xref: /openbmc/linux/fs/udf/inode.c (revision 60b99a1b9fa731453e1b69a3e0b3e4dcab7a6ea5)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 struct udf_map_rq;
56 
57 static umode_t udf_convert_permissions(struct fileEntry *);
58 static int udf_update_inode(struct inode *, int);
59 static int udf_sync_inode(struct inode *inode);
60 static int udf_alloc_i_data(struct inode *inode, size_t size);
61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
62 static int udf_insert_aext(struct inode *, struct extent_position,
63 			   struct kernel_lb_addr, uint32_t);
64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
65 			      struct kernel_long_ad *, int *);
66 static void udf_prealloc_extents(struct inode *, int, int,
67 				 struct kernel_long_ad *, int *);
68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
70 			      int, struct extent_position *);
71 static int udf_get_block_wb(struct inode *inode, sector_t block,
72 			    struct buffer_head *bh_result, int create);
73 
74 static void __udf_clear_extent_cache(struct inode *inode)
75 {
76 	struct udf_inode_info *iinfo = UDF_I(inode);
77 
78 	if (iinfo->cached_extent.lstart != -1) {
79 		brelse(iinfo->cached_extent.epos.bh);
80 		iinfo->cached_extent.lstart = -1;
81 	}
82 }
83 
84 /* Invalidate extent cache */
85 static void udf_clear_extent_cache(struct inode *inode)
86 {
87 	struct udf_inode_info *iinfo = UDF_I(inode);
88 
89 	spin_lock(&iinfo->i_extent_cache_lock);
90 	__udf_clear_extent_cache(inode);
91 	spin_unlock(&iinfo->i_extent_cache_lock);
92 }
93 
94 /* Return contents of extent cache */
95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
96 				 loff_t *lbcount, struct extent_position *pos)
97 {
98 	struct udf_inode_info *iinfo = UDF_I(inode);
99 	int ret = 0;
100 
101 	spin_lock(&iinfo->i_extent_cache_lock);
102 	if ((iinfo->cached_extent.lstart <= bcount) &&
103 	    (iinfo->cached_extent.lstart != -1)) {
104 		/* Cache hit */
105 		*lbcount = iinfo->cached_extent.lstart;
106 		memcpy(pos, &iinfo->cached_extent.epos,
107 		       sizeof(struct extent_position));
108 		if (pos->bh)
109 			get_bh(pos->bh);
110 		ret = 1;
111 	}
112 	spin_unlock(&iinfo->i_extent_cache_lock);
113 	return ret;
114 }
115 
116 /* Add extent to extent cache */
117 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
118 				    struct extent_position *pos)
119 {
120 	struct udf_inode_info *iinfo = UDF_I(inode);
121 
122 	spin_lock(&iinfo->i_extent_cache_lock);
123 	/* Invalidate previously cached extent */
124 	__udf_clear_extent_cache(inode);
125 	if (pos->bh)
126 		get_bh(pos->bh);
127 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
128 	iinfo->cached_extent.lstart = estart;
129 	switch (iinfo->i_alloc_type) {
130 	case ICBTAG_FLAG_AD_SHORT:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
132 		break;
133 	case ICBTAG_FLAG_AD_LONG:
134 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
135 		break;
136 	}
137 	spin_unlock(&iinfo->i_extent_cache_lock);
138 }
139 
140 void udf_evict_inode(struct inode *inode)
141 {
142 	struct udf_inode_info *iinfo = UDF_I(inode);
143 	int want_delete = 0;
144 
145 	if (!is_bad_inode(inode)) {
146 		if (!inode->i_nlink) {
147 			want_delete = 1;
148 			udf_setsize(inode, 0);
149 			udf_update_inode(inode, IS_SYNC(inode));
150 		}
151 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152 		    inode->i_size != iinfo->i_lenExtents) {
153 			udf_warn(inode->i_sb,
154 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 				 inode->i_ino, inode->i_mode,
156 				 (unsigned long long)inode->i_size,
157 				 (unsigned long long)iinfo->i_lenExtents);
158 		}
159 	}
160 	truncate_inode_pages_final(&inode->i_data);
161 	invalidate_inode_buffers(inode);
162 	clear_inode(inode);
163 	kfree(iinfo->i_data);
164 	iinfo->i_data = NULL;
165 	udf_clear_extent_cache(inode);
166 	if (want_delete) {
167 		udf_free_inode(inode);
168 	}
169 }
170 
171 static void udf_write_failed(struct address_space *mapping, loff_t to)
172 {
173 	struct inode *inode = mapping->host;
174 	struct udf_inode_info *iinfo = UDF_I(inode);
175 	loff_t isize = inode->i_size;
176 
177 	if (to > isize) {
178 		truncate_pagecache(inode, isize);
179 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
180 			down_write(&iinfo->i_data_sem);
181 			udf_clear_extent_cache(inode);
182 			udf_truncate_extents(inode);
183 			up_write(&iinfo->i_data_sem);
184 		}
185 	}
186 }
187 
188 static int udf_adinicb_writepage(struct page *page,
189 				 struct writeback_control *wbc, void *data)
190 {
191 	struct inode *inode = page->mapping->host;
192 	char *kaddr;
193 	struct udf_inode_info *iinfo = UDF_I(inode);
194 
195 	BUG_ON(!PageLocked(page));
196 
197 	kaddr = kmap_atomic(page);
198 	memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, i_size_read(inode));
199 	SetPageUptodate(page);
200 	kunmap_atomic(kaddr);
201 	unlock_page(page);
202 	mark_inode_dirty(inode);
203 
204 	return 0;
205 }
206 
207 int udf_writepages(struct address_space *mapping, struct writeback_control *wbc)
208 {
209 	struct inode *inode = mapping->host;
210 	struct udf_inode_info *iinfo = UDF_I(inode);
211 
212 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
213 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
214 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
215 }
216 
217 int udf_read_folio(struct file *file, struct folio *folio)
218 {
219 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
220 
221 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
222 		udf_adinicb_readpage(&folio->page);
223 		folio_unlock(folio);
224 		return 0;
225 	}
226 	return mpage_read_folio(folio, udf_get_block);
227 }
228 
229 static void udf_readahead(struct readahead_control *rac)
230 {
231 	mpage_readahead(rac, udf_get_block);
232 }
233 
234 int udf_write_begin(struct file *file, struct address_space *mapping,
235 			loff_t pos, unsigned len,
236 			struct page **pagep, void **fsdata)
237 {
238 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
239 	struct page *page;
240 	int ret;
241 
242 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
243 		ret = block_write_begin(mapping, pos, len, pagep,
244 					udf_get_block);
245 		if (unlikely(ret))
246 			udf_write_failed(mapping, pos + len);
247 		return ret;
248 	}
249 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
250 		return -EIO;
251 	page = grab_cache_page_write_begin(mapping, 0);
252 	if (!page)
253 		return -ENOMEM;
254 	*pagep = page;
255 	if (!PageUptodate(page))
256 		udf_adinicb_readpage(page);
257 	return 0;
258 }
259 
260 ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
261 {
262 	struct file *file = iocb->ki_filp;
263 	struct address_space *mapping = file->f_mapping;
264 	struct inode *inode = mapping->host;
265 	size_t count = iov_iter_count(iter);
266 	ssize_t ret;
267 
268 	/* Fallback to buffered IO for in-ICB files */
269 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
270 		return 0;
271 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
272 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
273 		udf_write_failed(mapping, iocb->ki_pos + count);
274 	return ret;
275 }
276 
277 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
278 {
279 	return generic_block_bmap(mapping, block, udf_get_block);
280 }
281 
282 const struct address_space_operations udf_aops = {
283 	.dirty_folio	= block_dirty_folio,
284 	.invalidate_folio = block_invalidate_folio,
285 	.read_folio	= udf_read_folio,
286 	.readahead	= udf_readahead,
287 	.writepages	= udf_writepages,
288 	.write_begin	= udf_write_begin,
289 	.write_end	= generic_write_end,
290 	.direct_IO	= udf_direct_IO,
291 	.bmap		= udf_bmap,
292 	.migrate_folio	= buffer_migrate_folio,
293 };
294 
295 /*
296  * Expand file stored in ICB to a normal one-block-file
297  *
298  * This function requires i_mutex held
299  */
300 int udf_expand_file_adinicb(struct inode *inode)
301 {
302 	struct page *page;
303 	char *kaddr;
304 	struct udf_inode_info *iinfo = UDF_I(inode);
305 	int err;
306 
307 	WARN_ON_ONCE(!inode_is_locked(inode));
308 	if (!iinfo->i_lenAlloc) {
309 		down_write(&iinfo->i_data_sem);
310 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
311 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
312 		else
313 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
314 		/* from now on we have normal address_space methods */
315 		inode->i_data.a_ops = &udf_aops;
316 		up_write(&iinfo->i_data_sem);
317 		mark_inode_dirty(inode);
318 		return 0;
319 	}
320 
321 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
322 	if (!page)
323 		return -ENOMEM;
324 
325 	if (!PageUptodate(page)) {
326 		kaddr = kmap_atomic(page);
327 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
328 		       PAGE_SIZE - iinfo->i_lenAlloc);
329 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
330 			iinfo->i_lenAlloc);
331 		flush_dcache_page(page);
332 		SetPageUptodate(page);
333 		kunmap_atomic(kaddr);
334 	}
335 	down_write(&iinfo->i_data_sem);
336 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
337 	       iinfo->i_lenAlloc);
338 	iinfo->i_lenAlloc = 0;
339 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
340 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
341 	else
342 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
343 	/* from now on we have normal address_space methods */
344 	inode->i_data.a_ops = &udf_aops;
345 	set_page_dirty(page);
346 	unlock_page(page);
347 	up_write(&iinfo->i_data_sem);
348 	err = filemap_fdatawrite(inode->i_mapping);
349 	if (err) {
350 		/* Restore everything back so that we don't lose data... */
351 		lock_page(page);
352 		down_write(&iinfo->i_data_sem);
353 		kaddr = kmap_atomic(page);
354 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
355 		kunmap_atomic(kaddr);
356 		unlock_page(page);
357 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
358 		inode->i_data.a_ops = &udf_adinicb_aops;
359 		iinfo->i_lenAlloc = inode->i_size;
360 		up_write(&iinfo->i_data_sem);
361 	}
362 	put_page(page);
363 	mark_inode_dirty(inode);
364 
365 	return err;
366 }
367 
368 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
369 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
370 
371 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
372 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
373 
374 struct udf_map_rq {
375 	sector_t lblk;
376 	udf_pblk_t pblk;
377 	int iflags;		/* UDF_MAP_ flags determining behavior */
378 	int oflags;		/* UDF_BLK_ flags reporting results */
379 };
380 
381 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
382 {
383 	int err;
384 	struct udf_inode_info *iinfo = UDF_I(inode);
385 
386 	map->oflags = 0;
387 	if (!(map->iflags & UDF_MAP_CREATE)) {
388 		struct kernel_lb_addr eloc;
389 		uint32_t elen;
390 		sector_t offset;
391 		struct extent_position epos = {};
392 
393 		down_read(&iinfo->i_data_sem);
394 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
395 				== (EXT_RECORDED_ALLOCATED >> 30)) {
396 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
397 							offset);
398 			map->oflags |= UDF_BLK_MAPPED;
399 		}
400 		up_read(&iinfo->i_data_sem);
401 		brelse(epos.bh);
402 
403 		return 0;
404 	}
405 
406 	down_write(&iinfo->i_data_sem);
407 	/*
408 	 * Block beyond EOF and prealloc extents? Just discard preallocation
409 	 * as it is not useful and complicates things.
