1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 41 #include "udf_i.h" 42 #include "udf_sb.h" 43 44 MODULE_AUTHOR("Ben Fennema"); 45 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 46 MODULE_LICENSE("GPL"); 47 48 #define EXTENT_MERGE_SIZE 5 49 50 static mode_t udf_convert_permissions(struct fileEntry *); 51 static int udf_update_inode(struct inode *, int); 52 static void udf_fill_inode(struct inode *, struct buffer_head *); 53 static int udf_alloc_i_data(struct inode *inode, size_t size); 54 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 55 sector_t *, int *); 56 static int8_t udf_insert_aext(struct inode *, struct extent_position, 57 kernel_lb_addr, uint32_t); 58 static void udf_split_extents(struct inode *, int *, int, int, 59 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 60 static void udf_prealloc_extents(struct inode *, int, int, 61 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_merge_extents(struct inode *, 63 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_update_extents(struct inode *, 65 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 66 struct extent_position *); 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 68 69 70 void udf_delete_inode(struct inode *inode) 71 { 72 truncate_inode_pages(&inode->i_data, 0); 73 74 if (is_bad_inode(inode)) 75 goto no_delete; 76 77 inode->i_size = 0; 78 udf_truncate(inode); 79 lock_kernel(); 80 81 udf_update_inode(inode, IS_SYNC(inode)); 82 udf_free_inode(inode); 83 84 unlock_kernel(); 85 return; 86 87 no_delete: 88 clear_inode(inode); 89 } 90 91 /* 92 * If we are going to release inode from memory, we discard preallocation and 93 * truncate last inode extent to proper length. We could use drop_inode() but 94 * it's called under inode_lock and thus we cannot mark inode dirty there. We 95 * use clear_inode() but we have to make sure to write inode as it's not written 96 * automatically. 97 */ 98 void udf_clear_inode(struct inode *inode) 99 { 100 struct udf_inode_info *iinfo; 101 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 102 lock_kernel(); 103 /* Discard preallocation for directories, symlinks, etc. */ 104 udf_discard_prealloc(inode); 105 udf_truncate_tail_extent(inode); 106 unlock_kernel(); 107 write_inode_now(inode, 0); 108 } 109 iinfo = UDF_I(inode); 110 kfree(iinfo->i_ext.i_data); 111 iinfo->i_ext.i_data = NULL; 112 } 113 114 static int udf_writepage(struct page *page, struct writeback_control *wbc) 115 { 116 return block_write_full_page(page, udf_get_block, wbc); 117 } 118 119 static int udf_readpage(struct file *file, struct page *page) 120 { 121 return block_read_full_page(page, udf_get_block); 122 } 123 124 static int udf_write_begin(struct file *file, struct address_space *mapping, 125 loff_t pos, unsigned len, unsigned flags, 126 struct page **pagep, void **fsdata) 127 { 128 *pagep = NULL; 129 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 130 udf_get_block); 131 } 132 133 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 134 { 135 return generic_block_bmap(mapping, block, udf_get_block); 136 } 137 138 const struct address_space_operations udf_aops = { 139 .readpage = udf_readpage, 140 .writepage = udf_writepage, 141 .sync_page = block_sync_page, 142 .write_begin = udf_write_begin, 143 .write_end = generic_write_end, 144 .bmap = udf_bmap, 145 }; 146 147 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 148 { 149 struct page *page; 150 char *kaddr; 151 struct udf_inode_info *iinfo = UDF_I(inode); 152 struct writeback_control udf_wbc = { 153 .sync_mode = WB_SYNC_NONE, 154 .nr_to_write = 1, 155 }; 156 157 /* from now on we have normal address_space methods */ 158 inode->i_data.a_ops = &udf_aops; 159 160 if (!iinfo->i_lenAlloc) { 161 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 162 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 163 else 164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 165 mark_inode_dirty(inode); 166 return; 167 } 168 169 page = grab_cache_page(inode->i_mapping, 0); 170 BUG_ON(!PageLocked(page)); 171 172 if (!PageUptodate(page)) { 173 kaddr = kmap(page); 174 memset(kaddr + iinfo->i_lenAlloc, 0x00, 175 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 176 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 177 iinfo->i_lenAlloc); 178 flush_dcache_page(page); 179 SetPageUptodate(page); 180 kunmap(page); 181 } 182 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 183 iinfo->i_lenAlloc); 184 iinfo->i_lenAlloc = 0; 185 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 186 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 187 else 188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 189 190 inode->i_data.a_ops->writepage(page, &udf_wbc); 191 page_cache_release(page); 192 193 mark_inode_dirty(inode); 194 } 195 196 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 197 int *err) 198 { 199 int newblock; 200 struct buffer_head *dbh = NULL; 201 kernel_lb_addr eloc; 202 uint32_t elen; 203 uint8_t alloctype; 204 struct extent_position epos; 205 206 struct udf_fileident_bh sfibh, dfibh; 207 loff_t f_pos = udf_ext0_offset(inode); 208 int size = udf_ext0_offset(inode) + inode->i_size; 209 struct fileIdentDesc cfi, *sfi, *dfi; 210 struct udf_inode_info *iinfo = UDF_I(inode); 211 212 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 213 alloctype = ICBTAG_FLAG_AD_SHORT; 214 else 215 alloctype = ICBTAG_FLAG_AD_LONG; 216 217 if (!inode->i_size) { 218 iinfo->i_alloc_type = alloctype; 219 mark_inode_dirty(inode); 220 return NULL; 221 } 222 223 /* alloc block, and copy data to it */ 224 *block = udf_new_block(inode->i_sb, inode, 225 iinfo->i_location.partitionReferenceNum, 226 iinfo->i_location.logicalBlockNum, err); 227 if (!(*block)) 228 return NULL; 229 newblock = udf_get_pblock(inode->i_sb, *block, 230 iinfo->i_location.partitionReferenceNum, 231 0); 232 if (!newblock) 233 return NULL; 234 dbh = udf_tgetblk(inode->i_sb, newblock); 235 if (!dbh) 236 return NULL; 237 lock_buffer(dbh); 238 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 239 set_buffer_uptodate(dbh); 240 unlock_buffer(dbh); 241 mark_buffer_dirty_inode(dbh, inode); 242 243 sfibh.soffset = sfibh.eoffset = 244 f_pos & (inode->i_sb->s_blocksize - 1); 245 sfibh.sbh = sfibh.ebh = NULL; 246 dfibh.soffset = dfibh.eoffset = 0; 247 dfibh.sbh = dfibh.ebh = dbh; 248 while (f_pos < size) { 249 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 250 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 251 NULL, NULL, NULL); 252 if (!sfi) { 253 brelse(dbh); 254 return NULL; 255 } 256 iinfo->i_alloc_type = alloctype; 257 sfi->descTag.tagLocation = cpu_to_le32(*block); 258 dfibh.soffset = dfibh.eoffset; 259 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 260 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 261 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 262 sfi->fileIdent + 263 le16_to_cpu(sfi->lengthOfImpUse))) { 264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 265 brelse(dbh); 266 return NULL; 267 } 268 } 269 mark_buffer_dirty_inode(dbh, inode); 270 271 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 272 iinfo->i_lenAlloc); 273 iinfo->i_lenAlloc = 0; 274 eloc.logicalBlockNum = *block; 275 eloc.partitionReferenceNum = 276 iinfo->i_location.partitionReferenceNum; 277 elen = inode->i_sb->s_blocksize; 278 iinfo->i_lenExtents = elen; 279 epos.bh = NULL; 280 epos.block = iinfo->i_location; 281 epos.offset = udf_file_entry_alloc_offset(inode); 282 udf_add_aext(inode, &epos, eloc, elen, 0); 283 /* UniqueID stuff */ 284 285 brelse(epos.bh); 286 mark_inode_dirty(inode); 287 return dbh; 288 } 289 290 static int udf_get_block(struct inode *inode, sector_t block, 291 struct buffer_head *bh_result, int create) 292 { 293 int err, new; 294 struct buffer_head *bh; 295 sector_t phys = 0; 296 struct udf_inode_info *iinfo; 297 298 if (!create) { 299 phys = udf_block_map(inode, block); 300 if (phys) 301 map_bh(bh_result, inode->i_sb, phys); 302 return 0; 303 } 304 305 err = -EIO; 306 new = 0; 307 bh = NULL; 308 309 lock_kernel(); 310 311 iinfo = UDF_I(inode); 312 if (block == iinfo->i_next_alloc_block + 1) { 313 iinfo->i_next_alloc_block++; 314 iinfo->i_next_alloc_goal++; 315 } 316 317 err = 0; 318 319 bh = inode_getblk(inode, block, &err, &phys, &new); 320 BUG_ON(bh); 321 if (err) 322 goto abort; 323 BUG_ON(!phys); 324 325 if (new) 326 set_buffer_new(bh_result); 327 map_bh(bh_result, inode->i_sb, phys); 328 329 abort: 330 unlock_kernel(); 331 return err; 332 } 333 334 static struct buffer_head *udf_getblk(struct inode *inode, long block, 335 int create, int *err) 336 { 337 struct buffer_head *bh; 338 struct buffer_head dummy; 339 340 dummy.b_state = 0; 341 dummy.b_blocknr = -1000; 342 *err = udf_get_block(inode, block, &dummy, create); 343 if (!