xref: /openbmc/linux/fs/udf/inode.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
23  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
24  *                block boundaries (which is not actually allowed)
25  *  12/20/98      added support for strategy 4096
26  *  03/07/99      rewrote udf_block_map (again)
27  *                New funcs, inode_bmap, udf_next_aext
28  *  04/19/99      Support for writing device EA's for major/minor #
29  */
30 
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 
40 #include "udf_i.h"
41 #include "udf_sb.h"
42 
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
46 
47 #define EXTENT_MERGE_SIZE 5
48 
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54 					long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56 			      kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60 				 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64 			       kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65 			       struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67 
68 /*
69  * udf_delete_inode
70  *
71  * PURPOSE
72  *	Clean-up before the specified inode is destroyed.
73  *
74  * DESCRIPTION
75  *	This routine is called when the kernel destroys an inode structure
76  *	ie. when iput() finds i_count == 0.
77  *
78  * HISTORY
79  *	July 1, 1997 - Andrew E. Mileski
80  *	Written, tested, and released.
81  *
82  *  Called at the last iput() if i_nlink is zero.
83  */
84 void udf_delete_inode(struct inode *inode)
85 {
86 	truncate_inode_pages(&inode->i_data, 0);
87 
88 	if (is_bad_inode(inode))
89 		goto no_delete;
90 
91 	inode->i_size = 0;
92 	udf_truncate(inode);
93 	lock_kernel();
94 
95 	udf_update_inode(inode, IS_SYNC(inode));
96 	udf_free_inode(inode);
97 
98 	unlock_kernel();
99 	return;
100 
101 no_delete:
102 	clear_inode(inode);
103 }
104 
105 /*
106  * If we are going to release inode from memory, we discard preallocation and
107  * truncate last inode extent to proper length. We could use drop_inode() but
108  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
109  * use clear_inode() but we have to make sure to write inode as it's not written
110  * automatically.
111  */
112 void udf_clear_inode(struct inode *inode)
113 {
114 	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115 		lock_kernel();
116 		/* Discard preallocation for directories, symlinks, etc. */
117 		udf_discard_prealloc(inode);
118 		udf_truncate_tail_extent(inode);
119 		unlock_kernel();
120 		write_inode_now(inode, 1);
121 	}
122 	kfree(UDF_I_DATA(inode));
123 	UDF_I_DATA(inode) = NULL;
124 }
125 
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
127 {
128 	return block_write_full_page(page, udf_get_block, wbc);
129 }
130 
131 static int udf_readpage(struct file *file, struct page *page)
132 {
133 	return block_read_full_page(page, udf_get_block);
134 }
135 
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137 			loff_t pos, unsigned len, unsigned flags,
138 			struct page **pagep, void **fsdata)
139 {
140 	*pagep = NULL;
141 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
142 				udf_get_block);
143 }
144 
145 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
146 {
147 	return generic_block_bmap(mapping, block, udf_get_block);
148 }
149 
150 const struct address_space_operations udf_aops = {
151 	.readpage	= udf_readpage,
152 	.writepage	= udf_writepage,
153 	.sync_page	= block_sync_page,
154 	.write_begin		= udf_write_begin,
155 	.write_end		= generic_write_end,
156 	.bmap		= udf_bmap,
157 };
158 
159 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
160 {
161 	struct page *page;
162 	char *kaddr;
163 	struct writeback_control udf_wbc = {
164 		.sync_mode = WB_SYNC_NONE,
165 		.nr_to_write = 1,
166 	};
167 
168 	/* from now on we have normal address_space methods */
169 	inode->i_data.a_ops = &udf_aops;
170 
171 	if (!UDF_I_LENALLOC(inode)) {
172 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
173 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
174 		else
175 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
176 		mark_inode_dirty(inode);
177 		return;
178 	}
179 
180 	page = grab_cache_page(inode->i_mapping, 0);
181 	BUG_ON(!PageLocked(page));
182 
183 	if (!PageUptodate(page)) {
184 		kaddr = kmap(page);
185 		memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
186 		       PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
187 		memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
188 		       UDF_I_LENALLOC(inode));
189 		flush_dcache_page(page);
190 		SetPageUptodate(page);
191 		kunmap(page);
192 	}
193 	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
194 	       UDF_I_LENALLOC(inode));
195 	UDF_I_LENALLOC(inode) = 0;
196 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
197 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
198 	else
199 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
200 
201 	inode->i_data.a_ops->writepage(page, &udf_wbc);
202 	page_cache_release(page);
203 
204 	mark_inode_dirty(inode);
205 }
206 
207 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
208 					   int *err)
209 {
210 	int newblock;
211 	struct buffer_head *dbh = NULL;
212 	kernel_lb_addr eloc;
213 	uint32_t elen;
214 	uint8_t alloctype;
215 	struct extent_position epos;
216 
217 	struct udf_fileident_bh sfibh, dfibh;
218 	loff_t f_pos = udf_ext0_offset(inode) >> 2;
219 	int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
220 	struct fileIdentDesc cfi, *sfi, *dfi;
221 
222 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
223 		alloctype = ICBTAG_FLAG_AD_SHORT;
224 	else
225 		alloctype = ICBTAG_FLAG_AD_LONG;
226 
227 	if (!inode->i_size) {
228 		UDF_I_ALLOCTYPE(inode) = alloctype;
229 		mark_inode_dirty(inode);
230 		return NULL;
231 	}
232 
233 	/* alloc block, and copy data to it */
234 	*block = udf_new_block(inode->i_sb, inode,
235 			       UDF_I_LOCATION(inode).partitionReferenceNum,
236 			       UDF_I_LOCATION(inode).logicalBlockNum, err);
237 	if (!(*block))
238 		return NULL;
239 	newblock = udf_get_pblock(inode->i_sb, *block,
240 				  UDF_I_LOCATION(inode).partitionReferenceNum, 0);
241 	if (!newblock)
242 		return NULL;
243 	dbh = udf_tgetblk(inode->i_sb, newblock);
244 	if (!dbh)
245 		return NULL;
246 	lock_buffer(dbh);
247 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
248 	set_buffer_uptodate(dbh);
249 	unlock_buffer(dbh);
250 	mark_buffer_dirty_inode(dbh, inode);
251 
252 	sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
253 	sfibh.sbh = sfibh.ebh = NULL;
254 	dfibh.soffset = dfibh.eoffset = 0;
255 	dfibh.sbh = dfibh.ebh = dbh;
256 	while ((f_pos < size)) {
257 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
258 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
259 		if (!sfi) {
260 			brelse(dbh);
261 			return NULL;
262 		}
263 		UDF_I_ALLOCTYPE(inode) = alloctype;
264 		sfi->descTag.tagLocation = cpu_to_le32(*block);
265 		dfibh.soffset = dfibh.eoffset;
266 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
267 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
