEntry *)bh->b_data; 1676 1677 if (iinfo->i_use) { 1678 struct unallocSpaceEntry *use = 1679 (struct unallocSpaceEntry *)bh->b_data; 1680 1681 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1682 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1683 iinfo->i_data, inode->i_sb->s_blocksize - 1684 sizeof(struct unallocSpaceEntry)); 1685 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1686 crclen = sizeof(struct unallocSpaceEntry); 1687 1688 goto finish; 1689 } 1690 1691 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1692 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1693 else 1694 fe->uid = cpu_to_le32(i_uid_read(inode)); 1695 1696 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1697 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1698 else 1699 fe->gid = cpu_to_le32(i_gid_read(inode)); 1700 1701 udfperms = ((inode->i_mode & 0007)) | 1702 ((inode->i_mode & 0070) << 2) | 1703 ((inode->i_mode & 0700) << 4); 1704 1705 udfperms |= iinfo->i_extraPerms; 1706 fe->permissions = cpu_to_le32(udfperms); 1707 1708 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1709 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1710 else { 1711 if (iinfo->i_hidden) 1712 fe->fileLinkCount = cpu_to_le16(0); 1713 else 1714 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1715 } 1716 1717 fe->informationLength = cpu_to_le64(inode->i_size); 1718 1719 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1720 struct regid *eid; 1721 struct deviceSpec *dsea = 1722 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1723 if (!dsea) { 1724 dsea = (struct deviceSpec *) 1725 udf_add_extendedattr(inode, 1726 sizeof(struct deviceSpec) + 1727 sizeof(struct regid), 12, 0x3); 1728 dsea->attrType = cpu_to_le32(12); 1729 dsea->attrSubtype = 1; 1730 dsea->attrLength = cpu_to_le32( 1731 sizeof(struct deviceSpec) + 1732 sizeof(struct regid)); 1733 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1734 } 1735 eid = (struct regid *)dsea->impUse; 1736 memset(eid, 0, sizeof(*eid)); 1737 strcpy(eid->ident, UDF_ID_DEVELOPER); 1738 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1739 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1740 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1741 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1742 } 1743 1744 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1745 lb_recorded = 0; /* No extents => no blocks! */ 1746 else 1747 lb_recorded = 1748 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1749 (blocksize_bits - 9); 1750 1751 if (iinfo->i_efe == 0) { 1752 memcpy(bh->b_data + sizeof(struct fileEntry), 1753 iinfo->i_data, 1754 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1755 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1756 1757 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1758 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1759 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1760 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1761 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1762 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1763 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1764 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1765 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1766 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1767 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1768 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1769 crclen = sizeof(struct fileEntry); 1770 } else { 1771 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1772 iinfo->i_data, 1773 inode->i_sb->s_blocksize - 1774 sizeof(struct extendedFileEntry)); 1775 efe->objectSize = 1776 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1777 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1778 1779 if (iinfo->i_streamdir) { 1780 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1781 1782 icb_lad->extLocation = 1783 cpu_to_lelb(iinfo->i_locStreamdir); 1784 icb_lad->extLength = 1785 cpu_to_le32(inode->i_sb->s_blocksize); 1786 } 1787 1788 udf_adjust_time(iinfo, inode->i_atime); 1789 udf_adjust_time(iinfo, inode->i_mtime); 1790 udf_adjust_time(iinfo, inode->i_ctime); 1791 1792 