*err && buffer_mapped(&dummy)) { 344 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 345 if (buffer_new(&dummy)) { 346 lock_buffer(bh); 347 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 348 set_buffer_uptodate(bh); 349 unlock_buffer(bh); 350 mark_buffer_dirty_inode(bh, inode); 351 } 352 return bh; 353 } 354 355 return NULL; 356 } 357 358 /* Extend the file by 'blocks' blocks, return the number of extents added */ 359 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 360 kernel_long_ad *last_ext, sector_t blocks) 361 { 362 sector_t add; 363 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 364 struct super_block *sb = inode->i_sb; 365 kernel_lb_addr prealloc_loc = {}; 366 int prealloc_len = 0; 367 struct udf_inode_info *iinfo; 368 369 /* The previous extent is fake and we should not extend by anything 370 * - there's nothing to do... */ 371 if (!blocks && fake) 372 return 0; 373 374 iinfo = UDF_I(inode); 375 /* Round the last extent up to a multiple of block size */ 376 if (last_ext->extLength & (sb->s_blocksize - 1)) { 377 last_ext->extLength = 378 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 379 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 380 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 381 iinfo->i_lenExtents = 382 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 383 ~(sb->s_blocksize - 1); 384 } 385 386 /* Last extent are just preallocated blocks? */ 387 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 388 EXT_NOT_RECORDED_ALLOCATED) { 389 /* Save the extent so that we can reattach it to the end */ 390 prealloc_loc = last_ext->extLocation; 391 prealloc_len = last_ext->extLength; 392 /* Mark the extent as a hole */ 393 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 394 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 395 last_ext->extLocation.logicalBlockNum = 0; 396 last_ext->extLocation.partitionReferenceNum = 0; 397 } 398 399 /* Can we merge with the previous extent? */ 400 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 401 EXT_NOT_RECORDED_NOT_ALLOCATED) { 402 add = ((1 << 30) - sb->s_blocksize - 403 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 404 sb->s_blocksize_bits; 405 if (add > blocks) 406 add = blocks; 407 blocks -= add; 408 last_ext->extLength += add << sb->s_blocksize_bits; 409 } 410 411 if (fake) { 412 udf_add_aext(inode, last_pos, last_ext->extLocation, 413 last_ext->extLength, 1); 414 count++; 415 } else 416 udf_write_aext(inode, last_pos, last_ext->extLocation, 417 last_ext->extLength, 1); 418 419 /* Managed to do everything necessary? */ 420 if (!blocks) 421 goto out; 422 423 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 424 last_ext->extLocation.logicalBlockNum = 0; 425 last_ext->extLocation.partitionReferenceNum = 0; 426 add = (1 << (30-sb->s_blocksize_bits)) - 1; 427 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 428 (add << sb->s_blocksize_bits); 429 430 /* Create enough extents to cover the whole hole */ 431 while (blocks > add) { 432 blocks -= add; 433 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 434 last_ext->extLength, 1) == -1) 435 return -1; 436 count++; 437 } 438 if (blocks) { 439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 440 (blocks << sb->s_blocksize_bits); 441 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 442 last_ext->extLength, 1) == -1) 443 return -1; 444 count++; 445 } 446 447 out: 448 /* Do we have some preallocated blocks saved? */ 449 if (prealloc_len) { 450 if (udf_add_aext(inode, last_pos, prealloc_loc, 451 prealloc_len, 1) == -1) 452 return -1; 453 last_ext->extLocation = prealloc_loc; 454 last_ext->extLength = prealloc_len; 455 count++; 456 } 457 458 /* last_pos should point to the last written extent... */ 459 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 460 last_pos->offset -= sizeof(short_ad); 461 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 462 last_pos->offset -= sizeof(long_ad); 463 else 464 return -1; 465 466 return count; 467 } 468 469 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 470 int *err, sector_t *phys, int *new) 471 { 472 static sector_t last_block; 473 struct buffer_head *result = NULL; 474 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 475 struct extent_position prev_epos, cur_epos, next_epos; 476 int count = 0, startnum = 0, endnum = 0; 477 uint32_t elen = 0, tmpelen; 478 kernel_lb_addr eloc, tmpeloc; 479 int c = 1; 480 loff_t lbcount = 0, b_off = 0; 481 uint32_t newblocknum, newblock; 482 sector_t offset = 0; 483 int8_t etype; 484 struct udf_inode_info *iinfo = UDF_I(inode); 485 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 486 int lastblock = 0; 487 488 prev_epos.offset = udf_file_entry_alloc_offset(inode); 489 prev_epos.block = iinfo->i_location; 490 prev_epos.bh = NULL; 491 cur_epos = next_epos = prev_epos; 492 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 493 494 /* find the extent which contains the block we are looking for. 495 alternate between laarr[0] and laarr[1] for locations of the 496 current extent, and the previous extent */ 497 do { 498 if (prev_epos.bh != cur_epos.bh) { 499 brelse(prev_epos.bh); 500 get_bh(cur_epos.bh); 501 prev_epos.bh = cur_epos.bh; 502 } 503 if (cur_epos.bh != next_epos.bh) { 504 brelse(cur_epos.bh); 505 get_bh(next_epos.bh); 506 cur_epos.bh = next_epos.bh; 507 } 508 509 lbcount += elen; 510 511 prev_epos.block = cur_epos.block; 512 cur_epos.block = next_epos.block; 513 514 prev_epos.offset = cur_epos.offset; 515 cur_epos.offset = next_epos.offset; 516 517 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 518 if (etype == -1) 519 break; 520 521 c = !c; 522 523 laarr[c].extLength = (etype << 30) | elen; 524 laarr[c].extLocation = eloc; 525 526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 527 pgoal = eloc.logicalBlockNum + 528 ((elen + inode->i_sb->s_blocksize - 1) >> 529 inode->i_sb->s_blocksize_bits); 530 531 count++; 532 } while (lbcount + elen <= b_off); 533 534 b_off -= lbcount; 535 offset = b_off >> inode->i_sb->s_blocksize_bits; 536 /* 537 * Move prev_epos and cur_epos into indirect extent if we are at 538 * the pointer to it 539 */ 540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 542 543 /* if the extent is allocated and recorded, return the block 544 if the extent is not a multiple of the blocksize, round up */ 545 546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 547 if (elen & (inode->i_sb->s_blocksize - 1)) { 548 elen = EXT_RECORDED_ALLOCATED | 549 ((elen + inode->i_sb->s_blocksize - 1) & 550 ~(inode->i_sb->s_blocksize - 1)); 551 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 552 } 553 brelse(prev_epos.bh); 554 brelse(cur_epos.bh); 555 brelse(next_epos.bh); 