268 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
269 				 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
270 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
271 			brelse(dbh);
272 			return NULL;
273 		}
274 	}
275 	mark_buffer_dirty_inode(dbh, inode);
276 
277 	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
278 	UDF_I_LENALLOC(inode) = 0;
279 	eloc.logicalBlockNum = *block;
280 	eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
281 	elen = inode->i_size;
282 	UDF_I_LENEXTENTS(inode) = elen;
283 	epos.bh = NULL;
284 	epos.block = UDF_I_LOCATION(inode);
285 	epos.offset = udf_file_entry_alloc_offset(inode);
286 	udf_add_aext(inode, &epos, eloc, elen, 0);
287 	/* UniqueID stuff */
288 
289 	brelse(epos.bh);
290 	mark_inode_dirty(inode);
291 	return dbh;
292 }
293 
294 static int udf_get_block(struct inode *inode, sector_t block,
295 			 struct buffer_head *bh_result, int create)
296 {
297 	int err, new;
298 	struct buffer_head *bh;
299 	unsigned long phys;
300 
301 	if (!create) {
302 		phys = udf_block_map(inode, block);
303 		if (phys)
304 			map_bh(bh_result, inode->i_sb, phys);
305 		return 0;
306 	}
307 
308 	err = -EIO;
309 	new = 0;
310 	bh = NULL;
311 
312 	lock_kernel();
313 
314 	if (block < 0)
315 		goto abort_negative;
316 
317 	if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
318 		UDF_I_NEXT_ALLOC_BLOCK(inode)++;
319 		UDF_I_NEXT_ALLOC_GOAL(inode)++;
320 	}
321 
322 	err = 0;
323 
324 	bh = inode_getblk(inode, block, &err, &phys, &new);
325 	BUG_ON(bh);
326 	if (err)
327 		goto abort;
328 	BUG_ON(!phys);
329 
330 	if (new)
331 		set_buffer_new(bh_result);
332 	map_bh(bh_result, inode->i_sb, phys);
333 
334 abort:
335 	unlock_kernel();
336 	return err;
337 
338 abort_negative:
339 	udf_warning(inode->i_sb, "udf_get_block", "block < 0");
340 	goto abort;
341 }
342 
343 static struct buffer_head *udf_getblk(struct inode *inode, long block,
344 				      int create, int *err)
345 {
346 	struct buffer_head *bh;
347 	struct buffer_head dummy;
348 
349 	dummy.b_state = 0;
350 	dummy.b_blocknr = -1000;
351 	*err = udf_get_block(inode, block, &dummy, create);
352 	if (!*err && buffer_mapped(&dummy)) {
353 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
354 		if (buffer_new(&dummy)) {
355 			lock_buffer(bh);
356 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
357 			set_buffer_uptodate(bh);
358 			unlock_buffer(bh);
359 			mark_buffer_dirty_inode(bh, inode);
360 		}
361 		return bh;
362 	}
363 
364 	return NULL;
365 }
366 
367 /* Extend the file by 'blocks' blocks, return the number of extents added */
368 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
369 		    kernel_long_ad * last_ext, sector_t blocks)
370 {
371 	sector_t add;
372 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
373 	struct super_block *sb = inode->i_sb;
374 	kernel_lb_addr prealloc_loc = {};
375 	int prealloc_len = 0;
376 
377 	/* The previous extent is fake and we should not extend by anything
378 	 * - there's nothing to do... */
379 	if (!blocks && fake)
380 		return 0;
381 
382 	/* Round the last extent up to a multiple of block size */
383 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
384 		last_ext->extLength =
385 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
386 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
387 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
388 		UDF_I_LENEXTENTS(inode) =
389 			(UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
390 			~(sb->s_blocksize - 1);
391 	}
392 
393 	/* Last extent are just preallocated blocks? */
394 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
395 		/* Save the extent so that we can reattach it to the end */
396 		prealloc_loc = last_ext->extLocation;
397 		prealloc_len = last_ext->extLength;
398 		/* Mark the extent as a hole */
399 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
400 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
401 		last_ext->extLocation.logicalBlockNum = 0;
402        		last_ext->extLocation.partitionReferenceNum = 0;
403 	}
404 
405 	/* Can we merge with the previous extent? */
406 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
407 		add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
408 						      UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
409 		if (add > blocks)
410 			add = blocks;
411 		blocks -= add;
412 		last_ext->extLength += add << sb->s_blocksize_bits;
413 	}
414 
415 	if (fake) {
416 		udf_add_aext(inode, last_pos, last_ext->extLocation,
417 			     last_ext->extLength, 1);
418 		count++;
419 	} else {
420 		udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
421 	}
422 
423 	/* Managed to do everything necessary? */
424 	if (!blocks)
425 		goto out;
426 
427 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
428 	last_ext->extLocation.logicalBlockNum = 0;
429        	last_ext->extLocation.partitionReferenceNum = 0;
430 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
431 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
432 
433 	/* Create enough extents to cover the whole hole */
434 	while (blocks > add) {
435 		blocks -= add;
436 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
437 				 last_ext->extLength, 1) == -1)
438 			return -1;
439 		count++;
440 	}
441 	if (blocks) {
442 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443 			(blocks << sb->s_blocksize_bits);
444 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
445 				 last_ext->extLength, 1) == -1)
446 			return -1;
447 		count++;
448 	}
449 
450 out:
451 	/* Do we have some preallocated blocks saved? */
452 	if (prealloc_len) {
453 		if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
454 			return -1;
455 		last_ext->extLocation = prealloc_loc;
456 		last_ext->extLength = prealloc_len;
457 		count++;
458 	}
459 
460 	/* last_pos should point to the last written extent... */
461 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
462 		last_pos->offset -= sizeof(short_ad);
463 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
464 		last_pos->offset -= sizeof(long_ad);
465 	else
466 		return -1;
467 
468 	return count;
469 }
470 
471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
472 					int *err, long *phys, int *new)
473 {
474 	static sector_t last_block;
475 	struct buffer_head *result = NULL;
476 	kernel_long_ad laarr[EXTENT_MERGE_SIZE];
477 	struct extent_position prev_epos, cur_epos, next_epos;
478 	int count = 0, startnum = 0, endnum = 0;
479 	uint32_t elen = 0, tmpelen;
480 	kernel_lb_addr eloc, tmpeloc;
481 	int c = 1;
482 	loff_t lbcount = 0, b_off = 0;
483 	uint32_t newblocknum, newblock;
484 	sector_t offset = 0;
485 	int8_t etype;
486 	int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
487 	int lastblock = 0;
488 
489 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
490 	prev_epos.block = UDF_I_LOCATION(inode);
491 	prev_epos.bh = NULL;
492 	cur_epos = next_epos = prev_epos;
493 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
494 
495 	/* find the extent which contains the block we are looking for.
