xref: /openbmc/linux/fs/udf/inode.c (revision 49521de119d326d04fb3736ab827e12e1de966d0)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
57 					sector_t *, int *);
58 static int8_t udf_insert_aext(struct inode *, struct extent_position,
59 			      struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, int,
61 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_merge_extents(struct inode *,
65 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66 static void udf_update_extents(struct inode *,
67 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68 			       struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 
72 void udf_evict_inode(struct inode *inode)
73 {
74 	struct udf_inode_info *iinfo = UDF_I(inode);
75 	int want_delete = 0;
76 
77 	truncate_inode_pages(&inode->i_data, 0);
78 
79 	if (!inode->i_nlink && !is_bad_inode(inode)) {
80 		want_delete = 1;
81 		inode->i_size = 0;
82 		udf_truncate(inode);
83 		udf_update_inode(inode, IS_SYNC(inode));
84 	}
85 	invalidate_inode_buffers(inode);
86 	end_writeback(inode);
87 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
88 	    inode->i_size != iinfo->i_lenExtents) {
89 		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
90 			"inode size %llu different from extent length %llu. "
91 			"Filesystem need not be standards compliant.\n",
92 			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
93 			(unsigned long long)inode->i_size,
94 			(unsigned long long)iinfo->i_lenExtents);
95 	}
96 	kfree(iinfo->i_ext.i_data);
97 	iinfo->i_ext.i_data = NULL;
98 	if (want_delete) {
99 		lock_kernel();
100 		udf_free_inode(inode);
101 		unlock_kernel();
102 	}
103 }
104 
105 static int udf_writepage(struct page *page, struct writeback_control *wbc)
106 {
107 	return block_write_full_page(page, udf_get_block, wbc);
108 }
109 
110 static int udf_readpage(struct file *file, struct page *page)
111 {
112 	return block_read_full_page(page, udf_get_block);
113 }
114 
115 static int udf_write_begin(struct file *file, struct address_space *mapping,
116 			loff_t pos, unsigned len, unsigned flags,
117 			struct page **pagep, void **fsdata)
118 {
119 	int ret;
120 
121 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
122 	if (unlikely(ret)) {
123 		loff_t isize = mapping->host->i_size;
124 		if (pos + len > isize)
125 			vmtruncate(mapping->host, isize);
126 	}
127 
128 	return ret;
129 }
130 
131 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
132 {
133 	return generic_block_bmap(mapping, block, udf_get_block);
134 }
135 
136 const struct address_space_operations udf_aops = {
137 	.readpage	= udf_readpage,
138 	.writepage	= udf_writepage,
139 	.sync_page	= block_sync_page,
140 	.write_begin		= udf_write_begin,
141 	.write_end		= generic_write_end,
142 	.bmap		= udf_bmap,
143 };
144 
145 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
146 {
147 	struct page *page;
148 	char *kaddr;
149 	struct udf_inode_info *iinfo = UDF_I(inode);
150 	struct writeback_control udf_wbc = {
151 		.sync_mode = WB_SYNC_NONE,
152 		.nr_to_write = 1,
153 	};
154 
155 	/* from now on we have normal address_space methods */
156 	inode->i_data.a_ops = &udf_aops;
157 
158 	if (!iinfo->i_lenAlloc) {
159 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
160 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
161 		else
162 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
163 		mark_inode_dirty(inode);
164 		return;
165 	}
166 
167 	page = grab_cache_page(inode->i_mapping, 0);
168 	BUG_ON(!PageLocked(page));
169 
170 	if (!PageUptodate(page)) {
171 		kaddr = kmap(page);
172 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
173 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
174 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
175 			iinfo->i_lenAlloc);
176 		flush_dcache_page(page);
177 		SetPageUptodate(page);
178 		kunmap(page);
179 	}
180 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
181 	       iinfo->i_lenAlloc);
182 	iinfo->i_lenAlloc = 0;
183 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
184 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
185 	else
186 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
187 
188 	inode->i_data.a_ops->writepage(page, &udf_wbc);
189 	page_cache_release(page);
190 
191 	mark_inode_dirty(inode);
192 }
193 
194 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
195 					   int *err)
196 {
197 	int newblock;
198 	struct buffer_head *dbh = NULL;
199 	struct kernel_lb_addr eloc;
200 	uint8_t alloctype;
201 	struct extent_position epos;
202 
203 	struct udf_fileident_bh sfibh, dfibh;
204 	loff_t f_pos = udf_ext0_offset(inode);
205 	int size = udf_ext0_offset(inode) + inode->i_size;
206 	struct fileIdentDesc cfi, *sfi, *dfi;
207 	struct udf_inode_info *iinfo = UDF_I(inode);
208 
209 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
210 		alloctype = ICBTAG_FLAG_AD_SHORT;
211 	else
212 		alloctype = ICBTAG_FLAG_AD_LONG;
213 
214 	if (!inode->i_size) {
215 		iinfo->i_alloc_type = alloctype;
216 		mark_inode_dirty(inode);
217 		return NULL;
218 	}
219 
220 	/* alloc block, and copy data to it */
221 	*block = udf_new_block(inode->i_sb, inode,
222 			       iinfo->i_location.partitionReferenceNum,
223 			       iinfo->i_location.logicalBlockNum, err);
224 	if (!(*block))
225 		return NULL;
226 	newblock = udf_get_pblock(inode->i_sb, *block,
227 				  iinfo->i_location.partitionReferenceNum,
228 				0);
229 	if (!newblock)
230 		return NULL;
231 	dbh = udf_tgetblk(inode->i_sb, newblock);
232 	if (!dbh)
233 		return NULL;
234 	lock_buffer(dbh);
235 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
236 	set_buffer_uptodate(dbh);
237 	unlock_buffer(dbh);
238 	mark_buffer_dirty_inode(dbh, inode);
239 
240 	sfibh.soffset = sfibh.eoffset =
241 			f_pos & (inode->i_sb->s_blocksize - 1);
242 	sfibh.sbh = sfibh.ebh = NULL;
243 	dfibh.soffset = dfibh.eoffset = 0;
244 	dfibh.sbh = dfibh.ebh = dbh;
245 	while (f_pos < size) {
246 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
247 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
248 					 NULL, NULL, NULL);
249 		if (!sfi) {
250 			brelse(dbh);
251 			return NULL;
252 		}
253 		iinfo->i_alloc_type = alloctype;
254 		sfi->descTag.tagLocation = cpu_to_le32(*block);
255 		dfibh.soffset = dfibh.eoffset;
256 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
257 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
258 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
259 				 sfi->fileIdent +
260 					le16_to_cpu(sfi->lengthOfImpUse))) {
261 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
262 			brelse(dbh);
263 			return NULL;
264 		}
265 	}
266 	mark_buffer_dirty_inode(dbh, inode);
267 
268 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
269 		iinfo->i_lenAlloc);
270 	iinfo->i_lenAlloc = 0;
271 	eloc.logicalBlockNum = *block;
272 	eloc.partitionReferenceNum =
273 				iinfo->i_location.partitionReferenceNum;
274 	iinfo->i_lenExtents = inode->i_size;
275 	epos.bh = NULL;
276 	epos.block = iinfo->i_location;
277 	epos.offset = udf_file_entry_alloc_offset(inode);
278 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
279 	/* UniqueID stuff */
280 
281 	brelse(epos.bh);
282 	mark_inode_dirty(inode);
283 	return dbh;
284 }
285 
286 static int udf_get_block(struct inode *inode, sector_t block,
287 			 struct buffer_head *bh_result, int create)
288 {
289 	int err, new;
290 	struct buffer_head *bh;
291 	sector_t phys = 0;
292 	struct udf_inode_info *iinfo;
293 
294 	if (!create) {
295 		phys = udf_block_map(inode, block);
296 		if (phys)
297 			map_bh(bh_result, inode->i_sb, phys);
298 		return 0;
299 	}
300 
301 	err = -EIO;
302 	new = 0;
303 	bh = NULL;
304 
305 	lock_kernel();
306 
307 	iinfo = UDF_I(inode);
308 	if (block == iinfo->i_next_alloc_block + 1) {
309 		iinfo->i_next_alloc_block++;
310 		iinfo->i_next_alloc_goal++;
311 	}
312 
313 	err = 0;
314 
315 	bh = inode_getblk(inode, block, &err, &phys, &new);
316 	BUG_ON(bh);
317 	if (err)
318 		goto abort;
319 	BUG_ON(!phys);
320 
321 	if (new)
322 		set_buffer_new(bh_result);
323 	map_bh(bh_result, inode->i_sb, phys);
324 
325 abort:
326 	unlock_kernel();
327 	return err;