556 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 557 *phys = newblock; 558 return NULL; 559 } 560 561 last_block = block; 562 /* Are we beyond EOF? */ 563 if (etype == -1) { 564 int ret; 565 566 if (count) { 567 if (c) 568 laarr[0] = laarr[1]; 569 startnum = 1; 570 } else { 571 /* Create a fake extent when there's not one */ 572 memset(&laarr[0].extLocation, 0x00, 573 sizeof(kernel_lb_addr)); 574 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 575 /* Will udf_extend_file() create real extent from 576 a fake one? */ 577 startnum = (offset > 0); 578 } 579 /* Create extents for the hole between EOF and offset */ 580 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 581 if (ret == -1) { 582 brelse(prev_epos.bh); 583 brelse(cur_epos.bh); 584 brelse(next_epos.bh); 585 /* We don't really know the error here so we just make 586 * something up */ 587 *err = -ENOSPC; 588 return NULL; 589 } 590 c = 0; 591 offset = 0; 592 count += ret; 593 /* We are not covered by a preallocated extent? */ 594 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 595 EXT_NOT_RECORDED_ALLOCATED) { 596 /* Is there any real extent? - otherwise we overwrite 597 * the fake one... */ 598 if (count) 599 c = !c; 600 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 601 inode->i_sb->s_blocksize; 602 memset(&laarr[c].extLocation, 0x00, 603 sizeof(kernel_lb_addr)); 604 count++; 605 endnum++; 606 } 607 endnum = c + 1; 608 lastblock = 1; 609 } else { 610 endnum = startnum = ((count > 2) ? 2 : count); 611 612 /* if the current extent is in position 0, 613 swap it with the previous */ 614 if (!c && count != 1) { 615 laarr[2] = laarr[0]; 616 laarr[0] = laarr[1]; 617 laarr[1] = laarr[2]; 618 c = 1; 619 } 620 621 /* if the current block is located in an extent, 622 read the next extent */ 623 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 624 if (etype != -1) { 625 laarr[c + 1].extLength = (etype << 30) | elen; 626 laarr[c + 1].extLocation = eloc; 627 count++; 628 startnum++; 629 endnum++; 630 } else 631 lastblock = 1; 632 } 633 634 /* if the current extent is not recorded but allocated, get the 635 * block in the extent corresponding to the requested block */ 636 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 637 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 638 else { /* otherwise, allocate a new block */ 639 if (iinfo->i_next_alloc_block == block) 640 goal = iinfo->i_next_alloc_goal; 641 642 if (!goal) { 643 if (!(goal = pgoal)) /* XXX: what was intended here? */ 644 goal = iinfo->i_location.logicalBlockNum + 1; 645 } 646 647 newblocknum = udf_new_block(inode->i_sb, inode, 648 iinfo->i_location.partitionReferenceNum, 649 goal, err); 650 if (!newblocknum) { 651 brelse(prev_epos.bh); 652 *err = -ENOSPC; 653 return NULL; 654 } 655 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 656 } 657 658 /* if the extent the requsted block is located in contains multiple 659 * blocks, split the extent into at most three extents. blocks prior 660 * to requested block, requested block, and blocks after requested 661 * block */ 662 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 663 664 #ifdef UDF_PREALLOCATE 665 /* preallocate blocks */ 666 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 667 #endif 668 669 /* merge any continuous blocks in laarr */ 670 udf_merge_extents(inode, laarr, &endnum); 671 672 /* write back the new extents, inserting new extents if the new number 673 * of extents is greater than the old number, and deleting extents if 674 * the new number of extents is less than the old number */ 675 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 676 677 brelse(prev_epos.bh); 678 679 newblock = udf_get_pblock(inode->i_sb, newblocknum, 680 iinfo->i_location.partitionReferenceNum, 0); 681 if (!newblock) 682 return NULL; 683 *phys = newblock; 684 *err = 0; 685 *new = 1; 686 iinfo->i_next_alloc_block = block; 687 iinfo->i_next_alloc_goal = newblocknum; 688 inode->i_ctime = current_fs_time(inode->i_sb); 689 690 if (IS_SYNC(inode)) 691 udf_sync_inode(inode); 692 else 693 mark_inode_dirty(inode); 694 695 return result; 696 } 697 698 static void udf_split_extents(struct inode *inode, int *c, int offset, 699 int newblocknum, 700 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 701 int *endnum) 702 { 703 unsigned long blocksize = inode->i_sb->s_blocksize; 704 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 705 706 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 707 (laarr[*c].extLength >> 30) == 708 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 709 int curr = *c; 710 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 711 blocksize - 1) >> blocksize_bits; 712 int8_t etype = (laarr[curr].extLength >> 30); 713 714 if (blen == 1) 715 ; 716 else if (!offset || blen == offset + 1) { 717 laarr[curr + 2] = laarr[curr + 1]; 718 laarr[curr + 1] = laarr[curr]; 719 } else { 720 laarr[curr + 3] = laarr[curr + 1]; 721 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 722 } 723 724 if (offset) { 725 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 726 udf_free_blocks(inode->i_sb, inode, 727 laarr[curr].extLocation, 728 0, offset); 729 laarr[curr].extLength = 730 EXT_NOT_RECORDED_NOT_ALLOCATED | 731 (offset << blocksize_bits); 732 laarr[curr].extLocation.logicalBlockNum = 0; 733 laarr[curr].extLocation. 734 partitionReferenceNum = 0; 735 } else 736 laarr[curr].extLength = (etype << 30) | 737 (offset << blocksize_bits); 738 curr++; 739 (*c)++; 740 (*endnum)++; 741 } 742 743 laarr[curr].extLocation.logicalBlockNum = newblocknum; 744 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 745 laarr[curr].extLocation.partitionReferenceNum = 746 UDF_I(inode)->i_location.partitionReferenceNum; 747 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 748 blocksize; 749 curr++; 750 751 if (blen != offset + 1) { 752 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 753 laarr[curr].extLocation.logicalBlockNum += 754 offset + 1; 755 laarr[curr].extLength = (etype << 30) | 756 ((blen - (offset + 1)) << blocksize_bits); 757 curr++; 758 (*endnum)++; 759 } 760 } 761 } 762 763 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 764 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 765 int *endnum) 766 { 767 int start, length = 0, currlength = 0, i; 768 769 if (*endnum >= (c + 1)) { 770 if (!lastblock) 771 return; 772 else 773 start = c; 774 } else { 775 if ((laarr[c + 1].extLength >> 30) == 776 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 777 start = c + 1; 778 length = currlength = 779 (((laarr[c + 1].extLength & 780 UDF_EXTENT_LENGTH_MASK) + 781 inode->i_sb->s_blocksize - 1) >> 782 inode->i_sb->s_blocksize_bits); 783 } else 784 start = c; 785 } 786 787 for (i = start + 1; i <= *endnum; i++) { 788 if (i == *endnum) { 789 if (lastblock) 790 length += UDF_DEFAULT_PREALLOC_BLOCKS; 791 } else if ((laarr[i].extLength >> 30) == 792 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 793 length += (((laarr[i].extLength & 794 UDF_EXTENT_LENGTH_MASK) + 795 inode->i_sb->s_blocksize - 1) >> 796 inode->i_sb->s_blocksize_bits); 797 } else 798 break; 799 } 800 801 if (length) { 802 int next = laarr[start].extLocation.logicalBlockNum + 803 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 804 inode->i_sb->s_blocksize - 1) >> 805 inode->i_sb->s_blocksize_bits); 806 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 807 laarr[start].extLocation.partitionReferenceNum, 808 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 809 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 810 currlength); 811 if (numalloc) { 812 if (start == (c + 1)) 813 laarr[start].extLength += 814 (numalloc << 815 inode->i_sb->s_blocksize_bits); 816 else { 817 memmove(&laarr[c + 2], &laarr[c + 1], 818 sizeof(long_ad) * (*endnum - (c + 1))); 819 (*endnum)++; 820 laarr[c + 1].extLocation.logicalBlockNum = next; 821 laarr[c + 1].extLocation.partitionReferenceNum = 822 laarr[c].extLocation. 