496 	   alternate between laarr[0] and laarr[1] for locations of the
497 	   current extent, and the previous extent */
498 	do {
499 		if (prev_epos.bh != cur_epos.bh) {
500 			brelse(prev_epos.bh);
501 			get_bh(cur_epos.bh);
502 			prev_epos.bh = cur_epos.bh;
503 		}
504 		if (cur_epos.bh != next_epos.bh) {
505 			brelse(cur_epos.bh);
506 			get_bh(next_epos.bh);
507 			cur_epos.bh = next_epos.bh;
508 		}
509 
510 		lbcount += elen;
511 
512 		prev_epos.block = cur_epos.block;
513 		cur_epos.block = next_epos.block;
514 
515 		prev_epos.offset = cur_epos.offset;
516 		cur_epos.offset = next_epos.offset;
517 
518 		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
519 			break;
520 
521 		c = !c;
522 
523 		laarr[c].extLength = (etype << 30) | elen;
524 		laarr[c].extLocation = eloc;
525 
526 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527 			pgoal = eloc.logicalBlockNum +
528 				((elen + inode->i_sb->s_blocksize - 1) >>
529 				 inode->i_sb->s_blocksize_bits);
530 
531 		count++;
532 	} while (lbcount + elen <= b_off);
533 
534 	b_off -= lbcount;
535 	offset = b_off >> inode->i_sb->s_blocksize_bits;
536 	/*
537 	 * Move prev_epos and cur_epos into indirect extent if we are at
538 	 * the pointer to it
539 	 */
540 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542 
543 	/* if the extent is allocated and recorded, return the block
544 	   if the extent is not a multiple of the blocksize, round up */
545 
546 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547 		if (elen & (inode->i_sb->s_blocksize - 1)) {
548 			elen = EXT_RECORDED_ALLOCATED |
549 				((elen + inode->i_sb->s_blocksize - 1) &
550 				 ~(inode->i_sb->s_blocksize - 1));
551 			etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
552 		}
553 		brelse(prev_epos.bh);
554 		brelse(cur_epos.bh);
555 		brelse(next_epos.bh);
556 		newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
557 		*phys = newblock;
558 		return NULL;
559 	}
560 
561 	last_block = block;
562 	/* Are we beyond EOF? */
563 	if (etype == -1) {
564 		int ret;
565 
566 		if (count) {
567 			if (c)
568 				laarr[0] = laarr[1];
569 			startnum = 1;
570 		} else {
571 			/* Create a fake extent when there's not one */
572 			memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
573 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574 			/* Will udf_extend_file() create real extent from a fake one? */
575 			startnum = (offset > 0);
576 		}
577 		/* Create extents for the hole between EOF and offset */
578 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
579 		if (ret == -1) {
580 			brelse(prev_epos.bh);
581 			brelse(cur_epos.bh);
582 			brelse(next_epos.bh);
583 			/* We don't really know the error here so we just make
584 			 * something up */
585 			*err = -ENOSPC;
586 			return NULL;
587 		}
588 		c = 0;
589 		offset = 0;
590 		count += ret;
591 		/* We are not covered by a preallocated extent? */
592 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
593 			/* Is there any real extent? - otherwise we overwrite
594 			 * the fake one... */
595 			if (count)
596 				c = !c;
597 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
598 				inode->i_sb->s_blocksize;
599 			memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
600 			count++;
601 			endnum++;
602 		}
603 		endnum = c + 1;
604 		lastblock = 1;
605 	} else {
606 		endnum = startnum = ((count > 2) ? 2 : count);
607 
608 		/* if the current extent is in position 0, swap it with the previous */
609 		if (!c && count != 1) {
610 			laarr[2] = laarr[0];
611 			laarr[0] = laarr[1];
612 			laarr[1] = laarr[2];
613 			c = 1;
614 		}
615 
616 		/* if the current block is located in an extent, read the next extent */
617 		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
618 			laarr[c + 1].extLength = (etype << 30) | elen;
619 			laarr[c + 1].extLocation = eloc;
620 			count++;
621 			startnum++;
622 			endnum++;
623 		} else {
624 			lastblock = 1;
625 		}
626 	}
627 
628 	/* if the current extent is not recorded but allocated, get the
629 	 * block in the extent corresponding to the requested block */
630 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
631 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
632 	} else { /* otherwise, allocate a new block */
633 		if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
634 			goal = UDF_I_NEXT_ALLOC_GOAL(inode);
635 
636 		if (!goal) {
637 			if (!(goal = pgoal))
638 				goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
639 		}
640 
641 		if (!(newblocknum = udf_new_block(inode->i_sb, inode,
642 						  UDF_I_LOCATION(inode).partitionReferenceNum,
643 						  goal, err))) {
644 			brelse(prev_epos.bh);
645 			*err = -ENOSPC;
646 			return NULL;
647 		}
648 		UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
649 	}
650 
651 	/* if the extent the requsted block is located in contains multiple blocks,
652 	 * split the extent into at most three extents. blocks prior to requested
653 	 * block, requested block, and blocks after requested block */
654 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
655 
656 #ifdef UDF_PREALLOCATE
657 	/* preallocate blocks */
658 	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
659 #endif
660 
661 	/* merge any continuous blocks in laarr */
662 	udf_merge_extents(inode, laarr, &endnum);
663 
664 	/* write back the new extents, inserting new extents if the new number
665 	 * of extents is greater than the old number, and deleting extents if
666 	 * the new number of extents is less than the old number */
667 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
668 
669 	brelse(prev_epos.bh);
670 
671 	if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
672 					UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
673 		return NULL;
674 	}
675 	*phys = newblock;
676 	*err = 0;
677 	*new = 1;
678 	UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
679 	UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
680 	inode->i_ctime = current_fs_time(inode->i_sb);
681 
682 	if (IS_SYNC(inode))
683 		udf_sync_inode(inode);
684 	else
685 		mark_inode_dirty(inode);
686 
687 	return result;
688 }
689 
690 static void udf_split_extents(struct inode *inode, int *c, int offset,
691 			      int newblocknum,
692 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
693 			      int *endnum)
694 {
695 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
696 	    (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
697 		int curr = *c;
698 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
699 			    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
700 		int8_t etype = (laarr[curr].extLength >> 30);
701 
702 		if (blen == 1) {
703 			;
704 		} else if (!offset || blen == offset + 1) {
705 			laarr[curr + 2] = laarr[curr + 1];
706 			laarr[curr + 1] = laarr[curr];
707 		} else {
708 			laarr[curr + 3] = laarr[curr + 1];
709 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
710 		}
711 
712 		if (offset) {
713 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
714 				udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
715 				laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
716 					(offset << inode->i_sb->s_blocksize_bits);
717 				laarr[curr].extLocation.logicalBlockNum = 0;
718 				laarr[curr].extLocation.partitionReferenceNum = 0;
719 			} else {
720 				laarr[curr].extLength = (etype << 30) |
721 					(offset << inode->i_sb->s_blocksize_bits);
722 			}
723 			curr++;
724 			(*c)++;
725 			(*endnum)++;
726 		}
727 
728 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
729 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
730 			laarr[curr].extLocation.partitionReferenceNum =
731 				UDF_I_LOCATION(inode).partitionReferenceNum;
732 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
733 			inode->i_sb->s_blocksize;
734 		curr++;
735 
736 		if (blen != offset + 1) {
737 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
738 				laarr[curr].extLocation.logicalBlockNum += (offset + 1);
739 			laarr[curr].extLength = (etype << 30) |
740 				((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
741 			curr++;
742 			(*endnum)++;
743 		}
744 	}
745 }
746 
747 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
748 				 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
749 				 int *endnum)
750 {
751 	int start, length = 0, currlength = 0, i;
752 
753 	if (*endnum >= (c + 1)) {
754 		if (!lastblock)
755 			return;
756 		else
757 			start = c;
758 	} else {
759 		if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
760 			start = c + 1;
761 			length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
