1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 57 sector_t *, int *); 58 static int8_t udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_merge_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 66 static void udf_update_extents(struct inode *, 67 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 68 struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 72 void udf_evict_inode(struct inode *inode) 73 { 74 struct udf_inode_info *iinfo = UDF_I(inode); 75 int want_delete = 0; 76 77 truncate_inode_pages(&inode->i_data, 0); 78 79 if (!inode->i_nlink && !is_bad_inode(inode)) { 80 want_delete = 1; 81 inode->i_size = 0; 82 udf_truncate(inode); 83 udf_update_inode(inode, IS_SYNC(inode)); 84 } 85 invalidate_inode_buffers(inode); 86 end_writeback(inode); 87 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 88 inode->i_size != iinfo->i_lenExtents) { 89 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 90 "inode size %llu different from extent length %llu. " 91 "Filesystem need not be standards compliant.\n", 92 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 93 (unsigned long long)inode->i_size, 94 (unsigned long long)iinfo->i_lenExtents); 95 } 96 kfree(iinfo->i_ext.i_data); 97 iinfo->i_ext.i_data = NULL; 98 if (want_delete) { 99 lock_kernel(); 100 udf_free_inode(inode); 101 unlock_kernel(); 102 } 103 } 104 105 static int udf_writepage(struct page *page, struct writeback_control *wbc) 106 { 107 return block_write_full_page(page, udf_get_block, wbc); 108 } 109 110 static int udf_readpage(struct file *file, struct page *page) 111 { 112 return block_read_full_page(page, udf_get_block); 113 } 114 115 static int udf_write_begin(struct file *file, struct address_space *mapping, 116 loff_t pos, unsigned len, unsigned flags, 117 struct page **pagep, void **fsdata) 118 { 119 int ret; 120 121 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 122 if (unlikely(ret)) { 123 loff_t isize = mapping->host->i_size; 124 if (pos + len > isize) 125 vmtruncate(mapping->host, isize); 126 } 127 128 return ret; 129 } 130 131 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 132 { 133 return generic_block_bmap(mapping, block, udf_get_block); 134 } 135 136 const struct address_space_operations udf_aops = { 137 .readpage = udf_readpage, 138 .writepage = udf_writepage, 139 .sync_page = block_sync_page, 140 .write_begin = udf_write_begin, 141 .write_end = generic_write_end, 142 .bmap = udf_bmap, 143 }; 144 145 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 146 { 147 struct page *page; 148 char *kaddr; 149 struct udf_inode_info *iinfo = UDF_I(inode); 150 struct writeback_control udf_wbc = { 151 .sync_mode = WB_SYNC_NONE, 152 .nr_to_write = 1, 153 }; 154 155 /* from now on we have normal address_space methods */ 156 inode->i_data.a_ops = &udf_aops; 157 158 if (!iinfo->i_lenAlloc) { 159 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 160 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 161 else 162 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 163 mark_inode_dirty(inode); 164 return; 165 } 166 167 page = grab_cache_page(inode->i_mapping, 0); 168 BUG_ON(!PageLocked(page)); 169 170 if (!PageUptodate(page)) { 171 kaddr = kmap(page); 172 memset(kaddr + iinfo->i_lenAlloc, 0x00, 173 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 174 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 175 iinfo->i_lenAlloc); 176 flush_dcache_page(page); 177 SetPageUptodate(page); 178 kunmap(page); 179 } 180 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 181 iinfo->i_lenAlloc); 182 iinfo->i_lenAlloc = 0; 183 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 184 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 185 else 186 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 187 188 inode->i_data.a_ops->writepage(page, &udf_wbc); 189 page_cache_release(page); 190 191 mark_inode_dirty(inode); 192 } 193 194 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 195 int *err) 196 { 197 int newblock; 198 struct buffer_head *dbh = NULL; 199 struct kernel_lb_addr eloc; 200 uint8_t alloctype; 201 struct extent_position epos; 202 203 struct udf_fileident_bh sfibh, dfibh; 204 loff_t f_pos = udf_ext0_offset(inode); 205 int size = udf_ext0_offset(inode) + inode->i_size; 206 struct fileIdentDesc cfi, *sfi, *dfi; 207 struct udf_inode_info *iinfo = UDF_I(inode); 208 209 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 210 alloctype = ICBTAG_FLAG_AD_SHORT; 211 else 212 alloctype = ICBTAG_FLAG_AD_LONG; 213 214 if (!inode->i_size) { 215 iinfo->i_alloc_type = alloctype; 216 mark_inode_dirty(inode); 217 return NULL; 218 } 219 220 /* alloc block, and copy data to it */ 221 *block = udf_new_block(inode->i_sb, inode, 222 iinfo->i_location.partitionReferenceNum, 223 iinfo->i_location.logicalBlockNum, err); 224 if (!(*block)) 225 return NULL; 226 newblock = udf_get_pblock(inode->i_sb, *block, 227 iinfo->i_location.partitionReferenceNum, 228 0); 229 if (!newblock) 230 return NULL; 231 dbh = udf_tgetblk(inode->i_sb, newblock); 232 if (!dbh) 233 return NULL; 234 lock_buffer(dbh); 235 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 236 set_buffer_uptodate(dbh); 237 unlock_buffer(dbh); 238 mark_buffer_dirty_inode(dbh, inode); 239 240 sfibh.soffset = sfibh.eoffset = 241 f_pos & (inode->i_sb->s_blocksize - 1); 242 sfibh.sbh = sfibh.ebh = NULL; 243 dfibh.soffset = dfibh.eoffset = 0; 244 dfibh.sbh = dfibh.ebh = dbh; 245 while (f_pos < size) { 246 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 247 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 248 NULL, NULL, NULL); 249 if (!sfi) { 250 brelse(dbh); 251 return NULL; 252 } 253 iinfo->i_alloc_type = alloctype; 254 sfi->descTag.tagLocation = cpu_to_le32(*block); 255 dfibh.soffset = dfibh.eoffset; 256 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 257 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 258 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 259 sfi->fileIdent + 260 le16_to_cpu(sfi->lengthOfImpUse))) { 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 262 brelse(dbh); 263 return NULL; 264 } 265 } 266 mark_buffer_dirty_inode(dbh, inode); 267 268 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 269 iinfo->i_lenAlloc); 270 iinfo->i_lenAlloc = 0; 271 eloc.logicalBlockNum = *block; 272 eloc.partitionReferenceNum = 273 iinfo->i_location.partitionReferenceNum; 274 iinfo->i_lenExtents = inode->i_size; 275 epos.bh = NULL; 276 epos.block = iinfo->i_location; 277 epos.offset = udf_file_entry_alloc_offset(inode); 278 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 279 /* UniqueID stuff */ 280 281 brelse(epos.bh); 282 mark_inode_dirty(inode); 283 return dbh; 284 } 285 286 static int udf_get_block(struct inode *inode, sector_t block, 287 struct buffer_head *bh_result, int create) 288 { 289 int err, new; 290 struct buffer_head *bh; 291 sector_t phys = 0; 292 struct udf_inode_info *iinfo; 293 294 if (!create) { 295 phys = udf_block_map(inode, block); 296 if (phys) 297 map_bh(bh_result, inode->i_sb, phys); 298 return 0; 299 } 300 301 err = -EIO; 302 new = 0; 303 bh = NULL; 304 305 lock_kernel(); 306 307 iinfo = UDF_I(inode); 308 if (block == iinfo->i_next_alloc_block + 1) { 309 iinfo->i_next_alloc_block++; 310 iinfo->i_next_alloc_goal++; 311 } 312 313 err = 0; 314 315 bh = inode_getblk(inode, block, &err, &phys, &new); 316 BUG_ON(bh); 317 if (err) 318 goto abort; 319 BUG_ON(!phys); 320 321 if (new) 322 set_buffer_new(bh_result); 323 map_bh(bh_result, inode->i_sb, phys); 324 325 abort: 326 unlock_kernel(); 327 return err; 328 } 329 330 static struct buffer_head *udf_getblk(struct inode *inode, long block, 331 int create, int *err) 332 { 333 struct buffer_head *bh; 334 struct buffer_head dummy; 335 336 dummy.b_state = 0; 337 dummy.b_blocknr = -1000; 338 *err = udf_get_block(inode, block, &dummy, create); 339 if (!