1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_delete_inode(struct inode *inode) 72 { 73 truncate_inode_pages(&inode->i_data, 0); 74 75 if (is_bad_inode(inode)) 76 goto no_delete; 77 78 inode->i_size = 0; 79 udf_truncate(inode); 80 lock_kernel(); 81 82 udf_update_inode(inode, IS_SYNC(inode)); 83 udf_free_inode(inode); 84 85 unlock_kernel(); 86 return; 87 88 no_delete: 89 clear_inode(inode); 90 } 91 92 /* 93 * If we are going to release inode from memory, we truncate last inode extent 94 * to proper length. We could use drop_inode() but it's called under inode_lock 95 * and thus we cannot mark inode dirty there. We use clear_inode() but we have 96 * to make sure to write inode as it's not written automatically. 97 */ 98 void udf_clear_inode(struct inode *inode) 99 { 100 struct udf_inode_info *iinfo = UDF_I(inode); 101 102 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 103 inode->i_size != iinfo->i_lenExtents) { 104 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 105 "inode size %llu different from extent lenght %llu. " 106 "Filesystem need not be standards compliant.\n", 107 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 108 (unsigned long long)inode->i_size, 109 (unsigned long long)iinfo->i_lenExtents); 110 } 111 kfree(iinfo->i_ext.i_data); 112 iinfo->i_ext.i_data = NULL; 113 } 114 115 static int udf_writepage(struct page *page, struct writeback_control *wbc) 116 { 117 return block_write_full_page(page, udf_get_block, wbc); 118 } 119 120 static int udf_readpage(struct file *file, struct page *page) 121 { 122 return block_read_full_page(page, udf_get_block); 123 } 124 125 static int udf_write_begin(struct file *file, struct address_space *mapping, 126 loff_t pos, unsigned len, unsigned flags, 127 struct page **pagep, void **fsdata) 128 { 129 *pagep = NULL; 130 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 131 udf_get_block); 132 } 133 134 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 135 { 136 return generic_block_bmap(mapping, block, udf_get_block); 137 } 138 139 const struct address_space_operations udf_aops = { 140 .readpage = udf_readpage, 141 .writepage = udf_writepage, 142 .sync_page = block_sync_page, 143 .write_begin = udf_write_begin, 144 .write_end = generic_write_end, 145 .bmap = udf_bmap, 146 }; 147 148 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 149 { 150 struct page *page; 151 char *kaddr; 152 struct udf_inode_info *iinfo = UDF_I(inode); 153 struct writeback_control udf_wbc = { 154 .sync_mode = WB_SYNC_NONE, 155 .nr_to_write = 1, 156 }; 157 158 /* from now on we have normal address_space methods */ 159 inode->i_data.a_ops = &udf_aops; 160 161 if (!iinfo->i_lenAlloc) { 162 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 164 else 165 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 166 mark_inode_dirty(inode); 167 return; 168 } 169 170 page = grab_cache_page(inode->i_mapping, 0); 171 BUG_ON(!PageLocked(page)); 172 173 if (!PageUptodate(page)) { 174 kaddr = kmap(page); 175 memset(kaddr + iinfo->i_lenAlloc, 0x00, 176 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 177 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 178 iinfo->i_lenAlloc); 179 flush_dcache_page(page); 180 SetPageUptodate(page); 181 kunmap(page); 182 } 183 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 184 iinfo->i_lenAlloc); 185 iinfo->i_lenAlloc = 0; 186 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 187 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 188 else 189 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 190 191 inode->i_data.a_ops->writepage(page, &udf_wbc); 192 page_cache_release(page); 193 194 mark_inode_dirty(inode); 195 } 196 197 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 198 int *err) 199 { 200 int newblock; 201 struct buffer_head *dbh = NULL; 202 struct kernel_lb_addr eloc; 203 uint8_t alloctype; 204 struct extent_position epos; 205 206 struct udf_fileident_bh sfibh, dfibh; 207 loff_t f_pos = udf_ext0_offset(inode); 208 int size = udf_ext0_offset(inode) + inode->i_size; 209 struct fileIdentDesc cfi, *sfi, *dfi; 210 struct udf_inode_info *iinfo = UDF_I(inode); 211 212 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 213 alloctype = ICBTAG_FLAG_AD_SHORT; 214 else 215 alloctype = ICBTAG_FLAG_AD_LONG; 216 217 if (!inode->i_size) { 218 iinfo->i_alloc_type = alloctype; 219 mark_inode_dirty(inode); 220 return NULL; 221 } 222 223 /* alloc block, and copy data to it */ 224 *block = udf_new_block(inode->i_sb, inode, 225 iinfo->i_location.partitionReferenceNum, 226 iinfo->i_location.logicalBlockNum, err); 227 if (!(*block)) 228 return NULL; 229 newblock = udf_get_pblock(inode->i_sb, *block, 230 iinfo->i_location.partitionReferenceNum, 231 0); 232 if (!newblock) 233 return NULL; 234 dbh = udf_tgetblk(inode->i_sb, newblock); 235 if (!dbh) 236 return NULL; 237 lock_buffer(dbh); 238 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 239 set_buffer_uptodate(dbh); 240 unlock_buffer(dbh); 241 mark_buffer_dirty_inode(dbh, inode); 242 243 sfibh.soffset = sfibh.eoffset = 244 f_pos & (inode->i_sb->s_blocksize - 1); 245 sfibh.sbh = sfibh.ebh = NULL; 246 dfibh.soffset = dfibh.eoffset = 0; 247 dfibh.sbh = dfibh.ebh = dbh; 248 while (f_pos < size) { 249 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 250 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 251 NULL, NULL, NULL); 252 if (!sfi) { 253 brelse(dbh); 254 return NULL; 255 } 256 iinfo->i_alloc_type = alloctype; 257 sfi->descTag.tagLocation = cpu_to_le32(*block); 258 dfibh.soffset = dfibh.eoffset; 259 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 260 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 261 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 262 sfi->fileIdent + 263 le16_to_cpu(sfi->lengthOfImpUse))) { 264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 265 brelse(dbh); 266 return NULL; 267 } 268 } 269 mark_buffer_dirty_inode(dbh, inode); 270 271 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 272 iinfo->i_lenAlloc); 273 iinfo->i_lenAlloc = 0; 274 eloc.logicalBlockNum = *block; 275 eloc.partitionReferenceNum = 276 iinfo->i_location.partitionReferenceNum; 277 iinfo->i_lenExtents = inode->i_size; 278 epos.bh = NULL; 279 epos.block = iinfo->i_location; 280 epos.offset = udf_file_entry_alloc_offset(inode); 281 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 282 /* UniqueID stuff */ 283 284 brelse(epos.bh); 285 mark_inode_dirty(inode); 286 return dbh; 287 } 288 289 static int udf_get_block(struct inode *inode, sector_t block, 290 struct buffer_head *bh_result, int create) 291 { 292 int err, new; 293 struct buffer_head *bh; 294 sector_t phys = 0; 295 struct udf_inode_info *iinfo; 296 297 if (!create) { 298 phys = udf_block_map(inode, block); 299 if (phys) 300 map_bh(bh_result, inode->i_sb, phys); 301 return 0; 302 } 303 304 err = -EIO; 305 new = 0; 306 bh = NULL; 307 308 lock_kernel(); 309 310 iinfo = UDF_I(inode); 311 if (block == iinfo->i_next_alloc_block + 1) { 312 iinfo->i_next_alloc_block++; 313 iinfo->i_next_alloc_goal++; 314 } 315 316 err = 0; 317 318 bh = inode_getblk(inode, block, &err, &phys, &new); 319 BUG_ON(bh); 320 if (err) 321 goto abort; 322 BUG_ON(!phys); 323 324 if (new) 325 set_buffer_new(bh_result); 326 map_bh(bh_result, inode->i_sb, phys); 327 328 abort: 329 unlock_kernel(); 330 return err; 331 } 332 333 static struct buffer_head *udf_getblk(struct inode *inode, long block, 334 int create, int *err) 335 { 336 struct buffer_head *bh; 337 struct buffer_head dummy; 338 339 dummy.b_state = 0; 340 dummy.b_blocknr = -1000; 341 *err = udf_get_block(inode, block, &dummy, create); 342 if (!