762 						inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
763 		} else {
764 			start = c;
765 		}
766 	}
767 
768 	for (i = start + 1; i <= *endnum; i++) {
769 		if (i == *endnum) {
770 			if (lastblock)
771 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
772 		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
773 			length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
774 				    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
775 		} else {
776 			break;
777 		}
778 	}
779 
780 	if (length) {
781 		int next = laarr[start].extLocation.logicalBlockNum +
782 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
783 			  inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
784 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
785 						   laarr[start].extLocation.partitionReferenceNum,
786 						   next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
787 							  UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
788 		if (numalloc) 	{
789 			if (start == (c + 1)) {
790 				laarr[start].extLength +=
791 					(numalloc << inode->i_sb->s_blocksize_bits);
792 			} else {
793 				memmove(&laarr[c + 2], &laarr[c + 1],
794 					sizeof(long_ad) * (*endnum - (c + 1)));
795 				(*endnum)++;
796 				laarr[c + 1].extLocation.logicalBlockNum = next;
797 				laarr[c + 1].extLocation.partitionReferenceNum =
798 					laarr[c].extLocation.partitionReferenceNum;
799 				laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
800 					(numalloc << inode->i_sb->s_blocksize_bits);
801 				start = c + 1;
802 			}
803 
804 			for (i = start + 1; numalloc && i < *endnum; i++) {
805 				int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
806 					    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
807 
808 				if (elen > numalloc) {
809 					laarr[i].extLength -=
810 						(numalloc << inode->i_sb->s_blocksize_bits);
811 					numalloc = 0;
812 				} else {
813 					numalloc -= elen;
814 					if (*endnum > (i + 1))
815 						memmove(&laarr[i], &laarr[i + 1],
816 							sizeof(long_ad) * (*endnum - (i + 1)));
817 					i--;
818 					(*endnum)--;
819 				}
820 			}
821 			UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
822 		}
823 	}
824 }
825 
826 static void udf_merge_extents(struct inode *inode,
827 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
828 			      int *endnum)
829 {
830 	int i;
831 
832 	for (i = 0; i < (*endnum - 1); i++) {
833 		if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
834 			if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
835 			    ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
836 			     (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
837 			       inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
838 				if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
839 				     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
840 				     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
841 					laarr[i + 1].extLength = (laarr[i + 1].extLength -
842 								  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
843 								  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
844 					laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
845 						(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
846 					laarr[i + 1].extLocation.logicalBlockNum =
847 						laarr[i].extLocation.logicalBlockNum +
848 						((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
849 						 inode->i_sb->s_blocksize_bits);
850 				} else {
851 					laarr[i].extLength = laarr[i + 1].extLength +
852 						(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
853 						  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
854 					if (*endnum > (i + 2))
855 						memmove(&laarr[i + 1], &laarr[i + 2],
856 							sizeof(long_ad) * (*endnum - (i + 2)));
857 					i--;
858 					(*endnum)--;
859 				}
860 			}
861 		} else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
862 			   ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
863 			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
864 					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
865 					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
866 			laarr[i].extLocation.logicalBlockNum = 0;
867 			laarr[i].extLocation.partitionReferenceNum = 0;
868 
869 			if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
870 			     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
871 			     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
872 				laarr[i + 1].extLength = (laarr[i + 1].extLength -
873 							  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
874 							  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
875 				laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
876 					(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
877 			} else {
878 				laarr[i].extLength = laarr[i + 1].extLength +
879 					(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
880 					  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
881 				if (*endnum > (i + 2))
882 					memmove(&laarr[i + 1], &laarr[i + 2],
883 						sizeof(long_ad) * (*endnum - (i + 2)));
884 				i--;
885 				(*endnum)--;
886 			}
887 		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
888 			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
889 					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
890 					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
891 			laarr[i].extLocation.logicalBlockNum = 0;
892 			laarr[i].extLocation.partitionReferenceNum = 0;
893 			laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
894 				EXT_NOT_RECORDED_NOT_ALLOCATED;
895 		}
896 	}
897 }
898 
899 static void udf_update_extents(struct inode *inode,
900 			       kernel_long_ad laarr[EXTENT_MERGE_SIZE],
901 			       int startnum, int endnum,
902 			       struct extent_position *epos)
903 {
904 	int start = 0, i;
905 	kernel_lb_addr tmploc;
906 	uint32_t tmplen;
907 
908 	if (startnum > endnum) {
909 		for (i = 0; i < (startnum - endnum); i++)
910 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
911 					laarr[i].extLength);
912 	} else if (startnum < endnum) {
913 		for (i = 0; i < (endnum - startnum); i++) {
914 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
915 					laarr[i].extLength);
916 			udf_next_aext(inode, epos, &laarr[i].extLocation,
917 				      &laarr[i].extLength, 1);
918 			start++;
919 		}
920 	}
921 
922 	for (i = start; i < endnum; i++) {
923 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
924 		udf_write_aext(inode, epos, laarr[i].extLocation,
925 			       laarr[i].extLength, 1);
926 	}
927 }
928 
929 struct buffer_head *udf_bread(struct inode *inode, int block,
930 			      int create, int *err)
931 {
932 	struct buffer_head *bh = NULL;
933 
934 	bh = udf_getblk(inode, block, create, err);
935 	if (!bh)
936 		return NULL;
937 
938 	if (buffer_uptodate(bh))
939 		return bh;
940 
941 	ll_rw_block(READ, 1, &bh);
942 
943 	wait_on_buffer(bh);
944 	if (buffer_uptodate(bh))
945 		return bh;
946 
947 	brelse(bh);
948 	*err = -EIO;
949 	return NULL;
950 }
951 
952 void udf_truncate(struct inode *inode)
953 {
954 	int offset;
955 	int err;
956 
957 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
958 	      S_ISLNK(inode->i_mode)))
959 		return;
960 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
961 		return;
962 
963 	lock_kernel();
964 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
965 		if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
966 						inode->i_size)) {
967 			udf_expand_file_adinicb(inode, inode->i_size, &err);
968 			if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
969 				inode->i_size = UDF_I_LENALLOC(inode);
970 				unlock_kernel();
971 				return;
972 			} else {
973 				udf_truncate_extents(inode);
974 			}
975 		} else {
976 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
977 			memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
978 			       inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
979 			UDF_I_LENALLOC(inode) = inode->i_size;
980 		}
981 	} else {
982 		block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
983 		udf_truncate_extents(inode);
984 	}
985 
986 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
987 	if (IS_SYNC(inode))
988 		udf_sync_inode(inode);
989 	else
990 		mark_inode_dirty(inode);
991 	unlock_kernel();
992 }
993 
994 static void __udf_read_inode(struct inode *inode)
995 {
996 	struct buffer_head *bh = NULL;
997 	struct fileEntry *fe;
998 	uint16_t ident;
999 
1000 	/*
1001 	 * Set defaults, but the inode is still incomplete!
