1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode 23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 24 * block boundaries (which is not actually allowed) 25 * 12/20/98 added support for strategy 4096 26 * 03/07/99 rewrote udf_block_map (again) 27 * New funcs, inode_bmap, udf_next_aext 28 * 04/19/99 Support for writing device EA's for major/minor # 29 */ 30 31 #include "udfdecl.h" 32 #include <linux/mm.h> 33 #include <linux/smp_lock.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 40 #include "udf_i.h" 41 #include "udf_sb.h" 42 43 MODULE_AUTHOR("Ben Fennema"); 44 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 45 MODULE_LICENSE("GPL"); 46 47 #define EXTENT_MERGE_SIZE 5 48 49 static mode_t udf_convert_permissions(struct fileEntry *); 50 static int udf_update_inode(struct inode *, int); 51 static void udf_fill_inode(struct inode *, struct buffer_head *); 52 static int udf_alloc_i_data(struct inode *inode, size_t size); 53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 54 long *, int *); 55 static int8_t udf_insert_aext(struct inode *, struct extent_position, 56 kernel_lb_addr, uint32_t); 57 static void udf_split_extents(struct inode *, int *, int, int, 58 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 59 static void udf_prealloc_extents(struct inode *, int, int, 60 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_merge_extents(struct inode *, 62 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_update_extents(struct inode *, 64 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 65 struct extent_position *); 66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 67 68 /* 69 * udf_delete_inode 70 * 71 * PURPOSE 72 * Clean-up before the specified inode is destroyed. 73 * 74 * DESCRIPTION 75 * This routine is called when the kernel destroys an inode structure 76 * ie. when iput() finds i_count == 0. 77 * 78 * HISTORY 79 * July 1, 1997 - Andrew E. Mileski 80 * Written, tested, and released. 81 * 82 * Called at the last iput() if i_nlink is zero. 83 */ 84 void udf_delete_inode(struct inode *inode) 85 { 86 truncate_inode_pages(&inode->i_data, 0); 87 88 if (is_bad_inode(inode)) 89 goto no_delete; 90 91 inode->i_size = 0; 92 udf_truncate(inode); 93 lock_kernel(); 94 95 udf_update_inode(inode, IS_SYNC(inode)); 96 udf_free_inode(inode); 97 98 unlock_kernel(); 99 return; 100 101 no_delete: 102 clear_inode(inode); 103 } 104 105 /* 106 * If we are going to release inode from memory, we discard preallocation and 107 * truncate last inode extent to proper length. We could use drop_inode() but 108 * it's called under inode_lock and thus we cannot mark inode dirty there. We 109 * use clear_inode() but we have to make sure to write inode as it's not written 110 * automatically. 111 */ 112 void udf_clear_inode(struct inode *inode) 113 { 114 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 115 lock_kernel(); 116 /* Discard preallocation for directories, symlinks, etc. */ 117 udf_discard_prealloc(inode); 118 udf_truncate_tail_extent(inode); 119 unlock_kernel(); 120 write_inode_now(inode, 1); 121 } 122 kfree(UDF_I_DATA(inode)); 123 UDF_I_DATA(inode) = NULL; 124 } 125 126 static int udf_writepage(struct page *page, struct writeback_control *wbc) 127 { 128 return block_write_full_page(page, udf_get_block, wbc); 129 } 130 131 static int udf_readpage(struct file *file, struct page *page) 132 { 133 return block_read_full_page(page, udf_get_block); 134 } 135 136 static int udf_write_begin(struct file *file, struct address_space *mapping, 137 loff_t pos, unsigned len, unsigned flags, 138 struct page **pagep, void **fsdata) 139 { 140 *pagep = NULL; 141 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 142 udf_get_block); 143 } 144 145 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 146 { 147 return generic_block_bmap(mapping, block, udf_get_block); 148 } 149 150 const struct address_space_operations udf_aops = { 151 .readpage = udf_readpage, 152 .writepage = udf_writepage, 153 .sync_page = block_sync_page, 154 .write_begin = udf_write_begin, 155 .write_end = generic_write_end, 156 .bmap = udf_bmap, 157 }; 158 159 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 160 { 161 struct page *page; 162 char *kaddr; 163 struct writeback_control udf_wbc = { 164 .sync_mode = WB_SYNC_NONE, 165 .nr_to_write = 1, 166 }; 167 168 /* from now on we have normal address_space methods */ 169 inode->i_data.a_ops = &udf_aops; 170 171 if (!UDF_I_LENALLOC(inode)) { 172 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 173 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; 174 else 175 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; 176 mark_inode_dirty(inode); 177 return; 178 } 179 180 page = grab_cache_page(inode->i_mapping, 0); 181 BUG_ON(!PageLocked(page)); 182 183 if (!PageUptodate(page)) { 184 kaddr = kmap(page); 185 memset(kaddr + UDF_I_LENALLOC(inode), 0x00, 186 PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode)); 187 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 188 UDF_I_LENALLOC(inode)); 189 flush_dcache_page(page); 190 SetPageUptodate(page); 191 kunmap(page); 192 } 193 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00, 194 UDF_I_LENALLOC(inode)); 195 UDF_I_LENALLOC(inode) = 0; 196 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 197 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; 198 else 199 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; 200 201 inode->i_data.a_ops->writepage(page, &udf_wbc); 202 page_cache_release(page); 203 204 mark_inode_dirty(inode); 205 } 206 207 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 208 int *err) 209 { 210 int newblock; 211 struct buffer_head *dbh = NULL; 212 kernel_lb_addr eloc; 213 uint32_t elen; 214 uint8_t alloctype; 215 struct extent_position epos; 216 217 struct udf_fileident_bh sfibh, dfibh; 218 loff_t f_pos = udf_ext0_offset(inode) >> 2; 219 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2; 220 struct fileIdentDesc cfi, *sfi, *dfi; 221 222 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 223 alloctype = ICBTAG_FLAG_AD_SHORT; 224 else 225 alloctype = ICBTAG_FLAG_AD_LONG; 226 227 if (!inode->i_size) { 228 UDF_I_ALLOCTYPE(inode) = alloctype; 229 mark_inode_dirty(inode); 230 return NULL; 231 } 232 233 /* alloc block, and copy data to it */ 234 *block = udf_new_block(inode->i_sb, inode, 235 UDF_I_LOCATION(inode).partitionReferenceNum, 236 UDF_I_LOCATION(inode).logicalBlockNum, err); 237 if (!(*block)) 238 return NULL; 239 newblock = udf_get_pblock(inode->i_sb, *block, 240 UDF_I_LOCATION(inode).partitionReferenceNum, 0); 241 if (!newblock) 242 return NULL; 243 dbh = udf_tgetblk(inode->i_sb, newblock); 244 if (!dbh) 245 return NULL; 246 lock_buffer(dbh); 247 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 248 set_buffer_uptodate(dbh); 249 unlock_buffer(dbh); 250 mark_buffer_dirty_inode(dbh, inode); 251 252 sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2; 253 sfibh.sbh = sfibh.ebh = NULL; 254 dfibh.soffset = dfibh.eoffset = 0; 255 dfibh.sbh = dfibh.ebh = dbh; 256 while ((f_pos < size)) { 257 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; 258 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL); 259 if (!sfi) { 260 brelse(dbh); 261 return NULL; 262 } 263 UDF_I_ALLOCTYPE(inode) = alloctype; 264 sfi->descTag.tagLocation = cpu_to_le32(*block); 265 dfibh.soffset = dfibh.eoffset; 266 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 267 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 268 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 269 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) { 270 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; 271 brelse(dbh); 272 return NULL; 273 } 274 } 275 mark_buffer_dirty_inode(dbh, inode); 276 277 