*err && buffer_mapped(&dummy)) { 343 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 344 if (buffer_new(&dummy)) { 345 lock_buffer(bh); 346 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 347 set_buffer_uptodate(bh); 348 unlock_buffer(bh); 349 mark_buffer_dirty_inode(bh, inode); 350 } 351 return bh; 352 } 353 354 return NULL; 355 } 356 357 /* Extend the file by 'blocks' blocks, return the number of extents added */ 358 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 359 struct kernel_long_ad *last_ext, sector_t blocks) 360 { 361 sector_t add; 362 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 363 struct super_block *sb = inode->i_sb; 364 struct kernel_lb_addr prealloc_loc = {}; 365 int prealloc_len = 0; 366 struct udf_inode_info *iinfo; 367 368 /* The previous extent is fake and we should not extend by anything 369 * - there's nothing to do... */ 370 if (!blocks && fake) 371 return 0; 372 373 iinfo = UDF_I(inode); 374 /* Round the last extent up to a multiple of block size */ 375 if (last_ext->extLength & (sb->s_blocksize - 1)) { 376 last_ext->extLength = 377 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 378 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 379 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 380 iinfo->i_lenExtents = 381 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 382 ~(sb->s_blocksize - 1); 383 } 384 385 /* Last extent are just preallocated blocks? */ 386 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 387 EXT_NOT_RECORDED_ALLOCATED) { 388 /* Save the extent so that we can reattach it to the end */ 389 prealloc_loc = last_ext->extLocation; 390 prealloc_len = last_ext->extLength; 391 /* Mark the extent as a hole */ 392 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 393 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 394 last_ext->extLocation.logicalBlockNum = 0; 395 last_ext->extLocation.partitionReferenceNum = 0; 396 } 397 398 /* Can we merge with the previous extent? */ 399 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 400 EXT_NOT_RECORDED_NOT_ALLOCATED) { 401 add = ((1 << 30) - sb->s_blocksize - 402 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 403 sb->s_blocksize_bits; 404 if (add > blocks) 405 add = blocks; 406 blocks -= add; 407 last_ext->extLength += add << sb->s_blocksize_bits; 408 } 409 410 if (fake) { 411 udf_add_aext(inode, last_pos, &last_ext->extLocation, 412 last_ext->extLength, 1); 413 count++; 414 } else 415 udf_write_aext(inode, last_pos, &last_ext->extLocation, 416 last_ext->extLength, 1); 417 418 /* Managed to do everything necessary? */ 419 if (!blocks) 420 goto out; 421 422 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 423 last_ext->extLocation.logicalBlockNum = 0; 424 last_ext->extLocation.partitionReferenceNum = 0; 425 add = (1 << (30-sb->s_blocksize_bits)) - 1; 426 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 427 (add << sb->s_blocksize_bits); 428 429 /* Create enough extents to cover the whole hole */ 430 while (blocks > add) { 431 blocks -= add; 432 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 433 last_ext->extLength, 1) == -1) 434 return -1; 435 count++; 436 } 437 if (blocks) { 438 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 439 (blocks << sb->s_blocksize_bits); 440 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 441 last_ext->extLength, 1) == -1) 442 return -1; 443 count++; 444 } 445 446 out: 447 /* Do we have some preallocated blocks saved? */ 448 if (prealloc_len) { 449 if (udf_add_aext(inode, last_pos, &prealloc_loc, 450 prealloc_len, 1) == -1) 451 return -1; 452 last_ext->extLocation = prealloc_loc; 453 last_ext->extLength = prealloc_len; 454 count++; 455 } 456 457 /* last_pos should point to the last written extent... */ 458 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 459 last_pos->offset -= sizeof(struct short_ad); 460 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 461 last_pos->offset -= sizeof(struct long_ad); 462 else 463 return -1; 464 465 return count; 466 } 467 468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 469 int *err, sector_t *phys, int *new) 470 { 471 static sector_t last_block; 472 struct buffer_head *result = NULL; 473 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 474 struct extent_position prev_epos, cur_epos, next_epos; 475 int count = 0, startnum = 0, endnum = 0; 476 uint32_t elen = 0, tmpelen; 477 struct kernel_lb_addr eloc, tmpeloc; 478 int c = 1; 479 loff_t lbcount = 0, b_off = 0; 480 uint32_t newblocknum, newblock; 481 sector_t offset = 0; 482 int8_t etype; 483 struct udf_inode_info *iinfo = UDF_I(inode); 484 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 485 int lastblock = 0; 486 487 prev_epos.offset = udf_file_entry_alloc_offset(inode); 488 prev_epos.block = iinfo->i_location; 489 prev_epos.bh = NULL; 490 cur_epos = next_epos = prev_epos; 491 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 492 493 /* find the extent which contains the block we are looking for. 494 alternate between laarr[0] and laarr[1] for locations of the 495 current extent, and the previous extent */ 496 do { 497 if (prev_epos.bh != cur_epos.bh) { 498 brelse(prev_epos.bh); 499 get_bh(cur_epos.bh); 500 prev_epos.bh = cur_epos.bh; 501 } 502 if (cur_epos.bh != next_epos.bh) { 503 brelse(cur_epos.bh); 504 get_bh(next_epos.bh); 505 cur_epos.bh = next_epos.bh; 506 } 507 508 lbcount += elen; 509 510 prev_epos.block = cur_epos.block; 511 cur_epos.block = next_epos.block; 512 513 prev_epos.offset = cur_epos.offset; 514 cur_epos.offset = next_epos.offset; 515 516 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 517 if (etype == -1) 518 break; 519 520 c = !c; 521 522 laarr[c].extLength = (etype << 30) | elen; 523 laarr[c].extLocation = eloc; 524 525 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 526 pgoal = eloc.logicalBlockNum + 527 ((elen + inode->i_sb->s_blocksize - 1) >> 528 inode->i_sb->s_blocksize_bits); 529 530 count++; 531 } while (lbcount + elen <= b_off); 532 533 b_off -= lbcount; 534 offset = b_off >> inode->i_sb->s_blocksize_bits; 535 /* 536 * Move prev_epos and cur_epos into indirect extent if we are at 537 * the pointer to it 538 */ 539 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 540 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 541 542 /* if the extent is allocated and recorded, return the block 543 if the extent is not a multiple of the blocksize, round up */ 544 545 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 546 if (elen & (inode->i_sb->s_blocksize - 1)) { 547 elen = EXT_RECORDED_ALLOCATED | 548 ((elen + inode->i_sb->s_blocksize - 1) & 549 ~(inode->i_sb->s_blocksize - 1)); 550 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 551 } 552 brelse(prev_epos.bh); 553 brelse(cur_epos.bh); 554 brelse(next_epos.bh); 555 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 556 *phys = newblock; 557 return NULL; 558 } 559 560 last_block = block; 561 /* Are we beyond EOF? */ 562 if (etype == -1) { 563 int ret; 564 565 if (count) { 566 if (c) 567 laarr[0] = laarr[1]; 568 startnum = 1; 569 } else { 570 /* Create a fake extent when there's not one */ 571 memset(&laarr[0].extLocation, 0x00, 572 sizeof(struct kernel_lb_addr)); 573 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 574 /* Will udf_extend_file() create real extent from 575 a fake one? */ 576 startnum = (offset > 0); 577 } 578 /* Create extents for the hole between EOF and offset */ 579 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 580 if (ret == -1) { 581 brelse(prev_epos.bh); 582 brelse(cur_epos.bh); 583 brelse(next_epos.bh); 584 /* We don't really know the error here so we just make 585 * something up */ 586 *err = -ENOSPC; 587 return NULL; 588 } 589 c = 0; 590 offset = 0; 591 count += ret; 592 /* We are not covered by a preallocated extent? */ 593 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 594 EXT_NOT_RECORDED_ALLOCATED) { 595 /* Is there any real extent? - otherwise we overwrite 596 * the fake one... */ 597 if (count) 598 c = !c; 599 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 600 inode->i_sb->s_blocksize; 601 memset(&laarr[c].extLocation, 0x00, 602 sizeof(struct kernel_lb_addr)); 603 count++; 604 endnum++; 605 } 606 endnum = c + 1; 607 lastblock = 1; 608 } else { 609 endnum = startnum = ((count > 2) ? 