328 }
329 
330 static struct buffer_head *udf_getblk(struct inode *inode, long block,
331 				      int create, int *err)
332 {
333 	struct buffer_head *bh;
334 	struct buffer_head dummy;
335 
336 	dummy.b_state = 0;
337 	dummy.b_blocknr = -1000;
338 	*err = udf_get_block(inode, block, &dummy, create);
339 	if (!*err && buffer_mapped(&dummy)) {
340 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
341 		if (buffer_new(&dummy)) {
342 			lock_buffer(bh);
343 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
344 			set_buffer_uptodate(bh);
345 			unlock_buffer(bh);
346 			mark_buffer_dirty_inode(bh, inode);
347 		}
348 		return bh;
349 	}
350 
351 	return NULL;
352 }
353 
354 /* Extend the file by 'blocks' blocks, return the number of extents added */
355 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
356 		    struct kernel_long_ad *last_ext, sector_t blocks)
357 {
358 	sector_t add;
359 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
360 	struct super_block *sb = inode->i_sb;
361 	struct kernel_lb_addr prealloc_loc = {};
362 	int prealloc_len = 0;
363 	struct udf_inode_info *iinfo;
364 
365 	/* The previous extent is fake and we should not extend by anything
366 	 * - there's nothing to do... */
367 	if (!blocks && fake)
368 		return 0;
369 
370 	iinfo = UDF_I(inode);
371 	/* Round the last extent up to a multiple of block size */
372 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
373 		last_ext->extLength =
374 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
375 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
376 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
377 		iinfo->i_lenExtents =
378 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
379 			~(sb->s_blocksize - 1);
380 	}
381 
382 	/* Last extent are just preallocated blocks? */
383 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
384 						EXT_NOT_RECORDED_ALLOCATED) {
385 		/* Save the extent so that we can reattach it to the end */
386 		prealloc_loc = last_ext->extLocation;
387 		prealloc_len = last_ext->extLength;
388 		/* Mark the extent as a hole */
389 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
390 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
391 		last_ext->extLocation.logicalBlockNum = 0;
392 		last_ext->extLocation.partitionReferenceNum = 0;
393 	}
394 
395 	/* Can we merge with the previous extent? */
396 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
397 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
398 		add = ((1 << 30) - sb->s_blocksize -
399 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
400 			sb->s_blocksize_bits;
401 		if (add > blocks)
402 			add = blocks;
403 		blocks -= add;
404 		last_ext->extLength += add << sb->s_blocksize_bits;
405 	}
406 
407 	if (fake) {
408 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
409 			     last_ext->extLength, 1);
410 		count++;
411 	} else
412 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
413 				last_ext->extLength, 1);
414 
415 	/* Managed to do everything necessary? */
416 	if (!blocks)
417 		goto out;
418 
419 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
420 	last_ext->extLocation.logicalBlockNum = 0;
421 	last_ext->extLocation.partitionReferenceNum = 0;
422 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
423 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
424 				(add << sb->s_blocksize_bits);
425 
426 	/* Create enough extents to cover the whole hole */
427 	while (blocks > add) {
428 		blocks -= add;
429 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
430 				 last_ext->extLength, 1) == -1)
431 			return -1;
432 		count++;
433 	}
434 	if (blocks) {
435 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
436 			(blocks << sb->s_blocksize_bits);
437 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
438 				 last_ext->extLength, 1) == -1)
439 			return -1;
440 		count++;
441 	}
442 
443 out:
444 	/* Do we have some preallocated blocks saved? */
445 	if (prealloc_len) {
446 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
447 				 prealloc_len, 1) == -1)
448 			return -1;
449 		last_ext->extLocation = prealloc_loc;
450 		last_ext->extLength = prealloc_len;
451 		count++;
452 	}
453 
454 	/* last_pos should point to the last written extent... */
455 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
456 		last_pos->offset -= sizeof(struct short_ad);
457 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
458 		last_pos->offset -= sizeof(struct long_ad);
459 	else
460 		return -1;
461 
462 	return count;
463 }
464 
465 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
466 					int *err, sector_t *phys, int *new)
467 {
468 	static sector_t last_block;
469 	struct buffer_head *result = NULL;
470 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
471 	struct extent_position prev_epos, cur_epos, next_epos;
472 	int count = 0, startnum = 0, endnum = 0;
473 	uint32_t elen = 0, tmpelen;
474 	struct kernel_lb_addr eloc, tmpeloc;
475 	int c = 1;
476 	loff_t lbcount = 0, b_off = 0;
477 	uint32_t newblocknum, newblock;
478 	sector_t offset = 0;
479 	int8_t etype;
480 	struct udf_inode_info *iinfo = UDF_I(inode);
481 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
482 	int lastblock = 0;
483 
484 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
485 	prev_epos.block = iinfo->i_location;
486 	prev_epos.bh = NULL;
487 	cur_epos = next_epos = prev_epos;
488 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
489 
490 	/* find the extent which contains the block we are looking for.
491 	   alternate between laarr[0] and laarr[1] for locations of the
492 	   current extent, and the previous extent */
493 	do {
494 		if (prev_epos.bh != cur_epos.bh) {
495 			brelse(prev_epos.bh);
496 			get_bh(cur_epos.bh);
497 			prev_epos.bh = cur_epos.bh;
498 		}
499 		if (cur_epos.bh != next_epos.bh) {
500 			brelse(cur_epos.bh);
501 			get_bh(next_epos.bh);
502 			cur_epos.bh = next_epos.bh;
503 		}
504 
505 		lbcount += elen;
506 
507 		prev_epos.block = cur_epos.block;
508 		cur_epos.block = next_epos.block;
509 
510 		prev_epos.offset = cur_epos.offset;
511 		cur_epos.offset = next_epos.offset;
512 
513 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
514 		if (etype == -1)
515 			break;
516 
517 		c = !c;
518 
519 		laarr[c].extLength = (etype << 30) | elen;
520 		laarr[c].extLocation = eloc;
521 
522 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
523 			pgoal = eloc.logicalBlockNum +
524 				((elen + inode->i_sb->s_blocksize - 1) >>
525 				 inode->i_sb->s_blocksize_bits);
526 
527 		count++;
528 	} while (lbcount + elen <= b_off);
529 
530 	b_off -= lbcount;
531 	offset = b_off >> inode->i_sb->s_blocksize_bits;
532 	/*
533 	 * Move prev_epos and cur_epos into indirect extent if we are at
534 	 * the pointer to it
535 	 */
536 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
537 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
538 
539 	/* if the extent is allocated and recorded, return the block
540 	   if the extent is not a multiple of the blocksize, round up */
541 
542 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
543 		if (elen & (inode->i_sb->s_blocksize - 1)) {
544 			elen = EXT_RECORDED_ALLOCATED |
545 				((elen + inode->i_sb->s_blocksize - 1) &
546 				 ~(inode->i_sb->s_blocksize - 1));
547 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
548 		}
549 		brelse(prev_epos.bh);
550 		brelse(cur_epos.bh);
551 		brelse(next_epos.bh);
552 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
553 		*phys = newblock;
554 		return NULL;
555 	}
556 
557 	last_block = block;
558 	/* Are we beyond EOF? */
559 	if (etype == -1) {
560 		int ret;
561 
562 		if (count) {
563 			if (c)
564 				laarr[0] = laarr[1];
565 			startnum = 1;
566 		} else {
567 			/* Create a fake extent when there's not one */
568 			memset(&laarr[0].extLocation, 0x00,
569 				sizeof(struct kernel_lb_addr));
570 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571 			/* Will udf_extend_file() create real extent from
572 			   a fake one? */
573 			startnum = (offset > 0);
574 		}
575 		/* Create extents for the hole between EOF and offset */