823 partitionReferenceNum; 824 laarr[c + 1].extLength = 825 EXT_NOT_RECORDED_ALLOCATED | 826 (numalloc << 827 inode->i_sb->s_blocksize_bits); 828 start = c + 1; 829 } 830 831 for (i = start + 1; numalloc && i < *endnum; i++) { 832 int elen = ((laarr[i].extLength & 833 UDF_EXTENT_LENGTH_MASK) + 834 inode->i_sb->s_blocksize - 1) >> 835 inode->i_sb->s_blocksize_bits; 836 837 if (elen > numalloc) { 838 laarr[i].extLength -= 839 (numalloc << 840 inode->i_sb->s_blocksize_bits); 841 numalloc = 0; 842 } else { 843 numalloc -= elen; 844 if (*endnum > (i + 1)) 845 memmove(&laarr[i], 846 &laarr[i + 1], 847 sizeof(long_ad) * 848 (*endnum - (i + 1))); 849 i--; 850 (*endnum)--; 851 } 852 } 853 UDF_I(inode)->i_lenExtents += 854 numalloc << inode->i_sb->s_blocksize_bits; 855 } 856 } 857 } 858 859 static void udf_merge_extents(struct inode *inode, 860 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 861 int *endnum) 862 { 863 int i; 864 unsigned long blocksize = inode->i_sb->s_blocksize; 865 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 866 867 for (i = 0; i < (*endnum - 1); i++) { 868 kernel_long_ad *li /*l[i]*/ = &laarr[i]; 869 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 870 871 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 872 (((li->extLength >> 30) == 873 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 874 ((lip1->extLocation.logicalBlockNum - 875 li->extLocation.logicalBlockNum) == 876 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 877 blocksize - 1) >> blocksize_bits)))) { 878 879 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 880 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 881 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 882 lip1->extLength = (lip1->extLength - 883 (li->extLength & 884 UDF_EXTENT_LENGTH_MASK) + 885 UDF_EXTENT_LENGTH_MASK) & 886 ~(blocksize - 1); 887 li->extLength = (li->extLength & 888 UDF_EXTENT_FLAG_MASK) + 889 (UDF_EXTENT_LENGTH_MASK + 1) - 890 blocksize; 891 lip1->extLocation.logicalBlockNum = 892 li->extLocation.logicalBlockNum + 893 ((li->extLength & 894 UDF_EXTENT_LENGTH_MASK) >> 895 blocksize_bits); 896 } else { 897 li->extLength = lip1->extLength + 898 (((li->extLength & 899 UDF_EXTENT_LENGTH_MASK) + 900 blocksize - 1) & ~(blocksize - 1)); 901 if (*endnum > (i + 2)) 902 memmove(&laarr[i + 1], &laarr[i + 2], 903 sizeof(long_ad) * 904 (*endnum - (i + 2))); 905 i--; 906 (*endnum)--; 907 } 908 } else if (((li->extLength >> 30) == 909 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 910 ((lip1->extLength >> 30) == 911 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 912 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0, 913 ((li->extLength & 914 UDF_EXTENT_LENGTH_MASK) + 915 blocksize - 1) >> blocksize_bits); 916 li->extLocation.logicalBlockNum = 0; 917 li->extLocation.partitionReferenceNum = 0; 918 919 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 920 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 921 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 922 lip1->extLength = (lip1->extLength - 923 (li->extLength & 924 UDF_EXTENT_LENGTH_MASK) + 925 UDF_EXTENT_LENGTH_MASK) & 926 ~(blocksize - 1); 927 li->extLength = (li->extLength & 928 UDF_EXTENT_FLAG_MASK) + 929 (UDF_EXTENT_LENGTH_MASK + 1) - 930 blocksize; 931 } else { 932 li->extLength = lip1->extLength + 933 (((li->extLength & 934 UDF_EXTENT_LENGTH_MASK) + 935 blocksize - 1) & ~(blocksize - 1)); 936 if (*endnum > (i + 2)) 937 memmove(&laarr[i + 1], &laarr[i + 2], 938 sizeof(long_ad) * 939 (*endnum - (i + 2))); 940 i--; 941 (*endnum)--; 942 } 943 } else if ((li->extLength >> 30) == 944 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 945 udf_free_blocks(inode->i_sb, inode, 946 li->extLocation, 0, 947 ((li->extLength & 948 UDF_EXTENT_LENGTH_MASK) + 949 blocksize - 1) >> blocksize_bits); 950 li->extLocation.logicalBlockNum = 0; 951 li->extLocation.partitionReferenceNum = 0; 952 li->extLength = (li->extLength & 953 UDF_EXTENT_LENGTH_MASK) | 954 EXT_NOT_RECORDED_NOT_ALLOCATED; 955 } 956 } 957 } 958 959 static void udf_update_extents(struct inode *inode, 960 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 961 int startnum, int endnum, 962 struct extent_position *epos) 963 { 964 int start = 0, i; 965 kernel_lb_addr tmploc; 966 uint32_t tmplen; 967 968 if (startnum > endnum) { 969 for (i = 0; i < (startnum - endnum); i++) 970 udf_delete_aext(inode, *epos, laarr[i].extLocation, 971 laarr[i].extLength); 972 } else if (startnum < endnum) { 973 for (i = 0; i < (endnum - startnum); i++) { 974 udf_insert_aext(inode, *epos, laarr[i].extLocation, 975 laarr[i].extLength); 976 udf_next_aext(inode, epos, &laarr[i].extLocation, 977 &laarr[i].extLength, 1); 978 start++; 979 } 980 } 981 982 for (i = start; i < endnum; i++) { 983 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 984 udf_write_aext(inode, epos, laarr[i].extLocation, 985 laarr[i].extLength, 1); 986 } 987 } 988 989 struct buffer_head *udf_bread(struct inode *inode, int block, 990 int create, int *err) 991 { 992 struct buffer_head *bh = NULL; 993 994 bh = udf_getblk(inode, block, create, err); 995 if (!bh) 996 return NULL; 997 998 if (buffer_uptodate(bh)) 999 return bh; 1000 1001 ll_rw_block(READ, 1, &bh); 1002 1003 wait_on_buffer(bh); 1004 if (buffer_uptodate(bh)) 1005 return bh; 1006 1007 brelse(bh); 1008 *err = -EIO; 1009 return NULL; 1010 } 1011 1012 void udf_truncate(struct inode *inode) 1013 { 1014 int offset; 1015 int err; 1016 struct udf_inode_info *iinfo; 1017 1018 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1019 S_ISLNK(inode->i_mode))) 1020 return; 1021 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1022 return; 1023 1024 lock_kernel(); 1025 iinfo = UDF_I(inode); 1026 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1027 if (inode->i_sb->s_blocksize < 1028 (udf_file_entry_alloc_offset(inode) + 1029 inode->i_size)) { 1030 udf_expand_file_adinicb(inode, inode->i_size, &err); 1031 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1032 inode->i_size = iinfo->i_lenAlloc; 1033 unlock_kernel(); 1034 return; 1035 } else 1036 udf_truncate_extents(inode); 1037 } else { 1038 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1039 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1040 0x00, inode->i_sb->s_blocksize - 1041 offset - udf_file_entry_alloc_offset(inode)); 1042 iinfo->i_lenAlloc = inode->i_size; 1043 } 1044 } else { 1045 block_truncate_page(inode->i_mapping, inode->i_size, 1046 udf_get_block); 1047 udf_truncate_extents(inode); 1048 } 1049 1050 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1051 if (IS_SYNC(inode)) 1052 udf_sync_inode(inode); 1053 else 1054 mark_inode_dirty(inode); 1055 unlock_kernel(); 1056 } 1057 1058 static void __udf_read_inode(struct inode *inode) 1059 { 1060 struct buffer_head *bh = NULL; 1061 struct fileEntry *fe; 1062 uint16_t ident; 1063 struct udf_inode_info *iinfo = UDF_I(inode); 1064 1065 /* 1066 * Set defaults, but the inode is still incomplete! 