2 : count); 610 611 /* if the current extent is in position 0, 612 swap it with the previous */ 613 if (!c && count != 1) { 614 laarr[2] = laarr[0]; 615 laarr[0] = laarr[1]; 616 laarr[1] = laarr[2]; 617 c = 1; 618 } 619 620 /* if the current block is located in an extent, 621 read the next extent */ 622 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 623 if (etype != -1) { 624 laarr[c + 1].extLength = (etype << 30) | elen; 625 laarr[c + 1].extLocation = eloc; 626 count++; 627 startnum++; 628 endnum++; 629 } else 630 lastblock = 1; 631 } 632 633 /* if the current extent is not recorded but allocated, get the 634 * block in the extent corresponding to the requested block */ 635 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 636 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 637 else { /* otherwise, allocate a new block */ 638 if (iinfo->i_next_alloc_block == block) 639 goal = iinfo->i_next_alloc_goal; 640 641 if (!goal) { 642 if (!(goal = pgoal)) /* XXX: what was intended here? */ 643 goal = iinfo->i_location.logicalBlockNum + 1; 644 } 645 646 newblocknum = udf_new_block(inode->i_sb, inode, 647 iinfo->i_location.partitionReferenceNum, 648 goal, err); 649 if (!newblocknum) { 650 brelse(prev_epos.bh); 651 *err = -ENOSPC; 652 return NULL; 653 } 654 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 655 } 656 657 /* if the extent the requsted block is located in contains multiple 658 * blocks, split the extent into at most three extents. blocks prior 659 * to requested block, requested block, and blocks after requested 660 * block */ 661 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 662 663 #ifdef UDF_PREALLOCATE 664 /* We preallocate blocks only for regular files. It also makes sense 665 * for directories but there's a problem when to drop the 666 * preallocation. We might use some delayed work for that but I feel 667 * it's overengineering for a filesystem like UDF. */ 668 if (S_ISREG(inode->i_mode)) 669 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 670 #endif 671 672 /* merge any continuous blocks in laarr */ 673 udf_merge_extents(inode, laarr, &endnum); 674 675 /* write back the new extents, inserting new extents if the new number 676 * of extents is greater than the old number, and deleting extents if 677 * the new number of extents is less than the old number */ 678 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 679 680 brelse(prev_epos.bh); 681 682 newblock = udf_get_pblock(inode->i_sb, newblocknum, 683 iinfo->i_location.partitionReferenceNum, 0); 684 if (!newblock) 685 return NULL; 686 *phys = newblock; 687 *err = 0; 688 *new = 1; 689 iinfo->i_next_alloc_block = block; 690 iinfo->i_next_alloc_goal = newblocknum; 691 inode->i_ctime = current_fs_time(inode->i_sb); 692 693 if (IS_SYNC(inode)) 694 udf_sync_inode(inode); 695 else 696 mark_inode_dirty(inode); 697 698 return result; 699 } 700 701 static void udf_split_extents(struct inode *inode, int *c, int offset, 702 int newblocknum, 703 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 704 int *endnum) 705 { 706 unsigned long blocksize = inode->i_sb->s_blocksize; 707 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 708 709 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 710 (laarr[*c].extLength >> 30) == 711 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 712 int curr = *c; 713 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 714 blocksize - 1) >> blocksize_bits; 715 int8_t etype = (laarr[curr].extLength >> 30); 716 717 if (blen == 1) 718 ; 719 else if (!offset || blen == offset + 1) { 720 laarr[curr + 2] = laarr[curr + 1]; 721 laarr[curr + 1] = laarr[curr]; 722 } else { 723 laarr[curr + 3] = laarr[curr + 1]; 724 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 725 } 726 727 if (offset) { 728 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 729 udf_free_blocks(inode->i_sb, inode, 730 &laarr[curr].extLocation, 731 0, offset); 732 laarr[curr].extLength = 733 EXT_NOT_RECORDED_NOT_ALLOCATED | 734 (offset << blocksize_bits); 735 laarr[curr].extLocation.logicalBlockNum = 0; 736 laarr[curr].extLocation. 737 partitionReferenceNum = 0; 738 } else 739 laarr[curr].extLength = (etype << 30) | 740 (offset << blocksize_bits); 741 curr++; 742 (*c)++; 743 (*endnum)++; 744 } 745 746 laarr[curr].extLocation.logicalBlockNum = newblocknum; 747 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 748 laarr[curr].extLocation.partitionReferenceNum = 749 UDF_I(inode)->i_location.partitionReferenceNum; 750 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 751 blocksize; 752 curr++; 753 754 if (blen != offset + 1) { 755 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 756 laarr[curr].extLocation.logicalBlockNum += 757 offset + 1; 758 laarr[curr].extLength = (etype << 30) | 759 ((blen - (offset + 1)) << blocksize_bits); 760 curr++; 761 (*endnum)++; 762 } 763 } 764 } 765 766 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 767 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 768 int *endnum) 769 { 770 int start, length = 0, currlength = 0, i; 771 772 if (*endnum >= (c + 1)) { 773 if (!lastblock) 774 return; 775 else 776 start = c; 777 } else { 778 if ((laarr[c + 1].extLength >> 30) == 779 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 780 start = c + 1; 781 length = currlength = 782 (((laarr[c + 1].extLength & 783 UDF_EXTENT_LENGTH_MASK) + 784 inode->i_sb->s_blocksize - 1) >> 785 inode->i_sb->s_blocksize_bits); 786 } else 787 start = c; 788 } 789 790 for (i = start + 1; i <= *endnum; i++) { 791 if (i == *endnum) { 792 if (lastblock) 793 length += UDF_DEFAULT_PREALLOC_BLOCKS; 794 } else if ((laarr[i].extLength >> 30) == 795 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 796 length += (((laarr[i].extLength & 797 UDF_EXTENT_LENGTH_MASK) + 798 inode->i_sb->s_blocksize - 1) >> 799 inode->i_sb->s_blocksize_bits); 800 } else 801 break; 802 } 803 804 if (length) { 805 int next = laarr[start].extLocation.logicalBlockNum + 806 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 807 inode->i_sb->s_blocksize - 1) >> 808 inode->i_sb->s_blocksize_bits); 809 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 810 laarr[start].extLocation.partitionReferenceNum, 811 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 812 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 813 currlength); 814 if (numalloc) { 815 if (start == (c + 1)) 816 laarr[start].extLength += 817 (numalloc << 818 inode->i_sb->s_blocksize_bits); 819 else { 820 memmove(&laarr[c + 2], &laarr[c + 1], 821 sizeof(struct long_ad) * (*endnum - (c + 1))); 822 (*endnum)++; 823 laarr[c + 1].extLocation.logicalBlockNum = next; 824 laarr[c + 1].extLocation.partitionReferenceNum = 825 laarr[c].extLocation. 