576 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
577 		if (ret == -1) {
578 			brelse(prev_epos.bh);
579 			brelse(cur_epos.bh);
580 			brelse(next_epos.bh);
581 			/* We don't really know the error here so we just make
582 			 * something up */
583 			*err = -ENOSPC;
584 			return NULL;
585 		}
586 		c = 0;
587 		offset = 0;
588 		count += ret;
589 		/* We are not covered by a preallocated extent? */
590 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
591 						EXT_NOT_RECORDED_ALLOCATED) {
592 			/* Is there any real extent? - otherwise we overwrite
593 			 * the fake one... */
594 			if (count)
595 				c = !c;
596 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
597 				inode->i_sb->s_blocksize;
598 			memset(&laarr[c].extLocation, 0x00,
599 				sizeof(struct kernel_lb_addr));
600 			count++;
601 			endnum++;
602 		}
603 		endnum = c + 1;
604 		lastblock = 1;
605 	} else {
606 		endnum = startnum = ((count > 2) ? 2 : count);
607 
608 		/* if the current extent is in position 0,
609 		   swap it with the previous */
610 		if (!c && count != 1) {
611 			laarr[2] = laarr[0];
612 			laarr[0] = laarr[1];
613 			laarr[1] = laarr[2];
614 			c = 1;
615 		}
616 
617 		/* if the current block is located in an extent,
618 		   read the next extent */
619 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
620 		if (etype != -1) {
621 			laarr[c + 1].extLength = (etype << 30) | elen;
622 			laarr[c + 1].extLocation = eloc;
623 			count++;
624 			startnum++;
625 			endnum++;
626 		} else
627 			lastblock = 1;
628 	}
629 
630 	/* if the current extent is not recorded but allocated, get the
631 	 * block in the extent corresponding to the requested block */
632 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
633 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
634 	else { /* otherwise, allocate a new block */
635 		if (iinfo->i_next_alloc_block == block)
636 			goal = iinfo->i_next_alloc_goal;
637 
638 		if (!goal) {
639 			if (!(goal = pgoal)) /* XXX: what was intended here? */
640 				goal = iinfo->i_location.logicalBlockNum + 1;
641 		}
642 
643 		newblocknum = udf_new_block(inode->i_sb, inode,
644 				iinfo->i_location.partitionReferenceNum,
645 				goal, err);
646 		if (!newblocknum) {
647 			brelse(prev_epos.bh);
648 			*err = -ENOSPC;
649 			return NULL;
650 		}
651 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
652 	}
653 
654 	/* if the extent the requsted block is located in contains multiple
655 	 * blocks, split the extent into at most three extents. blocks prior
656 	 * to requested block, requested block, and blocks after requested
657 	 * block */
658 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
659 
660 #ifdef UDF_PREALLOCATE
661 	/* We preallocate blocks only for regular files. It also makes sense
662 	 * for directories but there's a problem when to drop the
663 	 * preallocation. We might use some delayed work for that but I feel
664 	 * it's overengineering for a filesystem like UDF. */
665 	if (S_ISREG(inode->i_mode))
666 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
667 #endif
668 
669 	/* merge any continuous blocks in laarr */
670 	udf_merge_extents(inode, laarr, &endnum);
671 
672 	/* write back the new extents, inserting new extents if the new number
673 	 * of extents is greater than the old number, and deleting extents if
674 	 * the new number of extents is less than the old number */
675 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
676 
677 	brelse(prev_epos.bh);
678 
679 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
680 				iinfo->i_location.partitionReferenceNum, 0);
681 	if (!newblock)
682 		return NULL;
683 	*phys = newblock;
684 	*err = 0;
685 	*new = 1;
686 	iinfo->i_next_alloc_block = block;
687 	iinfo->i_next_alloc_goal = newblocknum;
688 	inode->i_ctime = current_fs_time(inode->i_sb);
689 
690 	if (IS_SYNC(inode))
691 		udf_sync_inode(inode);
692 	else
693 		mark_inode_dirty(inode);
694 
695 	return result;
696 }
697 
698 static void udf_split_extents(struct inode *inode, int *c, int offset,
699 			      int newblocknum,
700 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
701 			      int *endnum)
702 {
703 	unsigned long blocksize = inode->i_sb->s_blocksize;
704 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
705 
706 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
707 	    (laarr[*c].extLength >> 30) ==
708 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
709 		int curr = *c;
710 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
711 			    blocksize - 1) >> blocksize_bits;
712 		int8_t etype = (laarr[curr].extLength >> 30);
713 
714 		if (blen == 1)
715 			;
716 		else if (!offset || blen == offset + 1) {
717 			laarr[curr + 2] = laarr[curr + 1];
718 			laarr[curr + 1] = laarr[curr];
719 		} else {
720 			laarr[curr + 3] = laarr[curr + 1];
721 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
722 		}
723 
724 		if (offset) {
725 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
726 				udf_free_blocks(inode->i_sb, inode,
727 						&laarr[curr].extLocation,
728 						0, offset);
729 				laarr[curr].extLength =
730 					EXT_NOT_RECORDED_NOT_ALLOCATED |
731 					(offset << blocksize_bits);
732 				laarr[curr].extLocation.logicalBlockNum = 0;
733 				laarr[curr].extLocation.
734 						partitionReferenceNum = 0;
735 			} else
736 				laarr[curr].extLength = (etype << 30) |
737 					(offset << blocksize_bits);
738 			curr++;
739 			(*c)++;
740 			(*endnum)++;
741 		}
742 
743 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
744 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
745 			laarr[curr].extLocation.partitionReferenceNum =
746 				UDF_I(inode)->i_location.partitionReferenceNum;
747 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
748 			blocksize;
749 		curr++;
750 
751 		if (blen != offset + 1) {
752 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
753 				laarr[curr].extLocation.logicalBlockNum +=
754 								offset + 1;
755 			laarr[curr].extLength = (etype << 30) |
756 				((blen - (offset + 1)) << blocksize_bits);
757 			curr++;
758 			(*endnum)++;
759 		}
760 	}
761 }
762 
763 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
764 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
765 				 int *endnum)
766 {
767 	int start, length = 0, currlength = 0, i;
768 
769 	if (*endnum >= (c + 1)) {
770 		if (!lastblock)
771 			return;
772 		else
773 			start = c;
774 	} else {
775 		if ((laarr[c + 1].extLength >> 30) ==
776 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
777 			start = c + 1;
778 			length = currlength =
779 				(((laarr[c + 1].extLength &
780 					UDF_EXTENT_LENGTH_MASK) +
781 				inode->i_sb->s_blocksize - 1) >>
782 				inode->i_sb->s_blocksize_bits);
783 		} else
784 			start = c;
785 	}
786 
787 	for (i = start + 1; i <= *endnum; i++) {
788 		if (i == *endnum) {
789 			if (lastblock)
790 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
791 		} else if ((laarr[i].extLength >> 30) ==
792 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
793 			length += (((laarr[i].extLength &
794 						UDF_EXTENT_LENGTH_MASK) +
795 				    inode->i_sb->s_blocksize - 1) >>
796 				    inode->i_sb->s_blocksize_bits);
797 		} else
798 			break;
799 	}
800 
801 	if (length) {
802 		int next = laarr[start].extLocation.logicalBlockNum +
803 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
804 			  inode->i_sb->s_blocksize - 1) >>
805 			  inode->i_sb->s_blocksize_bits);
806 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
807 				laarr[start].extLocation.partitionReferenceNum,
808 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
809 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
810 				currlength);
811 		if (numalloc) 	{
812 			if (start == (c + 1))
813 				laarr[start].extLength +=
814 					(numalloc <<
815 					 inode->i_sb->s_blocksize_bits);
816 			else {
817 				memmove(&laarr[c + 2], &laarr[c + 1],
818 					sizeof(struct long_ad) * (*endnum - (c + 1)));
819 				(*endnum)++;
820 				laarr[c + 1].extLocation.logicalBlockNum = next;
821 				laarr[c + 1].extLocation.partitionReferenceNum =
822 					laarr[c].extLocation.