410 	 */
411 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
412 		udf_discard_prealloc(inode);
413 	udf_clear_extent_cache(inode);
414 	err = inode_getblk(inode, map);
415 	up_write(&iinfo->i_data_sem);
416 	return err;
417 }
418 
419 static int __udf_get_block(struct inode *inode, sector_t block,
420 			   struct buffer_head *bh_result, int flags)
421 {
422 	int err;
423 	struct udf_map_rq map = {
424 		.lblk = block,
425 		.iflags = flags,
426 	};
427 
428 	err = udf_map_block(inode, &map);
429 	if (err < 0)
430 		return err;
431 	if (map.oflags & UDF_BLK_MAPPED) {
432 		map_bh(bh_result, inode->i_sb, map.pblk);
433 		if (map.oflags & UDF_BLK_NEW)
434 			set_buffer_new(bh_result);
435 	}
436 	return 0;
437 }
438 
439 int udf_get_block(struct inode *inode, sector_t block,
440 		  struct buffer_head *bh_result, int create)
441 {
442 	int flags = create ? UDF_MAP_CREATE : 0;
443 
444 	/*
445 	 * We preallocate blocks only for regular files. It also makes sense
446 	 * for directories but there's a problem when to drop the
447 	 * preallocation. We might use some delayed work for that but I feel
448 	 * it's overengineering for a filesystem like UDF.
449 	 */
450 	if (!S_ISREG(inode->i_mode))
451 		flags |= UDF_MAP_NOPREALLOC;
452 	return __udf_get_block(inode, block, bh_result, flags);
453 }
454 
455 /*
456  * We shouldn't be allocating blocks on page writeback since we allocate them
457  * on page fault. We can spot dirty buffers without allocated blocks though
458  * when truncate expands file. These however don't have valid data so we can
459  * safely ignore them. So never allocate blocks from page writeback.
460  */
461 static int udf_get_block_wb(struct inode *inode, sector_t block,
462 			    struct buffer_head *bh_result, int create)
463 {
464 	return __udf_get_block(inode, block, bh_result, 0);
465 }
466 
467 /* Extend the file with new blocks totaling 'new_block_bytes',
468  * return the number of extents added
469  */
470 static int udf_do_extend_file(struct inode *inode,
471 			      struct extent_position *last_pos,
472 			      struct kernel_long_ad *last_ext,
473 			      loff_t new_block_bytes)
474 {
475 	uint32_t add;
476 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
477 	struct super_block *sb = inode->i_sb;
478 	struct udf_inode_info *iinfo;
479 	int err;
480 
481 	/* The previous extent is fake and we should not extend by anything
482 	 * - there's nothing to do... */
483 	if (!new_block_bytes && fake)
484 		return 0;
485 
486 	iinfo = UDF_I(inode);
487 	/* Round the last extent up to a multiple of block size */
488 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
489 		last_ext->extLength =
490 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
491 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
492 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
493 		iinfo->i_lenExtents =
494 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
495 			~(sb->s_blocksize - 1);
496 	}
497 
498 	add = 0;
499 	/* Can we merge with the previous extent? */
500 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
501 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
502 		add = (1 << 30) - sb->s_blocksize -
503 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
504 		if (add > new_block_bytes)
505 			add = new_block_bytes;
506 		new_block_bytes -= add;
507 		last_ext->extLength += add;
508 	}
509 
510 	if (fake) {
511 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
512 				   last_ext->extLength, 1);
513 		if (err < 0)
514 			goto out_err;
515 		count++;
516 	} else {
517 		struct kernel_lb_addr tmploc;
518 		uint32_t tmplen;
519 
520 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
521 				last_ext->extLength, 1);
522 
523 		/*
524 		 * We've rewritten the last extent. If we are going to add
525 		 * more extents, we may need to enter possible following
526 		 * empty indirect extent.
527 		 */
528 		if (new_block_bytes)
529 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
530 	}
531 	iinfo->i_lenExtents += add;
532 
533 	/* Managed to do everything necessary? */
534 	if (!new_block_bytes)
535 		goto out;
536 
537 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
538 	last_ext->extLocation.logicalBlockNum = 0;
539 	last_ext->extLocation.partitionReferenceNum = 0;
540 	add = (1 << 30) - sb->s_blocksize;
541 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
542 
543 	/* Create enough extents to cover the whole hole */
544 	while (new_block_bytes > add) {
545 		new_block_bytes -= add;
546 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
547 				   last_ext->extLength, 1);
548 		if (err)
549 			goto out_err;
550 		iinfo->i_lenExtents += add;
551 		count++;
552 	}
553 	if (new_block_bytes) {
554 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 			new_block_bytes;
556 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 				   last_ext->extLength, 1);
558 		if (err)
559 			goto out_err;
560 		iinfo->i_lenExtents += new_block_bytes;
561 		count++;
562 	}
563 
564 out:
565 	/* last_pos should point to the last written extent... */
566 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
567 		last_pos->offset -= sizeof(struct short_ad);
568 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
569 		last_pos->offset -= sizeof(struct long_ad);
570 	else
571 		return -EIO;
572 
573 	return count;
574 out_err:
575 	/* Remove extents we've created so far */
576 	udf_clear_extent_cache(inode);
577 	udf_truncate_extents(inode);
578 	return err;
579 }
580 
581 /* Extend the final block of the file to final_block_len bytes */
582 static void udf_do_extend_final_block(struct inode *inode,
583 				      struct extent_position *last_pos,
584 				      struct kernel_long_ad *last_ext,
585 				      uint32_t new_elen)
586 {
587 	uint32_t added_bytes;
588 
589 	/*
590 	 * Extent already large enough? It may be already rounded up to block
591 	 * size...
592 	 */
593 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
594 		return;
595 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
596 	last_ext->extLength += added_bytes;
597 	UDF_I(inode)->i_lenExtents += added_bytes;
598 
599 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
600 			last_ext->extLength, 1);
601 }
602 
603 static int udf_extend_file(struct inode *inode, loff_t newsize)
604 {
605 
606 	struct extent_position epos;
607 	struct kernel_lb_addr eloc;
608 	uint32_t elen;
609 	int8_t etype;
610 	struct super_block *sb = inode->i_sb;
611 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
612 	loff_t new_elen;
613 	int adsize;
614 	struct udf_inode_info *iinfo = UDF_I(inode);
615 	struct kernel_long_ad extent;
616 	int err = 0;
617 	bool within_last_ext;
618 
619 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
620 		adsize = sizeof(struct short_ad);
621 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
622 		adsize = sizeof(struct long_ad);
623 	else
624 		BUG();
625 
626 	down_write(&iinfo->i_data_sem);
627 	/*
628 	 * When creating hole in file, just don't bother with preserving
629 	 * preallocation. It likely won't be very useful anyway.