826 partitionReferenceNum; 827 laarr[c + 1].extLength = 828 EXT_NOT_RECORDED_ALLOCATED | 829 (numalloc << 830 inode->i_sb->s_blocksize_bits); 831 start = c + 1; 832 } 833 834 for (i = start + 1; numalloc && i < *endnum; i++) { 835 int elen = ((laarr[i].extLength & 836 UDF_EXTENT_LENGTH_MASK) + 837 inode->i_sb->s_blocksize - 1) >> 838 inode->i_sb->s_blocksize_bits; 839 840 if (elen > numalloc) { 841 laarr[i].extLength -= 842 (numalloc << 843 inode->i_sb->s_blocksize_bits); 844 numalloc = 0; 845 } else { 846 numalloc -= elen; 847 if (*endnum > (i + 1)) 848 memmove(&laarr[i], 849 &laarr[i + 1], 850 sizeof(struct long_ad) * 851 (*endnum - (i + 1))); 852 i--; 853 (*endnum)--; 854 } 855 } 856 UDF_I(inode)->i_lenExtents += 857 numalloc << inode->i_sb->s_blocksize_bits; 858 } 859 } 860 } 861 862 static void udf_merge_extents(struct inode *inode, 863 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 864 int *endnum) 865 { 866 int i; 867 unsigned long blocksize = inode->i_sb->s_blocksize; 868 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 869 870 for (i = 0; i < (*endnum - 1); i++) { 871 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 872 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 873 874 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 875 (((li->extLength >> 30) == 876 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 877 ((lip1->extLocation.logicalBlockNum - 878 li->extLocation.logicalBlockNum) == 879 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 880 blocksize - 1) >> blocksize_bits)))) { 881 882 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 883 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 884 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 885 lip1->extLength = (lip1->extLength - 886 (li->extLength & 887 UDF_EXTENT_LENGTH_MASK) + 888 UDF_EXTENT_LENGTH_MASK) & 889 ~(blocksize - 1); 890 li->extLength = (li->extLength & 891 UDF_EXTENT_FLAG_MASK) + 892 (UDF_EXTENT_LENGTH_MASK + 1) - 893 blocksize; 894 lip1->extLocation.logicalBlockNum = 895 li->extLocation.logicalBlockNum + 896 ((li->extLength & 897 UDF_EXTENT_LENGTH_MASK) >> 898 blocksize_bits); 899 } else { 900 li->extLength = lip1->extLength + 901 (((li->extLength & 902 UDF_EXTENT_LENGTH_MASK) + 903 blocksize - 1) & ~(blocksize - 1)); 904 if (*endnum > (i + 2)) 905 memmove(&laarr[i + 1], &laarr[i + 2], 906 sizeof(struct long_ad) * 907 (*endnum - (i + 2))); 908 i--; 909 (*endnum)--; 910 } 911 } else if (((li->extLength >> 30) == 912 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 913 ((lip1->extLength >> 30) == 914 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 915 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 916 ((li->extLength & 917 UDF_EXTENT_LENGTH_MASK) + 918 blocksize - 1) >> blocksize_bits); 919 li->extLocation.logicalBlockNum = 0; 920 li->extLocation.partitionReferenceNum = 0; 921 922 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 923 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 924 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 925 lip1->extLength = (lip1->extLength - 926 (li->extLength & 927 UDF_EXTENT_LENGTH_MASK) + 928 UDF_EXTENT_LENGTH_MASK) & 929 ~(blocksize - 1); 930 li->extLength = (li->extLength & 931 UDF_EXTENT_FLAG_MASK) + 932 (UDF_EXTENT_LENGTH_MASK + 1) - 933 blocksize; 934 } else { 935 li->extLength = lip1->extLength + 936 (((li->extLength & 937 UDF_EXTENT_LENGTH_MASK) + 938 blocksize - 1) & ~(blocksize - 1)); 939 if (*endnum > (i + 2)) 940 memmove(&laarr[i + 1], &laarr[i + 2], 941 sizeof(struct long_ad) * 942 (*endnum - (i + 2))); 943 i--; 944 (*endnum)--; 945 } 946 } else if ((li->extLength >> 30) == 947 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 948 udf_free_blocks(inode->i_sb, inode, 949 &li->extLocation, 0, 950 ((li->extLength & 951 UDF_EXTENT_LENGTH_MASK) + 952 blocksize - 1) >> blocksize_bits); 953 li->extLocation.logicalBlockNum = 0; 954 li->extLocation.partitionReferenceNum = 0; 955 li->extLength = (li->extLength & 956 UDF_EXTENT_LENGTH_MASK) | 957 EXT_NOT_RECORDED_NOT_ALLOCATED; 958 } 959 } 960 } 961 962 static void udf_update_extents(struct inode *inode, 963 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 964 int startnum, int endnum, 965 struct extent_position *epos) 966 { 967 int start = 0, i; 968 struct kernel_lb_addr tmploc; 969 uint32_t tmplen; 970 971 if (startnum > endnum) { 972 for (i = 0; i < (startnum - endnum); i++) 973 udf_delete_aext(inode, *epos, laarr[i].extLocation, 974 laarr[i].extLength); 975 } else if (startnum < endnum) { 976 for (i = 0; i < (endnum - startnum); i++) { 977 udf_insert_aext(inode, *epos, laarr[i].extLocation, 978 laarr[i].extLength); 979 udf_next_aext(inode, epos, &laarr[i].extLocation, 980 &laarr[i].extLength, 1); 981 start++; 982 } 983 } 984 985 for (i = start; i < endnum; i++) { 986 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 987 udf_write_aext(inode, epos, &laarr[i].extLocation, 988 laarr[i].extLength, 1); 989 } 990 } 991 992 struct buffer_head *udf_bread(struct inode *inode, int block, 993 int create, int *err) 994 { 995 struct buffer_head *bh = NULL; 996 997 bh = udf_getblk(inode, block, create, err); 998 if (!bh) 999 return NULL; 1000 1001 if (buffer_uptodate(bh)) 1002 return bh; 1003 1004 ll_rw_block(READ, 1, &bh); 1005 1006 wait_on_buffer(bh); 1007 if (buffer_uptodate(bh)) 1008 return bh; 1009 1010 brelse(bh); 1011 *err = -EIO; 1012 return NULL; 1013 } 1014 1015 void udf_truncate(struct inode *inode) 1016 { 1017 int offset; 1018 int err; 1019 struct udf_inode_info *iinfo; 1020 1021 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1022 S_ISLNK(inode->i_mode))) 1023 return; 1024 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1025 return; 1026 1027 lock_kernel(); 1028 iinfo = UDF_I(inode); 1029 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1030 if (inode->i_sb->s_blocksize < 1031 (udf_file_entry_alloc_offset(inode) + 1032 inode->i_size)) { 1033 udf_expand_file_adinicb(inode, inode->i_size, &err); 1034 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1035 inode->i_size = iinfo->i_lenAlloc; 1036 unlock_kernel(); 1037 return; 1038 } else 1039 udf_truncate_extents(inode); 1040 } else { 1041 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1042 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1043 0x00, inode->i_sb->s_blocksize - 1044 offset - udf_file_entry_alloc_offset(inode)); 1045 iinfo->i_lenAlloc = inode->i_size; 1046 } 1047 } else { 1048 block_truncate_page(inode->i_mapping, inode->i_size, 1049 udf_get_block); 1050 udf_truncate_extents(inode); 1051 } 1052 1053 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1054 if (IS_SYNC(inode)) 1055 udf_sync_inode(inode); 1056 else 1057 mark_inode_dirty(inode); 1058 unlock_kernel(); 1059 } 1060 1061 static void __udf_read_inode(struct inode *inode) 1062 { 1063 struct buffer_head *bh = NULL; 1064 struct fileEntry *fe; 1065 uint16_t ident; 1066 struct udf_inode_info *iinfo = UDF_I(inode); 1067 1068 /* 1069 * Set defaults, but the inode is still incomplete! 