823 							partitionReferenceNum;
824 				laarr[c + 1].extLength =
825 					EXT_NOT_RECORDED_ALLOCATED |
826 					(numalloc <<
827 					 inode->i_sb->s_blocksize_bits);
828 				start = c + 1;
829 			}
830 
831 			for (i = start + 1; numalloc && i < *endnum; i++) {
832 				int elen = ((laarr[i].extLength &
833 						UDF_EXTENT_LENGTH_MASK) +
834 					    inode->i_sb->s_blocksize - 1) >>
835 					    inode->i_sb->s_blocksize_bits;
836 
837 				if (elen > numalloc) {
838 					laarr[i].extLength -=
839 						(numalloc <<
840 						 inode->i_sb->s_blocksize_bits);
841 					numalloc = 0;
842 				} else {
843 					numalloc -= elen;
844 					if (*endnum > (i + 1))
845 						memmove(&laarr[i],
846 							&laarr[i + 1],
847 							sizeof(struct long_ad) *
848 							(*endnum - (i + 1)));
849 					i--;
850 					(*endnum)--;
851 				}
852 			}
853 			UDF_I(inode)->i_lenExtents +=
854 				numalloc << inode->i_sb->s_blocksize_bits;
855 		}
856 	}
857 }
858 
859 static void udf_merge_extents(struct inode *inode,
860 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
861 			      int *endnum)
862 {
863 	int i;
864 	unsigned long blocksize = inode->i_sb->s_blocksize;
865 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
866 
867 	for (i = 0; i < (*endnum - 1); i++) {
868 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
869 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
870 
871 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
872 			(((li->extLength >> 30) ==
873 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
874 			((lip1->extLocation.logicalBlockNum -
875 			  li->extLocation.logicalBlockNum) ==
876 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
877 			blocksize - 1) >> blocksize_bits)))) {
878 
879 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
880 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
881 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
882 				lip1->extLength = (lip1->extLength -
883 						  (li->extLength &
884 						   UDF_EXTENT_LENGTH_MASK) +
885 						   UDF_EXTENT_LENGTH_MASK) &
886 							~(blocksize - 1);
887 				li->extLength = (li->extLength &
888 						 UDF_EXTENT_FLAG_MASK) +
889 						(UDF_EXTENT_LENGTH_MASK + 1) -
890 						blocksize;
891 				lip1->extLocation.logicalBlockNum =
892 					li->extLocation.logicalBlockNum +
893 					((li->extLength &
894 						UDF_EXTENT_LENGTH_MASK) >>
895 						blocksize_bits);
896 			} else {
897 				li->extLength = lip1->extLength +
898 					(((li->extLength &
899 						UDF_EXTENT_LENGTH_MASK) +
900 					 blocksize - 1) & ~(blocksize - 1));
901 				if (*endnum > (i + 2))
902 					memmove(&laarr[i + 1], &laarr[i + 2],
903 						sizeof(struct long_ad) *
904 						(*endnum - (i + 2)));
905 				i--;
906 				(*endnum)--;
907 			}
908 		} else if (((li->extLength >> 30) ==
909 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
910 			   ((lip1->extLength >> 30) ==
911 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
912 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
913 					((li->extLength &
914 					  UDF_EXTENT_LENGTH_MASK) +
915 					 blocksize - 1) >> blocksize_bits);
916 			li->extLocation.logicalBlockNum = 0;
917 			li->extLocation.partitionReferenceNum = 0;
918 
919 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
920 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
921 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
922 				lip1->extLength = (lip1->extLength -
923 						   (li->extLength &
924 						   UDF_EXTENT_LENGTH_MASK) +
925 						   UDF_EXTENT_LENGTH_MASK) &
926 						   ~(blocksize - 1);
927 				li->extLength = (li->extLength &
928 						 UDF_EXTENT_FLAG_MASK) +
929 						(UDF_EXTENT_LENGTH_MASK + 1) -
930 						blocksize;
931 			} else {
932 				li->extLength = lip1->extLength +
933 					(((li->extLength &
934 						UDF_EXTENT_LENGTH_MASK) +
935 					  blocksize - 1) & ~(blocksize - 1));
936 				if (*endnum > (i + 2))
937 					memmove(&laarr[i + 1], &laarr[i + 2],
938 						sizeof(struct long_ad) *
939 						(*endnum - (i + 2)));
940 				i--;
941 				(*endnum)--;
942 			}
943 		} else if ((li->extLength >> 30) ==
944 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945 			udf_free_blocks(inode->i_sb, inode,
946 					&li->extLocation, 0,
947 					((li->extLength &
948 						UDF_EXTENT_LENGTH_MASK) +
949 					 blocksize - 1) >> blocksize_bits);
950 			li->extLocation.logicalBlockNum = 0;
951 			li->extLocation.partitionReferenceNum = 0;
952 			li->extLength = (li->extLength &
953 						UDF_EXTENT_LENGTH_MASK) |
954 						EXT_NOT_RECORDED_NOT_ALLOCATED;
955 		}
956 	}
957 }
958 
959 static void udf_update_extents(struct inode *inode,
960 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
961 			       int startnum, int endnum,
962 			       struct extent_position *epos)
963 {
964 	int start = 0, i;
965 	struct kernel_lb_addr tmploc;
966 	uint32_t tmplen;
967 
968 	if (startnum > endnum) {
969 		for (i = 0; i < (startnum - endnum); i++)
970 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
971 					laarr[i].extLength);
972 	} else if (startnum < endnum) {
973 		for (i = 0; i < (endnum - startnum); i++) {
974 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
975 					laarr[i].extLength);
976 			udf_next_aext(inode, epos, &laarr[i].extLocation,
977 				      &laarr[i].extLength, 1);
978 			start++;
979 		}
980 	}
981 
982 	for (i = start; i < endnum; i++) {
983 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
984 		udf_write_aext(inode, epos, &laarr[i].extLocation,
985 			       laarr[i].extLength, 1);
986 	}
987 }
988 
989 struct buffer_head *udf_bread(struct inode *inode, int block,
990 			      int create, int *err)
991 {
992 	struct buffer_head *bh = NULL;
993 
994 	bh = udf_getblk(inode, block, create, err);
995 	if (!bh)
996 		return NULL;
997 
998 	if (buffer_uptodate(bh))
999 		return bh;
1000 
1001 	ll_rw_block(READ, 1, &bh);
1002 
1003 	wait_on_buffer(bh);
1004 	if (buffer_uptodate(bh))
1005 		return bh;
1006 
1007 	brelse(bh);
1008 	*err = -EIO;
1009 	return NULL;
1010 }
1011 
1012 void udf_truncate(struct inode *inode)
1013 {
1014 	int offset;
1015 	int err;
1016 	struct udf_inode_info *iinfo;
1017 
1018 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1019 	      S_ISLNK(inode->i_mode)))
1020 		return;
1021 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1022 		return;
1023 
1024 	lock_kernel();
1025 	iinfo = UDF_I(inode);
1026 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1027 		if (inode->i_sb->s_blocksize <
1028 				(udf_file_entry_alloc_offset(inode) +
1029 				 inode->i_size)) {
1030 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1031 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1032 				inode->i_size = iinfo->i_lenAlloc;
1033 				unlock_kernel();
1034 				return;
1035 			} else
1036 				udf_truncate_extents(inode);
1037 		} else {
1038 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1039 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1040 				0x00, inode->i_sb->s_blocksize -
1041 				offset - udf_file_entry_alloc_offset(inode));
1042 			iinfo->i_lenAlloc = inode->i_size;
1043 		}
1044 	} else {
1045 		block_truncate_page(inode->i_mapping, inode->i_size,
1046 				    udf_get_block);
1047 		udf_truncate_extents(inode);
1048 	}
1049 
1050 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1051 	if (IS_SYNC(inode))
1052 		udf_sync_inode(inode);
1053 	else
1054 		mark_inode_dirty(inode);
1055 	unlock_kernel();
1056 }
1057 
1058 static void __udf_read_inode(struct inode *inode)
1059 {
1060 	struct buffer_head *bh = NULL;
1061 	struct fileEntry *fe;
1062 	uint16_t ident;
1063 	struct udf_inode_info *iinfo = UDF_I(inode);
1064 
1065 	/*
1066 	 * Set defaults, but the inode is still incomplete!