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode)); 278 UDF_I_LENALLOC(inode) = 0; 279 eloc.logicalBlockNum = *block; 280 eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; 281 elen = inode->i_size; 282 UDF_I_LENEXTENTS(inode) = elen; 283 epos.bh = NULL; 284 epos.block = UDF_I_LOCATION(inode); 285 epos.offset = udf_file_entry_alloc_offset(inode); 286 udf_add_aext(inode, &epos, eloc, elen, 0); 287 /* UniqueID stuff */ 288 289 brelse(epos.bh); 290 mark_inode_dirty(inode); 291 return dbh; 292 } 293 294 static int udf_get_block(struct inode *inode, sector_t block, 295 struct buffer_head *bh_result, int create) 296 { 297 int err, new; 298 struct buffer_head *bh; 299 unsigned long phys; 300 301 if (!create) { 302 phys = udf_block_map(inode, block); 303 if (phys) 304 map_bh(bh_result, inode->i_sb, phys); 305 return 0; 306 } 307 308 err = -EIO; 309 new = 0; 310 bh = NULL; 311 312 lock_kernel(); 313 314 if (block < 0) 315 goto abort_negative; 316 317 if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) { 318 UDF_I_NEXT_ALLOC_BLOCK(inode)++; 319 UDF_I_NEXT_ALLOC_GOAL(inode)++; 320 } 321 322 err = 0; 323 324 bh = inode_getblk(inode, block, &err, &phys, &new); 325 BUG_ON(bh); 326 if (err) 327 goto abort; 328 BUG_ON(!phys); 329 330 if (new) 331 set_buffer_new(bh_result); 332 map_bh(bh_result, inode->i_sb, phys); 333 334 abort: 335 unlock_kernel(); 336 return err; 337 338 abort_negative: 339 udf_warning(inode->i_sb, "udf_get_block", "block < 0"); 340 goto abort; 341 } 342 343 static struct buffer_head *udf_getblk(struct inode *inode, long block, 344 int create, int *err) 345 { 346 struct buffer_head *bh; 347 struct buffer_head dummy; 348 349 dummy.b_state = 0; 350 dummy.b_blocknr = -1000; 351 *err = udf_get_block(inode, block, &dummy, create); 352 if (!*err && buffer_mapped(&dummy)) { 353 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 354 if (buffer_new(&dummy)) { 355 lock_buffer(bh); 356 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 357 set_buffer_uptodate(bh); 358 unlock_buffer(bh); 359 mark_buffer_dirty_inode(bh, inode); 360 } 361 return bh; 362 } 363 364 return NULL; 365 } 366 367 /* Extend the file by 'blocks' blocks, return the number of extents added */ 368 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 369 kernel_long_ad * last_ext, sector_t blocks) 370 { 371 sector_t add; 372 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 373 struct super_block *sb = inode->i_sb; 374 kernel_lb_addr prealloc_loc = {}; 375 int prealloc_len = 0; 376 377 /* The previous extent is fake and we should not extend by anything 378 * - there's nothing to do... */ 379 if (!blocks && fake) 380 return 0; 381 382 /* Round the last extent up to a multiple of block size */ 383 if (last_ext->extLength & (sb->s_blocksize - 1)) { 384 last_ext->extLength = 385 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 386 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 387 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 388 UDF_I_LENEXTENTS(inode) = 389 (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) & 390 ~(sb->s_blocksize - 1); 391 } 392 393 /* Last extent are just preallocated blocks? */ 394 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) { 395 /* Save the extent so that we can reattach it to the end */ 396 prealloc_loc = last_ext->extLocation; 397 prealloc_len = last_ext->extLength; 398 /* Mark the extent as a hole */ 399 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 400 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 401 last_ext->extLocation.logicalBlockNum = 0; 402 last_ext->extLocation.partitionReferenceNum = 0; 403 } 404 405 /* Can we merge with the previous extent? */ 406 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) { 407 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength & 408 UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits; 409 if (add > blocks) 410 add = blocks; 411 blocks -= add; 412 last_ext->extLength += add << sb->s_blocksize_bits; 413 } 414 415 if (fake) { 416 udf_add_aext(inode, last_pos, last_ext->extLocation, 417 last_ext->extLength, 1); 418 count++; 419 } else { 420 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1); 421 } 422 423 /* Managed to do everything necessary? */ 424 if (!blocks) 425 goto out; 426 427 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 428 last_ext->extLocation.logicalBlockNum = 0; 429 last_ext->extLocation.partitionReferenceNum = 0; 430 add = (1 << (30-sb->s_blocksize_bits)) - 1; 431 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits); 432 433 /* Create enough extents to cover the whole hole */ 434 while (blocks > add) { 435 blocks -= add; 436 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 437 last_ext->extLength, 1) == -1) 438 return -1; 439 count++; 440 } 441 if (blocks) { 442 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 443 (blocks << sb->s_blocksize_bits); 444 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 445 last_ext->extLength, 1) == -1) 446 return -1; 447 count++; 448 } 449 450 out: 451 /* Do we have some preallocated blocks saved? */ 452 if (prealloc_len) { 453 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1) 454 return -1; 455 last_ext->extLocation = prealloc_loc; 456 last_ext->extLength = prealloc_len; 457 count++; 458 } 459 460 /* last_pos should point to the last written extent... */ 461 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 462 last_pos->offset -= sizeof(short_ad); 463 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 464 last_pos->offset -= sizeof(long_ad); 465 else 466 return -1; 467 468 return count; 469 } 470 471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 472 int *err, long *phys, int *new) 473 { 474 static sector_t last_block; 475 struct buffer_head *result = NULL; 476 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 477 struct extent_position prev_epos, cur_epos, next_epos; 478 int count = 0, startnum = 0, endnum = 0; 479 uint32_t elen = 0, tmpelen; 480 kernel_lb_addr eloc, tmpeloc; 481 int c = 1; 482 loff_t lbcount = 0, b_off = 0; 483 uint32_t newblocknum, newblock; 484 sector_t offset = 0; 485 int8_t etype; 486 int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum; 487 int lastblock = 0; 488 489 prev_epos.offset = udf_file_entry_alloc_offset(inode); 490 prev_epos.block = UDF_I_LOCATION(inode); 491 prev_epos.bh = NULL; 492 cur_epos = next_epos = prev_epos; 493 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 494 495 /* find the extent which contains the block we are looking for. 496 alternate between laarr[0] and laarr[1] for locations of the 497 current extent, and the previous extent */ 498 do { 499 if (prev_epos.bh != cur_epos.bh) { 500 brelse(prev_epos.bh); 501 get_bh(cur_epos.bh); 502 prev_epos.bh = cur_epos.bh; 503 } 504 if (cur_epos.bh != next_epos.bh) { 505 brelse(cur_epos.bh); 506 get_bh(next_epos.bh); 507 cur_epos.bh = next_epos.bh; 508 } 509 510 lbcount += elen; 511 512 prev_epos.block = cur_epos.block; 513 cur_epos.block = next_epos.block; 514 515 prev_epos.offset = cur_epos.offset; 516 cur_epos.offset = next_epos.offset; 517 518 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1) 519 break; 520 521 c = !c; 522 523 laarr[c].extLength = (etype << 30) | elen; 524 laarr[c].extLocation = eloc; 525 526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 527 pgoal = eloc.logicalBlockNum + 528 ((elen + inode->i_sb->s_blocksize - 1) >> 529 inode->i_sb->s_blocksize_bits); 530 531 count++; 532 } while (lbcount + elen <= b_off); 533 534 b_off -= lbcount; 535 offset = b_off >> inode->i_sb->s_blocksize_bits; 536 /* 537 * Move prev_epos and cur_epos into indirect extent if we are at 538 * the pointer to it 539 */ 540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 542 543 /* if the extent is allocated and