1067 * Note: get_new_inode() sets the following on a new inode: 1068 * i_sb = sb 1069 * i_no = ino 1070 * i_flags = sb->s_flags 1071 * i_state = 0 1072 * clean_inode(): zero fills and sets 1073 * i_count = 1 1074 * i_nlink = 1 1075 * i_op = NULL; 1076 */ 1077 bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident); 1078 if (!bh) { 1079 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1080 inode->i_ino); 1081 make_bad_inode(inode); 1082 return; 1083 } 1084 1085 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1086 ident != TAG_IDENT_USE) { 1087 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1088 "failed ident=%d\n", inode->i_ino, ident); 1089 brelse(bh); 1090 make_bad_inode(inode); 1091 return; 1092 } 1093 1094 fe = (struct fileEntry *)bh->b_data; 1095 1096 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1097 struct buffer_head *ibh; 1098 1099 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1, 1100 &ident); 1101 if (ident == TAG_IDENT_IE && ibh) { 1102 struct buffer_head *nbh = NULL; 1103 kernel_lb_addr loc; 1104 struct indirectEntry *ie; 1105 1106 ie = (struct indirectEntry *)ibh->b_data; 1107 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1108 1109 if (ie->indirectICB.extLength && 1110 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, 1111 &ident))) { 1112 if (ident == TAG_IDENT_FE || 1113 ident == TAG_IDENT_EFE) { 1114 memcpy(&iinfo->i_location, 1115 &loc, 1116 sizeof(kernel_lb_addr)); 1117 brelse(bh); 1118 brelse(ibh); 1119 brelse(nbh); 1120 __udf_read_inode(inode); 1121 return; 1122 } 1123 brelse(nbh); 1124 } 1125 } 1126 brelse(ibh); 1127 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1128 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1129 le16_to_cpu(fe->icbTag.strategyType)); 1130 brelse(bh); 1131 make_bad_inode(inode); 1132 return; 1133 } 1134 udf_fill_inode(inode, bh); 1135 1136 brelse(bh); 1137 } 1138 1139 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1140 { 1141 struct fileEntry *fe; 1142 struct extendedFileEntry *efe; 1143 int offset; 1144 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1145 struct udf_inode_info *iinfo = UDF_I(inode); 1146 1147 fe = (struct fileEntry *)bh->b_data; 1148 efe = (struct extendedFileEntry *)bh->b_data; 1149 1150 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1151 iinfo->i_strat4096 = 0; 1152 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1153 iinfo->i_strat4096 = 1; 1154 1155 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1156 ICBTAG_FLAG_AD_MASK; 1157 iinfo->i_unique = 0; 1158 iinfo->i_lenEAttr = 0; 1159 iinfo->i_lenExtents = 0; 1160 iinfo->i_lenAlloc = 0; 1161 iinfo->i_next_alloc_block = 0; 1162 iinfo->i_next_alloc_goal = 0; 1163 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1164 iinfo->i_efe = 1; 1165 iinfo->i_use = 0; 1166 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1167 sizeof(struct extendedFileEntry))) { 1168 make_bad_inode(inode); 1169 return; 1170 } 1171 memcpy(iinfo->i_ext.i_data, 1172 bh->b_data + sizeof(struct extendedFileEntry), 1173 inode->i_sb->s_blocksize - 1174 sizeof(struct extendedFileEntry)); 1175 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1176 iinfo->i_efe = 0; 1177 iinfo->i_use = 0; 1178 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1179 sizeof(struct fileEntry))) { 1180 make_bad_inode(inode); 1181 return; 1182 } 1183 memcpy(iinfo->i_ext.i_data, 1184 bh->b_data + sizeof(struct fileEntry), 1185 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1186 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1187 iinfo->i_efe = 0; 1188 iinfo->i_use = 1; 1189 iinfo->i_lenAlloc = le32_to_cpu( 1190 ((struct unallocSpaceEntry *)bh->b_data)-> 1191 lengthAllocDescs); 1192 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1193 sizeof(struct unallocSpaceEntry))) { 1194 make_bad_inode(inode); 1195 return; 1196 } 1197 memcpy(iinfo->i_ext.i_data, 1198 bh->b_data + sizeof(struct unallocSpaceEntry), 1199 inode->i_sb->s_blocksize - 1200 sizeof(struct unallocSpaceEntry)); 1201 return; 1202 } 1203 1204 inode->i_uid = le32_to_cpu(fe->uid); 1205 if (inode->i_uid == -1 || 1206 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1207 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1208 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1209 1210 inode->i_gid = le32_to_cpu(fe->gid); 1211 if (inode->i_gid == -1 || 1212 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1213 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1214 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1215 1216 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1217 if (!inode->i_nlink) 1218 inode->i_nlink = 1; 1219 1220 inode->i_size = le64_to_cpu(fe->informationLength); 1221 iinfo->i_lenExtents = inode->i_size; 1222 1223 inode->i_mode = udf_convert_permissions(fe); 1224 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1225 1226 if (iinfo->i_efe == 0) { 1227 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1228 (inode->i_sb->s_blocksize_bits - 9); 1229 1230 if (!udf_stamp_to_time(&inode->i_atime, 1231 lets_to_cpu(fe->accessTime))) 1232 inode->i_atime = sbi->s_record_time; 1233 1234 if (!udf_stamp_to_time(&inode->i_mtime, 1235 lets_to_cpu(fe->modificationTime))) 1236 inode->i_mtime = sbi->s_record_time; 1237 1238 if (!udf_stamp_to_time(&inode->i_ctime, 1239 lets_to_cpu(fe->attrTime))) 1240 inode->i_ctime = sbi->s_record_time; 1241 1242 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1243 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1244 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1245 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1246 } else { 1247 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1248 (inode->i_sb->s_blocksize_bits - 9); 1249 1250 if (!udf_stamp_to_time(&inode->i_atime, 1251 lets_to_cpu(efe->accessTime))) 1252 inode->i_atime = sbi->s_record_time; 1253 1254 if (!udf_stamp_to_time(&inode->i_mtime, 1255 lets_to_cpu(efe->modificationTime))) 1256 inode->i_mtime = sbi->s_record_time; 1257 1258 if (!udf_stamp_to_time(&iinfo->i_crtime, 1259 lets_to_cpu(efe->createTime))) 1260 iinfo->i_crtime = sbi->s_record_time; 1261 1262 if (!udf_stamp_to_time(&inode->i_ctime, 1263 lets_to_cpu(efe->attrTime))) 1264 inode->i_ctime = sbi->s_record_time; 1265 1266 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1267 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1268 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1269 offset = sizeof(struct extendedFileEntry) + 1270 iinfo->i_lenEAttr; 1271 } 1272 1273 switch (fe->icbTag.fileType) { 1274 case ICBTAG_FILE_TYPE_DIRECTORY: 1275 inode->i_op = &udf_dir_inode_operations; 1276 inode->i_fop = &udf_dir_operations; 1277 inode->i_mode |= S_IFDIR; 1278 inc_nlink(inode); 1279 break; 1280 case ICBTAG_FILE_TYPE_REALTIME: 1281 case ICBTAG_FILE_TYPE_REGULAR: 1282 case ICBTAG_FILE_TYPE_UNDEF: 1283 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1284 inode->i_data.a_ops = &udf_adinicb_aops; 1285 else 1286 inode->i_data.a_ops = &udf_aops; 1287 inode->i_op = &udf_file_inode_operations; 1288 inode->i_fop = &udf_file_operations; 1289 inode->i_mode |= S_IFREG; 1290 break; 1291 case ICBTAG_FILE_TYPE_BLOCK: 1292 inode->i_mode |= S_IFBLK; 1293 break; 1294 case ICBTAG_FILE_TYPE_CHAR: 1295 inode->i_mode |= S_IFCHR; 1296 break; 1297 case ICBTAG_FILE_TYPE_FIFO: 1298 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1299 break; 1300 case ICBTAG_FILE_TYPE_SOCKET: 1301 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1302 break; 1303 case ICBTAG_FILE_TYPE_SYMLINK: 1304 inode->i_data.a_ops = &udf_symlink_aops; 1305 inode->i_op = &page_symlink_inode_operations; 1306 inode->i_mode = S_IFLNK | S_IRWXUGO; 1307 break; 1308 default: 1309 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1310 "file type=%d\n", inode->i_ino, 1311 fe->icbTag.fileType); 1312 make_bad_inode(inode); 1313 return; 1314 } 1315 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1316 struct deviceSpec *dsea = 1317 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1318 if (dsea) { 1319 init_special_inode(inode, inode->i_mode, 1320 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1321 le32_to_cpu(dsea->minorDeviceIdent))); 1322 /* Developer ID ??? */ 1323 } else 1324 make_bad_inode(inode); 1325 } 1326 } 1327 1328 static int