1067 	 * Note: get_new_inode() sets the following on a new inode:
1068 	 *      i_sb = sb
1069 	 *      i_no = ino
1070 	 *      i_flags = sb->s_flags
1071 	 *      i_state = 0
1072 	 * clean_inode(): zero fills and sets
1073 	 *      i_count = 1
1074 	 *      i_nlink = 1
1075 	 *      i_op = NULL;
1076 	 */
1077 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1078 	if (!bh) {
1079 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1080 		       inode->i_ino);
1081 		make_bad_inode(inode);
1082 		return;
1083 	}
1084 
1085 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1086 	    ident != TAG_IDENT_USE) {
1087 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1088 				"failed ident=%d\n", inode->i_ino, ident);
1089 		brelse(bh);
1090 		make_bad_inode(inode);
1091 		return;
1092 	}
1093 
1094 	fe = (struct fileEntry *)bh->b_data;
1095 
1096 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1097 		struct buffer_head *ibh;
1098 
1099 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1100 					&ident);
1101 		if (ident == TAG_IDENT_IE && ibh) {
1102 			struct buffer_head *nbh = NULL;
1103 			struct kernel_lb_addr loc;
1104 			struct indirectEntry *ie;
1105 
1106 			ie = (struct indirectEntry *)ibh->b_data;
1107 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1108 
1109 			if (ie->indirectICB.extLength &&
1110 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1111 							&ident))) {
1112 				if (ident == TAG_IDENT_FE ||
1113 					ident == TAG_IDENT_EFE) {
1114 					memcpy(&iinfo->i_location,
1115 						&loc,
1116 						sizeof(struct kernel_lb_addr));
1117 					brelse(bh);
1118 					brelse(ibh);
1119 					brelse(nbh);
1120 					__udf_read_inode(inode);
1121 					return;
1122 				}
1123 				brelse(nbh);
1124 			}
1125 		}
1126 		brelse(ibh);
1127 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1128 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1129 		       le16_to_cpu(fe->icbTag.strategyType));
1130 		brelse(bh);
1131 		make_bad_inode(inode);
1132 		return;
1133 	}
1134 	udf_fill_inode(inode, bh);
1135 
1136 	brelse(bh);
1137 }
1138 
1139 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1140 {
1141 	struct fileEntry *fe;
1142 	struct extendedFileEntry *efe;
1143 	int offset;
1144 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1145 	struct udf_inode_info *iinfo = UDF_I(inode);
1146 
1147 	fe = (struct fileEntry *)bh->b_data;
1148 	efe = (struct extendedFileEntry *)bh->b_data;
1149 
1150 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1151 		iinfo->i_strat4096 = 0;
1152 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1153 		iinfo->i_strat4096 = 1;
1154 
1155 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1156 							ICBTAG_FLAG_AD_MASK;
1157 	iinfo->i_unique = 0;
1158 	iinfo->i_lenEAttr = 0;
1159 	iinfo->i_lenExtents = 0;
1160 	iinfo->i_lenAlloc = 0;
1161 	iinfo->i_next_alloc_block = 0;
1162 	iinfo->i_next_alloc_goal = 0;
1163 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1164 		iinfo->i_efe = 1;
1165 		iinfo->i_use = 0;
1166 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1167 					sizeof(struct extendedFileEntry))) {
1168 			make_bad_inode(inode);
1169 			return;
1170 		}
1171 		memcpy(iinfo->i_ext.i_data,
1172 		       bh->b_data + sizeof(struct extendedFileEntry),
1173 		       inode->i_sb->s_blocksize -
1174 					sizeof(struct extendedFileEntry));
1175 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1176 		iinfo->i_efe = 0;
1177 		iinfo->i_use = 0;
1178 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1179 						sizeof(struct fileEntry))) {
1180 			make_bad_inode(inode);
1181 			return;
1182 		}
1183 		memcpy(iinfo->i_ext.i_data,
1184 		       bh->b_data + sizeof(struct fileEntry),
1185 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1186 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1187 		iinfo->i_efe = 0;
1188 		iinfo->i_use = 1;
1189 		iinfo->i_lenAlloc = le32_to_cpu(
1190 				((struct unallocSpaceEntry *)bh->b_data)->
1191 				 lengthAllocDescs);
1192 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1193 					sizeof(struct unallocSpaceEntry))) {
1194 			make_bad_inode(inode);
1195 			return;
1196 		}
1197 		memcpy(iinfo->i_ext.i_data,
1198 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1199 		       inode->i_sb->s_blocksize -
1200 					sizeof(struct unallocSpaceEntry));
1201 		return;
1202 	}
1203 
1204 	inode->i_uid = le32_to_cpu(fe->uid);
1205 	if (inode->i_uid == -1 ||
1206 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1207 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1208 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1209 
1210 	inode->i_gid = le32_to_cpu(fe->gid);
1211 	if (inode->i_gid == -1 ||
1212 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1213 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1214 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1215 
1216 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1217 	if (!inode->i_nlink)
1218 		inode->i_nlink = 1;
1219 
1220 	inode->i_size = le64_to_cpu(fe->informationLength);
1221 	iinfo->i_lenExtents = inode->i_size;
1222 
1223 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1224 			sbi->s_fmode != UDF_INVALID_MODE)
1225 		inode->i_mode = sbi->s_fmode;
1226 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1227 			sbi->s_dmode != UDF_INVALID_MODE)
1228 		inode->i_mode = sbi->s_dmode;
1229 	else
1230 		inode->i_mode = udf_convert_permissions(fe);
1231 	inode->i_mode &= ~sbi->s_umask;
1232 
1233 	if (iinfo->i_efe == 0) {
1234 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1235 			(inode->i_sb->s_blocksize_bits - 9);
1236 
1237 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1238 			inode->i_atime = sbi->s_record_time;
1239 
1240 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1241 					    fe->modificationTime))
1242 			inode->i_mtime = sbi->s_record_time;
1243 
1244 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1245 			inode->i_ctime = sbi->s_record_time;
1246 
1247 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1248 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1249 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1250 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1251 	} else {
1252 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1253 		    (inode->i_sb->s_blocksize_bits - 9);
1254 
1255 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1256 			inode->i_atime = sbi->s_record_time;
1257 
1258 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1259 					    efe->modificationTime))
1260 			inode->i_mtime = sbi->s_record_time;
1261 
1262 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1263 			iinfo->i_crtime = sbi->s_record_time;
1264 
1265 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1266 			inode->i_ctime = sbi->s_record_time;
1267 
1268 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1269 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1270 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1271 		offset = sizeof(struct extendedFileEntry) +
1272 							iinfo->i_lenEAttr;
1273 	}
1274 
1275 	switch (fe->icbTag.fileType) {
1276 	case ICBTAG_FILE_TYPE_DIRECTORY:
1277 		inode->i_op = &udf_dir_inode_operations;
1278 		inode->i_fop = &udf_dir_operations;
1279 		inode->i_mode |= S_IFDIR;
1280 		inc_nlink(inode);
1281 		break;
1282 	case ICBTAG_FILE_TYPE_REALTIME:
1283 	case ICBTAG_FILE_TYPE_REGULAR:
1284 	case ICBTAG_FILE_TYPE_UNDEF:
1285 	case ICBTAG_FILE_TYPE_VAT20:
1286 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1287 			inode->i_data.a_ops = &udf_adinicb_aops;
1288 		else
1289 			inode->i_data.a_ops = &udf_aops;
1290 		inode->i_op = &udf_file_inode_operations;
1291 		inode->i_fop = &udf_file_operations;
1292 		inode->i_mode |= S_IFREG;
1293 		break;
1294 	case ICBTAG_FILE_TYPE_BLOCK:
1295 		inode->i_mode |= S_IFBLK;
1296 		break;
1297 	case ICBTAG_FILE_TYPE_CHAR:
1298 		inode->i_mode |= S_IFCHR;
1299 		break;
1300 	case ICBTAG_FILE_TYPE_FIFO:
1301 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1302 		break;
1303 	case ICBTAG_FILE_TYPE_SOCKET:
1304 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1305 		break;
1306 	case ICBTAG_FILE_TYPE_SYMLINK:
1307 		inode->i_data.a_ops = &udf_symlink_aops;
1308 		inode->i_op = &udf_symlink_inode_operations;
1309 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1310 		break;