recorded, return the block 544 if the extent is not a multiple of the blocksize, round up */ 545 546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 547 if (elen & (inode->i_sb->s_blocksize - 1)) { 548 elen = EXT_RECORDED_ALLOCATED | 549 ((elen + inode->i_sb->s_blocksize - 1) & 550 ~(inode->i_sb->s_blocksize - 1)); 551 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 552 } 553 brelse(prev_epos.bh); 554 brelse(cur_epos.bh); 555 brelse(next_epos.bh); 556 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 557 *phys = newblock; 558 return NULL; 559 } 560 561 last_block = block; 562 /* Are we beyond EOF? */ 563 if (etype == -1) { 564 int ret; 565 566 if (count) { 567 if (c) 568 laarr[0] = laarr[1]; 569 startnum = 1; 570 } else { 571 /* Create a fake extent when there's not one */ 572 memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr)); 573 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 574 /* Will udf_extend_file() create real extent from a fake one? */ 575 startnum = (offset > 0); 576 } 577 /* Create extents for the hole between EOF and offset */ 578 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 579 if (ret == -1) { 580 brelse(prev_epos.bh); 581 brelse(cur_epos.bh); 582 brelse(next_epos.bh); 583 /* We don't really know the error here so we just make 584 * something up */ 585 *err = -ENOSPC; 586 return NULL; 587 } 588 c = 0; 589 offset = 0; 590 count += ret; 591 /* We are not covered by a preallocated extent? */ 592 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) { 593 /* Is there any real extent? - otherwise we overwrite 594 * the fake one... */ 595 if (count) 596 c = !c; 597 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 598 inode->i_sb->s_blocksize; 599 memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr)); 600 count++; 601 endnum++; 602 } 603 endnum = c + 1; 604 lastblock = 1; 605 } else { 606 endnum = startnum = ((count > 2) ? 2 : count); 607 608 /* if the current extent is in position 0, swap it with the previous */ 609 if (!c && count != 1) { 610 laarr[2] = laarr[0]; 611 laarr[0] = laarr[1]; 612 laarr[1] = laarr[2]; 613 c = 1; 614 } 615 616 /* if the current block is located in an extent, read the next extent */ 617 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) { 618 laarr[c + 1].extLength = (etype << 30) | elen; 619 laarr[c + 1].extLocation = eloc; 620 count++; 621 startnum++; 622 endnum++; 623 } else { 624 lastblock = 1; 625 } 626 } 627 628 /* if the current extent is not recorded but allocated, get the 629 * block in the extent corresponding to the requested block */ 630 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 631 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 632 } else { /* otherwise, allocate a new block */ 633 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block) 634 goal = UDF_I_NEXT_ALLOC_GOAL(inode); 635 636 if (!goal) { 637 if (!(goal = pgoal)) 638 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1; 639 } 640 641 if (!(newblocknum = udf_new_block(inode->i_sb, inode, 642 UDF_I_LOCATION(inode).partitionReferenceNum, 643 goal, err))) { 644 brelse(prev_epos.bh); 645 *err = -ENOSPC; 646 return NULL; 647 } 648 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize; 649 } 650 651 /* if the extent the requsted block is located in contains multiple blocks, 652 * split the extent into at most three extents. blocks prior to requested 653 * block, requested block, and blocks after requested block */ 654 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 655 656 #ifdef UDF_PREALLOCATE 657 /* preallocate blocks */ 658 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 659 #endif 660 661 /* merge any continuous blocks in laarr */ 662 udf_merge_extents(inode, laarr, &endnum); 663 664 /* write back the new extents, inserting new extents if the new number 665 * of extents is greater than the old number, and deleting extents if 666 * the new number of extents is less than the old number */ 667 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 668 669 brelse(prev_epos.bh); 670 671 if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum, 672 UDF_I_LOCATION(inode).partitionReferenceNum, 0))) { 673 return NULL; 674 } 675 *phys = newblock; 676 *err = 0; 677 *new = 1; 678 UDF_I_NEXT_ALLOC_BLOCK(inode) = block; 679 UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum; 680 inode->i_ctime = current_fs_time(inode->i_sb); 681 682 if (IS_SYNC(inode)) 683 udf_sync_inode(inode); 684 else 685 mark_inode_dirty(inode); 686 687 return result; 688 } 689 690 static void udf_split_extents(struct inode *inode, int *c, int offset, 691 int newblocknum, 692 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 693 int *endnum) 694 { 695 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 696 (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 697 int curr = *c; 698 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 699 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; 700 int8_t etype = (laarr[curr].extLength >> 30); 701 702 if (blen == 1) { 703 ; 704 } else if (!offset || blen == offset + 1) { 705 laarr[curr + 2] = laarr[curr + 1]; 706 laarr[curr + 1] = laarr[curr]; 707 } else { 708 laarr[curr + 3] = laarr[curr + 1]; 709 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 710 } 711 712 if (offset) { 713 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 714 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset); 715 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 716 (offset << inode->i_sb->s_blocksize_bits); 717 laarr[curr].extLocation.logicalBlockNum = 0; 718 laarr[curr].extLocation.partitionReferenceNum = 0; 719 } else { 720 laarr[curr].extLength = (etype << 30) | 721 (offset << inode->i_sb->s_blocksize_bits); 722 } 723 curr++; 724 (*c)++; 725 (*endnum)++; 726 } 727 728 laarr[curr].extLocation.logicalBlockNum = newblocknum; 729 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 730 laarr[curr].extLocation.partitionReferenceNum = 731 UDF_I_LOCATION(inode).partitionReferenceNum; 732 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 733 inode->i_sb->s_blocksize; 734 curr++; 735 736 if (blen != offset + 1) { 737 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 738 laarr[curr].extLocation.logicalBlockNum += (offset + 1); 739 laarr[curr].extLength = (etype << 30) | 740 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits); 741 curr++; 742 (*endnum)++; 743 } 744 } 745 } 746 747 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 748 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 749 int *endnum) 750 { 751 int start, length = 0, currlength = 0, i; 752 753 if (*endnum >= (c + 1)) { 754 if (!lastblock) 755 return; 756 else 757 start = c; 758 } else { 759 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 760 start = c + 1; 761 length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 762 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 763 } else { 764 start = c; 765 } 766 } 767 768 for (i = start + 1; i <= *endnum; i++) { 769 if (i == *endnum) { 770 if (lastblock) 771 length += UDF_DEFAULT_PREALLOC_BLOCKS; 772 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 773 length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 774 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 775 } else { 776 break; 777 } 778 } 779 780 if (length) { 781 int next = laarr[start].extLocation.logicalBlockNum + 782 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 783 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 784 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 785 laarr[start].extLocation.partitionReferenceNum, 786 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length : 787 UDF_DEFAULT_PREALLOC_BLOCKS) - currlength); 788 if (numalloc) { 789 if (start == (c + 1)) { 790 