*err && buffer_mapped(&dummy)) { 340 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 341 if (buffer_new(&dummy)) { 342 lock_buffer(bh); 343 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 344 set_buffer_uptodate(bh); 345 unlock_buffer(bh); 346 mark_buffer_dirty_inode(bh, inode); 347 } 348 return bh; 349 } 350 351 return NULL; 352 } 353 354 /* Extend the file by 'blocks' blocks, return the number of extents added */ 355 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 356 struct kernel_long_ad *last_ext, sector_t blocks) 357 { 358 sector_t add; 359 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 360 struct super_block *sb = inode->i_sb; 361 struct kernel_lb_addr prealloc_loc = {}; 362 int prealloc_len = 0; 363 struct udf_inode_info *iinfo; 364 365 /* The previous extent is fake and we should not extend by anything 366 * - there's nothing to do... */ 367 if (!blocks && fake) 368 return 0; 369 370 iinfo = UDF_I(inode); 371 /* Round the last extent up to a multiple of block size */ 372 if (last_ext->extLength & (sb->s_blocksize - 1)) { 373 last_ext->extLength = 374 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 375 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 376 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 377 iinfo->i_lenExtents = 378 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 379 ~(sb->s_blocksize - 1); 380 } 381 382 /* Last extent are just preallocated blocks? */ 383 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 384 EXT_NOT_RECORDED_ALLOCATED) { 385 /* Save the extent so that we can reattach it to the end */ 386 prealloc_loc = last_ext->extLocation; 387 prealloc_len = last_ext->extLength; 388 /* Mark the extent as a hole */ 389 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 390 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 391 last_ext->extLocation.logicalBlockNum = 0; 392 last_ext->extLocation.partitionReferenceNum = 0; 393 } 394 395 /* Can we merge with the previous extent? */ 396 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 397 EXT_NOT_RECORDED_NOT_ALLOCATED) { 398 add = ((1 << 30) - sb->s_blocksize - 399 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 400 sb->s_blocksize_bits; 401 if (add > blocks) 402 add = blocks; 403 blocks -= add; 404 last_ext->extLength += add << sb->s_blocksize_bits; 405 } 406 407 if (fake) { 408 udf_add_aext(inode, last_pos, &last_ext->extLocation, 409 last_ext->extLength, 1); 410 count++; 411 } else 412 udf_write_aext(inode, last_pos, &last_ext->extLocation, 413 last_ext->extLength, 1); 414 415 /* Managed to do everything necessary? */ 416 if (!blocks) 417 goto out; 418 419 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 420 last_ext->extLocation.logicalBlockNum = 0; 421 last_ext->extLocation.partitionReferenceNum = 0; 422 add = (1 << (30-sb->s_blocksize_bits)) - 1; 423 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 424 (add << sb->s_blocksize_bits); 425 426 /* Create enough extents to cover the whole hole */ 427 while (blocks > add) { 428 blocks -= add; 429 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 430 last_ext->extLength, 1) == -1) 431 return -1; 432 count++; 433 } 434 if (blocks) { 435 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 436 (blocks << sb->s_blocksize_bits); 437 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 438 last_ext->extLength, 1) == -1) 439 return -1; 440 count++; 441 } 442 443 out: 444 /* Do we have some preallocated blocks saved? */ 445 if (prealloc_len) { 446 if (udf_add_aext(inode, last_pos, &prealloc_loc, 447 prealloc_len, 1) == -1) 448 return -1; 449 last_ext->extLocation = prealloc_loc; 450 last_ext->extLength = prealloc_len; 451 count++; 452 } 453 454 /* last_pos should point to the last written extent... */ 455 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 456 last_pos->offset -= sizeof(struct short_ad); 457 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 458 last_pos->offset -= sizeof(struct long_ad); 459 else 460 return -1; 461 462 return count; 463 } 464 465 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 466 int *err, sector_t *phys, int *new) 467 { 468 static sector_t last_block; 469 struct buffer_head *result = NULL; 470 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 471 struct extent_position prev_epos, cur_epos, next_epos; 472 int count = 0, startnum = 0, endnum = 0; 473 uint32_t elen = 0, tmpelen; 474 struct kernel_lb_addr eloc, tmpeloc; 475 int c = 1; 476 loff_t lbcount = 0, b_off = 0; 477 uint32_t newblocknum, newblock; 478 sector_t offset = 0; 479 int8_t etype; 480 struct udf_inode_info *iinfo = UDF_I(inode); 481 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 482 int lastblock = 0; 483 484 prev_epos.offset = udf_file_entry_alloc_offset(inode); 485 prev_epos.block = iinfo->i_location; 486 prev_epos.bh = NULL; 487 cur_epos = next_epos = prev_epos; 488 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 489 490 /* find the extent which contains the block we are looking for. 491 alternate between laarr[0] and laarr[1] for locations of the 492 current extent, and the previous extent */ 493 do { 494 if (prev_epos.bh != cur_epos.bh) { 495 brelse(prev_epos.bh); 496 get_bh(cur_epos.bh); 497 prev_epos.bh = cur_epos.bh; 498 } 499 if (cur_epos.bh != next_epos.bh) { 500 brelse(cur_epos.bh); 501 get_bh(next_epos.bh); 502 cur_epos.bh = next_epos.bh; 503 } 504 505 lbcount += elen; 506 507 prev_epos.block = cur_epos.block; 508 cur_epos.block = next_epos.block; 509 510 prev_epos.offset = cur_epos.offset; 511 cur_epos.offset = next_epos.offset; 512 513 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 514 if (etype == -1) 515 break; 516 517 c = !c; 518 519 laarr[c].extLength = (etype << 30) | elen; 520 laarr[c].extLocation = eloc; 521 522 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 523 pgoal = eloc.logicalBlockNum + 524 ((elen + inode->i_sb->s_blocksize - 1) >> 525 inode->i_sb->s_blocksize_bits); 526 527 count++; 528 } while (lbcount + elen <= b_off); 529 530 b_off -= lbcount; 531 offset = b_off >> inode->i_sb->s_blocksize_bits; 532 /* 533 * Move prev_epos