1311 	case ICBTAG_FILE_TYPE_MAIN:
1312 		udf_debug("METADATA FILE-----\n");
1313 		break;
1314 	case ICBTAG_FILE_TYPE_MIRROR:
1315 		udf_debug("METADATA MIRROR FILE-----\n");
1316 		break;
1317 	case ICBTAG_FILE_TYPE_BITMAP:
1318 		udf_debug("METADATA BITMAP FILE-----\n");
1319 		break;
1320 	default:
1321 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1322 				"file type=%d\n", inode->i_ino,
1323 				fe->icbTag.fileType);
1324 		make_bad_inode(inode);
1325 		return;
1326 	}
1327 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1328 		struct deviceSpec *dsea =
1329 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1330 		if (dsea) {
1331 			init_special_inode(inode, inode->i_mode,
1332 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1333 				      le32_to_cpu(dsea->minorDeviceIdent)));
1334 			/* Developer ID ??? */
1335 		} else
1336 			make_bad_inode(inode);
1337 	}
1338 }
1339 
1340 static int udf_alloc_i_data(struct inode *inode, size_t size)
1341 {
1342 	struct udf_inode_info *iinfo = UDF_I(inode);
1343 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1344 
1345 	if (!iinfo->i_ext.i_data) {
1346 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1347 				"no free memory\n", inode->i_ino);
1348 		return -ENOMEM;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static mode_t udf_convert_permissions(struct fileEntry *fe)
1355 {
1356 	mode_t mode;
1357 	uint32_t permissions;
1358 	uint32_t flags;
1359 
1360 	permissions = le32_to_cpu(fe->permissions);
1361 	flags = le16_to_cpu(fe->icbTag.flags);
1362 
1363 	mode =	((permissions) & S_IRWXO) |
1364 		((permissions >> 2) & S_IRWXG) |
1365 		((permissions >> 4) & S_IRWXU) |
1366 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1367 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1368 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1369 
1370 	return mode;
1371 }
1372 
1373 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1374 {
1375 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1376 }
1377 
1378 static int udf_sync_inode(struct inode *inode)
1379 {
1380 	return udf_update_inode(inode, 1);
1381 }
1382 
1383 static int udf_update_inode(struct inode *inode, int do_sync)
1384 {
1385 	struct buffer_head *bh = NULL;
1386 	struct fileEntry *fe;
1387 	struct extendedFileEntry *efe;
1388 	uint32_t udfperms;
1389 	uint16_t icbflags;
1390 	uint16_t crclen;
1391 	int err = 0;
1392 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1393 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1394 	struct udf_inode_info *iinfo = UDF_I(inode);
1395 
1396 	bh = udf_tgetblk(inode->i_sb,
1397 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1398 	if (!bh) {
1399 		udf_debug("getblk failure\n");
1400 		return -ENOMEM;
1401 	}
1402 
1403 	lock_buffer(bh);
1404 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1405 	fe = (struct fileEntry *)bh->b_data;
1406 	efe = (struct extendedFileEntry *)bh->b_data;
1407 
1408 	if (iinfo->i_use) {
1409 		struct unallocSpaceEntry *use =
1410 			(struct unallocSpaceEntry *)bh->b_data;
1411 
1412 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1413 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1414 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1415 					sizeof(struct unallocSpaceEntry));
1416 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1417 		use->descTag.tagLocation =
1418 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1419 		crclen = sizeof(struct unallocSpaceEntry) +
1420 				iinfo->i_lenAlloc - sizeof(struct tag);
1421 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1422 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1423 							   sizeof(struct tag),
1424 							   crclen));
1425 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1426 
1427 		goto out;
1428 	}
1429 
1430 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1431 		fe->uid = cpu_to_le32(-1);
1432 	else
1433 		fe->uid = cpu_to_le32(inode->i_uid);
1434 
1435 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1436 		fe->gid = cpu_to_le32(-1);
1437 	else
1438 		fe->gid = cpu_to_le32(inode->i_gid);
1439 
1440 	udfperms = ((inode->i_mode & S_IRWXO)) |
1441 		   ((inode->i_mode & S_IRWXG) << 2) |
1442 		   ((inode->i_mode & S_IRWXU) << 4);
1443 
1444 	udfperms |= (le32_to_cpu(fe->permissions) &
1445 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1446 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1447 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1448 	fe->permissions = cpu_to_le32(udfperms);
1449 
1450 	if (S_ISDIR(inode->i_mode))
1451 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1452 	else
1453 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1454 
1455 	fe->informationLength = cpu_to_le64(inode->i_size);
1456 
1457 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1458 		struct regid *eid;
1459 		struct deviceSpec *dsea =
1460 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1461 		if (!dsea) {
1462 			dsea = (struct deviceSpec *)
1463 				udf_add_extendedattr(inode,
1464 						     sizeof(struct deviceSpec) +
1465 						     sizeof(struct regid), 12, 0x3);
1466 			dsea->attrType = cpu_to_le32(12);
1467 			dsea->attrSubtype = 1;
1468 			dsea->attrLength = cpu_to_le32(
1469 						sizeof(struct deviceSpec) +
1470 						sizeof(struct regid));
1471 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1472 		}
1473 		eid = (struct regid *)dsea->impUse;
1474 		memset(eid, 0, sizeof(struct regid));
1475 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1476 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1477 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1478 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1479 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1480 	}
1481 
1482 	if (iinfo->i_efe == 0) {
1483 		memcpy(bh->b_data + sizeof(struct fileEntry),
1484 		       iinfo->i_ext.i_data,
1485 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1486 		fe->logicalBlocksRecorded = cpu_to_le64(
1487 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1488 			(blocksize_bits - 9));
1489 
1490 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1491 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1492 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1493 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1494 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1495 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1496 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1497 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1498 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1499 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1500 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1501 		crclen = sizeof(struct fileEntry);
1502 	} else {
1503 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1504 		       iinfo->i_ext.i_data,
1505 		       inode->i_sb->s_blocksize -
1506 					sizeof(struct extendedFileEntry));
1507 		efe->objectSize = cpu_to_le64(inode->i_size);
1508 		efe->logicalBlocksRecorded = cpu_to_le64(
1509 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1510 			(blocksize_bits - 9));
1511 
1512 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1513 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1514 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1515 			iinfo->i_crtime = inode->i_atime;
1516 
1517 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1518 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1519 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1520 			iinfo->i_crtime = inode->i_mtime;
1521 
1522 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1523 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1524 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1525 			iinfo->i_crtime = inode->i_ctime;
1526 
1527 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1528 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1529 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1530 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1531 
1532 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1533 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1534 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1535 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1536 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1537 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1538 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1539 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1540 		crclen = sizeof(struct extendedFileEntry);