laarr[start].extLength += 791 (numalloc << inode->i_sb->s_blocksize_bits); 792 } else { 793 memmove(&laarr[c + 2], &laarr[c + 1], 794 sizeof(long_ad) * (*endnum - (c + 1))); 795 (*endnum)++; 796 laarr[c + 1].extLocation.logicalBlockNum = next; 797 laarr[c + 1].extLocation.partitionReferenceNum = 798 laarr[c].extLocation.partitionReferenceNum; 799 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED | 800 (numalloc << inode->i_sb->s_blocksize_bits); 801 start = c + 1; 802 } 803 804 for (i = start + 1; numalloc && i < *endnum; i++) { 805 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 806 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; 807 808 if (elen > numalloc) { 809 laarr[i].extLength -= 810 (numalloc << inode->i_sb->s_blocksize_bits); 811 numalloc = 0; 812 } else { 813 numalloc -= elen; 814 if (*endnum > (i + 1)) 815 memmove(&laarr[i], &laarr[i + 1], 816 sizeof(long_ad) * (*endnum - (i + 1))); 817 i--; 818 (*endnum)--; 819 } 820 } 821 UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits; 822 } 823 } 824 } 825 826 static void udf_merge_extents(struct inode *inode, 827 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 828 int *endnum) 829 { 830 int i; 831 832 for (i = 0; i < (*endnum - 1); i++) { 833 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) { 834 if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 835 ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) == 836 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 837 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) { 838 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 839 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 840 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 841 laarr[i + 1].extLength = (laarr[i + 1].extLength - 842 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 843 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1); 844 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + 845 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; 846 laarr[i + 1].extLocation.logicalBlockNum = 847 laarr[i].extLocation.logicalBlockNum + 848 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >> 849 inode->i_sb->s_blocksize_bits); 850 } else { 851 laarr[i].extLength = laarr[i + 1].extLength + 852 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 853 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1)); 854 if (*endnum > (i + 2)) 855 memmove(&laarr[i + 1], &laarr[i + 2], 856 sizeof(long_ad) * (*endnum - (i + 2))); 857 i--; 858 (*endnum)--; 859 } 860 } 861 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 862 ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 863 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, 864 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 865 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 866 laarr[i].extLocation.logicalBlockNum = 0; 867 laarr[i].extLocation.partitionReferenceNum = 0; 868 869 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 870 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 871 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 872 laarr[i + 1].extLength = (laarr[i + 1].extLength - 873 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 874 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1); 875 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + 876 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; 877 } else { 878 laarr[i].extLength = laarr[i + 1].extLength + 879 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 880 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1)); 881 if (*endnum > (i + 2)) 882 memmove(&laarr[i + 1], &laarr[i + 2], 883 sizeof(long_ad) * (*endnum - (i + 2))); 884 i--; 885 (*endnum)--; 886 } 887 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 888 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, 889 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 890 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 891 laarr[i].extLocation.logicalBlockNum = 0; 892 laarr[i].extLocation.partitionReferenceNum = 0; 893 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) | 894 EXT_NOT_RECORDED_NOT_ALLOCATED; 895 } 896 } 897 } 898 899 static void udf_update_extents(struct inode *inode, 900 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 901 int startnum, int endnum, 902 struct extent_position *epos) 903 { 904 int start = 0, i; 905 kernel_lb_addr tmploc; 906 uint32_t tmplen; 907 908 if (startnum > endnum) { 909 for (i = 0; i < (startnum - endnum); i++) 910 udf_delete_aext(inode, *epos, laarr[i].extLocation, 911 laarr[i].extLength); 912 } else if (startnum < endnum) { 913 for (i = 0; i < (endnum - startnum); i++) { 914 udf_insert_aext(inode, *epos, laarr[i].extLocation, 915 laarr[i].extLength); 916 udf_next_aext(inode, epos, &laarr[i].extLocation, 917 &laarr[i].extLength, 1); 918 start++; 919 } 920 } 921 922 for (i = start; i < endnum; i++) { 923 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 924 udf_write_aext(inode, epos, laarr[i].extLocation, 925 laarr[i].extLength, 1); 926 } 927 } 928 929 struct buffer_head *udf_bread(struct inode *inode, int block, 930 int create, int *err) 931 { 932 struct buffer_head *bh = NULL; 933 934 bh = udf_getblk(inode, block, create, err); 935 if (!bh) 936 return NULL; 937 938 if (buffer_uptodate(bh)) 939 return bh; 940 941 ll_rw_block(READ, 1, &bh); 942 943 wait_on_buffer(bh); 944 if (buffer_uptodate(bh)) 945 return bh; 946 947 brelse(bh); 948 *err = -EIO; 949 return NULL; 950 } 951 952 void udf_truncate(struct inode *inode) 953 { 954 int offset; 955 int err; 956 957 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 958 S_ISLNK(inode->i_mode))) 959 return; 960 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 961 return; 962 963 lock_kernel(); 964 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { 965 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + 966 inode->i_size)) { 967 udf_expand_file_adinicb(inode, inode->i_size, &err); 968 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { 969 inode->i_size = UDF_I_LENALLOC(inode); 970 unlock_kernel(); 971 return; 972 } else { 973 udf_truncate_extents(inode); 974 } 975 } else { 976 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 977 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00, 978 inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode)); 979 UDF_I_LENALLOC(inode) = inode->i_size; 980 } 981 } else { 982 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block); 983 udf_truncate_extents(inode); 984 } 985 986 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 987 if (IS_SYNC(inode)) 988 udf_sync_inode(inode); 989 else 990 mark_inode_dirty(inode); 991 unlock_kernel(); 992 } 993 994 static void __udf_read_inode(struct inode *inode) 995 { 996 struct buffer_head *bh = NULL; 997 struct fileEntry *fe; 998 uint16_t ident; 999 1000 /* 1001 * Set defaults, but the inode is still incomplete! 