and cur_epos into indirect extent if we are at 534 * the pointer to it 535 */ 536 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 537 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 538 539 /* if the extent is allocated and recorded, return the block 540 if the extent is not a multiple of the blocksize, round up */ 541 542 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 543 if (elen & (inode->i_sb->s_blocksize - 1)) { 544 elen = EXT_RECORDED_ALLOCATED | 545 ((elen + inode->i_sb->s_blocksize - 1) & 546 ~(inode->i_sb->s_blocksize - 1)); 547 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 548 } 549 brelse(prev_epos.bh); 550 brelse(cur_epos.bh); 551 brelse(next_epos.bh); 552 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 553 *phys = newblock; 554 return NULL; 555 } 556 557 last_block = block; 558 /* Are we beyond EOF? */ 559 if (etype == -1) { 560 int ret; 561 562 if (count) { 563 if (c) 564 laarr[0] = laarr[1]; 565 startnum = 1; 566 } else { 567 /* Create a fake extent when there's not one */ 568 memset(&laarr[0].extLocation, 0x00, 569 sizeof(struct kernel_lb_addr)); 570 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 571 /* Will udf_extend_file() create real extent from 572 a fake one? */ 573 startnum = (offset > 0); 574 } 575 /* Create extents for the hole between EOF and offset */ 576 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 577 if (ret == -1) { 578 brelse(prev_epos.bh); 579 brelse(cur_epos.bh); 580 brelse(next_epos.bh); 581 /* We don't really know the error here so we just make 582 * something up */ 583 *err = -ENOSPC; 584 return NULL; 585 } 586 c = 0; 587 offset = 0; 588 count += ret; 589 /* We are not covered by a preallocated extent? */ 590 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 591 EXT_NOT_RECORDED_ALLOCATED) { 592 /* Is there any real extent? - otherwise we overwrite 593 * the fake one... */ 594 if (count) 595 c = !c; 596 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 597 inode->i_sb->s_blocksize; 598 memset(&laarr[c].extLocation, 0x00, 599 sizeof(struct kernel_lb_addr)); 600 count++; 601 endnum++; 602 } 603 endnum = c + 1; 604 lastblock = 1; 605 } else { 606 endnum = startnum = ((count > 2) ? 2 : count); 607 608 /* if the current extent is in position 0, 609 swap it with the previous */ 610 if (!c && count != 1) { 611 laarr[2] = laarr[0]; 612 laarr[0] = laarr[1]; 613 laarr[1] = laarr[2]; 614 c = 1; 615 } 616 617 /* if the current block is located in an extent, 618 read the next extent */ 619 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 620 if (etype != -1) { 621 laarr[c + 1].extLength = (etype << 30) | elen; 622 laarr[c + 1].extLocation = eloc; 623 count++; 624 startnum++; 625 endnum++; 626 } else 627 lastblock = 1; 628 } 629 630 /* if the current extent is not recorded but allocated, get the 631 * block in the extent corresponding to the requested block */ 632 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 633 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 634 else { /* otherwise, allocate a new block */ 635 if (iinfo->i_next_alloc_block == block) 636 goal = iinfo->i_next_alloc_goal; 637 638 if (!goal) { 639 if (!(goal = pgoal)) /* XXX: what was intended here? */ 640 goal = iinfo->i_location.logicalBlockNum + 1; 641 } 642 643 newblocknum = udf_new_block(inode->i_sb, inode, 644 iinfo->i_location.partitionReferenceNum, 645 goal, err); 646 if (!newblocknum) { 647 brelse(prev_epos.bh); 648 *err = -ENOSPC; 649 return NULL; 650 } 651 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 652 } 653 654 /* if the extent the requsted block is located in contains multiple 655 * blocks, split the extent into at most three extents. blocks prior 656 * to requested block, requested block, and blocks after requested 657 * block */ 658 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 659 660 #ifdef UDF_PREALLOCATE 661 /* We preallocate blocks only for regular files. It also makes sense 662 * for directories but there's a problem when to drop the 663 * preallocation. We might use some delayed work for that but I feel 664 * it's overengineering for a filesystem like UDF. */ 665 if (S_ISREG(inode->i_mode)) 666 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 667 #endif 668 669 /* merge any continuous blocks in laarr */ 670 udf_merge_extents(inode, laarr, &endnum); 671 672 /* write back the new extents, inserting new extents if the new number 673 * of extents is greater than the old number, and deleting extents if 674 * the new number of extents is less than the old number */ 675 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 676 677 brelse(prev_epos.bh); 678 679 newblock = udf_get_pblock(inode->i_sb, newblocknum, 680 iinfo->i_location.partitionReferenceNum, 0); 681 if (!newblock) 682 return NULL; 683 *phys = newblock; 684 *err = 0; 685 *new = 1; 686 iinfo->i_next_alloc_block = block; 687 iinfo->i_next_alloc_goal = newblocknum; 688 inode->i_ctime = current_fs_time(inode->i_sb); 689 690 if (IS_SYNC(inode)) 691 udf_sync_inode(inode); 692 else 693 mark_inode_dirty(inode); 694 695 return result; 696 } 697 698 static void udf_split_extents(struct inode *inode, int *c, int offset, 699 int newblocknum, 700 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 701 int *endnum) 702 { 703 unsigned long blocksize = inode->i_sb->s_blocksize; 704 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 705 706 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 707 (laarr[*c].extLength >> 30) == 708 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 709 int curr = *c; 710 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 711 blocksize - 1) >> blocksize_bits; 712 int8_t etype = (laarr[curr].extLength >> 30); 713 714 if (blen == 1) 715 ; 716 else if (!offset || blen == offset + 1) { 717 laarr[curr + 2] = laarr[curr + 1]; 718 laarr[curr + 1] = laarr[curr]; 719 } else { 720 laarr[curr + 3] = laarr[curr + 1]; 721 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 722 } 723 724 if (offset) { 725 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 726 udf_free_blocks(inode->i_sb, inode, 727 &laarr[curr].extLocation, 728 0, offset); 729 laarr[curr].extLength = 730 EXT_NOT_RECORDED_NOT_ALLOCATED | 731 (offset << blocksize_bits); 732 laarr[curr].extLocation.logicalBlockNum = 0; 733 laarr[curr].extLocation. 