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1793 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1794 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1795 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1796 1797 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1798 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1799 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1800 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1801 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1802 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1803 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1804 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1805 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1806 crclen = sizeof(struct extendedFileEntry); 1807 } 1808 1809 finish: 1810 if (iinfo->i_strat4096) { 1811 fe->icbTag.strategyType = cpu_to_le16(4096); 1812 fe->icbTag.strategyParameter = cpu_to_le16(1); 1813 fe->icbTag.numEntries = cpu_to_le16(2); 1814 } else { 1815 fe->icbTag.strategyType = cpu_to_le16(4); 1816 fe->icbTag.numEntries = cpu_to_le16(1); 1817 } 1818 1819 if (iinfo->i_use) 1820 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1821 else if (S_ISDIR(inode->i_mode)) 1822 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1823 else if (S_ISREG(inode->i_mode)) 1824 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1825 else if (S_ISLNK(inode->i_mode)) 1826 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1827 else if (S_ISBLK(inode->i_mode)) 1828 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1829 else if (S_ISCHR(inode->i_mode)) 1830 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1831 else if (S_ISFIFO(inode->i_mode)) 1832 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1833 else if (S_ISSOCK(inode->i_mode)) 1834 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1835 1836 icbflags = iinfo->i_alloc_type | 1837 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1838 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1839 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1840 (le16_to_cpu(fe->icbTag.flags) & 1841 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1842 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1843 1844 fe->icbTag.flags = cpu_to_le16(icbflags); 1845 if (sbi->s_udfrev >= 0x0200) 1846 fe->descTag.descVersion = cpu_to_le16(3); 1847 else 1848 fe->descTag.descVersion = cpu_to_le16(2); 1849 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1850 fe->descTag.tagLocation = cpu_to_le32( 1851 iinfo->i_location.logicalBlockNum); 1852 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1853 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1854 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1855 crclen)); 1856 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1857 1858 set_buffer_uptodate(bh); 1859 unlock_buffer(bh); 1860 1861 /* write the data blocks */ 1862 mark_buffer_dirty(bh); 1863 if (do_sync) { 1864 sync_dirty_buffer(bh); 1865 if (buffer_write_io_error(bh)) { 1866 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1867 inode->i_ino); 1868 err = -EIO; 1869 } 1870 } 1871 brelse(bh); 1872 1873 return err; 1874 } 1875 1876 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1877 bool hidden_inode) 1878 { 1879 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1880 struct inode *inode = iget_locked(sb, block); 1881 int err; 1882 1883 if (!inode) 1884 return ERR_PTR(-ENOMEM); 1885 1886 if (!(inode->i_state & I_NEW)) { 1887 if (UDF_I(inode)->i_hidden != hidden_inode) { 1888 iput(inode); 1889 return ERR_PTR(-EFSCORRUPTED); 1890 } 1891 return inode; 1892 } 1893 1894 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1895 err = udf_read_inode(inode, hidden_inode); 1896 if (err < 0) { 1897 iget_failed(inode); 1898 return ERR_PTR(err); 1899 } 1900 unlock_new_inode(inode); 1901 1902 return inode; 1903 } 1904 1905 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1906 struct extent_position *epos) 1907 { 1908 struct super_block *sb = inode->i_sb; 1909 struct buffer_head *bh; 1910 struct allocExtDesc *aed; 1911 struct extent_position nepos; 1912 struct kernel_lb_addr neloc; 1913 int ver, adsize; 1914 1915 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1916 