630 	 */
631 	udf_discard_prealloc(inode);
632 
633 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
634 	within_last_ext = (etype != -1);
635 	/* We don't expect extents past EOF... */
636 	WARN_ON_ONCE(within_last_ext &&
637 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
638 
639 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
640 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
641 		/* File has no extents at all or has empty last
642 		 * indirect extent! Create a fake extent... */
643 		extent.extLocation.logicalBlockNum = 0;
644 		extent.extLocation.partitionReferenceNum = 0;
645 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
646 	} else {
647 		epos.offset -= adsize;
648 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
649 				      &extent.extLength, 0);
650 		extent.extLength |= etype << 30;
651 	}
652 
653 	new_elen = ((loff_t)offset << inode->i_blkbits) |
654 					(newsize & (sb->s_blocksize - 1));
655 
656 	/* File has extent covering the new size (could happen when extending
657 	 * inside a block)?
658 	 */
659 	if (within_last_ext) {
660 		/* Extending file within the last file block */
661 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
662 	} else {
663 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
664 	}
665 
666 	if (err < 0)
667 		goto out;
668 	err = 0;
669 out:
670 	brelse(epos.bh);
671 	up_write(&iinfo->i_data_sem);
672 	return err;
673 }
674 
675 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
676 {
677 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
678 	struct extent_position prev_epos, cur_epos, next_epos;
679 	int count = 0, startnum = 0, endnum = 0;
680 	uint32_t elen = 0, tmpelen;
681 	struct kernel_lb_addr eloc, tmpeloc;
682 	int c = 1;
683 	loff_t lbcount = 0, b_off = 0;
684 	udf_pblk_t newblocknum;
685 	sector_t offset = 0;
686 	int8_t etype;
687 	struct udf_inode_info *iinfo = UDF_I(inode);
688 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
689 	int lastblock = 0;
690 	bool isBeyondEOF;
691 	int ret = 0;
692 
693 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
694 	prev_epos.block = iinfo->i_location;
695 	prev_epos.bh = NULL;
696 	cur_epos = next_epos = prev_epos;
697 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
698 
699 	/* find the extent which contains the block we are looking for.
700 	   alternate between laarr[0] and laarr[1] for locations of the
701 	   current extent, and the previous extent */
702 	do {
703 		if (prev_epos.bh != cur_epos.bh) {
704 			brelse(prev_epos.bh);
705 			get_bh(cur_epos.bh);
706 			prev_epos.bh = cur_epos.bh;
707 		}
708 		if (cur_epos.bh != next_epos.bh) {
709 			brelse(cur_epos.bh);
710 			get_bh(next_epos.bh);
711 			cur_epos.bh = next_epos.bh;
712 		}
713 
714 		lbcount += elen;
715 
716 		prev_epos.block = cur_epos.block;
717 		cur_epos.block = next_epos.block;
718 
719 		prev_epos.offset = cur_epos.offset;
720 		cur_epos.offset = next_epos.offset;
721 
722 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
723 		if (etype == -1)
724 			break;
725 
726 		c = !c;
727 
728 		laarr[c].extLength = (etype << 30) | elen;
729 		laarr[c].extLocation = eloc;
730 
731 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
732 			pgoal = eloc.logicalBlockNum +
733 				((elen + inode->i_sb->s_blocksize - 1) >>
734 				 inode->i_sb->s_blocksize_bits);
735 
736 		count++;
737 	} while (lbcount + elen <= b_off);
738 
739 	b_off -= lbcount;
740 	offset = b_off >> inode->i_sb->s_blocksize_bits;
741 	/*
742 	 * Move prev_epos and cur_epos into indirect extent if we are at
743 	 * the pointer to it
744 	 */
745 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
746 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
747 
748 	/* if the extent is allocated and recorded, return the block
749 	   if the extent is not a multiple of the blocksize, round up */
750 
751 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
752 		if (elen & (inode->i_sb->s_blocksize - 1)) {
753 			elen = EXT_RECORDED_ALLOCATED |
754 				((elen + inode->i_sb->s_blocksize - 1) &
755 				 ~(inode->i_sb->s_blocksize - 1));
756 			iinfo->i_lenExtents =
757 				ALIGN(iinfo->i_lenExtents,
758 				      inode->i_sb->s_blocksize);
759 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
760 		}
761 		map->oflags = UDF_BLK_MAPPED;
762 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 		goto out_free;
764 	}
765 
766 	/* Are we beyond EOF and preallocated extent? */
767 	if (etype == -1) {
768 		loff_t hole_len;
769 
770 		isBeyondEOF = true;
771 		if (count) {
772 			if (c)
773 				laarr[0] = laarr[1];
774 			startnum = 1;
775 		} else {
776 			/* Create a fake extent when there's not one */
777 			memset(&laarr[0].extLocation, 0x00,
778 				sizeof(struct kernel_lb_addr));
779 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
780 			/* Will udf_do_extend_file() create real extent from
781 			   a fake one? */
782 			startnum = (offset > 0);
783 		}
784 		/* Create extents for the hole between EOF and offset */
785 		hole_len = (loff_t)offset << inode->i_blkbits;
786 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
787 		if (ret < 0)
788 			goto out_free;
789 		c = 0;
790 		offset = 0;
791 		count += ret;
792 		/*
793 		 * Is there any real extent? - otherwise we overwrite the fake
794 		 * one...
795 		 */
796 		if (count)
797 			c = !c;
798 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
799 			inode->i_sb->s_blocksize;
800 		memset(&laarr[c].extLocation, 0x00,
801 			sizeof(struct kernel_lb_addr));
802 		count++;
803 		endnum = c + 1;
804 		lastblock = 1;
805 	} else {
806 		isBeyondEOF = false;
807 		endnum = startnum = ((count > 2) ? 2 : count);
808 
809 		/* if the current extent is in position 0,
810 		   swap it with the previous */
811 		if (!c && count != 1) {
812 			laarr[2] = laarr[0];
813 			laarr[0] = laarr[1];
814 			laarr[1] = laarr[2];
815 			c = 1;
816 		}
817 
818 		/* if the current block is located in an extent,
819 		   read the next extent */
820 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
821 		if (etype != -1) {
822 			laarr[c + 1].extLength = (etype << 30) | elen;
823 			laarr[c + 1].extLocation = eloc;
824 			count++;
825 			startnum++;
826 			endnum++;
827 		} else
828 			lastblock = 1;
829 	}
830 
831 	/* if the current extent is not recorded but allocated, get the
832 	 * block in the extent corresponding to the requested block */
833 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
834 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
835 	else { /* otherwise, allocate a new block */
836 		if (iinfo->i_next_alloc_block == map->lblk)
837 			goal = iinfo->i_next_alloc_goal;
838 
839 		if (!goal) {
840 			if (!(goal = pgoal)) /* XXX: what was intended here? */
841 				goal = iinfo->i_location.logicalBlockNum + 1;
842 		}
843 
844 		newblocknum = udf_new_block(inode->i_sb, inode,
845 				iinfo->i_location.partitionReferenceNum,
846 				goal, &ret);
847 		if (!newblocknum)
848 			goto out_free;
849 		if (isBeyondEOF)
850 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
851 	}
852 
853 	/* if the extent the requsted block is located in contains multiple
854 	 * blocks, split the extent into at most three extents. blocks prior
855 	 * to requested block, requested block, and blocks after requested
856 	 * block */
857 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
858 
859 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
860 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
861 
862 	/* merge any continuous blocks in laarr */
863 	udf_merge_extents(inode, laarr, &endnum);
864 
865 	/* write back the new extents, inserting new extents if the new number
866 	 * of extents is greater than the old number, and deleting extents if
867 	 * the new number of extents is less than the old number */
868 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
869 	if (ret < 0)
870 		goto out_free;
871 
872 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
873 				iinfo->i_location.partitionReferenceNum, 0);
874 	if (!map->pblk) {
875 		ret = -EFSCORRUPTED;
876 		goto out_free;
877 	}
878 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
879 	iinfo->i_next_alloc_block = map->lblk + 1;
880 	iinfo->i_next_alloc_goal = newblocknum + 1;
881 	inode->i_ctime = current_time(inode);
882 
883 	if (IS_SYNC(inode))
884 		udf_sync_inode(inode);
885 	else
886 		mark_inode_dirty(inode);
887 	ret = 0;
888 out_free:
889 	brelse(prev_epos.bh);
890 	brelse(cur_epos.bh);
891 	brelse(next_epos.bh);
892 	return ret;
893 }
894 
895 static void udf_split_extents(struct inode *inode, int *c, int offset,
896 			       udf_pblk_t newblocknum,
897 			       struct kernel_long_ad *laarr, int *endnum)
898 {
899 	unsigned long blocksize = inode->i_sb->s_blocksize;
900 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
901 
902 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
903 	    (laarr[*c].extLength >> 30) ==
904 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
905 		int curr = *c;
906 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
907 			    blocksize - 1) >> blocksize_bits;
908 		int8_t etype = (laarr[curr].extLength >> 30);
909 
910 		if (blen == 1)
911 			;
912 		else if (!offset || blen == offset + 1) {
913 			laarr[curr + 2] = laarr[curr + 1];
914 			laarr[curr + 1] = laarr[curr];
915 		} else {
916 			laarr[curr + 3] = laarr[curr + 1];
917 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
918 		}
919 
920 		if (offset) {
921 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
922 				udf_free_blocks(inode->i_sb, inode,
923 						&laarr[curr].extLocation,
924 						0, offset);
925 				laarr[curr].extLength =
926 					EXT_NOT_RECORDED_NOT_ALLOCATED |
927 					(offset << blocksize_bits);
928 				laarr[curr].extLocation.logicalBlockNum = 0;
929 				laarr[curr].extLocation.