734 partitionReferenceNum = 0; 735 } else 736 laarr[curr].extLength = (etype << 30) | 737 (offset << blocksize_bits); 738 curr++; 739 (*c)++; 740 (*endnum)++; 741 } 742 743 laarr[curr].extLocation.logicalBlockNum = newblocknum; 744 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 745 laarr[curr].extLocation.partitionReferenceNum = 746 UDF_I(inode)->i_location.partitionReferenceNum; 747 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 748 blocksize; 749 curr++; 750 751 if (blen != offset + 1) { 752 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 753 laarr[curr].extLocation.logicalBlockNum += 754 offset + 1; 755 laarr[curr].extLength = (etype << 30) | 756 ((blen - (offset + 1)) << blocksize_bits); 757 curr++; 758 (*endnum)++; 759 } 760 } 761 } 762 763 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 764 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 765 int *endnum) 766 { 767 int start, length = 0, currlength = 0, i; 768 769 if (*endnum >= (c + 1)) { 770 if (!lastblock) 771 return; 772 else 773 start = c; 774 } else { 775 if ((laarr[c + 1].extLength >> 30) == 776 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 777 start = c + 1; 778 length = currlength = 779 (((laarr[c + 1].extLength & 780 UDF_EXTENT_LENGTH_MASK) + 781 inode->i_sb->s_blocksize - 1) >> 782 inode->i_sb->s_blocksize_bits); 783 } else 784 start = c; 785 } 786 787 for (i = start + 1; i <= *endnum; i++) { 788 if (i == *endnum) { 789 if (lastblock) 790 length += UDF_DEFAULT_PREALLOC_BLOCKS; 791 } else if ((laarr[i].extLength >> 30) == 792 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 793 length += (((laarr[i].extLength & 794 UDF_EXTENT_LENGTH_MASK) + 795 inode->i_sb->s_blocksize - 1) >> 796 inode->i_sb->s_blocksize_bits); 797 } else 798 break; 799 } 800 801 if (length) { 802 int next = laarr[start].extLocation.logicalBlockNum + 803 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 804 inode->i_sb->s_blocksize - 1) >> 805 inode->i_sb->s_blocksize_bits); 806 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 807 laarr[start].extLocation.partitionReferenceNum, 808 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 809 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 810 currlength); 811 if (numalloc) { 812 if (start == (c + 1)) 813 laarr[start].extLength += 814 (numalloc << 815 inode->i_sb->s_blocksize_bits); 816 else { 817 memmove(&laarr[c + 2], &laarr[c + 1], 818 sizeof(struct long_ad) * (*endnum - (c + 1))); 819 (*endnum)++; 820 laarr[c + 1].extLocation.logicalBlockNum = next; 821 laarr[c + 1].extLocation.partitionReferenceNum = 822 laarr[c].extLocation. 823 partitionReferenceNum; 824 laarr[c + 1].extLength = 825 EXT_NOT_RECORDED_ALLOCATED | 826 (numalloc << 827 inode->i_sb->s_blocksize_bits); 828 start = c + 1; 829 } 830 831 for (i = start + 1; numalloc && i < *endnum; i++) { 832 int elen = ((laarr[i].extLength & 833 UDF_EXTENT_LENGTH_MASK) + 834 inode->i_sb->s_blocksize - 1) >> 835 inode->i_sb->s_blocksize_bits; 836 837 if (elen > numalloc) { 838 laarr[i].extLength -= 839 (numalloc << 840 inode->i_sb->s_blocksize_bits); 841 numalloc = 0; 842 } else { 843 numalloc -= elen; 844 if (*endnum > (i + 1)) 845 memmove(&laarr[i], 846 &laarr[i + 1], 847 sizeof(struct long_ad) * 848 (*endnum - (i + 1))); 849 i--; 850 (*endnum)--; 851 } 852 } 853 UDF_I(inode)->i_lenExtents += 854 numalloc << inode->i_sb->s_blocksize_bits; 855 } 856 } 857 } 858 859 static void udf_merge_extents(struct inode *inode, 860 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 861 int *endnum) 862 { 863 int i; 864 unsigned long blocksize = inode->i_sb->s_blocksize; 865 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 866 867 for (i = 0; i < (*endnum - 1); i++) { 868 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 869 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 870 871 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 872 (((li->extLength >> 30) == 873 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 874 ((lip1->extLocation.logicalBlockNum - 875 li->extLocation.logicalBlockNum) == 876 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 877 blocksize - 1) >> blocksize_bits)))) { 878 879 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 880 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 881 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 882 lip1->extLength = (lip1->extLength - 883 (li->extLength & 884 UDF_EXTENT_LENGTH_MASK) + 885 UDF_EXTENT_LENGTH_MASK) & 886 ~(blocksize - 1); 887 li->extLength = (li->extLength & 888 UDF_EXTENT_FLAG_MASK) + 889 (UDF_EXTENT_LENGTH_MASK + 1) - 890 blocksize; 891 lip1->extLocation.logicalBlockNum = 892 li->extLocation.logicalBlockNum + 893 ((li->extLength & 894 UDF_EXTENT_LENGTH_MASK) >> 895 blocksize_bits); 896 } else { 897 li->extLength = lip1->extLength + 898 (((li->extLength & 899 UDF_EXTENT_LENGTH_MASK) + 900 blocksize - 1) & ~(blocksize - 1)); 901 if (*endnum > (i + 2)) 902 memmove(&laarr[i + 1], &laarr[i + 2], 903 sizeof(struct long_ad) * 904 (*endnum - (i + 2))); 905 i--; 906 (*endnum)--; 907 } 908 } else if (((li->extLength >> 30) == 909 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 910 ((lip1->extLength >> 30) == 911 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 912 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 913 ((li->extLength & 914 UDF_EXTENT_LENGTH_MASK) + 915 blocksize - 1) >> blocksize_bits); 916 li->extLocation.logicalBlockNum = 0; 917 li->extLocation.partitionReferenceNum = 0; 918 919 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 920 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 921 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 922 lip1->extLength = (lip1->extLength - 923 (li->extLength & 924 UDF_EXTENT_LENGTH_MASK) + 925 UDF_EXTENT_LENGTH_MASK) & 926 ~(blocksize - 1); 927 li->extLength = (li->extLength & 928 UDF_EXTENT_FLAG_MASK) + 929 (UDF_EXTENT_LENGTH_MASK + 1) - 930 blocksize; 931 } else { 932 li->extLength = lip1->extLength + 933 (((li->extLength & 934 UDF_EXTENT_LENGTH_MASK) + 935 blocksize - 1) & ~(blocksize - 1)); 936 if (*endnum > (i + 2)) 937 memmove(&laarr[i + 1], &laarr[i + 2], 938 sizeof(struct long_ad) * 939 (*endnum - (i + 2))); 940 i--; 941 (*endnum)--; 942 } 943 } else if ((li->extLength >> 30) == 944 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 945 udf_free_blocks(inode->i_sb, inode, 946 &li->extLocation, 0, 947 ((li->extLength & 948 UDF_EXTENT_LENGTH_MASK) + 949 blocksize - 1) >> blocksize_bits); 950 li->extLocation.logicalBlockNum = 0; 951 li->extLocation.partitionReferenceNum = 0; 952 li->extLength = (li->extLength & 953 UDF_EXTENT_LENGTH_MASK) | 954 EXT_NOT_RECORDED_NOT_ALLOCATED; 955 } 956 } 957 } 958 959 static void udf_update_extents(struct inode *inode, 960 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 961 int startnum, int endnum, 962 struct extent_position *epos) 963 { 964 int start = 0, i; 965 struct kernel_lb_addr tmploc; 966 uint32_t tmplen; 967 968 if (startnum > endnum) { 969 for (i = 0; i < (startnum - endnum); i++) 970 udf_delete_aext(inode, *epos, laarr[i].extLocation, 971 laarr[i].extLength); 972 } else if (startnum < endnum) { 973 for (i = 0; i < (endnum - startnum); i++) { 974 udf_insert_aext(inode, *epos, laarr[i].extLocation, 975 laarr[i].extLength); 976 udf_next_aext(inode, epos, &laarr[i].extLocation, 977 &laarr[i].extLength, 1); 978 start++; 979 } 980 } 981 982 for (i = start; i < endnum; i++) { 983 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 984 udf_write_aext(inode, epos, &laarr[i].extLocation, 985 laarr[i].extLength, 1); 986 } 987 } 988 989 struct buffer_head *udf_bread(struct inode *inode, int block, 