1002 	 * Note: get_new_inode() sets the following on a new inode:
1003 	 *      i_sb = sb
1004 	 *      i_no = ino
1005 	 *      i_flags = sb->s_flags
1006 	 *      i_state = 0
1007 	 * clean_inode(): zero fills and sets
1008 	 *      i_count = 1
1009 	 *      i_nlink = 1
1010 	 *      i_op = NULL;
1011 	 */
1012 	bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1013 	if (!bh) {
1014 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1015 		       inode->i_ino);
1016 		make_bad_inode(inode);
1017 		return;
1018 	}
1019 
1020 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1021 	    ident != TAG_IDENT_USE) {
1022 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1023 		       inode->i_ino, ident);
1024 		brelse(bh);
1025 		make_bad_inode(inode);
1026 		return;
1027 	}
1028 
1029 	fe = (struct fileEntry *)bh->b_data;
1030 
1031 	if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1032 		struct buffer_head *ibh = NULL, *nbh = NULL;
1033 		struct indirectEntry *ie;
1034 
1035 		ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1036 		if (ident == TAG_IDENT_IE) {
1037 			if (ibh) {
1038 				kernel_lb_addr loc;
1039 				ie = (struct indirectEntry *)ibh->b_data;
1040 
1041 				loc = lelb_to_cpu(ie->indirectICB.extLocation);
1042 
1043 				if (ie->indirectICB.extLength &&
1044 				    (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1045 					if (ident == TAG_IDENT_FE ||
1046 					    ident == TAG_IDENT_EFE) {
1047 						memcpy(&UDF_I_LOCATION(inode), &loc,
1048 						       sizeof(kernel_lb_addr));
1049 						brelse(bh);
1050 						brelse(ibh);
1051 						brelse(nbh);
1052 						__udf_read_inode(inode);
1053 						return;
1054 					} else {
1055 						brelse(nbh);
1056 						brelse(ibh);
1057 					}
1058 				} else {
1059 					brelse(ibh);
1060 				}
1061 			}
1062 		} else {
1063 			brelse(ibh);
1064 		}
1065 	} else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1066 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1067 		       le16_to_cpu(fe->icbTag.strategyType));
1068 		brelse(bh);
1069 		make_bad_inode(inode);
1070 		return;
1071 	}
1072 	udf_fill_inode(inode, bh);
1073 
1074 	brelse(bh);
1075 }
1076 
1077 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1078 {
1079 	struct fileEntry *fe;
1080 	struct extendedFileEntry *efe;
1081 	time_t convtime;
1082 	long convtime_usec;
1083 	int offset;
1084 
1085 	fe = (struct fileEntry *)bh->b_data;
1086 	efe = (struct extendedFileEntry *)bh->b_data;
1087 
1088 	if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1089 		UDF_I_STRAT4096(inode) = 0;
1090 	else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1091 		UDF_I_STRAT4096(inode) = 1;
1092 
1093 	UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1094 	UDF_I_UNIQUE(inode) = 0;
1095 	UDF_I_LENEATTR(inode) = 0;
1096 	UDF_I_LENEXTENTS(inode) = 0;
1097 	UDF_I_LENALLOC(inode) = 0;
1098 	UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1099 	UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1100 	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1101 		UDF_I_EFE(inode) = 1;
1102 		UDF_I_USE(inode) = 0;
1103 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1104 			make_bad_inode(inode);
1105 			return;
1106 		}
1107 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1108 		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1109 	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1110 		UDF_I_EFE(inode) = 0;
1111 		UDF_I_USE(inode) = 0;
1112 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1113 			make_bad_inode(inode);
1114 			return;
1115 		}
1116 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1117 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1118 	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1119 		UDF_I_EFE(inode) = 0;
1120 		UDF_I_USE(inode) = 1;
1121 		UDF_I_LENALLOC(inode) =
1122 		    le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1123 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1124 			make_bad_inode(inode);
1125 			return;
1126 		}
1127 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1128 		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1129 		return;
1130 	}
1131 
1132 	inode->i_uid = le32_to_cpu(fe->uid);
1133 	if (inode->i_uid == -1 ||
1134 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1135 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1136 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1137 
1138 	inode->i_gid = le32_to_cpu(fe->gid);
1139 	if (inode->i_gid == -1 ||
1140 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1141 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1142 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1143 
1144 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1145 	if (!inode->i_nlink)
1146 		inode->i_nlink = 1;
1147 
1148 	inode->i_size = le64_to_cpu(fe->informationLength);
1149 	UDF_I_LENEXTENTS(inode) = inode->i_size;
1150 
1151 	inode->i_mode = udf_convert_permissions(fe);
1152 	inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1153 
1154 	if (UDF_I_EFE(inode) == 0) {
1155 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1156 			(inode->i_sb->s_blocksize_bits - 9);
1157 
1158 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1159 				      lets_to_cpu(fe->accessTime))) {
1160 			inode->i_atime.tv_sec = convtime;
1161 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1162 		} else {
1163 			inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1164 		}
1165 
1166 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1167 				      lets_to_cpu(fe->modificationTime))) {
1168 			inode->i_mtime.tv_sec = convtime;
1169 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1170 		} else {
1171 			inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1172 		}
1173 
1174 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1175 				      lets_to_cpu(fe->attrTime))) {
1176 			inode->i_ctime.tv_sec = convtime;
1177 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1178 		} else {
1179 			inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1180 		}
1181 
1182 		UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1183 		UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1184 		UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1185 		offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1186 	} else {
1187 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1188 		    (inode->i_sb->s_blocksize_bits - 9);
1189 
1190 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1191 				      lets_to_cpu(efe->accessTime))) {
1192 			inode->i_atime.tv_sec = convtime;
1193 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1194 		} else {
1195 			inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1196 		}
1197 
1198 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1199 				      lets_to_cpu(efe->modificationTime))) {
1200 			inode->i_mtime.tv_sec = convtime;
1201 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1202 		} else {
1203 			inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1204 		}
1205 
1206 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1207 				      lets_to_cpu(efe->createTime))) {
1208 			UDF_I_CRTIME(inode).tv_sec = convtime;
1209 			UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1210 		} else {
1211 			UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1212 		}
1213 
1214 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1215 				      lets_to_cpu(efe->attrTime))) {
1216 			inode->i_ctime.tv_sec = convtime;
1217 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1218 		} else {
1219 			inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1220 		}
1221 
1222 		UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1223 		UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1224 		UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1225 		offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1226 	}
1227 
1228 	switch (fe->icbTag.fileType) {
1229 	case ICBTAG_FILE_TYPE_DIRECTORY:
1230 		inode->i_op = &udf_dir_inode_operations;
1231 		inode->i_fop = &udf_dir_operations;
1232 		inode->i_mode |= S_IFDIR;
1233 		inc_nlink(inode);
1234 		break;
1235 	case ICBTAG_FILE_TYPE_REALTIME:
1236 	case ICBTAG_FILE_TYPE_REGULAR:
1237 	case ICBTAG_FILE_TYPE_UNDEF:
1238 		if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1239 			inode->i_data.a_ops = &udf_adinicb_aops;
1240 		else
1241 			inode->i_data.a_ops = &udf_aops;
1242 		inode->i_op = &udf_file_inode_operations;
1243 		inode->i_fop = &udf_file_operations;
1244 		inode->i_mode |= S_IFREG;
1245 		break;
1246 	case ICBTAG_FILE_TYPE_BLOCK:
1247 		inode->i_mode |= S_IFBLK;
1248 		break;
1249 	case ICBTAG_FILE_TYPE_CHAR:
1250 		inode->i_mode |= S_IFCHR;
1251 		break;
1252 	case ICBTAG_FILE_TYPE_FIFO:
1253 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1254 		break;
1255 	case ICBTAG_FILE_TYPE_SOCKET:
1256 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1257 		break;
1258 	case ICBTAG_FILE_TYPE_SYMLINK:
1259 		inode->i_data.a_ops = &udf_symlink_aops;
1260 		inode->i_op = &page_symlink_inode_operations;
1261 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1262 		break;
1263 	default:
1264 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1265 		       inode->i_ino, fe->icbTag.fileType);
1266 		make_bad_inode(inode);
1267 		return;
1268 	}
1269 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1270 		struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1271 		if (dsea) {
1272 			init_special_inode(inode, inode->i_mode,
1273 					   MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1274 						 le32_to_cpu(dsea->minorDeviceIdent)));
1275 			/* Developer ID ??? */
1276 		} else {
1277 			make_bad_inode(inode);
1278 		}
1279 	}
1280 }
1281 
1282 static int udf_alloc_i_data(struct inode *inode, size_t size)
1283 {
1284 	UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1285 
1286 	if (!UDF_I_DATA(inode)) {
1287 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1288 		       inode->i_ino);
1289 		return -ENOMEM;
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 static mode_t udf_convert_permissions(struct fileEntry *fe)
1296 {
1297 	mode_t mode;
1298 	uint32_t permissions;
1299 	uint32_t flags;
1300 
1301 	permissions = le32_to_cpu(fe->permissions);
1302 	flags = le16_to_cpu(fe->icbTag.flags);
1303 
1304 	mode =	(( permissions      ) & S_IRWXO) |
1305 		(( permissions >> 2 ) & S_IRWXG) |
1306 		(( permissions >> 4 ) & S_IRWXU) |
1307 		(( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1308 		(( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1309 		(( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1310 
1311 	return mode;
1312 }
1313 
1314 /*
1315  * udf_write_inode
1316  *
1317  * PURPOSE
1318  *	Write out the specified inode.