930 						partitionReferenceNum = 0;
931 			} else
932 				laarr[curr].extLength = (etype << 30) |
933 					(offset << blocksize_bits);
934 			curr++;
935 			(*c)++;
936 			(*endnum)++;
937 		}
938 
939 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
940 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
941 			laarr[curr].extLocation.partitionReferenceNum =
942 				UDF_I(inode)->i_location.partitionReferenceNum;
943 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
944 			blocksize;
945 		curr++;
946 
947 		if (blen != offset + 1) {
948 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
949 				laarr[curr].extLocation.logicalBlockNum +=
950 								offset + 1;
951 			laarr[curr].extLength = (etype << 30) |
952 				((blen - (offset + 1)) << blocksize_bits);
953 			curr++;
954 			(*endnum)++;
955 		}
956 	}
957 }
958 
959 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
960 				 struct kernel_long_ad *laarr,
961 				 int *endnum)
962 {
963 	int start, length = 0, currlength = 0, i;
964 
965 	if (*endnum >= (c + 1)) {
966 		if (!lastblock)
967 			return;
968 		else
969 			start = c;
970 	} else {
971 		if ((laarr[c + 1].extLength >> 30) ==
972 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
973 			start = c + 1;
974 			length = currlength =
975 				(((laarr[c + 1].extLength &
976 					UDF_EXTENT_LENGTH_MASK) +
977 				inode->i_sb->s_blocksize - 1) >>
978 				inode->i_sb->s_blocksize_bits);
979 		} else
980 			start = c;
981 	}
982 
983 	for (i = start + 1; i <= *endnum; i++) {
984 		if (i == *endnum) {
985 			if (lastblock)
986 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
987 		} else if ((laarr[i].extLength >> 30) ==
988 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
989 			length += (((laarr[i].extLength &
990 						UDF_EXTENT_LENGTH_MASK) +
991 				    inode->i_sb->s_blocksize - 1) >>
992 				    inode->i_sb->s_blocksize_bits);
993 		} else
994 			break;
995 	}
996 
997 	if (length) {
998 		int next = laarr[start].extLocation.logicalBlockNum +
999 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1000 			  inode->i_sb->s_blocksize - 1) >>
1001 			  inode->i_sb->s_blocksize_bits);
1002 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1003 				laarr[start].extLocation.partitionReferenceNum,
1004 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1005 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1006 				currlength);
1007 		if (numalloc) 	{
1008 			if (start == (c + 1))
1009 				laarr[start].extLength +=
1010 					(numalloc <<
1011 					 inode->i_sb->s_blocksize_bits);
1012 			else {
1013 				memmove(&laarr[c + 2], &laarr[c + 1],
1014 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1015 				(*endnum)++;
1016 				laarr[c + 1].extLocation.logicalBlockNum = next;
1017 				laarr[c + 1].extLocation.partitionReferenceNum =
1018 					laarr[c].extLocation.
1019 							partitionReferenceNum;
1020 				laarr[c + 1].extLength =
1021 					EXT_NOT_RECORDED_ALLOCATED |
1022 					(numalloc <<
1023 					 inode->i_sb->s_blocksize_bits);
1024 				start = c + 1;
1025 			}
1026 
1027 			for (i = start + 1; numalloc && i < *endnum; i++) {
1028 				int elen = ((laarr[i].extLength &
1029 						UDF_EXTENT_LENGTH_MASK) +
1030 					    inode->i_sb->s_blocksize - 1) >>
1031 					    inode->i_sb->s_blocksize_bits;
1032 
1033 				if (elen > numalloc) {
1034 					laarr[i].extLength -=
1035 						(numalloc <<
1036 						 inode->i_sb->s_blocksize_bits);
1037 					numalloc = 0;
1038 				} else {
1039 					numalloc -= elen;
1040 					if (*endnum > (i + 1))
1041 						memmove(&laarr[i],
1042 							&laarr[i + 1],
1043 							sizeof(struct long_ad) *
1044 							(*endnum - (i + 1)));
1045 					i--;
1046 					(*endnum)--;
1047 				}
1048 			}
1049 			UDF_I(inode)->i_lenExtents +=
1050 				numalloc << inode->i_sb->s_blocksize_bits;
1051 		}
1052 	}
1053 }
1054 
1055 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1056 			      int *endnum)
1057 {
1058 	int i;
1059 	unsigned long blocksize = inode->i_sb->s_blocksize;
1060 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1061 
1062 	for (i = 0; i < (*endnum - 1); i++) {
1063 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1064 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1065 
1066 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1067 			(((li->extLength >> 30) ==
1068 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1069 			((lip1->extLocation.logicalBlockNum -
1070 			  li->extLocation.logicalBlockNum) ==
1071 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1072 			blocksize - 1) >> blocksize_bits)))) {
1073 
1074 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1075 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1076 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1077 				li->extLength = lip1->extLength +
1078 					(((li->extLength &
1079 						UDF_EXTENT_LENGTH_MASK) +
1080 					 blocksize - 1) & ~(blocksize - 1));
1081 				if (*endnum > (i + 2))
1082 					memmove(&laarr[i + 1], &laarr[i + 2],
1083 						sizeof(struct long_ad) *
1084 						(*endnum - (i + 2)));
1085 				i--;
1086 				(*endnum)--;
1087 			}
1088 		} else if (((li->extLength >> 30) ==
1089 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1090 			   ((lip1->extLength >> 30) ==
1091 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1092 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1093 					((li->extLength &
1094 					  UDF_EXTENT_LENGTH_MASK) +
1095 					 blocksize - 1) >> blocksize_bits);
1096 			li->extLocation.logicalBlockNum = 0;
1097 			li->extLocation.partitionReferenceNum = 0;
1098 
1099 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1102 				lip1->extLength = (lip1->extLength -
1103 						   (li->extLength &
1104 						   UDF_EXTENT_LENGTH_MASK) +
1105 						   UDF_EXTENT_LENGTH_MASK) &
1106 						   ~(blocksize - 1);
1107 				li->extLength = (li->extLength &
1108 						 UDF_EXTENT_FLAG_MASK) +
1109 						(UDF_EXTENT_LENGTH_MASK + 1) -
1110 						blocksize;
1111 			} else {
1112 				li->extLength = lip1->extLength +
1113 					(((li->extLength &
1114 						UDF_EXTENT_LENGTH_MASK) +
1115 					  blocksize - 1) & ~(blocksize - 1));
1116 				if (*endnum > (i + 2))
1117 					memmove(&laarr[i + 1], &laarr[i + 2],
1118 						sizeof(struct long_ad) *
1119 						(*endnum - (i + 2)));
1120 				i--;
1121 				(*endnum)--;
1122 			}
1123 		} else if ((li->extLength >> 30) ==
1124 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1125 			udf_free_blocks(inode->i_sb, inode,
1126 					&li->extLocation, 0,
1127 					((li->extLength &
1128 						UDF_EXTENT_LENGTH_MASK) +
1129 					 blocksize - 1) >> blocksize_bits);
1130 			li->extLocation.logicalBlockNum = 0;
1131 			li->extLocation.partitionReferenceNum = 0;
1132 			li->extLength = (li->extLength &
1133 						UDF_EXTENT_LENGTH_MASK) |
1134 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1135 		}
1136 	}
1137 }
1138 
1139 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1140 			      int startnum, int endnum,
1141 			      struct extent_position *epos)
1142 {
1143 	int start = 0, i;
1144 	struct kernel_lb_addr tmploc;
1145 	uint32_t tmplen;
1146 	int err;
1147 
1148 	if (startnum > endnum) {
1149 		for (i = 0; i < (startnum - endnum); i++)
1150 			udf_delete_aext(inode, *epos);
1151 	} else if (startnum < endnum) {
1152 		for (i = 0; i < (endnum - startnum); i++) {
1153 			err = udf_insert_aext(inode, *epos,
1154 					      laarr[i].extLocation,
1155 					      laarr[i].extLength);
1156 			/*
1157 			 * If we fail here, we are likely corrupting the extent
1158 			 * list and leaking blocks. At least stop early to
1159 			 * limit the damage.