990 int create, int *err) 991 { 992 struct buffer_head *bh = NULL; 993 994 bh = udf_getblk(inode, block, create, err); 995 if (!bh) 996 return NULL; 997 998 if (buffer_uptodate(bh)) 999 return bh; 1000 1001 ll_rw_block(READ, 1, &bh); 1002 1003 wait_on_buffer(bh); 1004 if (buffer_uptodate(bh)) 1005 return bh; 1006 1007 brelse(bh); 1008 *err = -EIO; 1009 return NULL; 1010 } 1011 1012 void udf_truncate(struct inode *inode) 1013 { 1014 int offset; 1015 int err; 1016 struct udf_inode_info *iinfo; 1017 1018 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1019 S_ISLNK(inode->i_mode))) 1020 return; 1021 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1022 return; 1023 1024 lock_kernel(); 1025 iinfo = UDF_I(inode); 1026 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1027 if (inode->i_sb->s_blocksize < 1028 (udf_file_entry_alloc_offset(inode) + 1029 inode->i_size)) { 1030 udf_expand_file_adinicb(inode, inode->i_size, &err); 1031 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1032 inode->i_size = iinfo->i_lenAlloc; 1033 unlock_kernel(); 1034 return; 1035 } else 1036 udf_truncate_extents(inode); 1037 } else { 1038 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1039 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1040 0x00, inode->i_sb->s_blocksize - 1041 offset - udf_file_entry_alloc_offset(inode)); 1042 iinfo->i_lenAlloc = inode->i_size; 1043 } 1044 } else { 1045 block_truncate_page(inode->i_mapping, inode->i_size, 1046 udf_get_block); 1047 udf_truncate_extents(inode); 1048 } 1049 1050 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1051 if (IS_SYNC(inode)) 1052 udf_sync_inode(inode); 1053 else 1054 mark_inode_dirty(inode); 1055 unlock_kernel(); 1056 } 1057 1058 static void __udf_read_inode(struct inode *inode) 1059 { 1060 struct buffer_head *bh = NULL; 1061 struct fileEntry *fe; 1062 uint16_t ident; 1063 struct udf_inode_info *iinfo = UDF_I(inode); 1064 1065 /* 1066 * Set defaults, but the inode is still incomplete! 1067 * Note: get_new_inode() sets the following on a new inode: 1068 * i_sb = sb 1069 * i_no = ino 1070 * i_flags = sb->s_flags 1071 * i_state = 0 1072 * clean_inode(): zero fills and sets 1073 * i_count = 1 1074 * i_nlink = 1 1075 * i_op = NULL; 1076 */ 1077 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1078 if (!bh) { 1079 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1080 inode->i_ino); 1081 make_bad_inode(inode); 1082 return; 1083 } 1084 1085 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1086 ident != TAG_IDENT_USE) { 1087 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1088 "failed ident=%d\n", inode->i_ino, ident); 1089 brelse(bh); 1090 make_bad_inode(inode); 1091 return; 1092 } 1093 1094 fe = (struct fileEntry *)bh->b_data; 1095 1096 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1097 struct buffer_head *ibh; 1098 1099 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1100 &ident); 1101 if (ident == TAG_IDENT_IE && ibh) { 1102 struct buffer_head *nbh = NULL; 1103 struct kernel_lb_addr loc; 1104 struct indirectEntry *ie; 1105 1106 ie = (struct indirectEntry *)ibh->b_data; 1107 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1108 1109 if (ie->indirectICB.extLength && 1110 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1111 &ident))) { 1112 if (ident == TAG_IDENT_FE || 1113 ident == TAG_IDENT_EFE) { 1114 memcpy(&iinfo->i_location, 1115 &loc, 1116 sizeof(struct kernel_lb_addr)); 1117 brelse(bh); 1118 brelse(ibh); 1119 brelse(nbh); 1120 __udf_read_inode(inode); 1121 return; 1122 } 1123 brelse(nbh); 1124 } 1125 } 1126 brelse(ibh); 1127 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1128 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1129 le16_to_cpu(fe->icbTag.strategyType)); 1130 brelse(bh); 1131 make_bad_inode(inode); 1132 return; 1133 } 1134 udf_fill_inode(inode, bh); 1135 1136 brelse(bh); 1137 } 1138 1139 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1140 { 1141 struct fileEntry *fe; 1142 struct extendedFileEntry *efe; 1143 int offset; 1144 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1145 struct udf_inode_info *iinfo = UDF_I(inode); 1146 1147 fe = (struct fileEntry *)bh->b_data; 1148 efe = (struct extendedFileEntry *)bh->b_data; 1149 1150 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1151 iinfo->i_strat4096 = 0; 1152 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1153 iinfo->i_strat4096 = 1; 1154 1155 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1156 ICBTAG_FLAG_AD_MASK; 1157 iinfo->i_unique = 0; 1158 iinfo->i_lenEAttr = 0; 1159 iinfo->i_lenExtents = 0; 1160 iinfo->i_lenAlloc = 0; 1161 iinfo->i_next_alloc_block = 0; 1162 iinfo->i_next_alloc_goal = 0; 1163 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1164 iinfo->i_efe = 1; 1165 iinfo->i_use = 0; 1166 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1167 sizeof(struct extendedFileEntry))) { 1168 make_bad_inode(inode); 1169 return; 1170 } 1171 memcpy(iinfo->i_ext.i_data, 1172 bh->b_data + sizeof(struct extendedFileEntry), 1173 inode->i_sb->s_blocksize - 1174 sizeof(struct extendedFileEntry)); 1175 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1176 iinfo->i_efe = 0; 1177 iinfo->i_use = 0; 1178 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1179 sizeof(struct fileEntry))) { 1180 make_bad_inode(inode); 1181 return; 1182 } 1183 memcpy(iinfo->i_ext.i_data, 1184 bh->b_data + sizeof(struct fileEntry), 1185 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1186 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1187 iinfo->i_efe = 0; 1188 iinfo->i_use = 1; 1189 iinfo->i_lenAlloc = le32_to_cpu( 1190 ((struct unallocSpaceEntry *)bh->b_data)-> 1191 lengthAllocDescs); 1192 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1193 sizeof(struct unallocSpaceEntry))) { 1194 make_bad_inode(inode); 1195 return; 1196 } 1197 memcpy(iinfo->i_ext.i_data, 1198 bh->b_data + sizeof(struct unallocSpaceEntry), 1199 inode->i_sb->s_blocksize - 1200 sizeof(struct unallocSpaceEntry)); 1201 return; 1202 } 1203 1204 inode->i_uid = le32_to_cpu(fe->uid); 1205 if (inode->i_uid == -1 || 1206 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1207 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1208 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1209 1210 inode->i_gid = le32_to_cpu(fe->gid); 1211 if (inode->i_gid == -1 || 1212 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1213 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1214 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1215 1216 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1217 if (!inode->i_nlink) 1218 inode->i_nlink = 1; 1219 1220 inode->i_size = le64_to_cpu(fe->informationLength); 1221 iinfo->i_lenExtents = inode->i_size; 1222 1223 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1224 sbi->s_fmode != UDF_INVALID_MODE) 1225 inode->i_mode = sbi->s_fmode; 1226 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1227 sbi->s_dmode != UDF_INVALID_MODE) 1228 inode->i_mode = sbi->s_dmode; 1229 else 1230 inode->i_mode = udf_convert_permissions(fe); 1231 inode->i_mode &= ~sbi->s_umask; 1232 1233 if (iinfo->i_efe == 0) { 1234 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1235 (inode->i_sb->s_blocksize_bits - 9); 1236 1237 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1238 inode->i_atime = sbi->s_record_time; 1239 1240 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1241 fe->modificationTime)) 1242 inode->i_mtime = sbi->s_record_time; 1243 1244 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1245 inode->i_ctime = sbi->s_record_time; 1246 1247 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1248 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1249 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1250 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1251 } else { 1252 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1253 (inode->i_sb->s_blocksize_bits - 9); 1254 1255 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1256 inode->i_atime = sbi->s_record_time; 1257 1258 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1259 efe->modificationTime)) 1260 inode->i_mtime = sbi->s_record_time; 1261 1262 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1263 iinfo->i_crtime = sbi->s_record_time; 1264 1265 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1266 inode->i_ctime = sbi->s_record_time; 1267 1268 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1269 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1270 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1271 offset = sizeof(struct extendedFileEntry) + 1272 iinfo->i_lenEAttr; 1273 } 1274 1275 switch (fe->icbTag.fileType) { 1276 case ICBTAG_FILE_TYPE_DIRECTORY: 1277 inode->i_op = &udf_dir_inode_operations; 1278 inode->i_fop = &udf_dir_operations; 1279 inode->i_mode |= S_IFDIR; 1280 inc_nlink(inode); 1281 break; 1282 case ICBTAG_FILE_TYPE_REALTIME: 1283 case ICBTAG_FILE_TYPE_REGULAR: 1284 case ICBTAG_FILE_TYPE_UNDEF: 1285 case ICBTAG_FILE_TYPE_VAT20: 1286 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1287 inode->i_data.a_ops = &udf_adinicb_aops; 1288 else 1289 inode->i_data.a_ops = &udf_aops; 1290 inode->i_op = &udf_file_inode_operations; 1291 inode->i_fop = &udf_file_operations; 1292 inode->i_mode |= S_IFREG; 1293 break; 1294 case ICBTAG_FILE_TYPE_BLOCK: 1295 inode->i_mode |= S_IFBLK; 1296 break; 1297 case ICBTAG_FILE_TYPE_CHAR: 1298 inode->i_mode |= S_IFCHR; 1299 break; 1300 case ICBTAG_FILE_TYPE_FIFO: 1301 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1302 break; 1303 case ICBTAG_FILE_TYPE_SOCKET: 1304 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1305 break; 1306 case ICBTAG_FILE_TYPE_SYMLINK: 1307 inode->i_data.a_ops = &udf_symlink_aops; 1308 inode->i_op = &udf_symlink_inode_operations; 1309 inode->i_mode = S_IFLNK | S_IRWXUGO; 1310 break; 1311 case ICBTAG_FILE_TYPE_MAIN: 1312 udf_debug("METADATA FILE-----\n"); 1313 break; 1314 case ICBTAG_FILE_TYPE_MIRROR: 1315 udf_debug("METADATA MIRROR FILE-----\n"); 1316 break; 1317 case ICBTAG_FILE_TYPE_BITMAP: 1318 udf_debug("METADATA BITMAP FILE-----\n"); 1319 break; 1320 default: 1321 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1322 "file type=%d\n", inode->i_ino, 1323 fe->icbTag.fileType); 1324 make_bad_inode(inode); 1325 return; 1326 } 1327 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1328 struct deviceSpec *dsea = 1329 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1330 if (dsea) { 1331 init_special_inode(inode, inode->i_mode, 1332 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1333 le32_to_cpu(dsea->minorDeviceIdent))); 1334 /* Developer ID ??? */ 1335 } else 1336 make_bad_inode(inode); 1337 } 1338 } 1339 1340 static int udf_alloc_i_data(struct inode *inode, size_t size) 1341 { 1342 struct udf_inode_info *iinfo = UDF_I(inode); 1343 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1344 1345 if (!iinfo->i_ext.i_data) { 1346 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1347 "no free memory\n", inode->i_ino); 1348 return -ENOMEM; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static mode_t udf_convert_permissions(struct fileEntry *fe) 1355 { 1356 mode_t mode; 1357 uint32_t permissions; 1358 uint32_t flags; 1359 1360 permissions = le32_to_cpu(fe->permissions); 1361 flags = le16_to_cpu(fe->icbTag.flags); 1362 1363 mode = ((permissions) & S_IRWXO) | 1364 ((permissions >> 2) & S_IRWXG) | 1365 ((permissions >> 4) & S_IRWXU) | 1366 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1367 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1368 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1369 1370 return mode; 1371 } 1372 1373 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1374 { 1375 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1376 } 1377 1378 static int udf_sync_inode(struct inode *inode) 1379 { 1380 return udf_update_inode(inode, 1); 1381 } 1382 1383 static int udf_update_inode(struct inode *inode, int do_sync) 1384 { 1385 struct buffer_head *bh = NULL; 1386 struct fileEntry *fe; 1387 struct extendedFileEntry *efe; 1388 uint32_t udfperms; 1389 uint16_t icbflags; 1390 uint16_t crclen; 1391 int err = 0; 1392 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1393 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1394 struct udf_inode_info *iinfo = UDF_I(inode); 1395 1396 bh = udf_tgetblk(inode->i_sb, 1397 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1398 if (!bh) { 1399 udf_debug("getblk failure\n"); 1400 return -ENOMEM; 1401 } 1402 1403 lock_buffer(bh); 1404 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1405 fe = (struct fileEntry *)bh->b_data; 1406 efe = (struct extendedFileEntry *)bh->b_data; 1407 1408 if (iinfo->i_use) { 1409 struct unallocSpaceEntry *use = 1410 (struct unallocSpaceEntry *)bh->b_data; 1411 1412 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1413 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1414 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1415 sizeof(struct unallocSpaceEntry)); 1416 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1417 use->descTag.tagLocation = 1418 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1419 crclen = sizeof(struct unallocSpaceEntry) + 1420 iinfo->i_lenAlloc - sizeof(struct tag); 1421 use->descTag.descCRCLength = cpu_to_le16(crclen); 1422 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1423 sizeof(struct tag), 1424 crclen)); 1425 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1426 1427 goto out; 1428 } 1429 1430 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1431 fe->uid = cpu_to_le32(-1); 1432 else 1433 fe->uid = cpu_to_le32(inode->i_uid); 1434 1435 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1436 fe->gid = cpu_to_le32(-1); 1437 else 1438 fe->gid = cpu_to_le32(inode->i_gid); 1439 1440 udfperms = ((inode->i_mode & S_IRWXO)) | 1441 ((inode->i_mode & S_IRWXG) << 2) | 1442 ((inode->i_mode & S_IRWXU) << 4); 1443 1444 udfperms |= (le32_to_cpu(fe->permissions) & 