1319  *
1320  * DESCRIPTION
1321  *	This routine is called whenever an inode is synced.
1322  *	Currently this routine is just a placeholder.
1323  *
1324  * HISTORY
1325  *	July 1, 1997 - Andrew E. Mileski
1326  *	Written, tested, and released.
1327  */
1328 
1329 int udf_write_inode(struct inode *inode, int sync)
1330 {
1331 	int ret;
1332 
1333 	lock_kernel();
1334 	ret = udf_update_inode(inode, sync);
1335 	unlock_kernel();
1336 
1337 	return ret;
1338 }
1339 
1340 int udf_sync_inode(struct inode *inode)
1341 {
1342 	return udf_update_inode(inode, 1);
1343 }
1344 
1345 static int udf_update_inode(struct inode *inode, int do_sync)
1346 {
1347 	struct buffer_head *bh = NULL;
1348 	struct fileEntry *fe;
1349 	struct extendedFileEntry *efe;
1350 	uint32_t udfperms;
1351 	uint16_t icbflags;
1352 	uint16_t crclen;
1353 	int i;
1354 	kernel_timestamp cpu_time;
1355 	int err = 0;
1356 
1357 	bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1358 	if (!bh) {
1359 		udf_debug("bread failure\n");
1360 		return -EIO;
1361 	}
1362 
1363 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1364 
1365 	fe = (struct fileEntry *)bh->b_data;
1366 	efe = (struct extendedFileEntry *)bh->b_data;
1367 
1368 	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1369 		struct unallocSpaceEntry *use =
1370 			(struct unallocSpaceEntry *)bh->b_data;
1371 
1372 		use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1373 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1374 		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1375 		crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1376 		use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1377 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1378 		use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1379 
1380 		use->descTag.tagChecksum = 0;
1381 		for (i = 0; i < 16; i++) {
1382 			if (i != 4)
1383 				use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1384 		}
1385 
1386 		mark_buffer_dirty(bh);
1387 		brelse(bh);
1388 		return err;
1389 	}
1390 
1391 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1392 		fe->uid = cpu_to_le32(-1);
1393 	else
1394 		fe->uid = cpu_to_le32(inode->i_uid);
1395 
1396 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1397 		fe->gid = cpu_to_le32(-1);
1398 	else
1399 		fe->gid = cpu_to_le32(inode->i_gid);
1400 
1401 	udfperms =	((inode->i_mode & S_IRWXO)     ) |
1402 			((inode->i_mode & S_IRWXG) << 2) |
1403 			((inode->i_mode & S_IRWXU) << 4);
1404 
1405 	udfperms |=	(le32_to_cpu(fe->permissions) &
1406 			(FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1407 			 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1408 			 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1409 	fe->permissions = cpu_to_le32(udfperms);
1410 
1411 	if (S_ISDIR(inode->i_mode))
1412 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1413 	else
1414 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1415 
1416 	fe->informationLength = cpu_to_le64(inode->i_size);
1417 
1418 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1419 		regid *eid;
1420 		struct deviceSpec *dsea =
1421 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1422 		if (!dsea) {
1423 			dsea = (struct deviceSpec *)
1424 				udf_add_extendedattr(inode,
1425 						     sizeof(struct deviceSpec) +
1426 						     sizeof(regid), 12, 0x3);
1427 			dsea->attrType = cpu_to_le32(12);
1428 			dsea->attrSubtype = 1;
1429 			dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1430 						       sizeof(regid));
1431 			dsea->impUseLength = cpu_to_le32(sizeof(regid));
1432 		}
1433 		eid = (regid *)dsea->impUse;
1434 		memset(eid, 0, sizeof(regid));
1435 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1436 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1437 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1438 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1439 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1440 	}
1441 
1442 	if (UDF_I_EFE(inode) == 0) {
1443 		memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1444 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1445 		fe->logicalBlocksRecorded = cpu_to_le64(
1446 			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1447 			(inode->i_sb->s_blocksize_bits - 9));
1448 
1449 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1450 			fe->accessTime = cpu_to_lets(cpu_time);
1451 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1452 			fe->modificationTime = cpu_to_lets(cpu_time);
1453 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1454 			fe->attrTime = cpu_to_lets(cpu_time);
1455 		memset(&(fe->impIdent), 0, sizeof(regid));
1456 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1457 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1458 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1459 		fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1460 		fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1461 		fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1462 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1463 		crclen = sizeof(struct fileEntry);
1464 	} else {
1465 		memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1466 		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1467 		efe->objectSize = cpu_to_le64(inode->i_size);
1468 		efe->logicalBlocksRecorded = cpu_to_le64(
1469 			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1470 			(inode->i_sb->s_blocksize_bits - 9));
1471 
1472 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1473 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1474 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1475 			UDF_I_CRTIME(inode) = inode->i_atime;
1476 		}
1477 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1478 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1479 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1480 			UDF_I_CRTIME(inode) = inode->i_mtime;
1481 		}
1482 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1483 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1484 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1485 			UDF_I_CRTIME(inode) = inode->i_ctime;
1486 		}
1487 
1488 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1489 			efe->accessTime = cpu_to_lets(cpu_time);
1490 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1491 			efe->modificationTime = cpu_to_lets(cpu_time);
1492 		if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1493 			efe->createTime = cpu_to_lets(cpu_time);
1494 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1495 			efe->attrTime = cpu_to_lets(cpu_time);
1496 
1497 		memset(&(efe->impIdent), 0, sizeof(regid));
1498 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1499 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1500 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1501 		efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1502 		efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1503 		efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1504 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1505 		crclen = sizeof(struct extendedFileEntry);
1506 	}
1507 	if (UDF_I_STRAT4096(inode)) {
1508 		fe->icbTag.strategyType = cpu_to_le16(4096);
1509 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1510 		fe->icbTag.numEntries = cpu_to_le16(2);
1511 	} else {
1512 		fe->icbTag.strategyType = cpu_to_le16(4);
1513 		fe->icbTag.numEntries = cpu_to_le16(1);
1514 	}
1515 
1516 	if (S_ISDIR(inode->i_mode))
1517 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1518 	else if (S_ISREG(inode->i_mode))