1002 * Note: get_new_inode() sets the following on a new inode: 1003 * i_sb = sb 1004 * i_no = ino 1005 * i_flags = sb->s_flags 1006 * i_state = 0 1007 * clean_inode(): zero fills and sets 1008 * i_count = 1 1009 * i_nlink = 1 1010 * i_op = NULL; 1011 */ 1012 bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident); 1013 if (!bh) { 1014 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1015 inode->i_ino); 1016 make_bad_inode(inode); 1017 return; 1018 } 1019 1020 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1021 ident != TAG_IDENT_USE) { 1022 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n", 1023 inode->i_ino, ident); 1024 brelse(bh); 1025 make_bad_inode(inode); 1026 return; 1027 } 1028 1029 fe = (struct fileEntry *)bh->b_data; 1030 1031 if (le16_to_cpu(fe->icbTag.strategyType) == 4096) { 1032 struct buffer_head *ibh = NULL, *nbh = NULL; 1033 struct indirectEntry *ie; 1034 1035 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident); 1036 if (ident == TAG_IDENT_IE) { 1037 if (ibh) { 1038 kernel_lb_addr loc; 1039 ie = (struct indirectEntry *)ibh->b_data; 1040 1041 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1042 1043 if (ie->indirectICB.extLength && 1044 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) { 1045 if (ident == TAG_IDENT_FE || 1046 ident == TAG_IDENT_EFE) { 1047 memcpy(&UDF_I_LOCATION(inode), &loc, 1048 sizeof(kernel_lb_addr)); 1049 brelse(bh); 1050 brelse(ibh); 1051 brelse(nbh); 1052 __udf_read_inode(inode); 1053 return; 1054 } else { 1055 brelse(nbh); 1056 brelse(ibh); 1057 } 1058 } else { 1059 brelse(ibh); 1060 } 1061 } 1062 } else { 1063 brelse(ibh); 1064 } 1065 } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) { 1066 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1067 le16_to_cpu(fe->icbTag.strategyType)); 1068 brelse(bh); 1069 make_bad_inode(inode); 1070 return; 1071 } 1072 udf_fill_inode(inode, bh); 1073 1074 brelse(bh); 1075 } 1076 1077 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1078 { 1079 struct fileEntry *fe; 1080 struct extendedFileEntry *efe; 1081 time_t convtime; 1082 long convtime_usec; 1083 int offset; 1084 1085 fe = (struct fileEntry *)bh->b_data; 1086 efe = (struct extendedFileEntry *)bh->b_data; 1087 1088 if (le16_to_cpu(fe->icbTag.strategyType) == 4) 1089 UDF_I_STRAT4096(inode) = 0; 1090 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */ 1091 UDF_I_STRAT4096(inode) = 1; 1092 1093 UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK; 1094 UDF_I_UNIQUE(inode) = 0; 1095 UDF_I_LENEATTR(inode) = 0; 1096 UDF_I_LENEXTENTS(inode) = 0; 1097 UDF_I_LENALLOC(inode) = 0; 1098 UDF_I_NEXT_ALLOC_BLOCK(inode) = 0; 1099 UDF_I_NEXT_ALLOC_GOAL(inode) = 0; 1100 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) { 1101 UDF_I_EFE(inode) = 1; 1102 UDF_I_USE(inode) = 0; 1103 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) { 1104 make_bad_inode(inode); 1105 return; 1106 } 1107 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry), 1108 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); 1109 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) { 1110 UDF_I_EFE(inode) = 0; 1111 UDF_I_USE(inode) = 0; 1112 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) { 1113 make_bad_inode(inode); 1114 return; 1115 } 1116 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry), 1117 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1118 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) { 1119 UDF_I_EFE(inode) = 0; 1120 UDF_I_USE(inode) = 1; 1121 UDF_I_LENALLOC(inode) = 1122 le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs); 1123 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) { 1124 make_bad_inode(inode); 1125 return; 1126 } 1127 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry), 1128 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); 1129 return; 1130 } 1131 1132 inode->i_uid = le32_to_cpu(fe->uid); 1133 if (inode->i_uid == -1 || 1134 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1135 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1136 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1137 1138 inode->i_gid = le32_to_cpu(fe->gid); 1139 if (inode->i_gid == -1 || 1140 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1141 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1142 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1143 1144 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1145 if (!inode->i_nlink) 1146 inode->i_nlink = 1; 1147 1148 inode->i_size = le64_to_cpu(fe->informationLength); 1149 UDF_I_LENEXTENTS(inode) = inode->i_size; 1150 1151 inode->i_mode = udf_convert_permissions(fe); 1152 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1153 1154 if (UDF_I_EFE(inode) == 0) { 1155 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1156 (inode->i_sb->s_blocksize_bits - 9); 1157 1158 if (udf_stamp_to_time(&convtime, &convtime_usec, 1159 lets_to_cpu(fe->accessTime))) { 1160 inode->i_atime.tv_sec = convtime; 1161 inode->i_atime.tv_nsec = convtime_usec * 1000; 1162 } else { 1163 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); 1164 } 1165 1166 if (udf_stamp_to_time(&convtime, &convtime_usec, 1167 lets_to_cpu(fe->modificationTime))) { 1168 inode->i_mtime.tv_sec = convtime; 1169 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1170 } else { 1171 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); 1172 } 1173 1174 if (udf_stamp_to_time(&convtime, &convtime_usec, 1175 lets_to_cpu(fe->attrTime))) { 1176 inode->i_ctime.tv_sec = convtime; 1177 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1178 } else { 1179 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); 1180 } 1181 1182 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID); 1183 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr); 1184 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs); 1185 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode); 1186 } else { 1187 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1188 (inode->i_sb->s_blocksize_bits - 9); 1189 1190 if (udf_stamp_to_time(&convtime, &convtime_usec, 1191 lets_to_cpu(efe->accessTime))) { 1192 inode->i_atime.tv_sec = convtime; 1193 inode->i_atime.tv_nsec = convtime_usec * 1000; 1194 } else { 1195 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); 1196 } 1197 1198 if (udf_stamp_to_time(&convtime, &convtime_usec, 1199 lets_to_cpu(efe->modificationTime))) { 1200 inode->i_mtime.tv_sec = convtime; 1201 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1202 } else { 1203 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); 1204 } 1205 1206 if (udf_stamp_to_time(&convtime, &convtime_usec, 1207 lets_to_cpu(efe->createTime))) { 1208 UDF_I_CRTIME(inode).tv_sec = convtime; 1209 UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000; 1210 } else { 1211 UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb); 1212 } 1213 1214 if (udf_stamp_to_time(&convtime, &convtime_usec, 1215 lets_to_cpu(efe->attrTime))) { 1216 inode->i_ctime.tv_sec = convtime; 1217 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1218 } else { 1219 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); 1220 } 1221 1222 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID); 1223 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr); 1224 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs); 1225 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode); 1226 } 1227 1228 switch (fe->icbTag.fileType) { 1229 case ICBTAG_FILE_TYPE_DIRECTORY: 1230 inode->i_op = &udf_dir_inode_operations; 1231 inode->i_fop = &udf_dir_operations; 1232 inode->i_mode |= S_IFDIR; 1233 inc_nlink(inode); 1234 break; 1235 case ICBTAG_FILE_TYPE_REALTIME: 1236 case ICBTAG_FILE_TYPE_REGULAR: 1237 case ICBTAG_FILE_TYPE_UNDEF: 1238 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) 1239 inode->i_data.a_ops = &udf_adinicb_aops; 1240 else 1241 inode->i_data.a_ops = &udf_aops; 1242 inode->i_op = &udf_file_inode_operations; 1243 inode->i_fop = &udf_file_operations; 1244 inode->i_mode |= S_IFREG; 1245 break; 1246 case ICBTAG_FILE_TYPE_BLOCK: 1247 inode->i_mode |= S_IFBLK; 1248 break; 1249 case ICBTAG_FILE_TYPE_CHAR: 1250 inode->i_mode |= S_IFCHR; 1251 break; 1252 case ICBTAG_FILE_TYPE_FIFO: 1253 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1254 break; 1255 case ICBTAG_FILE_TYPE_SOCKET: 1256 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1257 break; 1258 case ICBTAG_FILE_TYPE_SYMLINK: 1259 inode->i_data.a_ops = &udf_symlink_aops; 1260 inode->i_op = &page_symlink_inode_operations; 1261 inode->i_mode = S_IFLNK | S_IRWXUGO; 1262 break; 1263 default: 1264 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n", 1265 