1541 	}
1542 	if (iinfo->i_strat4096) {
1543 		fe->icbTag.strategyType = cpu_to_le16(4096);
1544 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1545 		fe->icbTag.numEntries = cpu_to_le16(2);
1546 	} else {
1547 		fe->icbTag.strategyType = cpu_to_le16(4);
1548 		fe->icbTag.numEntries = cpu_to_le16(1);
1549 	}
1550 
1551 	if (S_ISDIR(inode->i_mode))
1552 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1553 	else if (S_ISREG(inode->i_mode))
1554 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1555 	else if (S_ISLNK(inode->i_mode))
1556 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1557 	else if (S_ISBLK(inode->i_mode))
1558 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1559 	else if (S_ISCHR(inode->i_mode))
1560 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1561 	else if (S_ISFIFO(inode->i_mode))
1562 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1563 	else if (S_ISSOCK(inode->i_mode))
1564 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1565 
1566 	icbflags =	iinfo->i_alloc_type |
1567 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1568 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1569 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1570 			(le16_to_cpu(fe->icbTag.flags) &
1571 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1572 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1573 
1574 	fe->icbTag.flags = cpu_to_le16(icbflags);
1575 	if (sbi->s_udfrev >= 0x0200)
1576 		fe->descTag.descVersion = cpu_to_le16(3);
1577 	else
1578 		fe->descTag.descVersion = cpu_to_le16(2);
1579 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1580 	fe->descTag.tagLocation = cpu_to_le32(
1581 					iinfo->i_location.logicalBlockNum);
1582 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1583 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1584 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1585 						  crclen));
1586 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1587 
1588 out:
1589 	set_buffer_uptodate(bh);
1590 	unlock_buffer(bh);
1591 
1592 	/* write the data blocks */
1593 	mark_buffer_dirty(bh);
1594 	if (do_sync) {
1595 		sync_dirty_buffer(bh);
1596 		if (buffer_write_io_error(bh)) {
1597 			printk(KERN_WARNING "IO error syncing udf inode "
1598 				"[%s:%08lx]\n", inode->i_sb->s_id,
1599 				inode->i_ino);
1600 			err = -EIO;
1601 		}
1602 	}
1603 	brelse(bh);
1604 
1605 	return err;
1606 }
1607 
1608 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1609 {
1610 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1611 	struct inode *inode = iget_locked(sb, block);
1612 
1613 	if (!inode)
1614 		return NULL;
1615 
1616 	if (inode->i_state & I_NEW) {
1617 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1618 		__udf_read_inode(inode);
1619 		unlock_new_inode(inode);
1620 	}
1621 
1622 	if (is_bad_inode(inode))
1623 		goto out_iput;
1624 
1625 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1626 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1627 		udf_debug("block=%d, partition=%d out of range\n",
1628 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1629 		make_bad_inode(inode);
1630 		goto out_iput;
1631 	}
1632 
1633 	return inode;
1634 
1635  out_iput:
1636 	iput(inode);
1637 	return NULL;
1638 }
1639 
1640 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1641 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1642 {
1643 	int adsize;
1644 	struct short_ad *sad = NULL;
1645 	struct long_ad *lad = NULL;
1646 	struct allocExtDesc *aed;
1647 	int8_t etype;
1648 	uint8_t *ptr;
1649 	struct udf_inode_info *iinfo = UDF_I(inode);
1650 
1651 	if (!epos->bh)
1652 		ptr = iinfo->i_ext.i_data + epos->offset -
1653 			udf_file_entry_alloc_offset(inode) +
1654 			iinfo->i_lenEAttr;
1655 	else
1656 		ptr = epos->bh->b_data + epos->offset;
1657 
1658 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1659 		adsize = sizeof(struct short_ad);
1660 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1661 		adsize = sizeof(struct long_ad);
1662 	else
1663 		return -1;
1664 
1665 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1666 		unsigned char *sptr, *dptr;
1667 		struct buffer_head *nbh;
1668 		int err, loffset;
1669 		struct kernel_lb_addr obloc = epos->block;
1670 
1671 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1672 						obloc.partitionReferenceNum,
1673 						obloc.logicalBlockNum, &err);
1674 		if (!epos->block.logicalBlockNum)
1675 			return -1;
1676 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1677 								 &epos->block,
1678 								 0));
1679 		if (!nbh)
1680 			return -1;
1681 		lock_buffer(nbh);
1682 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1683 		set_buffer_uptodate(nbh);
1684 		unlock_buffer(nbh);
1685 		mark_buffer_dirty_inode(nbh, inode);
1686 
1687 		aed = (struct allocExtDesc *)(nbh->b_data);
1688 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1689 			aed->previousAllocExtLocation =
1690 					cpu_to_le32(obloc.logicalBlockNum);
1691 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1692 			loffset = epos->offset;
1693 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1694 			sptr = ptr - adsize;
1695 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1696 			memcpy(dptr, sptr, adsize);
1697 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1698 		} else {
1699 			loffset = epos->offset + adsize;
1700 			aed->lengthAllocDescs = cpu_to_le32(0);
1701 			sptr = ptr;
1702 			epos->offset = sizeof(struct allocExtDesc);
1703 
1704 			if (epos->bh) {
1705 				aed = (struct allocExtDesc *)epos->bh->b_data;
1706 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1707 			} else {
1708 				iinfo->i_lenAlloc += adsize;
1709 				mark_inode_dirty(inode);
1710 			}
1711 		}
1712 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1713 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1714 				    epos->block.logicalBlockNum, sizeof(struct tag));
1715 		else
1716 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1717 				    epos->block.logicalBlockNum, sizeof(struct tag));
1718 		switch (iinfo->i_alloc_type) {
1719 		case ICBTAG_FLAG_AD_SHORT:
1720 			sad = (struct short_ad *)sptr;
1721 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1722 						     inode->i_sb->s_blocksize);
1723 			sad->extPosition =
1724 				cpu_to_le32(epos->block.logicalBlockNum);
1725 			break;
1726 		case ICBTAG_FLAG_AD_LONG:
1727 			lad = (struct long_ad *)sptr;
1728 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1729 						     inode->i_sb->s_blocksize);
1730 			lad->extLocation = cpu_to_lelb(epos->block);
1731 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1732 			break;
1733 		}
1734 		if (epos->bh) {
1735 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1736 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1737 				udf_update_tag(epos->bh->b_data, loffset);
1738 			else
1739 				udf_update_tag(epos->bh->b_data,
1740 						sizeof(struct allocExtDesc));
1741 			mark_buffer_dirty_inode(epos->bh, inode);
1742 			brelse(epos->bh);
1743 		} else {
1744 			mark_inode_dirty(inode);
1745 		}
1746 		epos->bh = nbh;
1747 	}
1748 
1749 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1750 
1751 	if (!epos->bh) {
1752 		iinfo->i_lenAlloc += adsize;
1753 		mark_inode_dirty(inode);
1754 	} else {
1755 		aed = (struct allocExtDesc *)epos->bh->b_data;
1756 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1757 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1758 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1759 			udf_update_tag(epos->bh->b_data,
1760 					epos->offset + (inc ? 0 : adsize));
1761 		else
1762 			udf_update_tag(epos->bh->b_data,
1763 					sizeof(struct allocExtDesc));
1764 		mark_buffer_dirty_inode(epos->bh, inode);
1765 	}
1766 
1767 	return etype;
1768 }
1769 
1770 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1771 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1772 {
1773 	int adsize;
1774 	uint8_t *ptr;
1775 	struct short_ad *sad;
1776 	struct long_ad *lad;
1777 	struct udf_inode_info *iinfo = UDF_I(inode);
1778 
1779 	if (!epos->bh)
1780 		ptr = iinfo->i_ext.i_data + epos->offset -
1781 			udf_file_entry_alloc_offset(inode) +