1070 * Note: get_new_inode() sets the following on a new inode: 1071 * i_sb = sb 1072 * i_no = ino 1073 * i_flags = sb->s_flags 1074 * i_state = 0 1075 * clean_inode(): zero fills and sets 1076 * i_count = 1 1077 * i_nlink = 1 1078 * i_op = NULL; 1079 */ 1080 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1081 if (!bh) { 1082 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1083 inode->i_ino); 1084 make_bad_inode(inode); 1085 return; 1086 } 1087 1088 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1089 ident != TAG_IDENT_USE) { 1090 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1091 "failed ident=%d\n", inode->i_ino, ident); 1092 brelse(bh); 1093 make_bad_inode(inode); 1094 return; 1095 } 1096 1097 fe = (struct fileEntry *)bh->b_data; 1098 1099 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1100 struct buffer_head *ibh; 1101 1102 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1103 &ident); 1104 if (ident == TAG_IDENT_IE && ibh) { 1105 struct buffer_head *nbh = NULL; 1106 struct kernel_lb_addr loc; 1107 struct indirectEntry *ie; 1108 1109 ie = (struct indirectEntry *)ibh->b_data; 1110 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1111 1112 if (ie->indirectICB.extLength && 1113 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1114 &ident))) { 1115 if (ident == TAG_IDENT_FE || 1116 ident == TAG_IDENT_EFE) { 1117 memcpy(&iinfo->i_location, 1118 &loc, 1119 sizeof(struct kernel_lb_addr)); 1120 brelse(bh); 1121 brelse(ibh); 1122 brelse(nbh); 1123 __udf_read_inode(inode); 1124 return; 1125 } 1126 brelse(nbh); 1127 } 1128 } 1129 brelse(ibh); 1130 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1131 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1132 le16_to_cpu(fe->icbTag.strategyType)); 1133 brelse(bh); 1134 make_bad_inode(inode); 1135 return; 1136 } 1137 udf_fill_inode(inode, bh); 1138 1139 brelse(bh); 1140 } 1141 1142 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1143 { 1144 struct fileEntry *fe; 1145 struct extendedFileEntry *efe; 1146 int offset; 1147 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1148 struct udf_inode_info *iinfo = UDF_I(inode); 1149 1150 fe = (struct fileEntry *)bh->b_data; 1151 efe = (struct extendedFileEntry *)bh->b_data; 1152 1153 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1154 iinfo->i_strat4096 = 0; 1155 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1156 iinfo->i_strat4096 = 1; 1157 1158 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1159 ICBTAG_FLAG_AD_MASK; 1160 iinfo->i_unique = 0; 1161 iinfo->i_lenEAttr = 0; 1162 iinfo->i_lenExtents = 0; 1163 iinfo->i_lenAlloc = 0; 1164 iinfo->i_next_alloc_block = 0; 1165 iinfo->i_next_alloc_goal = 0; 1166 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1167 iinfo->i_efe = 1; 1168 iinfo->i_use = 0; 1169 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1170 sizeof(struct extendedFileEntry))) { 1171 make_bad_inode(inode); 1172 return; 1173 } 1174 memcpy(iinfo->i_ext.i_data, 1175 bh->b_data + sizeof(struct extendedFileEntry), 1176 inode->i_sb->s_blocksize - 1177 sizeof(struct extendedFileEntry)); 1178 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1179 iinfo->i_efe = 0; 1180 iinfo->i_use = 0; 1181 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1182 sizeof(struct fileEntry))) { 1183 make_bad_inode(inode); 1184 return; 1185 } 1186 memcpy(iinfo->i_ext.i_data, 1187 bh->b_data + sizeof(struct fileEntry), 1188 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1189 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1190 iinfo->i_efe = 0; 1191 iinfo->i_use = 1; 1192 iinfo->i_lenAlloc = le32_to_cpu( 1193 ((struct unallocSpaceEntry *)bh->b_data)-> 1194 lengthAllocDescs); 1195 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1196 sizeof(struct unallocSpaceEntry))) { 1197 make_bad_inode(inode); 1198 return; 1199 } 1200 memcpy(iinfo->i_ext.i_data, 1201 bh->b_data + sizeof(struct unallocSpaceEntry), 1202 inode->i_sb->s_blocksize - 1203 sizeof(struct unallocSpaceEntry)); 1204 return; 1205 } 1206 1207 inode->i_uid = le32_to_cpu(fe->uid); 1208 if (inode->i_uid == -1 || 1209 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1210 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1211 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1212 1213 inode->i_gid = le32_to_cpu(fe->gid); 1214 if (inode->i_gid == -1 || 1215 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1216 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1217 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1218 1219 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1220 if (!inode->i_nlink) 1221 inode->i_nlink = 1; 1222 1223 inode->i_size = le64_to_cpu(fe->informationLength); 1224 iinfo->i_lenExtents = inode->i_size; 1225 1226 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1227 sbi->s_fmode != UDF_INVALID_MODE) 1228 inode->i_mode = sbi->s_fmode; 1229 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1230 sbi->s_dmode != UDF_INVALID_MODE) 1231 inode->i_mode = sbi->s_dmode; 1232 else 1233 inode->i_mode = udf_convert_permissions(fe); 1234 inode->i_mode &= ~sbi->s_umask; 1235 1236 if (iinfo->i_efe == 0) { 1237 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1238 (inode->i_sb->s_blocksize_bits - 9); 1239 1240 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1241 inode->i_atime = sbi->s_record_time; 1242 1243 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1244 fe->modificationTime)) 1245 inode->i_mtime = sbi->s_record_time; 1246 1247 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1248 inode->i_ctime = sbi->s_record_time; 1249 1250 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1251 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1252 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1253 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1254 } else { 1255 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1256 (inode->i_sb->s_blocksize_bits - 9); 1257 1258 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1259 inode->i_atime = sbi->s_record_time; 1260 1261 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1262 efe->modificationTime)) 1263 inode->i_mtime = sbi->s_record_time; 1264 1265 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1266 iinfo->i_crtime = sbi->s_record_time; 1267 1268 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1269 inode->i_ctime = sbi->s_record_time; 1270 1271 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1272 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1273 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1274 offset = sizeof(struct extendedFileEntry) + 1275 iinfo->i_lenEAttr; 1276 } 1277 1278 switch (fe->icbTag.fileType) { 1279 case ICBTAG_FILE_TYPE_DIRECTORY: 1280 inode->i_op = &udf_dir_inode_operations; 1281 inode->i_fop = &udf_dir_operations; 1282 inode->i_mode |= S_IFDIR; 1283 inc_nlink(inode); 1284 break; 1285 case ICBTAG_FILE_TYPE_REALTIME: 1286 case ICBTAG_FILE_TYPE_REGULAR: 1287 case ICBTAG_FILE_TYPE_UNDEF: 1288 case ICBTAG_FILE_TYPE_VAT20: 1289 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1290 inode->i_data.a_ops = &udf_adinicb_aops; 1291 else 1292 inode->i_data.a_ops = &udf_aops; 1293 inode->i_op = &udf_file_inode_operations; 1294 inode->i_fop = &udf_file_operations; 1295 inode->i_mode |= S_IFREG; 1296 break; 1297 case ICBTAG_FILE_TYPE_BLOCK: 1298 inode->i_mode |= S_IFBLK; 1299 break; 1300 case ICBTAG_FILE_TYPE_CHAR: 1301 inode->i_mode |= S_IFCHR; 1302 break; 1303 case ICBTAG_FILE_TYPE_FIFO: 1304 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1305 break; 1306 case ICBTAG_FILE_TYPE_SOCKET: 1307 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1308 break; 1309 case ICBTAG_FILE_TYPE_SYMLINK: 1310 inode->i_data.a_ops = &udf_symlink_aops; 1311 inode->i_op = &page_symlink_inode_operations; 1312 inode->i_mode = S_IFLNK | S_IRWXUGO; 1313 break; 1314 case ICBTAG_FILE_TYPE_MAIN: 1315 udf_debug("METADATA FILE-----\n"); 1316 break; 1317 case ICBTAG_FILE_TYPE_MIRROR: 1318 udf_debug("METADATA MIRROR FILE-----\n"); 1319 break; 1320 case ICBTAG_FILE_TYPE_BITMAP: 1321 udf_debug("METADATA BITMAP FILE-----\n"); 1322 break; 1323 default: 1324 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1325 "file type=%d\n", inode->i_ino, 1326 fe->icbTag.fileType); 1327 make_bad_inode(inode); 1328 return; 1329 } 1330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1331 struct deviceSpec *dsea = 1332 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1333 if (dsea) { 1334 init_special_inode(inode, inode->i_mode, 1335 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1336 le32_to_cpu(dsea->minorDeviceIdent))); 1337 /* Developer ID ??? */ 1338 } else 1339 make_bad_inode(inode); 1340 } 1341 } 1342 1343 static int udf_alloc_i_data(struct inode *inode, size_t size) 