adsize = sizeof(struct short_ad); 1917 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1918 adsize = sizeof(struct long_ad); 1919 else 1920 return -EIO; 1921 1922 neloc.logicalBlockNum = block; 1923 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1924 1925 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1926 if (!bh) 1927 return -EIO; 1928 lock_buffer(bh); 1929 memset(bh->b_data, 0x00, sb->s_blocksize); 1930 set_buffer_uptodate(bh); 1931 unlock_buffer(bh); 1932 mark_buffer_dirty_inode(bh, inode); 1933 1934 aed = (struct allocExtDesc *)(bh->b_data); 1935 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1936 aed->previousAllocExtLocation = 1937 cpu_to_le32(epos->block.logicalBlockNum); 1938 } 1939 aed->lengthAllocDescs = cpu_to_le32(0); 1940 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1941 ver = 3; 1942 else 1943 ver = 2; 1944 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1945 sizeof(struct tag)); 1946 1947 nepos.block = neloc; 1948 nepos.offset = sizeof(struct allocExtDesc); 1949 nepos.bh = bh; 1950 1951 /* 1952 * Do we have to copy current last extent to make space for indirect 1953 * one? 1954 */ 1955 if (epos->offset + adsize > sb->s_blocksize) { 1956 struct kernel_lb_addr cp_loc; 1957 uint32_t cp_len; 1958 int cp_type; 1959 1960 epos->offset -= adsize; 1961 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1962 cp_len |= ((uint32_t)cp_type) << 30; 1963 1964 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1965 udf_write_aext(inode, epos, &nepos.block, 1966 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1967 } else { 1968 __udf_add_aext(inode, epos, &nepos.block, 1969 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1970 } 1971 1972 brelse(epos->bh); 1973 *epos = nepos; 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Append extent at the given position - should be the first free one in inode 1980 * / indirect extent. This function assumes there is enough space in the inode 1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1982 */ 1983 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1984 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1985 { 1986 struct udf_inode_info *iinfo = UDF_I(inode); 1987 struct allocExtDesc *aed; 1988 int adsize; 1989 1990 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1991 adsize = sizeof(struct short_ad); 1992 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1993 adsize = sizeof(struct long_ad); 1994 else 1995 return -EIO; 1996 1997 if (!epos->bh) { 1998 WARN_ON(iinfo->i_lenAlloc != 1999 epos->offset - udf_file_entry_alloc_offset(inode)); 2000 } else { 2001 aed = (struct allocExtDesc *)epos->bh->b_data; 2002 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2003 epos->offset - sizeof(struct allocExtDesc)); 2004 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2005 } 2006 2007 udf_write_aext(inode, epos, eloc, elen, inc); 2008 2009 if (!epos->bh) { 2010 iinfo->i_lenAlloc += adsize; 2011 mark_inode_dirty(inode); 2012 } else { 2013 aed = (struct allocExtDesc *)epos->bh->b_data; 2014 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2015 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2016 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2017 udf_update_tag(epos->bh->b_data, 2018 epos->offset + (inc ? 0 : adsize)); 2019 else 2020 udf_update_tag(epos->bh->b_data, 2021 sizeof(struct allocExtDesc)); 2022 mark_buffer_dirty_inode(epos->bh, inode); 2023 } 2024 2025 return 0; 2026 } 2027 2028 /* 2029 * Append extent at given position - should be the first free one in inode 2030 * / indirect extent. Takes care of allocating and linking indirect blocks. 