inode->i_ino, fe->icbTag.fileType); 1266 make_bad_inode(inode); 1267 return; 1268 } 1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1270 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1271 if (dsea) { 1272 init_special_inode(inode, inode->i_mode, 1273 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1274 le32_to_cpu(dsea->minorDeviceIdent))); 1275 /* Developer ID ??? */ 1276 } else { 1277 make_bad_inode(inode); 1278 } 1279 } 1280 } 1281 1282 static int udf_alloc_i_data(struct inode *inode, size_t size) 1283 { 1284 UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL); 1285 1286 if (!UDF_I_DATA(inode)) { 1287 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n", 1288 inode->i_ino); 1289 return -ENOMEM; 1290 } 1291 1292 return 0; 1293 } 1294 1295 static mode_t udf_convert_permissions(struct fileEntry *fe) 1296 { 1297 mode_t mode; 1298 uint32_t permissions; 1299 uint32_t flags; 1300 1301 permissions = le32_to_cpu(fe->permissions); 1302 flags = le16_to_cpu(fe->icbTag.flags); 1303 1304 mode = (( permissions ) & S_IRWXO) | 1305 (( permissions >> 2 ) & S_IRWXG) | 1306 (( permissions >> 4 ) & S_IRWXU) | 1307 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1308 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1309 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1310 1311 return mode; 1312 } 1313 1314 /* 1315 * udf_write_inode 1316 * 1317 * PURPOSE 1318 * Write out the specified inode. 1319 * 1320 * DESCRIPTION 1321 * This routine is called whenever an inode is synced. 1322 * Currently this routine is just a placeholder. 1323 * 1324 * HISTORY 1325 * July 1, 1997 - Andrew E. Mileski 1326 * Written, tested, and released. 1327 */ 1328 1329 int udf_write_inode(struct inode *inode, int sync) 1330 { 1331 int ret; 1332 1333 lock_kernel(); 1334 ret = udf_update_inode(inode, sync); 1335 unlock_kernel(); 1336 1337 return ret; 1338 } 1339 1340 int udf_sync_inode(struct inode *inode) 1341 { 1342 return udf_update_inode(inode, 1); 1343 } 1344 1345 static int udf_update_inode(struct inode *inode, int do_sync) 1346 { 1347 struct buffer_head *bh = NULL; 1348 struct fileEntry *fe; 1349 struct extendedFileEntry *efe; 1350 uint32_t udfperms; 1351 uint16_t icbflags; 1352 uint16_t crclen; 1353 int i; 1354 kernel_timestamp cpu_time; 1355 int err = 0; 1356 1357 bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0)); 1358 if (!bh) { 1359 udf_debug("bread failure\n"); 1360 return -EIO; 1361 } 1362 1363 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1364 1365 fe = (struct fileEntry *)bh->b_data; 1366 efe = (struct extendedFileEntry *)bh->b_data; 1367 1368 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) { 1369 struct unallocSpaceEntry *use = 1370 (struct unallocSpaceEntry *)bh->b_data; 1371 1372 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1373 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode), 1374 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); 1375 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag); 1376 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); 1377 use->descTag.descCRCLength = cpu_to_le16(crclen); 1378 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0)); 1379 1380 use->descTag.tagChecksum = 0; 1381 for (i = 0; i < 16; i++) { 1382 if (i != 4) 1383 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i]; 1384 } 1385 1386 mark_buffer_dirty(bh); 1387 brelse(bh); 1388 return err; 1389 } 1390 1391 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1392 fe->uid = cpu_to_le32(-1); 1393 else 1394 fe->uid = cpu_to_le32(inode->i_uid); 1395 1396 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1397 fe->gid = cpu_to_le32(-1); 1398 else 1399 fe->gid = cpu_to_le32(inode->i_gid); 1400 1401 udfperms = ((inode->i_mode & S_IRWXO) ) | 1402 ((inode->i_mode & S_IRWXG) << 2) | 1403 ((inode->i_mode & S_IRWXU) << 4); 1404 1405 udfperms |= (le32_to_cpu(fe->permissions) & 1406 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1407 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1408 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1409 fe->permissions = cpu_to_le32(udfperms); 1410 1411 if (S_ISDIR(inode->i_mode)) 1412 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1413 else 1414 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1415 1416 fe->informationLength = cpu_to_le64(inode->i_size); 1417 1418 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1419 regid *eid; 1420 struct deviceSpec *dsea = 1421 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1422 if (!dsea) { 1423 dsea = (struct deviceSpec *) 1424 udf_add_extendedattr(inode, 1425 sizeof(struct deviceSpec) + 1426 sizeof(regid), 12, 0x3); 1427 dsea->attrType = cpu_to_le32(12); 1428 dsea->attrSubtype = 1; 1429 dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) + 1430 sizeof(regid)); 1431 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1432 } 1433 eid = (regid *)dsea->impUse; 1434 memset(eid, 0, sizeof(regid)); 1435 strcpy(eid->ident, UDF_ID_DEVELOPER); 1436 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1437 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1438 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1439 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1440 } 1441 1442 if (UDF_I_EFE(inode) == 0) { 1443 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode), 1444 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1445 fe->logicalBlocksRecorded = cpu_to_le64( 1446 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> 1447 (inode->i_sb->s_blocksize_bits - 9)); 1448 1449 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1450 fe->accessTime = cpu_to_lets(cpu_time); 1451 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1452 fe->modificationTime = cpu_to_lets(cpu_time); 1453 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1454 fe->attrTime = cpu_to_lets(cpu_time); 1455 memset(&(fe->impIdent), 0, sizeof(regid)); 1456 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1457 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1458 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1459 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); 1460 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); 1461 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1462 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1463 crclen = sizeof(struct fileEntry); 1464 } else { 1465 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode), 1466 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); 1467 efe->objectSize = cpu_to_le64(inode->i_size); 1468 efe->logicalBlocksRecorded = cpu_to_le64( 1469 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> 1470 (inode->i_sb->s_blocksize_bits - 9)); 1471 1472 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec || 1473 (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec && 1474 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) { 1475 UDF_I_CRTIME(inode) = inode->i_atime; 1476 } 1477 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec || 1478 (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec && 1479 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) { 1480 UDF_I_CRTIME(inode) = inode->i_mtime; 1481 } 1482 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec || 1483 (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec && 1484 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) { 1485 UDF_I_CRTIME(inode) = inode->i_ctime; 1486 } 1487 1488 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1489 efe->accessTime = cpu_to_lets(cpu_time); 1490 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1491 efe->modificationTime = cpu_to_lets(cpu_time); 1492 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode))) 1493 efe->createTime = cpu_to_lets(cpu_time); 1494 