1160 			 */
1161 			if (err < 0)
1162 				return err;
1163 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1164 				      &laarr[i].extLength, 1);
1165 			start++;
1166 		}
1167 	}
1168 
1169 	for (i = start; i < endnum; i++) {
1170 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1171 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1172 			       laarr[i].extLength, 1);
1173 	}
1174 	return 0;
1175 }
1176 
1177 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1178 			      int create, int *err)
1179 {
1180 	struct buffer_head *bh = NULL;
1181 	struct udf_map_rq map = {
1182 		.lblk = block,
1183 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1184 	};
1185 
1186 	*err = udf_map_block(inode, &map);
1187 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1188 		return NULL;
1189 
1190 	bh = sb_getblk(inode->i_sb, map.pblk);
1191 	if (!bh) {
1192 		*err = -ENOMEM;
1193 		return NULL;
1194 	}
1195 	if (map.oflags & UDF_BLK_NEW) {
1196 		lock_buffer(bh);
1197 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1198 		set_buffer_uptodate(bh);
1199 		unlock_buffer(bh);
1200 		mark_buffer_dirty_inode(bh, inode);
1201 		return bh;
1202 	}
1203 
1204 	if (bh_read(bh, 0) >= 0)
1205 		return bh;
1206 
1207 	brelse(bh);
1208 	*err = -EIO;
1209 	return NULL;
1210 }
1211 
1212 int udf_setsize(struct inode *inode, loff_t newsize)
1213 {
1214 	int err = 0;
1215 	struct udf_inode_info *iinfo;
1216 	unsigned int bsize = i_blocksize(inode);
1217 
1218 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1219 	      S_ISLNK(inode->i_mode)))
1220 		return -EINVAL;
1221 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1222 		return -EPERM;
1223 
1224 	filemap_invalidate_lock(inode->i_mapping);
1225 	iinfo = UDF_I(inode);
1226 	if (newsize > inode->i_size) {
1227 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1228 			if (bsize >=
1229 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1230 				down_write(&iinfo->i_data_sem);
1231 				iinfo->i_lenAlloc = newsize;
1232 				up_write(&iinfo->i_data_sem);
1233 				goto set_size;
1234 			}
1235 			err = udf_expand_file_adinicb(inode);
1236 			if (err)
1237 				goto out_unlock;
1238 		}
1239 		err = udf_extend_file(inode, newsize);
1240 		if (err)
1241 			goto out_unlock;
1242 set_size:
1243 		truncate_setsize(inode, newsize);
1244 	} else {
1245 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1246 			down_write(&iinfo->i_data_sem);
1247 			udf_clear_extent_cache(inode);
1248 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1249 			       0x00, bsize - newsize -
1250 			       udf_file_entry_alloc_offset(inode));
1251 			iinfo->i_lenAlloc = newsize;
1252 			truncate_setsize(inode, newsize);
1253 			up_write(&iinfo->i_data_sem);
1254 			goto update_time;
1255 		}
1256 		err = block_truncate_page(inode->i_mapping, newsize,
1257 					  udf_get_block);
1258 		if (err)
1259 			goto out_unlock;
1260 		truncate_setsize(inode, newsize);
1261 		down_write(&iinfo->i_data_sem);
1262 		udf_clear_extent_cache(inode);
1263 		err = udf_truncate_extents(inode);
1264 		up_write(&iinfo->i_data_sem);
1265 		if (err)
1266 			goto out_unlock;
1267 	}
1268 update_time:
1269 	inode->i_mtime = inode->i_ctime = current_time(inode);
1270 	if (IS_SYNC(inode))
1271 		udf_sync_inode(inode);
1272 	else
1273 		mark_inode_dirty(inode);
1274 out_unlock:
1275 	filemap_invalidate_unlock(inode->i_mapping);
1276 	return err;
1277 }
1278 
1279 /*
1280  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1281  * arbitrary - just that we hopefully don't limit any real use of rewritten
1282  * inode on write-once media but avoid looping for too long on corrupted media.
1283  */
1284 #define UDF_MAX_ICB_NESTING 1024
1285 
1286 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1287 {
1288 	struct buffer_head *bh = NULL;
1289 	struct fileEntry *fe;
1290 	struct extendedFileEntry *efe;
1291 	uint16_t ident;
1292 	struct udf_inode_info *iinfo = UDF_I(inode);
1293 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1294 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1295 	unsigned int link_count;
1296 	unsigned int indirections = 0;
1297 	int bs = inode->i_sb->s_blocksize;
1298 	int ret = -EIO;
1299 	uint32_t uid, gid;
1300 
1301 reread:
1302 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1303 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1304 			  iloc->partitionReferenceNum, sbi->s_partitions);
1305 		return -EIO;
1306 	}
1307 
1308 	if (iloc->logicalBlockNum >=
1309 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1310 		udf_debug("block=%u, partition=%u out of range\n",
1311 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1312 		return -EIO;
1313 	}
1314 
1315 	/*
1316 	 * Set defaults, but the inode is still incomplete!
1317 	 * Note: get_new_inode() sets the following on a new inode:
1318 	 *      i_sb = sb
1319 	 *      i_no = ino
1320 	 *      i_flags = sb->s_flags
1321 	 *      i_state = 0
1322 	 * clean_inode(): zero fills and sets
1323 	 *      i_count = 1
1324 	 *      i_nlink = 1
1325 	 *      i_op = NULL;
1326 	 */
1327 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1328 	if (!bh) {
1329 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1330 		return -EIO;
1331 	}
1332 
1333 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1334 	    ident != TAG_IDENT_USE) {
1335 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1336 			inode->i_ino, ident);
1337 		goto out;
1338 	}
1339 
1340 	fe = (struct fileEntry *)bh->b_data;
1341 	efe = (struct extendedFileEntry *)bh->b_data;
1342 
1343 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1344 		struct buffer_head *ibh;
1345 
1346 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1347 		if (ident == TAG_IDENT_IE && ibh) {
1348 			struct kernel_lb_addr loc;
1349 			struct indirectEntry *ie;
1350 
1351 			ie = (struct indirectEntry *)ibh->b_data;
1352 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1353 
1354 			if (ie->indirectICB.extLength) {
1355 				brelse(ibh);
1356 				memcpy(&iinfo->i_location, &loc,
1357 				       sizeof(struct kernel_lb_addr));
1358 				if (++indirections > UDF_MAX_ICB_NESTING) {
1359 					udf_err(inode->i_sb,
1360 						"too many ICBs in ICB hierarchy"
1361 						" (max %d supported)\n",
1362 						UDF_MAX_ICB_NESTING);
1363 					goto out;
1364 				}
1365 				brelse(bh);
1366 				goto reread;
1367 			}
1368 		}
1369 		brelse(ibh);
1370 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1371 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1372 			le16_to_cpu(fe->icbTag.strategyType));
1373 		goto out;
1374 	}
1375 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1376 		iinfo->i_strat4096 = 0;
1377 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1378 		iinfo->i_strat4096 = 1;
1379 
1380 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1381 							ICBTAG_FLAG_AD_MASK;
1382 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1383 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1384 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1385 		ret = -EIO;
1386 		goto out;
1387 	}
1388 	iinfo->i_hidden = hidden_inode;
1389 	iinfo->i_unique = 0;
1390 	iinfo->i_lenEAttr = 0;
1391 	iinfo->i_lenExtents = 0;
1392 	iinfo->i_lenAlloc = 0;
1393 	iinfo->i_next_alloc_block = 0;
1394 	iinfo->i_next_alloc_goal = 0;
1395 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1396 		iinfo->i_efe = 1;
1397 		iinfo->i_use = 0;
1398 		ret = udf_alloc_i_data(inode, bs -
1399 					sizeof(struct extendedFileEntry));
1400 		if (ret)
1401 			goto out;
1402 		memcpy(iinfo->i_data,
1403 		       bh->b_data + sizeof(struct extendedFileEntry),
1404 		       bs - sizeof(struct extendedFileEntry));
1405 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1406 		iinfo->i_efe = 0;
1407 		iinfo->i_use = 0;
1408 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1409 		if (ret)
1410 			goto out;
1411 		memcpy(iinfo->i_data,
1412 		       bh->b_data + sizeof(struct fileEntry),
1413 		       bs - sizeof(struct fileEntry));
1414 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1415 		iinfo->i_efe = 0;
1416 		iinfo->i_use = 1;
1417 		iinfo->i_lenAlloc = le32_to_cpu(
1418 				((struct unallocSpaceEntry *)bh->b_data)->
1419 				 lengthAllocDescs);
1420 		ret = udf_alloc_i_data(inode, bs -
1421 					sizeof(struct unallocSpaceEntry));
1422 		if (ret)
1423 			goto out;
1424 		memcpy(iinfo->i_data,
1425 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1426 		       bs - sizeof(struct unallocSpaceEntry));
1427 		return 0;
1428 	}
1429 
1430 	ret = -EIO;
1431 	read_lock(&sbi->s_cred_lock);
1432 	uid = le32_to_cpu(fe->uid);
1433 	if (uid == UDF_INVALID_ID ||
1434 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1435 		inode->i_uid = sbi->s_uid;
1436 	else
1437 		i_uid_write(inode, uid);
1438 
1439 	gid = le32_to_cpu(fe->gid);
1440 	if (gid == UDF_INVALID_ID ||
1441 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1442 		inode->i_gid = sbi->s_gid;
1443 	else
1444 		i_gid_write(inode, gid);
1445 
1446 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1447 			sbi->s_fmode != UDF_INVALID_MODE)
1448 		inode->i_mode = sbi->s_fmode;
1449 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1450 			sbi->s_dmode != UDF_INVALID_MODE)
1451 		inode->i_mode = sbi->s_dmode;
1452 	else
1453 		inode->i_mode = udf_convert_permissions(fe);
1454 	inode->i_mode &= ~sbi->s_umask;
1455 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1456 
1457 	read_unlock(&sbi->s_cred_lock);
1458 
1459 	link_count = le16_to_cpu(fe->fileLinkCount);
1460 	if (!link_count) {
1461 		if (!hidden_inode) {
1462 			ret = -ESTALE;
1463 			goto out;
1464 		}
1465 		link_count = 1;
1466 	}
1467 	set_nlink(inode, link_count);
1468 
1469 	inode->i_size = le64_to_cpu(fe->informationLength);
1470 	iinfo->i_lenExtents = inode->i_size;
1471 
1472 	if (iinfo->i_efe == 0) {
1473 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1474 			(inode->i_sb->s_blocksize_bits - 9);