udf_alloc_i_data(struct inode *inode, size_t size) 1329 { 1330 struct udf_inode_info *iinfo = UDF_I(inode); 1331 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1332 1333 if (!iinfo->i_ext.i_data) { 1334 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1335 "no free memory\n", inode->i_ino); 1336 return -ENOMEM; 1337 } 1338 1339 return 0; 1340 } 1341 1342 static mode_t udf_convert_permissions(struct fileEntry *fe) 1343 { 1344 mode_t mode; 1345 uint32_t permissions; 1346 uint32_t flags; 1347 1348 permissions = le32_to_cpu(fe->permissions); 1349 flags = le16_to_cpu(fe->icbTag.flags); 1350 1351 mode = ((permissions) & S_IRWXO) | 1352 ((permissions >> 2) & S_IRWXG) | 1353 ((permissions >> 4) & S_IRWXU) | 1354 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1355 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1356 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1357 1358 return mode; 1359 } 1360 1361 int udf_write_inode(struct inode *inode, int sync) 1362 { 1363 int ret; 1364 1365 lock_kernel(); 1366 ret = udf_update_inode(inode, sync); 1367 unlock_kernel(); 1368 1369 return ret; 1370 } 1371 1372 int udf_sync_inode(struct inode *inode) 1373 { 1374 return udf_update_inode(inode, 1); 1375 } 1376 1377 static int udf_update_inode(struct inode *inode, int do_sync) 1378 { 1379 struct buffer_head *bh = NULL; 1380 struct fileEntry *fe; 1381 struct extendedFileEntry *efe; 1382 uint32_t udfperms; 1383 uint16_t icbflags; 1384 uint16_t crclen; 1385 kernel_timestamp cpu_time; 1386 int err = 0; 1387 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1388 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1389 struct udf_inode_info *iinfo = UDF_I(inode); 1390 1391 bh = udf_tread(inode->i_sb, 1392 udf_get_lb_pblock(inode->i_sb, 1393 iinfo->i_location, 0)); 1394 if (!bh) { 1395 udf_debug("bread failure\n"); 1396 return -EIO; 1397 } 1398 1399 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1400 1401 fe = (struct fileEntry *)bh->b_data; 1402 efe = (struct extendedFileEntry *)bh->b_data; 1403 1404 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1405 struct unallocSpaceEntry *use = 1406 (struct unallocSpaceEntry *)bh->b_data; 1407 1408 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1409 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1410 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1411 sizeof(struct unallocSpaceEntry)); 1412 crclen = sizeof(struct unallocSpaceEntry) + 1413 iinfo->i_lenAlloc - sizeof(tag); 1414 use->descTag.tagLocation = cpu_to_le32( 1415 iinfo->i_location. 1416 logicalBlockNum); 1417 use->descTag.descCRCLength = cpu_to_le16(crclen); 1418 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + 1419 sizeof(tag), crclen, 1420 0)); 1421 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1422 1423 mark_buffer_dirty(bh); 1424 brelse(bh); 1425 return err; 1426 } 1427 1428 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1429 fe->uid = cpu_to_le32(-1); 1430 else 1431 fe->uid = cpu_to_le32(inode->i_uid); 1432 1433 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1434 fe->gid = cpu_to_le32(-1); 1435 else 1436 fe->gid = cpu_to_le32(inode->i_gid); 1437 1438 udfperms = ((inode->i_mode & S_IRWXO)) | 1439 ((inode->i_mode & S_IRWXG) << 2) | 1440 ((inode->i_mode & S_IRWXU) << 4); 1441 1442 udfperms |= (le32_to_cpu(fe->permissions) & 1443 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1444 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1445 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1446 fe->permissions = cpu_to_le32(udfperms); 1447 1448 if (S_ISDIR(inode->i_mode)) 1449 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1450 else 1451 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1452 1453 fe->informationLength = cpu_to_le64(inode->i_size); 1454 1455 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1456 regid *eid; 1457 struct deviceSpec *dsea = 1458 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1459 if (!dsea) { 1460 dsea = (struct deviceSpec *) 1461 udf_add_extendedattr(inode, 1462 sizeof(struct deviceSpec) + 1463 sizeof(regid), 12, 0x3); 1464 dsea->attrType = cpu_to_le32(12); 1465 dsea->attrSubtype = 1; 1466 dsea->attrLength = cpu_to_le32( 1467 sizeof(struct deviceSpec) + 1468 sizeof(regid)); 1469 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1470 } 1471 eid = (regid *)dsea->impUse; 1472 memset(eid, 0, sizeof(regid)); 1473 strcpy(eid->ident, UDF_ID_DEVELOPER); 1474 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1475 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1476 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1477 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1478 } 1479 1480 if (iinfo->i_efe == 0) { 1481 memcpy(bh->b_data + sizeof(struct fileEntry), 1482 iinfo->i_ext.i_data, 1483 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1484 fe->logicalBlocksRecorded = cpu_to_le64( 1485 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1486 (blocksize_bits - 9)); 1487 1488 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1489 fe->accessTime = cpu_to_lets(cpu_time); 1490 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1491 fe->modificationTime = cpu_to_lets(cpu_time); 1492 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1493 fe->attrTime = cpu_to_lets(cpu_time); 1494 memset(&(fe->impIdent), 0, sizeof(regid)); 1495 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1496 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1497 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1498 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1499 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1500 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1501 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1502 crclen = sizeof(struct fileEntry); 1503 } else { 1504 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1505 iinfo->i_ext.i_data, 1506 inode->i_sb->s_blocksize - 1507 sizeof(struct extendedFileEntry)); 1508 efe->objectSize = cpu_to_le64(inode->i_size); 1509 efe->logicalBlocksRecorded = cpu_to_le64( 1510 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1511 (blocksize_bits - 9)); 1512 1513 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1514 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1515 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1516 iinfo->i_crtime = inode->i_atime; 1517 1518 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1519 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1520 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1521 iinfo->i_crtime = inode->i_mtime; 1522 1523 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1524 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1525 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1526 iinfo->i_crtime = inode->i_ctime; 1527 1528 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1529 efe->accessTime = cpu_to_lets(cpu_time); 1530 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1531 efe->modificationTime = cpu_to_lets(cpu_time); 1532 if (udf_time_to_stamp(&cpu_time, iinfo->i_crtime)) 1533 efe->createTime = cpu_to_lets(cpu_time); 1534 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1535 efe->attrTime = cpu_to_lets(cpu_time); 1536 1537 memset(&(efe->impIdent), 0, sizeof(regid)); 1538 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1539 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1540 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1541 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1542 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1543 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1544 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1545 crclen = sizeof(struct extendedFileEntry); 1546 } 1547 if (iinfo->i_strat4096) { 1548 fe->icbTag.strategyType = cpu_to_le16(4096); 1549 fe->icbTag.strategyParameter = cpu_to_le16(1); 1550 fe->icbTag.numEntries = cpu_to_le16(2); 1551 } else { 1552 fe->icbTag.strategyType = cpu_to_le16(4); 1553 fe->icbTag.numEntries = cpu_to_le16(1); 1554 } 1555 1556 if (S_ISDIR(inode->i_mode)) 1557 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1558 else if (S_ISREG(inode->i_mode)) 1559 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1560 else if (S_ISLNK(inode->i_mode)) 1561 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1562 else if (S_ISBLK(inode->i_mode)) 1563 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1564 else if (S_ISCHR(inode->i_mode)) 1565 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1566 else if (S_ISFIFO(inode->i_mode)) 1567 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1568 else if (S_ISSOCK(inode->i_mode)) 1569 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1570 1571 icbflags = iinfo->i_alloc_type | 1572 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1573 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1574 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1575 (le16_to_cpu(fe->icbTag.flags) & 1576 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1577 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1578 1579 fe->icbTag.flags = cpu_to_le16(icbflags); 1580 if (sbi->s_udfrev >= 0x0200) 1581 fe->descTag.descVersion = cpu_to_le16(3); 1582 else 1583 fe->descTag.descVersion = cpu_to_le16(2); 1584 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1585 fe->descTag.tagLocation = cpu_to_le32( 1586 iinfo->i_location.logicalBlockNum); 1587 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - 1588 sizeof(tag); 1589 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1590 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), 1591 crclen, 0)); 1592 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1593 1594 /* write the data blocks */ 1595 mark_buffer_dirty(bh); 1596 if (do_sync) { 1597 sync_dirty_buffer(bh); 1598 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1599 printk(KERN_WARNING "IO error syncing udf inode " 1600 "[%s:%08lx]\n", inode->i_sb->s_id, 1601 inode->i_ino); 1602 err = -EIO; 1603 } 1604 } 1605 brelse(bh); 1606 1607 return err; 1608 } 1609 1610 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1611 { 1612 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1613 struct inode *inode = iget_locked(sb, block); 1614 1615 if (!inode) 1616 return NULL; 1617 1618 if (inode->i_state & I_NEW) { 1619 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr)); 1620 __udf_read_inode(inode); 1621 unlock_new_inode(inode); 1622 } 1623 1624 if (is_bad_inode(inode)) 1625 goto out_iput; 1626 1627 if (ino.logicalBlockNum >= UDF_SB(sb)-> 1628 s_partmaps[ino.partitionReferenceNum].s_partition_len) { 1629 udf_debug("block=%d, partition=%d out of range\n", 1630 ino.logicalBlockNum, ino.partitionReferenceNum); 1631 make_bad_inode(inode); 1632 goto out_iput; 1633 } 1634 1635 return inode; 1636 1637 out_iput: 1638 iput(inode); 1639 return NULL; 1640 } 1641 1642 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1643 kernel_lb_addr eloc, uint32_t elen, int inc) 1644 { 1645 int adsize; 1646 short_ad *sad = NULL; 1647 long_ad *lad = NULL; 1648 struct allocExtDesc *aed; 1649 int8_t etype; 1650 uint8_t *ptr; 1651 struct udf_inode_info *iinfo = UDF_I(inode); 1652 1653 if (!epos->bh) 1654 ptr = iinfo->i_ext.i_data + epos->offset - 1655 udf_file_entry_alloc_offset(inode) + 1656 iinfo->i_lenEAttr; 1657 else 1658 ptr = epos->bh->b_data + epos->offset; 1659 1660 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1661 adsize = sizeof(short_ad); 1662 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1663 adsize = sizeof(long_ad); 1664 else 1665 return -1; 1666 1667 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1668 char *sptr, *dptr; 1669 struct buffer_head *nbh; 1670 int err, loffset; 1671 kernel_lb_addr obloc = epos->block; 1672 1673 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1674 obloc.partitionReferenceNum, 1675 obloc.logicalBlockNum, &err); 1676 if (!epos->block.logicalBlockNum) 1677 return -1; 1678 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1679 epos->block, 1680 0)); 1681 if (!nbh) 1682 return -1; 1683 lock_buffer(nbh); 1684 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1685 set_buffer_uptodate(nbh); 1686 unlock_buffer(nbh); 1687 mark_buffer_dirty_inode(nbh, inode); 1688 1689 aed = (struct allocExtDesc *)(nbh->b_data); 1690 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1691 aed->previousAllocExtLocation = 1692 cpu_to_le32(obloc.logicalBlockNum); 1693 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1694 loffset = epos->offset; 1695 aed->lengthAllocDescs = cpu_to_le32(adsize); 1696 sptr = ptr - adsize; 1697 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1698 memcpy(dptr, sptr, adsize); 1699 epos->offset = sizeof(struct allocExtDesc) + adsize; 1700 } else { 1701 loffset = epos->offset + adsize; 1702 aed->lengthAllocDescs = cpu_to_le32(0); 1703 sptr = ptr; 1704 epos->offset = sizeof(struct allocExtDesc); 1705 1706 if (epos->bh) { 1707 aed = (struct allocExtDesc *)epos->bh->b_data; 1708 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1709 } else { 1710 iinfo->i_lenAlloc += adsize; 1711 mark_inode_dirty(inode); 1712 } 1713 } 1714 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1715 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1716 epos->block.logicalBlockNum, sizeof(tag)); 1717 else 1718 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1719 epos->block.logicalBlockNum, sizeof(tag)); 1720 switch (iinfo->i_alloc_type) { 1721 case ICBTAG_FLAG_AD_SHORT: 1722 sad = (short_ad *)sptr; 1723 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1724 inode->i_sb->s_blocksize); 1725 sad->extPosition = 1726 cpu_to_le32(epos->block.logicalBlockNum); 1727 break; 1728 case ICBTAG_FLAG_AD_LONG: 1729 lad = (long_ad *)sptr; 1730 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1731 inode->i_sb->s_blocksize); 1732 lad->extLocation = cpu_to_lelb(epos->block); 1733 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1734 break; 1735 } 1736 if (epos->bh) { 1737 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1738 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1739 udf_update_tag(epos->bh->b_data, loffset); 1740 else 1741 udf_update_tag(epos->bh->b_data, 1742 sizeof(struct allocExtDesc)); 1743 mark_buffer_dirty_inode(epos->bh, inode); 1744 brelse(epos->bh); 1745 } else { 1746 mark_inode_dirty(inode); 1747 } 1748 epos->bh = nbh; 1749 } 1750 1751 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1752 1753 if (!epos->bh) { 1754 iinfo->i_lenAlloc += adsize; 1755 mark_inode_dirty(inode); 1756 } else { 1757 aed = (struct allocExtDesc *)epos->bh->b_data; 1758 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1759 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1760 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1761 udf_update_tag(epos->bh->b_data, 1762 epos->offset + (inc ? 