1344 { 1345 struct udf_inode_info *iinfo = UDF_I(inode); 1346 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1347 1348 if (!iinfo->i_ext.i_data) { 1349 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1350 "no free memory\n", inode->i_ino); 1351 return -ENOMEM; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static mode_t udf_convert_permissions(struct fileEntry *fe) 1358 { 1359 mode_t mode; 1360 uint32_t permissions; 1361 uint32_t flags; 1362 1363 permissions = le32_to_cpu(fe->permissions); 1364 flags = le16_to_cpu(fe->icbTag.flags); 1365 1366 mode = ((permissions) & S_IRWXO) | 1367 ((permissions >> 2) & S_IRWXG) | 1368 ((permissions >> 4) & S_IRWXU) | 1369 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1370 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1371 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1372 1373 return mode; 1374 } 1375 1376 int udf_write_inode(struct inode *inode, int sync) 1377 { 1378 int ret; 1379 1380 lock_kernel(); 1381 ret = udf_update_inode(inode, sync); 1382 unlock_kernel(); 1383 1384 return ret; 1385 } 1386 1387 int udf_sync_inode(struct inode *inode) 1388 { 1389 return udf_update_inode(inode, 1); 1390 } 1391 1392 static int udf_update_inode(struct inode *inode, int do_sync) 1393 { 1394 struct buffer_head *bh = NULL; 1395 struct fileEntry *fe; 1396 struct extendedFileEntry *efe; 1397 uint32_t udfperms; 1398 uint16_t icbflags; 1399 uint16_t crclen; 1400 int err = 0; 1401 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1402 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1403 struct udf_inode_info *iinfo = UDF_I(inode); 1404 1405 bh = udf_tread(inode->i_sb, 1406 udf_get_lb_pblock(inode->i_sb, 1407 &iinfo->i_location, 0)); 1408 if (!bh) { 1409 udf_debug("bread failure\n"); 1410 return -EIO; 1411 } 1412 1413 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1414 1415 fe = (struct fileEntry *)bh->b_data; 1416 efe = (struct extendedFileEntry *)bh->b_data; 1417 1418 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1419 struct unallocSpaceEntry *use = 1420 (struct unallocSpaceEntry *)bh->b_data; 1421 1422 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1423 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1424 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1425 sizeof(struct unallocSpaceEntry)); 1426 crclen = sizeof(struct unallocSpaceEntry) + 1427 iinfo->i_lenAlloc - sizeof(struct tag); 1428 use->descTag.tagLocation = cpu_to_le32( 1429 iinfo->i_location. 1430 logicalBlockNum); 1431 use->descTag.descCRCLength = cpu_to_le16(crclen); 1432 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1433 sizeof(struct tag), 1434 crclen)); 1435 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1436 1437 mark_buffer_dirty(bh); 1438 brelse(bh); 1439 return err; 1440 } 1441 1442 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1443 fe->uid = cpu_to_le32(-1); 1444 else 1445 fe->uid = cpu_to_le32(inode->i_uid); 1446 1447 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1448 fe->gid = cpu_to_le32(-1); 1449 else 1450 fe->gid = cpu_to_le32(inode->i_gid); 1451 1452 udfperms = ((inode->i_mode & S_IRWXO)) | 1453 ((inode->i_mode & S_IRWXG) << 2) | 1454 ((inode->i_mode & S_IRWXU) << 4); 1455 1456 udfperms |= (le32_to_cpu(fe->permissions) & 1457 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1458 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1459 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1460 fe->permissions = cpu_to_le32(udfperms); 1461 1462 if (S_ISDIR(inode->i_mode)) 1463 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1464 else 1465 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1466 1467 fe->informationLength = cpu_to_le64(inode->i_size); 1468 1469 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1470 struct regid *eid; 1471 struct deviceSpec *dsea = 1472 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1473 if (!dsea) { 1474 dsea = (struct deviceSpec *) 1475 udf_add_extendedattr(inode, 1476 sizeof(struct deviceSpec) + 1477 sizeof(struct regid), 12, 0x3); 1478 dsea->attrType = cpu_to_le32(12); 1479 dsea->attrSubtype = 1; 1480 dsea->attrLength = cpu_to_le32( 1481 sizeof(struct deviceSpec) + 1482 sizeof(struct regid)); 1483 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1484 } 1485 eid = (struct regid *)dsea->impUse; 1486 memset(eid, 0, sizeof(struct regid)); 1487 strcpy(eid->ident, UDF_ID_DEVELOPER); 1488 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1489 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1490 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1491 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1492 } 1493 1494 if (iinfo->i_efe == 0) { 1495 memcpy(bh->b_data + sizeof(struct fileEntry), 1496 iinfo->i_ext.i_data, 1497 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1498 fe->logicalBlocksRecorded = cpu_to_le64( 1499 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1500 (blocksize_bits - 9)); 1501 1502 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1503 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1504 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1505 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1506 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1507 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1508 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1509 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1510 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1511 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1512 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1513 crclen = sizeof(struct fileEntry); 1514 } else { 1515 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1516 iinfo->i_ext.i_data, 1517 inode->i_sb->s_blocksize - 1518 sizeof(struct extendedFileEntry)); 1519 efe->objectSize = cpu_to_le64(inode->i_size); 1520 efe->logicalBlocksRecorded = cpu_to_le64( 1521 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1522 (blocksize_bits - 9)); 1523 1524 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1525 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1526 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1527 iinfo->i_crtime = inode->i_atime; 1528 1529 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1530 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1531 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1532 iinfo->i_crtime = inode->i_mtime; 1533 1534 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1535 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1536 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1537 iinfo->i_crtime = inode->i_ctime; 1538 1539 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1540 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1541 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1542 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1543 1544 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1545 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1546 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1547 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1548 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1549 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1550 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1551 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1552 crclen = sizeof(struct extendedFileEntry); 1553 } 1554 if (iinfo->i_strat4096) { 1555 fe->icbTag.strategyType = cpu_to_le16(4096); 1556 fe->icbTag.strategyParameter = cpu_to_le16(1); 1557 fe->icbTag.numEntries = cpu_to_le16(2); 1558 } else { 1559 fe->icbTag.strategyType = cpu_to_le16(4); 1560 fe->icbTag.numEntries = cpu_to_le16(1); 1561 } 1562 