1475 
1476 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1477 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1478 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1479 
1480 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1481 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1482 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1483 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1484 		iinfo->i_streamdir = 0;
1485 		iinfo->i_lenStreams = 0;
1486 	} else {
1487 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1488 		    (inode->i_sb->s_blocksize_bits - 9);
1489 
1490 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1491 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1492 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1493 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1494 
1495 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1496 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1497 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1498 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1499 
1500 		/* Named streams */
1501 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1502 		iinfo->i_locStreamdir =
1503 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1504 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1505 		if (iinfo->i_lenStreams >= inode->i_size)
1506 			iinfo->i_lenStreams -= inode->i_size;
1507 		else
1508 			iinfo->i_lenStreams = 0;
1509 	}
1510 	inode->i_generation = iinfo->i_unique;
1511 
1512 	/*
1513 	 * Sanity check length of allocation descriptors and extended attrs to
1514 	 * avoid integer overflows
1515 	 */
1516 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1517 		goto out;
1518 	/* Now do exact checks */
1519 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1520 		goto out;
1521 	/* Sanity checks for files in ICB so that we don't get confused later */
1522 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1523 		/*
1524 		 * For file in ICB data is stored in allocation descriptor
1525 		 * so sizes should match
1526 		 */
1527 		if (iinfo->i_lenAlloc != inode->i_size)
1528 			goto out;
1529 		/* File in ICB has to fit in there... */
1530 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1531 			goto out;
1532 	}
1533 
1534 	switch (fe->icbTag.fileType) {
1535 	case ICBTAG_FILE_TYPE_DIRECTORY:
1536 		inode->i_op = &udf_dir_inode_operations;
1537 		inode->i_fop = &udf_dir_operations;
1538 		inode->i_mode |= S_IFDIR;
1539 		inc_nlink(inode);
1540 		break;
1541 	case ICBTAG_FILE_TYPE_REALTIME:
1542 	case ICBTAG_FILE_TYPE_REGULAR:
1543 	case ICBTAG_FILE_TYPE_UNDEF:
1544 	case ICBTAG_FILE_TYPE_VAT20:
1545 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1546 			inode->i_data.a_ops = &udf_adinicb_aops;
1547 		else
1548 			inode->i_data.a_ops = &udf_aops;
1549 		inode->i_op = &udf_file_inode_operations;
1550 		inode->i_fop = &udf_file_operations;
1551 		inode->i_mode |= S_IFREG;
1552 		break;
1553 	case ICBTAG_FILE_TYPE_BLOCK:
1554 		inode->i_mode |= S_IFBLK;
1555 		break;
1556 	case ICBTAG_FILE_TYPE_CHAR:
1557 		inode->i_mode |= S_IFCHR;
1558 		break;
1559 	case ICBTAG_FILE_TYPE_FIFO:
1560 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1561 		break;
1562 	case ICBTAG_FILE_TYPE_SOCKET:
1563 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1564 		break;
1565 	case ICBTAG_FILE_TYPE_SYMLINK:
1566 		inode->i_data.a_ops = &udf_symlink_aops;
1567 		inode->i_op = &udf_symlink_inode_operations;
1568 		inode_nohighmem(inode);
1569 		inode->i_mode = S_IFLNK | 0777;
1570 		break;
1571 	case ICBTAG_FILE_TYPE_MAIN:
1572 		udf_debug("METADATA FILE-----\n");
1573 		break;
1574 	case ICBTAG_FILE_TYPE_MIRROR:
1575 		udf_debug("METADATA MIRROR FILE-----\n");
1576 		break;
1577 	case ICBTAG_FILE_TYPE_BITMAP:
1578 		udf_debug("METADATA BITMAP FILE-----\n");
1579 		break;
1580 	default:
1581 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1582 			inode->i_ino, fe->icbTag.fileType);
1583 		goto out;
1584 	}
1585 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1586 		struct deviceSpec *dsea =
1587 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1588 		if (dsea) {
1589 			init_special_inode(inode, inode->i_mode,
1590 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1591 				      le32_to_cpu(dsea->minorDeviceIdent)));
1592 			/* Developer ID ??? */
1593 		} else
1594 			goto out;
1595 	}
1596 	ret = 0;
1597 out:
1598 	brelse(bh);
1599 	return ret;
1600 }
1601 
1602 static int udf_alloc_i_data(struct inode *inode, size_t size)
1603 {
1604 	struct udf_inode_info *iinfo = UDF_I(inode);
1605 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1606 	if (!iinfo->i_data)
1607 		return -ENOMEM;
1608 	return 0;
1609 }
1610 
1611 static umode_t udf_convert_permissions(struct fileEntry *fe)
1612 {
1613 	umode_t mode;
1614 	uint32_t permissions;
1615 	uint32_t flags;
1616 
1617 	permissions = le32_to_cpu(fe->permissions);
1618 	flags = le16_to_cpu(fe->icbTag.flags);
1619 
1620 	mode =	((permissions) & 0007) |
1621 		((permissions >> 2) & 0070) |
1622 		((permissions >> 4) & 0700) |
1623 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1624 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1625 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1626 
1627 	return mode;
1628 }
1629 
1630 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1631 {
1632 	struct udf_inode_info *iinfo = UDF_I(inode);
1633 
1634 	/*
1635 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1636 	 * In Unix, delete permission tracks write
1637 	 */
1638 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1639 	if (mode & 0200)
1640 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1641 	if (mode & 0020)
1642 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1643 	if (mode & 0002)
1644 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1645 }
1646 
1647 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1648 {
1649 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1650 }
1651 
1652 static int udf_sync_inode(struct inode *inode)
1653 {
1654 	return udf_update_inode(inode, 1);
1655 }
1656 
1657 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1658 {
1659 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1660 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1661 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1662 		iinfo->i_crtime = time;
1663 }
1664 
1665 static int udf_update_inode(struct inode *inode, int do_sync)
1666 {
1667 	struct buffer_head *bh = NULL;
1668 	struct fileEntry *fe;
1669 	struct extendedFileEntry *efe;
1670 	uint64_t lb_recorded;
1671 	uint32_t udfperms;
1672 	uint16_t icbflags;
1673 	uint16_t crclen;
1674 	int err = 0;
1675 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1676 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1677 	struct udf_inode_info *iinfo = UDF_I(inode);
1678 
1679 	bh = sb_getblk(inode->i_sb,
1680 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1681 	if (!bh) {
1682 		udf_debug("getblk failure\n");
1683 		return -EIO;
1684 	}
1685 
1686 	lock_buffer(bh);
1687 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1688 	fe = (struct fileEntry *)bh->b_data;
1689 	efe = (struct extendedFileEntry *)bh->b_data;
1690 
1691 	if (iinfo->i_use) {
1692 		struct unallocSpaceEntry *use =
1693 			(struct unallocSpaceEntry *)bh->b_data;
1694 
1695 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1696 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1697 		       iinfo->i_data, inode->i_sb->s_blocksize -
1698 					sizeof(struct unallocSpaceEntry));
1699 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1700 		crclen = sizeof(struct unallocSpaceEntry);
1701 
1702 		goto finish;
1703 	}
1704 
1705 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1706 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1707 	else
1708 		fe->uid = cpu_to_le32(i_uid_read(inode));
1709 
1710 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1711 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1712 	else
1713 		fe->gid = cpu_to_le32(i_gid_read(inode));
1714 
1715 	udfperms = ((inode->i_mode & 0007)) |
1716 		   ((inode->i_mode & 0070) << 2) |
1717 		   ((inode->i_mode & 0700) << 4);
1718 
1719 	udfperms |= iinfo->i_extraPerms;
1720 	fe->permissions = cpu_to_le32(udfperms);
1721 
1722 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1723 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1724 	else {
1725 		if (iinfo->i_hidden)
1726 			fe->fileLinkCount = cpu_to_le16(0);
1727 		else
1728 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1729 	}
1730 
1731 	fe->informationLength = cpu_to_le64(inode->i_size);
1732 
1733 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1734 		struct regid *eid;
1735 		struct deviceSpec *dsea =
1736 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1737 		if (!dsea) {
1738 			dsea = (struct deviceSpec *)
1739 				udf_add_extendedattr(inode,
1740 						     sizeof(struct deviceSpec) +
1741 						     sizeof(struct regid), 12, 0x3);
1742 			dsea->attrType = cpu_to_le32(12);
1743 			dsea->attrSubtype = 1;
1744 			dsea->attrLength = cpu_to_le32(
1745 						sizeof(struct deviceSpec) +
1746 						sizeof(struct regid));
1747 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1748 		}
1749 		eid = (struct regid *)dsea->impUse;
1750 		memset(eid, 0, sizeof(*eid));
1751 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1752 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1753 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1754 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1755 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1756 	}
1757 
1758 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1759 		lb_recorded = 0; /* No extents => no blocks! */
1760 	else
1761 		lb_recorded =
1762 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1763 			(blocksize_bits - 9);