1782 			iinfo->i_lenEAttr;
1783 	else
1784 		ptr = epos->bh->b_data + epos->offset;
1785 
1786 	switch (iinfo->i_alloc_type) {
1787 	case ICBTAG_FLAG_AD_SHORT:
1788 		sad = (struct short_ad *)ptr;
1789 		sad->extLength = cpu_to_le32(elen);
1790 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1791 		adsize = sizeof(struct short_ad);
1792 		break;
1793 	case ICBTAG_FLAG_AD_LONG:
1794 		lad = (struct long_ad *)ptr;
1795 		lad->extLength = cpu_to_le32(elen);
1796 		lad->extLocation = cpu_to_lelb(*eloc);
1797 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1798 		adsize = sizeof(struct long_ad);
1799 		break;
1800 	default:
1801 		return -1;
1802 	}
1803 
1804 	if (epos->bh) {
1805 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1806 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1807 			struct allocExtDesc *aed =
1808 				(struct allocExtDesc *)epos->bh->b_data;
1809 			udf_update_tag(epos->bh->b_data,
1810 				       le32_to_cpu(aed->lengthAllocDescs) +
1811 				       sizeof(struct allocExtDesc));
1812 		}
1813 		mark_buffer_dirty_inode(epos->bh, inode);
1814 	} else {
1815 		mark_inode_dirty(inode);
1816 	}
1817 
1818 	if (inc)
1819 		epos->offset += adsize;
1820 
1821 	return (elen >> 30);
1822 }
1823 
1824 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1825 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1826 {
1827 	int8_t etype;
1828 
1829 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1830 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1831 		int block;
1832 		epos->block = *eloc;
1833 		epos->offset = sizeof(struct allocExtDesc);
1834 		brelse(epos->bh);
1835 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1836 		epos->bh = udf_tread(inode->i_sb, block);
1837 		if (!epos->bh) {
1838 			udf_debug("reading block %d failed!\n", block);
1839 			return -1;
1840 		}
1841 	}
1842 
1843 	return etype;
1844 }
1845 
1846 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1847 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1848 {
1849 	int alen;
1850 	int8_t etype;
1851 	uint8_t *ptr;
1852 	struct short_ad *sad;
1853 	struct long_ad *lad;
1854 	struct udf_inode_info *iinfo = UDF_I(inode);
1855 
1856 	if (!epos->bh) {
1857 		if (!epos->offset)
1858 			epos->offset = udf_file_entry_alloc_offset(inode);
1859 		ptr = iinfo->i_ext.i_data + epos->offset -
1860 			udf_file_entry_alloc_offset(inode) +
1861 			iinfo->i_lenEAttr;
1862 		alen = udf_file_entry_alloc_offset(inode) +
1863 							iinfo->i_lenAlloc;
1864 	} else {
1865 		if (!epos->offset)
1866 			epos->offset = sizeof(struct allocExtDesc);
1867 		ptr = epos->bh->b_data + epos->offset;
1868 		alen = sizeof(struct allocExtDesc) +
1869 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1870 							lengthAllocDescs);
1871 	}
1872 
1873 	switch (iinfo->i_alloc_type) {
1874 	case ICBTAG_FLAG_AD_SHORT:
1875 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1876 		if (!sad)
1877 			return -1;
1878 		etype = le32_to_cpu(sad->extLength) >> 30;
1879 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1880 		eloc->partitionReferenceNum =
1881 				iinfo->i_location.partitionReferenceNum;
1882 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1883 		break;
1884 	case ICBTAG_FLAG_AD_LONG:
1885 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1886 		if (!lad)
1887 			return -1;
1888 		etype = le32_to_cpu(lad->extLength) >> 30;
1889 		*eloc = lelb_to_cpu(lad->extLocation);
1890 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1891 		break;
1892 	default:
1893 		udf_debug("alloc_type = %d unsupported\n",
1894 				iinfo->i_alloc_type);
1895 		return -1;
1896 	}
1897 
1898 	return etype;
1899 }
1900 
1901 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1902 			      struct kernel_lb_addr neloc, uint32_t nelen)
1903 {
1904 	struct kernel_lb_addr oeloc;
1905 	uint32_t oelen;
1906 	int8_t etype;
1907 
1908 	if (epos.bh)
1909 		get_bh(epos.bh);
1910 
1911 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1912 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1913 		neloc = oeloc;
1914 		nelen = (etype << 30) | oelen;
1915 	}
1916 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1917 	brelse(epos.bh);
1918 
1919 	return (nelen >> 30);
1920 }
1921 
1922 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1923 		       struct kernel_lb_addr eloc, uint32_t elen)
1924 {
1925 	struct extent_position oepos;
1926 	int adsize;
1927 	int8_t etype;
1928 	struct allocExtDesc *aed;
1929 	struct udf_inode_info *iinfo;
1930 
1931 	if (epos.bh) {
1932 		get_bh(epos.bh);
1933 		get_bh(epos.bh);
1934 	}
1935 
1936 	iinfo = UDF_I(inode);
1937 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 		adsize = sizeof(struct short_ad);
1939 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 		adsize = sizeof(struct long_ad);
1941 	else
1942 		adsize = 0;
1943 
1944 	oepos = epos;
1945 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1946 		return -1;
1947 
1948 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1949 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1950 		if (oepos.bh != epos.bh) {
1951 			oepos.block = epos.block;
1952 			brelse(oepos.bh);
1953 			get_bh(epos.bh);
1954 			oepos.bh = epos.bh;
1955 			oepos.offset = epos.offset - adsize;
1956 		}
1957 	}
1958 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1959 	elen = 0;
1960 
1961 	if (epos.bh != oepos.bh) {
1962 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1963 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1964 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1965 		if (!oepos.bh) {
1966 			iinfo->i_lenAlloc -= (adsize * 2);
1967 			mark_inode_dirty(inode);
1968 		} else {
1969 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1970 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1971 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1972 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1973 				udf_update_tag(oepos.bh->b_data,
1974 						oepos.offset - (2 * adsize));
1975 			else
1976 				udf_update_tag(oepos.bh->b_data,
1977 						sizeof(struct allocExtDesc));
1978 			mark_buffer_dirty_inode(oepos.bh, inode);
1979 		}
1980 	} else {
1981 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1982 		if (!oepos.bh) {
1983 			iinfo->i_lenAlloc -= adsize;
1984 			mark_inode_dirty(inode);
1985 		} else {
1986 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1987 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1988 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1989 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1990 				udf_update_tag(oepos.bh->b_data,
1991 						epos.offset - adsize);
1992 			else
1993 				udf_update_tag(oepos.bh->b_data,
1994 						sizeof(struct allocExtDesc));
1995 			mark_buffer_dirty_inode(oepos.bh, inode);
1996 		}
1997 	}
1998 
1999 	brelse(epos.bh);
2000 	brelse(oepos.bh);
2001 
2002 	return (elen >> 30);
2003 }
2004 
2005 int8_t inode_bmap(struct inode *inode, sector_t block,
2006 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2007 		  uint32_t *elen, sector_t *offset)
2008 {
2009 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2010 	loff_t lbcount = 0, bcount =
2011 	    (loff_t) block << blocksize_bits;
2012 	int8_t etype;
2013 	struct udf_inode_info *iinfo;
2014 
2015 	iinfo = UDF_I(inode);
2016 	pos->offset = 0;
2017 	pos->block = iinfo->i_location;
2018 	pos->bh = NULL;
2019 	*elen = 0;
2020 
2021 	do {
2022 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2023 		if (etype == -1) {
2024 			*offset = (bcount - lbcount) >> blocksize_bits;
2025 			iinfo->i_lenExtents = lbcount;
2026 			return -1;
2027 		}
2028 		lbcount += *elen;
2029 	} while (lbcount <= bcount);
2030 
2031 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2032 
2033 	return etype;
2034 }
2035 
2036 long udf_block_map(struct inode *inode, sector_t block)
2037 {
2038 	struct kernel_lb_addr eloc;
2039 	uint32_t elen;
2040 	sector_t offset;
2041 	struct extent_position epos = {};
2042 	int ret;
2043 
2044 	lock_kernel();
2045 
2046 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2047 						(EXT_RECORDED_ALLOCATED >> 30))
2048 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2049 	else
2050 		ret = 0;
2051 
2052 	unlock_kernel();
2053 	brelse(epos.bh);
2054 
2055 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2056 		return udf_fixed_to_variable(ret);
2057 	else
2058 		return ret;
2059 }
2060