1519 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1520 	else if (S_ISLNK(inode->i_mode))
1521 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1522 	else if (S_ISBLK(inode->i_mode))
1523 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1524 	else if (S_ISCHR(inode->i_mode))
1525 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1526 	else if (S_ISFIFO(inode->i_mode))
1527 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1528 	else if (S_ISSOCK(inode->i_mode))
1529 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1530 
1531 	icbflags =	UDF_I_ALLOCTYPE(inode) |
1532 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1533 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1534 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1535 			(le16_to_cpu(fe->icbTag.flags) &
1536 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1537 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1538 
1539 	fe->icbTag.flags = cpu_to_le16(icbflags);
1540 	if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1541 		fe->descTag.descVersion = cpu_to_le16(3);
1542 	else
1543 		fe->descTag.descVersion = cpu_to_le16(2);
1544 	fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1545 	fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1546 	crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1547 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1548 	fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1549 
1550 	fe->descTag.tagChecksum = 0;
1551 	for (i = 0; i < 16; i++) {
1552 		if (i != 4)
1553 			fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1554 	}
1555 
1556 	/* write the data blocks */
1557 	mark_buffer_dirty(bh);
1558 	if (do_sync) {
1559 		sync_dirty_buffer(bh);
1560 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1561 			printk("IO error syncing udf inode [%s:%08lx]\n",
1562 			       inode->i_sb->s_id, inode->i_ino);
1563 			err = -EIO;
1564 		}
1565 	}
1566 	brelse(bh);
1567 
1568 	return err;
1569 }
1570 
1571 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1572 {
1573 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1574 	struct inode *inode = iget_locked(sb, block);
1575 
1576 	if (!inode)
1577 		return NULL;
1578 
1579 	if (inode->i_state & I_NEW) {
1580 		memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1581 		__udf_read_inode(inode);
1582 		unlock_new_inode(inode);
1583 	}
1584 
1585 	if (is_bad_inode(inode))
1586 		goto out_iput;
1587 
1588 	if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1589 		udf_debug("block=%d, partition=%d out of range\n",
1590 			  ino.logicalBlockNum, ino.partitionReferenceNum);
1591 		make_bad_inode(inode);
1592 		goto out_iput;
1593 	}
1594 
1595 	return inode;
1596 
1597  out_iput:
1598 	iput(inode);
1599 	return NULL;
1600 }
1601 
1602 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1603 		    kernel_lb_addr eloc, uint32_t elen, int inc)
1604 {
1605 	int adsize;
1606 	short_ad *sad = NULL;
1607 	long_ad *lad = NULL;
1608 	struct allocExtDesc *aed;
1609 	int8_t etype;
1610 	uint8_t *ptr;
1611 
1612 	if (!epos->bh)
1613 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1614 	else
1615 		ptr = epos->bh->b_data + epos->offset;
1616 
1617 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1618 		adsize = sizeof(short_ad);
1619 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1620 		adsize = sizeof(long_ad);
1621 	else
1622 		return -1;
1623 
1624 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1625 		char *sptr, *dptr;
1626 		struct buffer_head *nbh;
1627 		int err, loffset;
1628 		kernel_lb_addr obloc = epos->block;
1629 
1630 		if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1631 								  obloc.partitionReferenceNum,
1632 								  obloc.logicalBlockNum, &err))) {
1633 			return -1;
1634 		}
1635 		if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1636 								       epos->block, 0)))) {
1637 			return -1;
1638 		}
1639 		lock_buffer(nbh);
1640 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1641 		set_buffer_uptodate(nbh);
1642 		unlock_buffer(nbh);
1643 		mark_buffer_dirty_inode(nbh, inode);
1644 
1645 		aed = (struct allocExtDesc *)(nbh->b_data);
1646 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1647 			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1648 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1649 			loffset = epos->offset;
1650 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1651 			sptr = ptr - adsize;
1652 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1653 			memcpy(dptr, sptr, adsize);
1654 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1655 		} else {
1656 			loffset = epos->offset + adsize;
1657 			aed->lengthAllocDescs = cpu_to_le32(0);
1658 			sptr = ptr;
1659 			epos->offset = sizeof(struct allocExtDesc);
1660 
1661 			if (epos->bh) {
1662 				aed = (struct allocExtDesc *)epos->bh->b_data;
1663 				aed->lengthAllocDescs =
1664 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1665 			} else {
1666 				UDF_I_LENALLOC(inode) += adsize;
1667 				mark_inode_dirty(inode);
1668 			}
1669 		}
1670 		if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1671 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1672 				    epos->block.logicalBlockNum, sizeof(tag));
1673 		else
1674 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1675 				    epos->block.logicalBlockNum, sizeof(tag));
1676 		switch (UDF_I_ALLOCTYPE(inode)) {
1677 		case ICBTAG_FLAG_AD_SHORT:
1678 			sad = (short_ad *)sptr;
1679 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1680 						     inode->i_sb->s_blocksize);
1681 			sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1682 			break;
1683 		case ICBTAG_FLAG_AD_LONG:
1684 			lad = (long_ad *)sptr;
1685 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1686 						     inode->i_sb->s_blocksize);
1687 			lad->extLocation = cpu_to_lelb(epos->block);
1688 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1689 			break;
1690 		}
1691 		if (epos->bh) {
1692 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1693 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1694 				udf_update_tag(epos->bh->b_data, loffset);
1695 			else
1696 				udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1697 			mark_buffer_dirty_inode(epos->bh, inode);
1698 			brelse(epos->bh);
1699 		} else {
1700 			mark_inode_dirty(inode);
1701 		}
1702 		epos->bh = nbh;
1703 	}
1704 
1705 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1706 
1707 	if (!epos->bh) {
1708 		UDF_I_LENALLOC(inode) += adsize;
1709 		mark_inode_dirty(inode);
1710 	} else {
1711 		aed = (struct allocExtDesc *)epos->bh->b_data;
1712 		aed->lengthAllocDescs =
1713 			cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1714 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1715 			udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1716 		else
1717 			udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1718 		mark_buffer_dirty_inode(epos->bh, inode);
1719 	}
1720 
1721 	return etype;
1722 }
1723 
1724 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1725 		      kernel_lb_addr eloc, uint32_t elen, int inc)
1726 {
1727 	int adsize;
1728 	uint8_t *ptr;
1729 	short_ad *sad;
1730 	long_ad *lad;
1731 
1732 	if (!epos->bh)
1733 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1734 	else
1735 		ptr = epos->bh->b_data + epos->offset;
1736 
1737 	switch (UDF_I_ALLOCTYPE(inode)) {
1738 	case ICBTAG_FLAG_AD_SHORT:
1739 		sad = (short_ad *)ptr;
1740 		sad->extLength = cpu_to_le32(elen);
1741 		sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1742 		adsize = sizeof(short_ad);
1743 		break;