0 : adsize)); 1763 else 1764 udf_update_tag(epos->bh->b_data, 1765 sizeof(struct allocExtDesc)); 1766 mark_buffer_dirty_inode(epos->bh, inode); 1767 } 1768 1769 return etype; 1770 } 1771 1772 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1773 kernel_lb_addr eloc, uint32_t elen, int inc) 1774 { 1775 int adsize; 1776 uint8_t *ptr; 1777 short_ad *sad; 1778 long_ad *lad; 1779 struct udf_inode_info *iinfo = UDF_I(inode); 1780 1781 if (!epos->bh) 1782 ptr = iinfo->i_ext.i_data + epos->offset - 1783 udf_file_entry_alloc_offset(inode) + 1784 iinfo->i_lenEAttr; 1785 else 1786 ptr = epos->bh->b_data + epos->offset; 1787 1788 switch (iinfo->i_alloc_type) { 1789 case ICBTAG_FLAG_AD_SHORT: 1790 sad = (short_ad *)ptr; 1791 sad->extLength = cpu_to_le32(elen); 1792 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1793 adsize = sizeof(short_ad); 1794 break; 1795 case ICBTAG_FLAG_AD_LONG: 1796 lad = (long_ad *)ptr; 1797 lad->extLength = cpu_to_le32(elen); 1798 lad->extLocation = cpu_to_lelb(eloc); 1799 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1800 adsize = sizeof(long_ad); 1801 break; 1802 default: 1803 return -1; 1804 } 1805 1806 if (epos->bh) { 1807 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1808 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1809 struct allocExtDesc *aed = 1810 (struct allocExtDesc *)epos->bh->b_data; 1811 udf_update_tag(epos->bh->b_data, 1812 le32_to_cpu(aed->lengthAllocDescs) + 1813 sizeof(struct allocExtDesc)); 1814 } 1815 mark_buffer_dirty_inode(epos->bh, inode); 1816 } else { 1817 mark_inode_dirty(inode); 1818 } 1819 1820 if (inc) 1821 epos->offset += adsize; 1822 1823 return (elen >> 30); 1824 } 1825 1826 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1827 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1828 { 1829 int8_t etype; 1830 1831 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1832 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1833 int block; 1834 epos->block = *eloc; 1835 epos->offset = sizeof(struct allocExtDesc); 1836 brelse(epos->bh); 1837 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0); 1838 epos->bh = udf_tread(inode->i_sb, block); 1839 if (!epos->bh) { 1840 udf_debug("reading block %d failed!\n", block); 1841 return -1; 1842 } 1843 } 1844 1845 return etype; 1846 } 1847 1848 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1849 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1850 { 1851 int alen; 1852 int8_t etype; 1853 uint8_t *ptr; 1854 short_ad *sad; 1855 long_ad *lad; 1856 struct udf_inode_info *iinfo = UDF_I(inode); 1857 1858 if (!epos->bh) { 1859 if (!epos->offset) 1860 epos->offset = udf_file_entry_alloc_offset(inode); 1861 ptr = iinfo->i_ext.i_data + epos->offset - 1862 udf_file_entry_alloc_offset(inode) + 1863 iinfo->i_lenEAttr; 1864 alen = udf_file_entry_alloc_offset(inode) + 1865 iinfo->i_lenAlloc; 1866 } else { 1867 if (!epos->offset) 1868 epos->offset = sizeof(struct allocExtDesc); 1869 ptr = epos->bh->b_data + epos->offset; 1870 alen = sizeof(struct allocExtDesc) + 1871 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1872 lengthAllocDescs); 1873 } 1874 1875 switch (iinfo->i_alloc_type) { 1876 case ICBTAG_FLAG_AD_SHORT: 1877 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1878 if (!sad) 1879 return -1; 1880 etype = le32_to_cpu(sad->extLength) >> 30; 1881 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1882 eloc->partitionReferenceNum = 1883 iinfo->i_location.partitionReferenceNum; 1884 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1885 break; 1886 case ICBTAG_FLAG_AD_LONG: 1887 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1888 if (!lad) 1889 return -1; 1890 etype = le32_to_cpu(lad->extLength) >> 30; 1891 *eloc = lelb_to_cpu(lad->extLocation); 1892 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1893 break; 1894 default: 1895 udf_debug("alloc_type = %d unsupported\n", 1896 iinfo->i_alloc_type); 1897 return -1; 1898 } 1899 1900 return etype; 1901 } 1902 1903 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1904 kernel_lb_addr neloc, uint32_t nelen) 1905 { 1906 kernel_lb_addr oeloc; 1907 uint32_t oelen; 1908 int8_t etype; 1909 1910 if (epos.bh) 1911 get_bh(epos.bh); 1912 1913 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1914 udf_write_aext(inode, &epos, neloc, nelen, 1); 1915 neloc = oeloc; 1916 nelen = (etype << 30) | oelen; 1917 } 1918 udf_add_aext(inode, &epos, neloc, nelen, 1); 1919 brelse(epos.bh); 1920 1921 return (nelen >> 30); 1922 } 1923 1924 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1925 kernel_lb_addr eloc, uint32_t elen) 1926 { 1927 struct extent_position oepos; 1928 int adsize; 1929 int8_t etype; 1930 struct allocExtDesc *aed; 1931 struct udf_inode_info *iinfo; 1932 1933 if (epos.bh) { 1934 get_bh(epos.bh); 1935 get_bh(epos.bh); 1936 } 1937 1938 iinfo = UDF_I(inode); 1939 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1940 adsize = sizeof(short_ad); 1941 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1942 adsize = sizeof(long_ad); 1943 else 1944 adsize = 0; 1945 1946 oepos = epos; 1947 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1948 return -1; 1949 1950 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1951 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 1952 if (oepos.bh != epos.bh) { 1953 oepos.block = epos.block; 1954 brelse(oepos.bh); 1955 get_bh(epos.bh); 1956 oepos.bh = epos.bh; 1957 oepos.offset = epos.offset - adsize; 1958 } 1959 } 1960 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 1961 elen = 0; 1962 1963 if (epos.bh != oepos.bh) { 1964 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 1965 udf_write_aext(inode, &oepos, eloc, elen, 1); 1966 udf_write_aext(inode, &oepos, eloc, elen, 1); 1967 if (!oepos.bh) { 1968 iinfo->i_lenAlloc -= (adsize * 2); 1969 mark_inode_dirty(inode); 1970 } else { 1971 aed = (struct allocExtDesc *)oepos.bh->b_data; 1972 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1973 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1974 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1975 udf_update_tag(oepos.bh->b_data, 1976 oepos.offset - (2 * adsize)); 1977 else 1978 udf_update_tag(oepos.bh->b_data, 1979 sizeof(struct allocExtDesc)); 1980 mark_buffer_dirty_inode(oepos.bh, inode); 1981 } 1982 } else { 1983 udf_write_aext(inode, &oepos, eloc, elen, 1); 1984 if (!oepos.bh) { 1985 iinfo->i_lenAlloc -= adsize; 1986 mark_inode_dirty(inode); 1987 } else { 1988 aed = (struct allocExtDesc *)oepos.bh->b_data; 1989 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1990 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1991 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1992 udf_update_tag(oepos.bh->b_data, 1993 epos.offset - adsize); 1994 else 1995 udf_update_tag(oepos.bh->b_data, 1996 sizeof(struct allocExtDesc)); 1997 mark_buffer_dirty_inode(oepos.bh, inode); 1998 } 1999 } 2000 2001 brelse(epos.bh); 2002 brelse(oepos.bh); 2003 2004 return (elen >> 30); 2005 } 2006 2007 int8_t inode_bmap(struct inode *inode, sector_t block, 2008 struct extent_position *pos, kernel_lb_addr *eloc, 2009 uint32_t *elen, sector_t *offset) 2010 { 2011 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2012 loff_t lbcount = 0, bcount = 2013 (loff_t) block << blocksize_bits; 2014 int8_t etype; 2015 struct udf_inode_info *iinfo; 2016 2017 iinfo = UDF_I(inode); 2018 pos->offset = 0; 2019 pos->block = iinfo->i_location; 2020 pos->bh = NULL; 2021 *elen = 0; 2022 2023 do { 2024 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2025 if (etype == -1) { 2026 *offset = (bcount - lbcount) >> blocksize_bits; 2027 iinfo->i_lenExtents = lbcount; 2028 return -1; 2029 } 2030 lbcount += *elen; 2031 } while (lbcount <= bcount); 2032 2033 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2034 2035 return etype; 2036 } 2037 2038 long udf_block_map(struct inode *inode, sector_t block) 2039 { 2040 kernel_lb_addr eloc; 2041 uint32_t elen; 2042 sector_t offset; 2043 struct extent_position epos = {}; 2044 int ret; 2045 2046 lock_kernel(); 2047 2048 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2049 (EXT_RECORDED_ALLOCATED >> 30)) 2050 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 2051 else 2052 ret = 0; 2053 2054 unlock_kernel(); 2055 brelse(epos.bh); 2056 2057 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2058 return udf_fixed_to_variable(ret); 2059 else 2060 return ret; 2061 } 2062