1764 
1765 	if (iinfo->i_efe == 0) {
1766 		memcpy(bh->b_data + sizeof(struct fileEntry),
1767 		       iinfo->i_data,
1768 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1769 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1770 
1771 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1772 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1773 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1774 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1775 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1776 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1777 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1778 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1779 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1780 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1781 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1782 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1783 		crclen = sizeof(struct fileEntry);
1784 	} else {
1785 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1786 		       iinfo->i_data,
1787 		       inode->i_sb->s_blocksize -
1788 					sizeof(struct extendedFileEntry));
1789 		efe->objectSize =
1790 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1791 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1792 
1793 		if (iinfo->i_streamdir) {
1794 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1795 
1796 			icb_lad->extLocation =
1797 				cpu_to_lelb(iinfo->i_locStreamdir);
1798 			icb_lad->extLength =
1799 				cpu_to_le32(inode->i_sb->s_blocksize);
1800 		}
1801 
1802 		udf_adjust_time(iinfo, inode->i_atime);
1803 		udf_adjust_time(iinfo, inode->i_mtime);
1804 		udf_adjust_time(iinfo, inode->i_ctime);
1805 
1806 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1807 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1808 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1809 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1810 
1811 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1812 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1813 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1814 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1815 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1816 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1817 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1818 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1819 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1820 		crclen = sizeof(struct extendedFileEntry);
1821 	}
1822 
1823 finish:
1824 	if (iinfo->i_strat4096) {
1825 		fe->icbTag.strategyType = cpu_to_le16(4096);
1826 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1827 		fe->icbTag.numEntries = cpu_to_le16(2);
1828 	} else {
1829 		fe->icbTag.strategyType = cpu_to_le16(4);
1830 		fe->icbTag.numEntries = cpu_to_le16(1);
1831 	}
1832 
1833 	if (iinfo->i_use)
1834 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1835 	else if (S_ISDIR(inode->i_mode))
1836 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1837 	else if (S_ISREG(inode->i_mode))
1838 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1839 	else if (S_ISLNK(inode->i_mode))
1840 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1841 	else if (S_ISBLK(inode->i_mode))
1842 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1843 	else if (S_ISCHR(inode->i_mode))
1844 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1845 	else if (S_ISFIFO(inode->i_mode))
1846 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1847 	else if (S_ISSOCK(inode->i_mode))
1848 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1849 
1850 	icbflags =	iinfo->i_alloc_type |
1851 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1852 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1853 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1854 			(le16_to_cpu(fe->icbTag.flags) &
1855 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1856 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1857 
1858 	fe->icbTag.flags = cpu_to_le16(icbflags);
1859 	if (sbi->s_udfrev >= 0x0200)
1860 		fe->descTag.descVersion = cpu_to_le16(3);
1861 	else
1862 		fe->descTag.descVersion = cpu_to_le16(2);
1863 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1864 	fe->descTag.tagLocation = cpu_to_le32(
1865 					iinfo->i_location.logicalBlockNum);
1866 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1867 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1868 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1869 						  crclen));
1870 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1871 
1872 	set_buffer_uptodate(bh);
1873 	unlock_buffer(bh);
1874 
1875 	/* write the data blocks */
1876 	mark_buffer_dirty(bh);
1877 	if (do_sync) {
1878 		sync_dirty_buffer(bh);
1879 		if (buffer_write_io_error(bh)) {
1880 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1881 				 inode->i_ino);
1882 			err = -EIO;
1883 		}
1884 	}
1885 	brelse(bh);
1886 
1887 	return err;
1888 }
1889 
1890 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1891 			 bool hidden_inode)
1892 {
1893 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1894 	struct inode *inode = iget_locked(sb, block);
1895 	int err;
1896 
1897 	if (!inode)
1898 		return ERR_PTR(-ENOMEM);
1899 
1900 	if (!(inode->i_state & I_NEW)) {
1901 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1902 			iput(inode);
1903 			return ERR_PTR(-EFSCORRUPTED);
1904 		}
1905 		return inode;
1906 	}
1907 
1908 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1909 	err = udf_read_inode(inode, hidden_inode);
1910 	if (err < 0) {
1911 		iget_failed(inode);
1912 		return ERR_PTR(err);
1913 	}
1914 	unlock_new_inode(inode);
1915 
1916 	return inode;
1917 }
1918 
1919 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1920 			    struct extent_position *epos)
1921 {
1922 	struct super_block *sb = inode->i_sb;
1923 	struct buffer_head *bh;
1924 	struct allocExtDesc *aed;
1925 	struct extent_position nepos;
1926 	struct kernel_lb_addr neloc;
1927 	int ver, adsize;
1928 
1929 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1930 		adsize = sizeof(struct short_ad);
1931 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1932 		adsize = sizeof(struct long_ad);
1933 	else
1934 		return -EIO;
1935 
1936 	neloc.logicalBlockNum = block;
1937 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1938 
1939 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1940 	if (!bh)
1941 		return -EIO;
1942 	lock_buffer(bh);
1943 	memset(bh->b_data, 0x00, sb->s_blocksize);
1944 	set_buffer_uptodate(bh);
1945 	unlock_buffer(bh);
1946 	mark_buffer_dirty_inode(bh, inode);
1947 
1948 	aed = (struct allocExtDesc *)(bh->b_data);
1949 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1950 		aed->previousAllocExtLocation =
1951 				cpu_to_le32(epos->block.logicalBlockNum);
1952 	}
1953 	aed->lengthAllocDescs = cpu_to_le32(0);
1954 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1955 		ver = 3;
1956 	else
1957 		ver = 2;
1958 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1959 		    sizeof(struct tag));
1960 
1961 	nepos.block = neloc;
1962 	nepos.offset = sizeof(struct allocExtDesc);
1963 	nepos.bh = bh;
1964 
1965 	/*
1966 	 * Do we have to copy current last extent to make space for indirect
1967 	 * one?
1968 	 */
1969 	if (epos->offset + adsize > sb->s_blocksize) {
1970 		struct kernel_lb_addr cp_loc;
1971 		uint32_t cp_len;
1972 		int cp_type;
1973 
1974 		epos->offset -= adsize;
1975 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1976 		cp_len |= ((uint32_t)cp_type) << 30;
1977 
1978 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1979 		udf_write_aext(inode, epos, &nepos.block,
1980 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1981 	} else {
1982 		__udf_add_aext(inode, epos, &nepos.block,
1983 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 	}
1985 
1986 	brelse(epos->bh);
1987 	*epos = nepos;
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Append extent at the given position - should be the first free one in inode
1994  * / indirect extent. This function assumes there is enough space in the inode
1995  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1996  */
1997 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1998 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1999 {
2000 	struct udf_inode_info *iinfo = UDF_I(inode);
2001 	struct allocExtDesc *aed;
2002 	int adsize;
2003 
2004 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2005 		adsize = sizeof(struct short_ad);
2006 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2007 		adsize = sizeof(struct long_ad);
2008 	else
2009 		return -EIO;
2010 
2011 	if (!epos->bh) {
2012 		WARN_ON(iinfo->i_lenAlloc !=
2013 			epos->offset - udf_file_entry_alloc_offset(inode));
2014 	} else {
2015 		aed = (struct allocExtDesc *)epos->bh->b_data;
2016 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2017 			epos->offset - sizeof(struct allocExtDesc));
2018 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2019 	}
2020 
2021 	udf_write_aext(inode, epos, eloc, elen, inc);
2022 
2023 	if (!epos->bh) {
2024 		iinfo->i_lenAlloc += adsize;
2025 		mark_inode_dirty(inode);
2026 	} else {
2027 		aed = (struct allocExtDesc *)epos->bh->b_data;
2028 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2029 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2030 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2031 			udf_update_tag(epos->bh->b_data,
2032 					epos->offset + (inc ? 0 : adsize));
2033 		else
2034 			udf_update_tag(epos->bh->b_data,
2035 					sizeof(struct allocExtDesc));
2036 		mark_buffer_dirty_inode(epos->bh, inode);
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 /*
2043  * Append extent at given position - should be the first free one in inode
2044  * / indirect extent. Takes care of allocating and linking indirect blocks.