1744 	case ICBTAG_FLAG_AD_LONG:
1745 		lad = (long_ad *)ptr;
1746 		lad->extLength = cpu_to_le32(elen);
1747 		lad->extLocation = cpu_to_lelb(eloc);
1748 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1749 		adsize = sizeof(long_ad);
1750 		break;
1751 	default:
1752 		return -1;
1753 	}
1754 
1755 	if (epos->bh) {
1756 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1757 		    UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1758 			struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1759 			udf_update_tag(epos->bh->b_data,
1760 				       le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1761 		}
1762 		mark_buffer_dirty_inode(epos->bh, inode);
1763 	} else {
1764 		mark_inode_dirty(inode);
1765 	}
1766 
1767 	if (inc)
1768 		epos->offset += adsize;
1769 
1770 	return (elen >> 30);
1771 }
1772 
1773 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1774 		     kernel_lb_addr * eloc, uint32_t * elen, int inc)
1775 {
1776 	int8_t etype;
1777 
1778 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1779 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1780 		epos->block = *eloc;
1781 		epos->offset = sizeof(struct allocExtDesc);
1782 		brelse(epos->bh);
1783 		if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1784 			udf_debug("reading block %d failed!\n",
1785 				  udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1786 			return -1;
1787 		}
1788 	}
1789 
1790 	return etype;
1791 }
1792 
1793 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1794 			kernel_lb_addr * eloc, uint32_t * elen, int inc)
1795 {
1796 	int alen;
1797 	int8_t etype;
1798 	uint8_t *ptr;
1799 	short_ad *sad;
1800 	long_ad *lad;
1801 
1802 
1803 	if (!epos->bh) {
1804 		if (!epos->offset)
1805 			epos->offset = udf_file_entry_alloc_offset(inode);
1806 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1807 		alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1808 	} else {
1809 		if (!epos->offset)
1810 			epos->offset = sizeof(struct allocExtDesc);
1811 		ptr = epos->bh->b_data + epos->offset;
1812 		alen = sizeof(struct allocExtDesc) +
1813 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1814 	}
1815 
1816 	switch (UDF_I_ALLOCTYPE(inode)) {
1817 	case ICBTAG_FLAG_AD_SHORT:
1818 		if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1819 			return -1;
1820 		etype = le32_to_cpu(sad->extLength) >> 30;
1821 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1822 		eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1823 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1824 		break;
1825 	case ICBTAG_FLAG_AD_LONG:
1826 		if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1827 			return -1;
1828 		etype = le32_to_cpu(lad->extLength) >> 30;
1829 		*eloc = lelb_to_cpu(lad->extLocation);
1830 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1831 		break;
1832 	default:
1833 		udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1834 		return -1;
1835 	}
1836 
1837 	return etype;
1838 }
1839 
1840 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1841 			      kernel_lb_addr neloc, uint32_t nelen)
1842 {
1843 	kernel_lb_addr oeloc;
1844 	uint32_t oelen;
1845 	int8_t etype;
1846 
1847 	if (epos.bh)
1848 		get_bh(epos.bh);
1849 
1850 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1851 		udf_write_aext(inode, &epos, neloc, nelen, 1);
1852 		neloc = oeloc;
1853 		nelen = (etype << 30) | oelen;
1854 	}
1855 	udf_add_aext(inode, &epos, neloc, nelen, 1);
1856 	brelse(epos.bh);
1857 
1858 	return (nelen >> 30);
1859 }
1860 
1861 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1862 		       kernel_lb_addr eloc, uint32_t elen)
1863 {
1864 	struct extent_position oepos;
1865 	int adsize;
1866 	int8_t etype;
1867 	struct allocExtDesc *aed;
1868 
1869 	if (epos.bh) {
1870 		get_bh(epos.bh);
1871 		get_bh(epos.bh);
1872 	}
1873 
1874 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1875 		adsize = sizeof(short_ad);
1876 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1877 		adsize = sizeof(long_ad);
1878 	else
1879 		adsize = 0;
1880 
1881 	oepos = epos;
1882 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1883 		return -1;
1884 
1885 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1886 		udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1887 		if (oepos.bh != epos.bh) {
1888 			oepos.block = epos.block;
1889 			brelse(oepos.bh);
1890 			get_bh(epos.bh);
1891 			oepos.bh = epos.bh;
1892 			oepos.offset = epos.offset - adsize;
1893 		}
1894 	}
1895 	memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1896 	elen = 0;
1897 
1898 	if (epos.bh != oepos.bh) {
1899 		udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1900 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1901 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1902 		if (!oepos.bh) {
1903 			UDF_I_LENALLOC(inode) -= (adsize * 2);
1904 			mark_inode_dirty(inode);
1905 		} else {
1906 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1907 			aed->lengthAllocDescs =
1908 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1909 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1910 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1911 				udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1912 			else
1913 				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1914 			mark_buffer_dirty_inode(oepos.bh, inode);
1915 		}
1916 	} else {
1917 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1918 		if (!oepos.bh) {
1919 			UDF_I_LENALLOC(inode) -= adsize;
1920 			mark_inode_dirty(inode);
1921 		} else {
1922 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1923 			aed->lengthAllocDescs =
1924 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1925 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1926 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1927 				udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1928 			else
1929 				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1930 			mark_buffer_dirty_inode(oepos.bh, inode);
1931 		}
1932 	}
1933 
1934 	brelse(epos.bh);
1935 	brelse(oepos.bh);
1936 
1937 	return (elen >> 30);
1938 }
1939 
1940 int8_t inode_bmap(struct inode * inode, sector_t block,
1941 		  struct extent_position * pos, kernel_lb_addr * eloc,
1942 		  uint32_t * elen, sector_t * offset)
1943 {
1944 	loff_t lbcount = 0, bcount =
1945 	    (loff_t) block << inode->i_sb->s_blocksize_bits;
1946 	int8_t etype;
1947 
1948 	if (block < 0) {
1949 		printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1950 		return -1;
1951 	}
1952 
1953 	pos->offset = 0;
1954 	pos->block = UDF_I_LOCATION(inode);
1955 	pos->bh = NULL;
1956 	*elen = 0;
1957 
1958 	do {
1959 		if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1960 			*offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1961 			UDF_I_LENEXTENTS(inode) = lbcount;
1962 			return -1;
1963 		}
1964 		lbcount += *elen;
1965 	} while (lbcount <= bcount);
1966 
1967 	*offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1968 
1969 	return etype;
1970 }
1971 
1972 long udf_block_map(struct inode *inode, sector_t block)
1973 {
1974 	kernel_lb_addr eloc;
1975 	uint32_t elen;
1976 	sector_t offset;
1977 	struct extent_position epos = {};
1978 	int ret;
1979 
1980 	lock_kernel();
1981 
1982 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1983 		ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1984 	else
1985 		ret = 0;
1986 
1987 	unlock_kernel();
1988 	brelse(epos.bh);
1989 
1990 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1991 		return udf_fixed_to_variable(ret);
1992 	else
1993 		return ret;
1994 }
1995