1445 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1446 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1447 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1448 fe->permissions = cpu_to_le32(udfperms); 1449 1450 if (S_ISDIR(inode->i_mode)) 1451 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1452 else 1453 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1454 1455 fe->informationLength = cpu_to_le64(inode->i_size); 1456 1457 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1458 struct regid *eid; 1459 struct deviceSpec *dsea = 1460 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1461 if (!dsea) { 1462 dsea = (struct deviceSpec *) 1463 udf_add_extendedattr(inode, 1464 sizeof(struct deviceSpec) + 1465 sizeof(struct regid), 12, 0x3); 1466 dsea->attrType = cpu_to_le32(12); 1467 dsea->attrSubtype = 1; 1468 dsea->attrLength = cpu_to_le32( 1469 sizeof(struct deviceSpec) + 1470 sizeof(struct regid)); 1471 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1472 } 1473 eid = (struct regid *)dsea->impUse; 1474 memset(eid, 0, sizeof(struct regid)); 1475 strcpy(eid->ident, UDF_ID_DEVELOPER); 1476 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1477 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1478 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1479 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1480 } 1481 1482 if (iinfo->i_efe == 0) { 1483 memcpy(bh->b_data + sizeof(struct fileEntry), 1484 iinfo->i_ext.i_data, 1485 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1486 fe->logicalBlocksRecorded = cpu_to_le64( 1487 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1488 (blocksize_bits - 9)); 1489 1490 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1491 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1492 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1493 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1494 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1495 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1496 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1497 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1498 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1499 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1500 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1501 crclen = sizeof(struct fileEntry); 1502 } else { 1503 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1504 iinfo->i_ext.i_data, 1505 inode->i_sb->s_blocksize - 1506 sizeof(struct extendedFileEntry)); 1507 efe->objectSize = cpu_to_le64(inode->i_size); 1508 efe->logicalBlocksRecorded = cpu_to_le64( 1509 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1510 (blocksize_bits - 9)); 1511 1512 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1513 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1514 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1515 iinfo->i_crtime = inode->i_atime; 1516 1517 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1518 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1519 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1520 iinfo->i_crtime = inode->i_mtime; 1521 1522 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1523 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1524 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1525 iinfo->i_crtime = inode->i_ctime; 1526 1527 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1528 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1529 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1530 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1531 1532 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1533 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1534 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1535 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1536 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1537 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1538 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1539 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1540 crclen = sizeof(struct extendedFileEntry); 1541 } 1542 if (iinfo->i_strat4096) { 1543 fe->icbTag.strategyType = cpu_to_le16(4096); 1544 fe->icbTag.strategyParameter = cpu_to_le16(1); 1545 fe->icbTag.numEntries = cpu_to_le16(2); 1546 } else { 1547 fe->icbTag.strategyType = cpu_to_le16(4); 1548 fe->icbTag.numEntries = cpu_to_le16(1); 1549 } 1550 1551 if (S_ISDIR(inode->i_mode)) 1552 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1553 else if (S_ISREG(inode->i_mode)) 1554 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1555 else if (S_ISLNK(inode->i_mode)) 1556 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1557 else if (S_ISBLK(inode->i_mode)) 1558 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1559 else if (S_ISCHR(inode->i_mode)) 1560 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1561 else if (S_ISFIFO(inode->i_mode)) 1562 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1563 else if (S_ISSOCK(inode->i_mode)) 1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1565 1566 icbflags = iinfo->i_alloc_type | 1567 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1568 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1569 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1570 (le16_to_cpu(fe->icbTag.flags) & 1571 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1572 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1573 1574 fe->icbTag.flags = cpu_to_le16(icbflags); 1575 if (sbi->s_udfrev >= 0x0200) 1576 fe->descTag.descVersion = cpu_to_le16(3); 1577 else 1578 fe->descTag.descVersion = cpu_to_le16(2); 1579 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1580 fe->descTag.tagLocation = cpu_to_le32( 1581 iinfo->i_location.logicalBlockNum); 1582 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1583 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1584 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1585 crclen)); 1586 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1587 1588 out: 1589 set_buffer_uptodate(bh); 1590 unlock_buffer(bh); 1591 1592 /* write the data blocks */ 1593 mark_buffer_dirty(bh); 1594 if (do_sync) { 1595 sync_dirty_buffer(bh); 1596 if (buffer_write_io_error(bh)) { 1597 printk(KERN_WARNING "IO error syncing udf inode " 1598 "[%s:%08lx]\n", inode->i_sb->s_id, 1599 inode->i_ino); 1600 err = -EIO; 1601 } 1602 } 1603 brelse(bh); 1604 1605 return err; 1606 } 1607 1608 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1609 { 1610 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1611 struct inode *inode = iget_locked(sb, block); 1612 1613 if (!inode) 1614 return NULL; 1615 1616 if (inode->i_state & I_NEW) { 1617 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1618 __udf_read_inode(inode); 1619 unlock_new_inode(inode); 1620 } 1621 1622 if (is_bad_inode(inode)) 1623 goto out_iput; 1624 1625 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1626 