2045  */
2046 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2047 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2048 {
2049 	int adsize;
2050 	struct super_block *sb = inode->i_sb;
2051 
2052 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2053 		adsize = sizeof(struct short_ad);
2054 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2055 		adsize = sizeof(struct long_ad);
2056 	else
2057 		return -EIO;
2058 
2059 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2060 		int err;
2061 		udf_pblk_t new_block;
2062 
2063 		new_block = udf_new_block(sb, NULL,
2064 					  epos->block.partitionReferenceNum,
2065 					  epos->block.logicalBlockNum, &err);
2066 		if (!new_block)
2067 			return -ENOSPC;
2068 
2069 		err = udf_setup_indirect_aext(inode, new_block, epos);
2070 		if (err)
2071 			return err;
2072 	}
2073 
2074 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2075 }
2076 
2077 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2078 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2079 {
2080 	int adsize;
2081 	uint8_t *ptr;
2082 	struct short_ad *sad;
2083 	struct long_ad *lad;
2084 	struct udf_inode_info *iinfo = UDF_I(inode);
2085 
2086 	if (!epos->bh)
2087 		ptr = iinfo->i_data + epos->offset -
2088 			udf_file_entry_alloc_offset(inode) +
2089 			iinfo->i_lenEAttr;
2090 	else
2091 		ptr = epos->bh->b_data + epos->offset;
2092 
2093 	switch (iinfo->i_alloc_type) {
2094 	case ICBTAG_FLAG_AD_SHORT:
2095 		sad = (struct short_ad *)ptr;
2096 		sad->extLength = cpu_to_le32(elen);
2097 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2098 		adsize = sizeof(struct short_ad);
2099 		break;
2100 	case ICBTAG_FLAG_AD_LONG:
2101 		lad = (struct long_ad *)ptr;
2102 		lad->extLength = cpu_to_le32(elen);
2103 		lad->extLocation = cpu_to_lelb(*eloc);
2104 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2105 		adsize = sizeof(struct long_ad);
2106 		break;
2107 	default:
2108 		return;
2109 	}
2110 
2111 	if (epos->bh) {
2112 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2113 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2114 			struct allocExtDesc *aed =
2115 				(struct allocExtDesc *)epos->bh->b_data;
2116 			udf_update_tag(epos->bh->b_data,
2117 				       le32_to_cpu(aed->lengthAllocDescs) +
2118 				       sizeof(struct allocExtDesc));
2119 		}
2120 		mark_buffer_dirty_inode(epos->bh, inode);
2121 	} else {
2122 		mark_inode_dirty(inode);
2123 	}
2124 
2125 	if (inc)
2126 		epos->offset += adsize;
2127 }
2128 
2129 /*
2130  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2131  * someone does some weird stuff.
2132  */
2133 #define UDF_MAX_INDIR_EXTS 16
2134 
2135 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2136 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2137 {
2138 	int8_t etype;
2139 	unsigned int indirections = 0;
2140 
2141 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2142 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2143 		udf_pblk_t block;
2144 
2145 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2146 			udf_err(inode->i_sb,
2147 				"too many indirect extents in inode %lu\n",
2148 				inode->i_ino);
2149 			return -1;
2150 		}
2151 
2152 		epos->block = *eloc;
2153 		epos->offset = sizeof(struct allocExtDesc);
2154 		brelse(epos->bh);
2155 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2156 		epos->bh = sb_bread(inode->i_sb, block);
2157 		if (!epos->bh) {
2158 			udf_debug("reading block %u failed!\n", block);
2159 			return -1;
2160 		}
2161 	}
2162 
2163 	return etype;
2164 }
2165 
2166 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2167 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2168 {
2169 	int alen;
2170 	int8_t etype;
2171 	uint8_t *ptr;
2172 	struct short_ad *sad;
2173 	struct long_ad *lad;
2174 	struct udf_inode_info *iinfo = UDF_I(inode);
2175 
2176 	if (!epos->bh) {
2177 		if (!epos->offset)
2178 			epos->offset = udf_file_entry_alloc_offset(inode);
2179 		ptr = iinfo->i_data + epos->offset -
2180 			udf_file_entry_alloc_offset(inode) +
2181 			iinfo->i_lenEAttr;
2182 		alen = udf_file_entry_alloc_offset(inode) +
2183 							iinfo->i_lenAlloc;
2184 	} else {
2185 		if (!epos->offset)
2186 			epos->offset = sizeof(struct allocExtDesc);
2187 		ptr = epos->bh->b_data + epos->offset;
2188 		alen = sizeof(struct allocExtDesc) +
2189 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2190 							lengthAllocDescs);
2191 	}
2192 
2193 	switch (iinfo->i_alloc_type) {
2194 	case ICBTAG_FLAG_AD_SHORT:
2195 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2196 		if (!sad)
2197 			return -1;
2198 		etype = le32_to_cpu(sad->extLength) >> 30;
2199 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2200 		eloc->partitionReferenceNum =
2201 				iinfo->i_location.partitionReferenceNum;
2202 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2203 		break;
2204 	case ICBTAG_FLAG_AD_LONG:
2205 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2206 		if (!lad)
2207 			return -1;
2208 		etype = le32_to_cpu(lad->extLength) >> 30;
2209 		*eloc = lelb_to_cpu(lad->extLocation);
2210 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 		break;
2212 	default:
2213 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2214 		return -1;
2215 	}
2216 
2217 	return etype;
2218 }
2219 
2220 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2221 			   struct kernel_lb_addr neloc, uint32_t nelen)
2222 {
2223 	struct kernel_lb_addr oeloc;
2224 	uint32_t oelen;
2225 	int8_t etype;
2226 	int err;
2227 
2228 	if (epos.bh)
2229 		get_bh(epos.bh);
2230 
2231 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2232 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2233 		neloc = oeloc;
2234 		nelen = (etype << 30) | oelen;
2235 	}
2236 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2237 	brelse(epos.bh);
2238 
2239 	return err;
2240 }
2241 
2242 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2243 {
2244 	struct extent_position oepos;
2245 	int adsize;
2246 	int8_t etype;
2247 	struct allocExtDesc *aed;
2248 	struct udf_inode_info *iinfo;
2249 	struct kernel_lb_addr eloc;
2250 	uint32_t elen;
2251 
2252 	if (epos.bh) {
2253 		get_bh(epos.bh);
2254 		get_bh(epos.bh);
2255 	}
2256 
2257 	iinfo = UDF_I(inode);
2258 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2259 		adsize = sizeof(struct short_ad);
2260 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2261 		adsize = sizeof(struct long_ad);
2262 	else
2263 		adsize = 0;
2264 
2265 	oepos = epos;
2266 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2267 		return -1;
2268 
2269 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2270 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2271 		if (oepos.bh != epos.bh) {
2272 			oepos.block = epos.block;
2273 			brelse(oepos.bh);
2274 			get_bh(epos.bh);
2275 			oepos.bh = epos.bh;
2276 			oepos.offset = epos.offset - adsize;
2277 		}
2278 	}
2279 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2280 	elen = 0;
2281 
2282 	if (epos.bh != oepos.bh) {
2283 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2284 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2285 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2286 		if (!oepos.bh) {
2287 			iinfo->i_lenAlloc -= (adsize * 2);
2288 			mark_inode_dirty(inode);
2289 		} else {
2290 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2291 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2292 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2293 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2294 				udf_update_tag(oepos.bh->b_data,
2295 						oepos.offset - (2 * adsize));
2296 			else
2297 				udf_update_tag(oepos.bh->b_data,
2298 						sizeof(struct allocExtDesc));
2299 			mark_buffer_dirty_inode(oepos.bh, inode);
2300 		}
2301 	} else {
2302 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2303 		if (!oepos.bh) {
2304 			iinfo->i_lenAlloc -= adsize;
2305 			mark_inode_dirty(inode);
2306 		} else {
2307 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2308 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2309 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2310 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2311 				udf_update_tag(oepos.bh->b_data,
2312 						epos.offset - adsize);
2313 			else
2314 				udf_update_tag(oepos.bh->b_data,
2315 						sizeof(struct allocExtDesc));
2316 			mark_buffer_dirty_inode(oepos.bh, inode);
2317 		}
2318 	}
2319 
2320 	brelse(epos.bh);
2321 	brelse(oepos.bh);
2322 
2323 	return (elen >> 30);
2324 }
2325 
2326 int8_t inode_bmap(struct inode *inode, sector_t block,
2327 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2328 		  uint32_t *elen, sector_t *offset)
2329 {
2330 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2331 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2332 	int8_t etype;
2333 	struct udf_inode_info *iinfo;
2334 
2335 	iinfo = UDF_I(inode);
2336 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2337 		pos->offset = 0;
2338 		pos->block = iinfo->i_location;
2339 		pos->bh = NULL;
2340 	}
2341 	*elen = 0;
2342 	do {
2343 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2344 		if (etype == -1) {
2345 			*offset = (bcount - lbcount) >> blocksize_bits;
2346 			iinfo->i_lenExtents = lbcount;
2347 			return -1;
2348 		}
2349 		lbcount += *elen;
2350 	} while (lbcount <= bcount);
2351 	/* update extent cache */
2352 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2353 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2354 
2355 	return etype;
2356 }
2357