2031 */ 2032 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2034 { 2035 int adsize; 2036 struct super_block *sb = inode->i_sb; 2037 2038 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2039 adsize = sizeof(struct short_ad); 2040 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2041 adsize = sizeof(struct long_ad); 2042 else 2043 return -EIO; 2044 2045 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2046 int err; 2047 udf_pblk_t new_block; 2048 2049 new_block = udf_new_block(sb, NULL, 2050 epos->block.partitionReferenceNum, 2051 epos->block.logicalBlockNum, &err); 2052 if (!new_block) 2053 return -ENOSPC; 2054 2055 err = udf_setup_indirect_aext(inode, new_block, epos); 2056 if (err) 2057 return err; 2058 } 2059 2060 return __udf_add_aext(inode, epos, eloc, elen, inc); 2061 } 2062 2063 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2064 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2065 { 2066 int adsize; 2067 uint8_t *ptr; 2068 struct short_ad *sad; 2069 struct long_ad *lad; 2070 struct udf_inode_info *iinfo = UDF_I(inode); 2071 2072 if (!epos->bh) 2073 ptr = iinfo->i_data + epos->offset - 2074 udf_file_entry_alloc_offset(inode) + 2075 iinfo->i_lenEAttr; 2076 else 2077 ptr = epos->bh->b_data + epos->offset; 2078 2079 switch (iinfo->i_alloc_type) { 2080 case ICBTAG_FLAG_AD_SHORT: 2081 sad = (struct short_ad *)ptr; 2082 sad->extLength = cpu_to_le32(elen); 2083 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2084 adsize = sizeof(struct short_ad); 2085 break; 2086 case ICBTAG_FLAG_AD_LONG: 2087 lad = (struct long_ad *)ptr; 2088 lad->extLength = cpu_to_le32(elen); 2089 lad->extLocation = cpu_to_lelb(*eloc); 2090 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2091 adsize = sizeof(struct long_ad); 2092 break; 2093 default: 2094 return; 2095 } 2096 2097 if (epos->bh) { 2098 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2099 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2100 struct allocExtDesc *aed = 2101 (struct allocExtDesc *)epos->bh->b_data; 2102 udf_update_tag(epos->bh->b_data, 2103 le32_to_cpu(aed->lengthAllocDescs) + 2104 sizeof(struct allocExtDesc)); 2105 } 2106 mark_buffer_dirty_inode(epos->bh, inode); 2107 } else { 2108 mark_inode_dirty(inode); 2109 } 2110 2111 if (inc) 2112 epos->offset += adsize; 2113 } 2114 2115 /* 2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2117 * someone does some weird stuff. 2118 */ 2119 #define UDF_MAX_INDIR_EXTS 16 2120 2121 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2122 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2123 { 2124 int8_t etype; 2125 unsigned int indirections = 0; 2126 2127 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2128 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2129 udf_pblk_t block; 2130 2131 if (++indirections > UDF_MAX_INDIR_EXTS) { 2132 udf_err(inode->i_sb, 2133 "too many indirect extents in inode %lu\n", 2134 inode->i_ino); 2135 return -1; 2136 } 2137 2138 epos->block = *eloc; 2139 epos->offset = sizeof(struct allocExtDesc); 2140 brelse(epos->bh); 2141 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2142 epos->bh = sb_bread(inode->i_sb, block); 2143 if (!epos->bh) { 2144 udf_debug("reading block %u failed!\n", block); 2145 return -1; 2146 } 2147 } 2148 2149 return etype; 2150 } 2151 2152 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2153 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2154 { 2155 int alen; 2156 int8_t etype; 2157 uint8_t *ptr; 2158 struct short_ad *sad; 2159 struct long_ad *lad; 2160 struct udf_inode_info *iinfo = UDF_I(inode); 2161 2162 if (!epos->bh) { 2163 if (!epos->offset) 2164 epos->offset = udf_file_entry_alloc_offset(inode); 2165 ptr = iinfo->i_data + epos->offset - 2166 udf_file_entry_alloc_offset(inode) + 2167 iinfo->i_lenEAttr; 2168 alen = udf_file_entry_alloc_offset(inode) + 2169 iinfo->i_lenAlloc; 2170 } else { 2171 if (!epos->offset) 2172 epos->offset = sizeof(struct allocExtDesc); 2173 ptr = epos->bh->b_data + epos->offset; 2174 alen = sizeof(struct allocExtDesc) + 2175 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2176 lengthAllocDescs); 2177 } 2178 2179 switch (iinfo->i_alloc_type) { 2180 case ICBTAG_FLAG_AD_SHORT: 2181 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2182 if (!sad) 2183 return -1; 2184 etype = le32_to_cpu(sad->extLength) >> 30; 2185 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2186 eloc->partitionReferenceNum = 2187 iinfo->i_location.partitionReferenceNum; 2188 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2189 break; 2190 case ICBTAG_FLAG_AD_LONG: 2191 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2192 if (!lad) 2193 return -1; 2194 etype = le32_to_cpu(lad->extLength) >> 30; 2195 *eloc = lelb_to_cpu(lad->extLocation); 2196 