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1495 efe->attrTime = cpu_to_lets(cpu_time); 1496 1497 memset(&(efe->impIdent), 0, sizeof(regid)); 1498 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1499 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1500 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1501 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); 1502 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); 1503 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1504 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1505 crclen = sizeof(struct extendedFileEntry); 1506 } 1507 if (UDF_I_STRAT4096(inode)) { 1508 fe->icbTag.strategyType = cpu_to_le16(4096); 1509 fe->icbTag.strategyParameter = cpu_to_le16(1); 1510 fe->icbTag.numEntries = cpu_to_le16(2); 1511 } else { 1512 fe->icbTag.strategyType = cpu_to_le16(4); 1513 fe->icbTag.numEntries = cpu_to_le16(1); 1514 } 1515 1516 if (S_ISDIR(inode->i_mode)) 1517 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1518 else if (S_ISREG(inode->i_mode)) 1519 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1520 else if (S_ISLNK(inode->i_mode)) 1521 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1522 else if (S_ISBLK(inode->i_mode)) 1523 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1524 else if (S_ISCHR(inode->i_mode)) 1525 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1526 else if (S_ISFIFO(inode->i_mode)) 1527 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1528 else if (S_ISSOCK(inode->i_mode)) 1529 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1530 1531 icbflags = UDF_I_ALLOCTYPE(inode) | 1532 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1533 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1534 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1535 (le16_to_cpu(fe->icbTag.flags) & 1536 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1537 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1538 1539 fe->icbTag.flags = cpu_to_le16(icbflags); 1540 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) 1541 fe->descTag.descVersion = cpu_to_le16(3); 1542 else 1543 fe->descTag.descVersion = cpu_to_le16(2); 1544 fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb)); 1545 fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); 1546 crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag); 1547 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1548 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0)); 1549 1550 fe->descTag.tagChecksum = 0; 1551 for (i = 0; i < 16; i++) { 1552 if (i != 4) 1553 fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i]; 1554 } 1555 1556 /* write the data blocks */ 1557 mark_buffer_dirty(bh); 1558 if (do_sync) { 1559 sync_dirty_buffer(bh); 1560 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1561 printk("IO error syncing udf inode [%s:%08lx]\n", 1562 inode->i_sb->s_id, inode->i_ino); 1563 err = -EIO; 1564 } 1565 } 1566 brelse(bh); 1567 1568 return err; 1569 } 1570 1571 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1572 { 1573 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1574 struct inode *inode = iget_locked(sb, block); 1575 1576 if (!inode) 1577 return NULL; 1578 1579 if (inode->i_state & I_NEW) { 1580 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr)); 1581 __udf_read_inode(inode); 1582 unlock_new_inode(inode); 1583 } 1584 1585 if (is_bad_inode(inode)) 1586 goto out_iput; 1587 1588 if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) { 1589 udf_debug("block=%d, partition=%d out of range\n", 1590 ino.logicalBlockNum, ino.partitionReferenceNum); 1591 make_bad_inode(inode); 1592 goto out_iput; 1593 } 1594 1595 return inode; 1596 1597 out_iput: 1598 iput(inode); 1599 return NULL; 1600 } 1601 1602 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos, 1603 kernel_lb_addr eloc, uint32_t elen, int inc) 1604 { 1605 int adsize; 1606 short_ad *sad = NULL; 1607 long_ad *lad = NULL; 1608 struct allocExtDesc *aed; 1609 int8_t etype; 1610 uint8_t *ptr; 1611 1612 if (!epos->bh) 1613 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1614 else 1615 ptr = epos->bh->b_data + epos->offset; 1616 1617 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 1618 adsize = sizeof(short_ad); 1619 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 1620 adsize = sizeof(long_ad); 1621 else 1622 return -1; 1623 1624 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1625 char *sptr, *dptr; 1626 struct buffer_head *nbh; 1627 int err, loffset; 1628 kernel_lb_addr obloc = epos->block; 1629 1630 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1631 obloc.partitionReferenceNum, 1632 obloc.logicalBlockNum, &err))) { 1633 return -1; 1634 } 1635 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1636 epos->block, 0)))) { 1637 return -1; 1638 } 1639 lock_buffer(nbh); 1640 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1641 set_buffer_uptodate(nbh); 1642 unlock_buffer(nbh); 1643 mark_buffer_dirty_inode(nbh, inode); 1644 1645 aed = (struct allocExtDesc *)(nbh->b_data); 1646 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1647 aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); 1648 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1649 loffset = epos->offset; 1650 aed->lengthAllocDescs = cpu_to_le32(adsize); 1651 sptr = ptr - adsize; 1652 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1653 memcpy(dptr, sptr, adsize); 1654 epos->offset = sizeof(struct allocExtDesc) + adsize; 1655 } else { 1656 loffset = epos->offset + adsize; 1657 aed->lengthAllocDescs = cpu_to_le32(0); 1658 sptr = ptr; 1659 epos->offset = sizeof(struct allocExtDesc); 1660 1661 if (epos->bh) { 1662 aed = (struct allocExtDesc *)epos->bh->b_data; 1663 aed->lengthAllocDescs = 1664 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); 1665 } else { 1666 UDF_I_LENALLOC(inode) += adsize; 1667 mark_inode_dirty(inode); 1668 } 1669 } 1670 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) 1671 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1672 epos->block.logicalBlockNum, sizeof(tag)); 1673 else 1674 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1675 epos->block.logicalBlockNum, sizeof(tag)); 1676 switch (UDF_I_ALLOCTYPE(inode)) { 1677 case ICBTAG_FLAG_AD_SHORT: 1678 sad = (short_ad *)sptr; 1679 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1680 inode->i_sb->s_blocksize); 1681 sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum); 1682 break; 1683 case ICBTAG_FLAG_AD_LONG: 1684 lad = (long_ad *)sptr; 1685 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1686 inode->i_sb->s_blocksize); 1687 lad->extLocation = cpu_to_lelb(epos->block); 1688 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1689 break; 1690 } 1691 if (epos->bh) { 1692 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1693 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1694 udf_update_tag(epos->bh->b_data, loffset); 1695 else 1696 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); 1697 mark_buffer_dirty_inode(epos->bh, inode); 1698 brelse(epos->bh); 1699 } else { 1700 mark_inode_dirty(inode); 1701 } 1702 epos->bh = nbh; 1703 } 1704 1705 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1706 1707 if (!epos->bh) { 1708 UDF_I_LENALLOC(inode) += adsize; 1709 mark_inode_dirty(inode); 1710 } else { 1711 aed = (struct allocExtDesc *)epos->bh->b_data; 1712 aed->lengthAllocDescs = 1713 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); 1714 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1715 udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize)); 1716 else 1717 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); 1718 mark_buffer_dirty_inode(epos->bh, inode); 1719 } 1720 1721 return etype; 1722 } 1723 1724 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos, 