1563 if (S_ISDIR(inode->i_mode)) 1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1565 else if (S_ISREG(inode->i_mode)) 1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1567 else if (S_ISLNK(inode->i_mode)) 1568 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1569 else if (S_ISBLK(inode->i_mode)) 1570 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1571 else if (S_ISCHR(inode->i_mode)) 1572 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1573 else if (S_ISFIFO(inode->i_mode)) 1574 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1575 else if (S_ISSOCK(inode->i_mode)) 1576 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1577 1578 icbflags = iinfo->i_alloc_type | 1579 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1580 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1581 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1582 (le16_to_cpu(fe->icbTag.flags) & 1583 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1584 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1585 1586 fe->icbTag.flags = cpu_to_le16(icbflags); 1587 if (sbi->s_udfrev >= 0x0200) 1588 fe->descTag.descVersion = cpu_to_le16(3); 1589 else 1590 fe->descTag.descVersion = cpu_to_le16(2); 1591 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1592 fe->descTag.tagLocation = cpu_to_le32( 1593 iinfo->i_location.logicalBlockNum); 1594 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - 1595 sizeof(struct tag); 1596 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1597 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1598 crclen)); 1599 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1600 1601 /* write the data blocks */ 1602 mark_buffer_dirty(bh); 1603 if (do_sync) { 1604 sync_dirty_buffer(bh); 1605 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1606 printk(KERN_WARNING "IO error syncing udf inode " 1607 "[%s:%08lx]\n", inode->i_sb->s_id, 1608 inode->i_ino); 1609 err = -EIO; 1610 } 1611 } 1612 brelse(bh); 1613 1614 return err; 1615 } 1616 1617 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1618 { 1619 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1620 struct inode *inode = iget_locked(sb, block); 1621 1622 if (!inode) 1623 return NULL; 1624 1625 if (inode->i_state & I_NEW) { 1626 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1627 __udf_read_inode(inode); 1628 unlock_new_inode(inode); 1629 } 1630 1631 if (is_bad_inode(inode)) 1632 goto out_iput; 1633 1634 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1635 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1636 udf_debug("block=%d, partition=%d out of range\n", 1637 ino->logicalBlockNum, ino->partitionReferenceNum); 1638 make_bad_inode(inode); 1639 goto out_iput; 1640 } 1641 1642 return inode; 1643 1644 out_iput: 1645 iput(inode); 1646 return NULL; 1647 } 1648 1649 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1650 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1651 { 1652 int adsize; 1653 struct short_ad *sad = NULL; 1654 struct long_ad *lad = NULL; 1655 struct allocExtDesc *aed; 1656 int8_t etype; 1657 uint8_t *ptr; 1658 struct udf_inode_info *iinfo = UDF_I(inode); 1659 1660 if (!epos->bh) 1661 ptr = iinfo->i_ext.i_data + epos->offset - 1662 udf_file_entry_alloc_offset(inode) + 1663 iinfo->i_lenEAttr; 1664 else 1665 ptr = epos->bh->b_data + epos->offset; 1666 1667 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1668 adsize = sizeof(struct short_ad); 1669 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1670 adsize = sizeof(struct long_ad); 1671 else 1672 return -1; 1673 1674 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1675 char *sptr, *dptr; 1676 struct buffer_head *nbh; 1677 int err, loffset; 1678 struct kernel_lb_addr obloc = epos->block; 1679 1680 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1681 obloc.partitionReferenceNum, 1682 obloc.logicalBlockNum, &err); 1683 if (!epos->block.logicalBlockNum) 1684 return -1; 1685 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1686 &epos->block, 1687 0)); 1688 if (!nbh) 1689 return -1; 1690 lock_buffer(nbh); 1691 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1692 set_buffer_uptodate(nbh); 1693 unlock_buffer(nbh); 1694 mark_buffer_dirty_inode(nbh, inode); 1695 1696 aed = (struct allocExtDesc *)(nbh->b_data); 1697 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1698 aed->previousAllocExtLocation = 1699 cpu_to_le32(obloc.logicalBlockNum); 1700 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1701 loffset = epos->offset; 1702 aed->lengthAllocDescs = cpu_to_le32(adsize); 1703 sptr = ptr - adsize; 1704 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1705 memcpy(dptr, sptr, adsize); 1706 epos->offset = sizeof(struct allocExtDesc) + adsize; 1707 } else { 1708 loffset = epos->offset + adsize; 1709 aed->lengthAllocDescs = cpu_to_le32(0); 1710 sptr = ptr; 1711 epos->offset = sizeof(struct allocExtDesc); 1712 1713 if (epos->bh) { 1714 aed = (struct allocExtDesc *)epos->bh->b_data; 1715 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1716 } else { 1717 iinfo->i_lenAlloc += adsize; 1718 mark_inode_dirty(inode); 1719 } 1720 } 1721 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1722 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1723 epos->block.logicalBlockNum, sizeof(struct tag)); 1724 else 1725 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1726 epos->block.logicalBlockNum, sizeof(struct tag)); 1727 switch (iinfo->i_alloc_type) { 1728 case ICBTAG_FLAG_AD_SHORT: 1729 sad = (struct short_ad *)sptr; 1730 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1731 inode->i_sb->s_blocksize); 1732 sad->extPosition = 1733 cpu_to_le32(epos->block.logicalBlockNum); 1734 break; 1735 case ICBTAG_FLAG_AD_LONG: 1736 lad = (struct long_ad *)sptr; 1737 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1738 inode->i_sb->s_blocksize); 1739 lad->extLocation = cpu_to_lelb(epos->block); 1740 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1741 break; 1742 } 1743 if (epos->bh) { 1744 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1745 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1746 udf_update_tag(epos->bh->b_data, loffset); 1747 else 1748 udf_update_tag(epos->bh->b_data, 1749 sizeof(struct allocExtDesc)); 1750 mark_buffer_dirty_inode(epos->bh, inode); 1751 brelse(epos->bh); 1752 } else { 1753 mark_inode_dirty(inode); 1754 } 1755 epos->bh = nbh; 1756 } 1757 1758 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1759 1760 if (!epos->bh) { 1761 iinfo->i_lenAlloc += adsize; 1762 mark_inode_dirty(inode); 1763 } else { 1764 aed = (struct allocExtDesc *)epos->bh->b_data; 1765 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1766 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1767 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1768 udf_update_tag(epos->bh->b_data, 1769 epos->offset + (inc ? 