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2197 break; 2198 default: 2199 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2200 return -1; 2201 } 2202 2203 return etype; 2204 } 2205 2206 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2207 struct kernel_lb_addr neloc, uint32_t nelen) 2208 { 2209 struct kernel_lb_addr oeloc; 2210 uint32_t oelen; 2211 int8_t etype; 2212 int err; 2213 2214 if (epos.bh) 2215 get_bh(epos.bh); 2216 2217 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2218 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2219 neloc = oeloc; 2220 nelen = (etype << 30) | oelen; 2221 } 2222 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2223 brelse(epos.bh); 2224 2225 return err; 2226 } 2227 2228 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2229 { 2230 struct extent_position oepos; 2231 int adsize; 2232 int8_t etype; 2233 struct allocExtDesc *aed; 2234 struct udf_inode_info *iinfo; 2235 struct kernel_lb_addr eloc; 2236 uint32_t elen; 2237 2238 if (epos.bh) { 2239 get_bh(epos.bh); 2240 get_bh(epos.bh); 2241 } 2242 2243 iinfo = UDF_I(inode); 2244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2245 adsize = sizeof(struct short_ad); 2246 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2247 adsize = sizeof(struct long_ad); 2248 else 2249 adsize = 0; 2250 2251 oepos = epos; 2252 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2253 return -1; 2254 2255 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2256 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2257 if (oepos.bh != epos.bh) { 2258 oepos.block = epos.block; 2259 brelse(oepos.bh); 2260 get_bh(epos.bh); 2261 oepos.bh = epos.bh; 2262 oepos.offset = epos.offset - adsize; 2263 } 2264 } 2265 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2266 elen = 0; 2267 2268 if (epos.bh != oepos.bh) { 2269 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2270 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2271 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2272 if (!oepos.bh) { 2273 iinfo->i_lenAlloc -= (adsize * 2); 2274 mark_inode_dirty(inode); 2275 } else { 2276 aed = (struct allocExtDesc *)oepos.bh->b_data; 2277 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2278 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2279 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2280 udf_update_tag(oepos.bh->b_data, 2281 oepos.offset - (2 * adsize)); 2282 else 2283 udf_update_tag(oepos.bh->b_data, 2284 sizeof(struct allocExtDesc)); 2285 mark_buffer_dirty_inode(oepos.bh, inode); 2286 } 2287 } else { 2288 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2289 if (!oepos.bh) { 2290 iinfo->i_lenAlloc -= adsize; 2291 mark_inode_dirty(inode); 2292 } else { 2293 aed = (struct allocExtDesc *)oepos.bh->b_data; 2294 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2295 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2296 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2297 udf_update_tag(oepos.bh->b_data, 2298 epos.offset - adsize); 2299 else 2300 udf_update_tag(oepos.bh->b_data, 2301 sizeof(struct allocExtDesc)); 2302 mark_buffer_dirty_inode(oepos.bh, inode); 2303 } 2304 } 2305 2306 brelse(epos.bh); 2307 brelse(oepos.bh); 2308 2309 return (elen >> 30); 2310 } 2311 2312 int8_t inode_bmap(struct inode *inode, sector_t block, 2313 struct extent_position *pos, struct kernel_lb_addr *eloc, 2314 uint32_t *elen, sector_t *offset) 2315 { 2316 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2317 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2318 int8_t etype; 2319 struct udf_inode_info *iinfo; 2320 2321 iinfo = UDF_I(inode); 2322 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2323 pos->offset = 0; 2324 pos->block = iinfo->i_location; 2325 pos->bh = NULL; 2326 } 2327 *elen = 0; 2328 do { 2329 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2330 if (etype == -1) { 2331 *offset = (bcount - lbcount) >> blocksize_bits; 2332 iinfo->i_lenExtents = lbcount; 2333 return -1; 2334 } 2335 lbcount += *elen; 2336 } while (lbcount <= bcount); 2337 /* update extent cache */ 2338 udf_update_extent_cache(inode, lbcount - *elen, pos); 2339 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2340 2341 return etype; 2342 } 2343