1725 kernel_lb_addr eloc, uint32_t elen, int inc) 1726 { 1727 int adsize; 1728 uint8_t *ptr; 1729 short_ad *sad; 1730 long_ad *lad; 1731 1732 if (!epos->bh) 1733 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1734 else 1735 ptr = epos->bh->b_data + epos->offset; 1736 1737 switch (UDF_I_ALLOCTYPE(inode)) { 1738 case ICBTAG_FLAG_AD_SHORT: 1739 sad = (short_ad *)ptr; 1740 sad->extLength = cpu_to_le32(elen); 1741 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1742 adsize = sizeof(short_ad); 1743 break; 1744 case ICBTAG_FLAG_AD_LONG: 1745 lad = (long_ad *)ptr; 1746 lad->extLength = cpu_to_le32(elen); 1747 lad->extLocation = cpu_to_lelb(eloc); 1748 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1749 adsize = sizeof(long_ad); 1750 break; 1751 default: 1752 return -1; 1753 } 1754 1755 if (epos->bh) { 1756 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1757 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) { 1758 struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data; 1759 udf_update_tag(epos->bh->b_data, 1760 le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc)); 1761 } 1762 mark_buffer_dirty_inode(epos->bh, inode); 1763 } else { 1764 mark_inode_dirty(inode); 1765 } 1766 1767 if (inc) 1768 epos->offset += adsize; 1769 1770 return (elen >> 30); 1771 } 1772 1773 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos, 1774 kernel_lb_addr * eloc, uint32_t * elen, int inc) 1775 { 1776 int8_t etype; 1777 1778 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1779 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1780 epos->block = *eloc; 1781 epos->offset = sizeof(struct allocExtDesc); 1782 brelse(epos->bh); 1783 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) { 1784 udf_debug("reading block %d failed!\n", 1785 udf_get_lb_pblock(inode->i_sb, epos->block, 0)); 1786 return -1; 1787 } 1788 } 1789 1790 return etype; 1791 } 1792 1793 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos, 1794 kernel_lb_addr * eloc, uint32_t * elen, int inc) 1795 { 1796 int alen; 1797 int8_t etype; 1798 uint8_t *ptr; 1799 short_ad *sad; 1800 long_ad *lad; 1801 1802 1803 if (!epos->bh) { 1804 if (!epos->offset) 1805 epos->offset = udf_file_entry_alloc_offset(inode); 1806 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1807 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode); 1808 } else { 1809 if (!epos->offset) 1810 epos->offset = sizeof(struct allocExtDesc); 1811 ptr = epos->bh->b_data + epos->offset; 1812 alen = sizeof(struct allocExtDesc) + 1813 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs); 1814 } 1815 1816 switch (UDF_I_ALLOCTYPE(inode)) { 1817 case ICBTAG_FLAG_AD_SHORT: 1818 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc))) 1819 return -1; 1820 etype = le32_to_cpu(sad->extLength) >> 30; 1821 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1822 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; 1823 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1824 break; 1825 case ICBTAG_FLAG_AD_LONG: 1826 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc))) 1827 return -1; 1828 etype = le32_to_cpu(lad->extLength) >> 30; 1829 *eloc = lelb_to_cpu(lad->extLocation); 1830 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1831 break; 1832 default: 1833 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode)); 1834 return -1; 1835 } 1836 1837 return etype; 1838 } 1839 1840 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1841 kernel_lb_addr neloc, uint32_t nelen) 1842 { 1843 kernel_lb_addr oeloc; 1844 uint32_t oelen; 1845 int8_t etype; 1846 1847 if (epos.bh) 1848 get_bh(epos.bh); 1849 1850 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1851 udf_write_aext(inode, &epos, neloc, nelen, 1); 1852 neloc = oeloc; 1853 nelen = (etype << 30) | oelen; 1854 } 1855 udf_add_aext(inode, &epos, neloc, nelen, 1); 1856 brelse(epos.bh); 1857 1858 return (nelen >> 30); 1859 } 1860 1861 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos, 1862 kernel_lb_addr eloc, uint32_t elen) 1863 { 1864 struct extent_position oepos; 1865 int adsize; 1866 int8_t etype; 1867 struct allocExtDesc *aed; 1868 1869 if (epos.bh) { 1870 get_bh(epos.bh); 1871 get_bh(epos.bh); 1872 } 1873 1874 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 1875 adsize = sizeof(short_ad); 1876 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 1877 adsize = sizeof(long_ad); 1878 else 1879 adsize = 0; 1880 1881 oepos = epos; 1882 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1883 return -1; 1884 1885 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1886 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 1887 if (oepos.bh != epos.bh) { 1888 oepos.block = epos.block; 1889 brelse(oepos.bh); 1890 get_bh(epos.bh); 1891 oepos.bh = epos.bh; 1892 oepos.offset = epos.offset - adsize; 1893 } 1894 } 1895 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 1896 elen = 0; 1897 1898 if (epos.bh != oepos.bh) { 1899 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 1900 udf_write_aext(inode, &oepos, eloc, elen, 1); 1901 udf_write_aext(inode, &oepos, eloc, elen, 1); 1902 if (!oepos.bh) { 1903 UDF_I_LENALLOC(inode) -= (adsize * 2); 1904 mark_inode_dirty(inode); 1905 } else { 1906 aed = (struct allocExtDesc *)oepos.bh->b_data; 1907 aed->lengthAllocDescs = 1908 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize)); 1909 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1910 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1911 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize)); 1912 else 1913 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); 1914 mark_buffer_dirty_inode(oepos.bh, inode); 1915 } 1916 } else { 1917 udf_write_aext(inode, &oepos, eloc, elen, 1); 1918 if (!oepos.bh) { 1919 UDF_I_LENALLOC(inode) -= adsize; 1920 mark_inode_dirty(inode); 1921 } else { 1922 aed = (struct allocExtDesc *)oepos.bh->b_data; 1923 aed->lengthAllocDescs = 1924 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize); 1925 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1926 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1927 udf_update_tag(oepos.bh->b_data, epos.offset - adsize); 1928 else 1929 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); 1930 mark_buffer_dirty_inode(oepos.bh, inode); 1931 } 1932 } 1933 1934 brelse(epos.bh); 1935 brelse(oepos.bh); 1936 1937 return (elen >> 30); 1938 } 1939 1940 int8_t inode_bmap(struct inode * inode, sector_t block, 1941 struct extent_position * pos, kernel_lb_addr * eloc, 1942 uint32_t * elen, sector_t * offset) 1943 { 1944 loff_t lbcount = 0, bcount = 1945 (loff_t) block << inode->i_sb->s_blocksize_bits; 1946 int8_t etype; 1947 1948 if (block < 0) { 1949 printk(KERN_ERR "udf: inode_bmap: block < 0\n"); 1950 return -1; 1951 } 1952 1953 pos->offset = 0; 1954 pos->block = UDF_I_LOCATION(inode); 1955 pos->bh = NULL; 1956 *elen = 0; 1957 1958 do { 1959 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) { 1960 *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits; 1961 UDF_I_LENEXTENTS(inode) = lbcount; 1962 return -1; 1963 } 1964 lbcount += *elen; 1965 } while (lbcount <= bcount); 1966 1967 *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits; 1968 1969 return etype; 1970 } 1971 1972 long udf_block_map(struct inode *inode, sector_t block) 1973 { 1974 kernel_lb_addr eloc; 1975 uint32_t elen; 1976 sector_t offset; 1977 struct extent_position epos = {}; 1978 int ret; 1979 1980 lock_kernel(); 1981 1982 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30)) 1983 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 1984 else 1985 ret = 0; 1986 1987 unlock_kernel(); 1988 brelse(epos.bh); 1989 1990 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 1991 return udf_fixed_to_variable(ret); 1992 else 1993 return ret; 1994 } 1995