0 : adsize)); 1770 else 1771 udf_update_tag(epos->bh->b_data, 1772 sizeof(struct allocExtDesc)); 1773 mark_buffer_dirty_inode(epos->bh, inode); 1774 } 1775 1776 return etype; 1777 } 1778 1779 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1780 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1781 { 1782 int adsize; 1783 uint8_t *ptr; 1784 struct short_ad *sad; 1785 struct long_ad *lad; 1786 struct udf_inode_info *iinfo = UDF_I(inode); 1787 1788 if (!epos->bh) 1789 ptr = iinfo->i_ext.i_data + epos->offset - 1790 udf_file_entry_alloc_offset(inode) + 1791 iinfo->i_lenEAttr; 1792 else 1793 ptr = epos->bh->b_data + epos->offset; 1794 1795 switch (iinfo->i_alloc_type) { 1796 case ICBTAG_FLAG_AD_SHORT: 1797 sad = (struct short_ad *)ptr; 1798 sad->extLength = cpu_to_le32(elen); 1799 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1800 adsize = sizeof(struct short_ad); 1801 break; 1802 case ICBTAG_FLAG_AD_LONG: 1803 lad = (struct long_ad *)ptr; 1804 lad->extLength = cpu_to_le32(elen); 1805 lad->extLocation = cpu_to_lelb(*eloc); 1806 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1807 adsize = sizeof(struct long_ad); 1808 break; 1809 default: 1810 return -1; 1811 } 1812 1813 if (epos->bh) { 1814 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1815 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1816 struct allocExtDesc *aed = 1817 (struct allocExtDesc *)epos->bh->b_data; 1818 udf_update_tag(epos->bh->b_data, 1819 le32_to_cpu(aed->lengthAllocDescs) + 1820 sizeof(struct allocExtDesc)); 1821 } 1822 mark_buffer_dirty_inode(epos->bh, inode); 1823 } else { 1824 mark_inode_dirty(inode); 1825 } 1826 1827 if (inc) 1828 epos->offset += adsize; 1829 1830 return (elen >> 30); 1831 } 1832 1833 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1834 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1835 { 1836 int8_t etype; 1837 1838 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1839 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1840 int block; 1841 epos->block = *eloc; 1842 epos->offset = sizeof(struct allocExtDesc); 1843 brelse(epos->bh); 1844 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1845 epos->bh = udf_tread(inode->i_sb, block); 1846 if (!epos->bh) { 1847 udf_debug("reading block %d failed!\n", block); 1848 return -1; 1849 } 1850 } 1851 1852 return etype; 1853 } 1854 1855 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1856 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1857 { 1858 int alen; 1859 int8_t etype; 1860 uint8_t *ptr; 1861 struct short_ad *sad; 1862 struct long_ad *lad; 1863 struct udf_inode_info *iinfo = UDF_I(inode); 1864 1865 if (!epos->bh) { 1866 if (!epos->offset) 1867 epos->offset = udf_file_entry_alloc_offset(inode); 1868 ptr = iinfo->i_ext.i_data + epos->offset - 1869 udf_file_entry_alloc_offset(inode) + 1870 iinfo->i_lenEAttr; 1871 alen = udf_file_entry_alloc_offset(inode) + 1872 iinfo->i_lenAlloc; 1873 } else { 1874 if (!epos->offset) 1875 epos->offset = sizeof(struct allocExtDesc); 1876 ptr = epos->bh->b_data + epos->offset; 1877 alen = sizeof(struct allocExtDesc) + 1878 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1879 lengthAllocDescs); 1880 } 1881 1882 switch (iinfo->i_alloc_type) { 1883 case ICBTAG_FLAG_AD_SHORT: 1884 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1885 if (!sad) 1886 return -1; 1887 etype = le32_to_cpu(sad->extLength) >> 30; 1888 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1889 eloc->partitionReferenceNum = 1890 iinfo->i_location.partitionReferenceNum; 1891 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1892 break; 1893 case ICBTAG_FLAG_AD_LONG: 1894 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1895 if (!lad) 1896 return -1; 1897 etype = le32_to_cpu(lad->extLength) >> 30; 1898 *eloc = lelb_to_cpu(lad->extLocation); 1899 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1900 break; 1901 default: 1902 udf_debug("alloc_type = %d unsupported\n", 1903 iinfo->i_alloc_type); 1904 return -1; 1905 } 1906 1907 return etype; 1908 } 1909 1910 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1911 struct kernel_lb_addr neloc, uint32_t nelen) 1912 { 1913 struct kernel_lb_addr oeloc; 1914 uint32_t oelen; 1915 int8_t etype; 1916 1917 if (epos.bh) 1918 get_bh(epos.bh); 1919 1920 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1921 udf_write_aext(inode, &epos, &neloc, nelen, 1); 1922 neloc = oeloc; 1923 nelen = (etype << 30) | oelen; 1924 } 1925 udf_add_aext(inode, &epos, &neloc, nelen, 1); 1926 brelse(epos.bh); 1927 1928 return (nelen >> 30); 1929 } 1930 1931 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1932 struct kernel_lb_addr eloc, uint32_t elen) 1933 { 1934 struct extent_position oepos; 1935 int adsize; 1936 int8_t etype; 1937 struct allocExtDesc *aed; 1938 struct udf_inode_info *iinfo; 1939 1940 if (epos.bh) { 1941 get_bh(epos.bh); 1942 get_bh(epos.bh); 1943 } 1944 1945 iinfo = UDF_I(inode); 1946 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1947 adsize = sizeof(struct short_ad); 1948 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1949 adsize = sizeof(struct long_ad); 1950 else 1951 adsize = 0; 1952 1953 oepos = epos; 1954 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1955 return -1; 1956 1957 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1958 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 1959 if (oepos.bh != epos.bh) { 1960 oepos.block = epos.block; 1961 brelse(oepos.bh); 1962 get_bh(epos.bh); 1963 oepos.bh = epos.bh; 1964 oepos.offset = epos.offset - adsize; 1965 } 1966 } 1967 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 1968 elen = 0; 1969 1970 if (epos.bh != oepos.bh) { 1971 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 1972 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1973 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1974 if (!oepos.bh) { 1975 iinfo->i_lenAlloc -= (adsize * 2); 1976 mark_inode_dirty(inode); 1977 } else { 1978 aed = (struct allocExtDesc *)oepos.bh->b_data; 1979 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1980 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1981 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1982 udf_update_tag(oepos.bh->b_data, 1983 oepos.offset - (2 * adsize)); 1984 else 1985 udf_update_tag(oepos.bh->b_data, 1986 sizeof(struct allocExtDesc)); 1987 mark_buffer_dirty_inode(oepos.bh, inode); 1988 } 1989 } else { 1990 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1991 if (!oepos.bh) { 1992 iinfo->i_lenAlloc -= adsize; 1993 mark_inode_dirty(inode); 1994 } else { 1995 aed = (struct allocExtDesc *)oepos.bh->b_data; 1996 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1997 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1998 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1999 udf_update_tag(oepos.bh->b_data, 2000 epos.offset - adsize); 2001 else 2002 udf_update_tag(oepos.bh->b_data, 2003 sizeof(struct allocExtDesc)); 2004 mark_buffer_dirty_inode(oepos.bh, inode); 2005 } 2006 } 2007 2008 brelse(epos.bh); 2009 brelse(oepos.bh); 2010 2011 return (elen >> 30); 2012 } 2013 2014 int8_t inode_bmap(struct inode *inode, sector_t block, 2015 struct extent_position *pos, struct kernel_lb_addr *eloc, 2016 uint32_t *elen, sector_t *offset) 2017 { 2018 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2019 loff_t lbcount = 0, bcount = 2020 (loff_t) block << blocksize_bits; 2021 int8_t etype; 2022 struct udf_inode_info *iinfo; 2023 2024 iinfo = UDF_I(inode); 2025 pos->offset = 0; 2026 pos->block = iinfo->i_location; 2027 pos->bh = NULL; 2028 *elen = 0; 2029 2030 do { 2031 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2032 if (etype == -1) { 2033 *offset = (bcount - lbcount) >> blocksize_bits; 2034 iinfo->i_lenExtents = lbcount; 2035 return -1; 2036 } 2037 lbcount += *elen; 2038 } while (lbcount <= bcount); 2039 2040 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2041 2042 return etype; 2043 } 2044 2045 long udf_block_map(struct inode *inode, sector_t block) 2046 { 2047 struct kernel_lb_addr eloc; 2048 uint32_t elen; 2049 sector_t offset; 2050 struct extent_position epos = {}; 2051 int ret; 2052 2053 lock_kernel(); 2054 2055 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2056 (EXT_RECORDED_ALLOCATED >> 30)) 2057 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2058 else 2059 ret = 0; 2060 2061 unlock_kernel(); 2062 brelse(epos.bh); 2063 2064 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2065 return udf_fixed_to_variable(ret); 2066 else 2067 return ret; 2068 } 2069