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1627 udf_debug("block=%d, partition=%d out of range\n", 1628 ino->logicalBlockNum, ino->partitionReferenceNum); 1629 make_bad_inode(inode); 1630 goto out_iput; 1631 } 1632 1633 return inode; 1634 1635 out_iput: 1636 iput(inode); 1637 return NULL; 1638 } 1639 1640 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1641 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1642 { 1643 int adsize; 1644 struct short_ad *sad = NULL; 1645 struct long_ad *lad = NULL; 1646 struct allocExtDesc *aed; 1647 int8_t etype; 1648 uint8_t *ptr; 1649 struct udf_inode_info *iinfo = UDF_I(inode); 1650 1651 if (!epos->bh) 1652 ptr = iinfo->i_ext.i_data + epos->offset - 1653 udf_file_entry_alloc_offset(inode) + 1654 iinfo->i_lenEAttr; 1655 else 1656 ptr = epos->bh->b_data + epos->offset; 1657 1658 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1659 adsize = sizeof(struct short_ad); 1660 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1661 adsize = sizeof(struct long_ad); 1662 else 1663 return -1; 1664 1665 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1666 unsigned char *sptr, *dptr; 1667 struct buffer_head *nbh; 1668 int err, loffset; 1669 struct kernel_lb_addr obloc = epos->block; 1670 1671 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1672 obloc.partitionReferenceNum, 1673 obloc.logicalBlockNum, &err); 1674 if (!epos->block.logicalBlockNum) 1675 return -1; 1676 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1677 &epos->block, 1678 0)); 1679 if (!nbh) 1680 return -1; 1681 lock_buffer(nbh); 1682 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1683 set_buffer_uptodate(nbh); 1684 unlock_buffer(nbh); 1685 mark_buffer_dirty_inode(nbh, inode); 1686 1687 aed = (struct allocExtDesc *)(nbh->b_data); 1688 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1689 aed->previousAllocExtLocation = 1690 cpu_to_le32(obloc.logicalBlockNum); 1691 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1692 loffset = epos->offset; 1693 aed->lengthAllocDescs = cpu_to_le32(adsize); 1694 sptr = ptr - adsize; 1695 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1696 memcpy(dptr, sptr, adsize); 1697 epos->offset = sizeof(struct allocExtDesc) + adsize; 1698 } else { 1699 loffset = epos->offset + adsize; 1700 aed->lengthAllocDescs = cpu_to_le32(0); 1701 sptr = ptr; 1702 epos->offset = sizeof(struct allocExtDesc); 1703 1704 if (epos->bh) { 1705 aed = (struct allocExtDesc *)epos->bh->b_data; 1706 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1707 } else { 1708 iinfo->i_lenAlloc += adsize; 1709 mark_inode_dirty(inode); 1710 } 1711 } 1712 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1713 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1714 epos->block.logicalBlockNum, sizeof(struct tag)); 1715 else 1716 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1717 epos->block.logicalBlockNum, sizeof(struct tag)); 1718 switch (iinfo->i_alloc_type) { 1719 case ICBTAG_FLAG_AD_SHORT: 1720 sad = (struct short_ad *)sptr; 1721 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1722 inode->i_sb->s_blocksize); 1723 sad->extPosition = 1724 cpu_to_le32(epos->block.logicalBlockNum); 1725 break; 1726 case ICBTAG_FLAG_AD_LONG: 1727 lad = (struct long_ad *)sptr; 1728 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1729 inode->i_sb->s_blocksize); 1730 lad->extLocation = cpu_to_lelb(epos->block); 1731 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1732 break; 1733 } 1734 if (epos->bh) { 1735 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1736 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1737 udf_update_tag(epos->bh->b_data, loffset); 1738 else 1739 udf_update_tag(epos->bh->b_data, 1740 sizeof(struct allocExtDesc)); 1741 mark_buffer_dirty_inode(epos->bh, inode); 1742 brelse(epos->bh); 1743 } else { 1744 mark_inode_dirty(inode); 1745 } 1746 epos->bh = nbh; 1747 } 1748 1749 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1750 1751 if (!epos->bh) { 1752 iinfo->i_lenAlloc += adsize; 1753 mark_inode_dirty(inode); 1754 } else { 1755 aed = (struct allocExtDesc *)epos->bh->b_data; 1756 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1757 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1758 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1759 udf_update_tag(epos->bh->b_data, 1760 epos->offset + (inc ? 0 : adsize)); 1761 else 1762 udf_update_tag(epos->bh->b_data, 1763 sizeof(struct allocExtDesc)); 1764 mark_buffer_dirty_inode(epos->bh, inode); 1765 } 1766 1767 return etype; 1768 } 1769 1770 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1771 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1772 { 1773 int adsize; 1774 uint8_t *ptr; 1775 struct short_ad *sad; 1776 struct long_ad *lad; 1777 struct udf_inode_info *iinfo = UDF_I(inode); 1778 1779 if (!epos->bh) 1780 ptr = iinfo->i_ext.i_data + epos->offset - 1781 udf_file_entry_alloc_offset(inode) + 1782 iinfo->i_lenEAttr; 1783 else 1784 ptr = epos->bh->b_data + epos->offset; 1785 1786 switch (iinfo->i_alloc_type) { 1787 case ICBTAG_FLAG_AD_SHORT: 1788 sad = (struct short_ad *)ptr; 1789 sad->extLength = cpu_to_le32(elen); 1790 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1791 adsize = sizeof(struct short_ad); 1792 break; 1793 case ICBTAG_FLAG_AD_LONG: 1794 lad = (struct long_ad *)ptr; 1795 lad->extLength = cpu_to_le32(elen); 1796 lad->extLocation = cpu_to_lelb(*eloc); 1797 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1798 adsize = sizeof(struct long_ad); 1799 break; 1800 default: 1801 return -1; 1802 } 1803 1804 if (epos->bh) { 1805 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1806 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1807 struct allocExtDesc *aed = 1808 (struct allocExtDesc *)epos->bh->b_data; 1809 udf_update_tag(epos->bh->b_data, 1810 le32_to_cpu(aed->lengthAllocDescs) + 1811 sizeof(struct allocExtDesc)); 1812 } 1813 mark_buffer_dirty_inode(epos->bh, inode); 1814 } else { 1815 mark_inode_dirty(inode); 1816 } 1817 1818 if (inc) 1819 epos->offset += adsize; 1820 1821 return (elen >> 30); 1822 } 1823 1824 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1825 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1826 { 1827 int8_t etype; 1828 1829 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1830 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1831 int block; 1832 epos->block = *eloc; 1833 epos->offset = sizeof(struct allocExtDesc); 1834 brelse(epos->bh); 1835 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1836 epos->bh = udf_tread(inode->i_sb, block); 1837 if (!epos->bh) { 1838 udf_debug("reading block %d failed!\n", block); 1839 return -1; 1840 } 1841 } 1842 1843 return etype; 1844 } 1845 1846 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1847 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1848 { 1849 int alen; 1850 int8_t etype; 1851 uint8_t *ptr; 1852 struct short_ad *sad; 1853 struct long_ad *lad; 1854 struct udf_inode_info *iinfo = UDF_I(inode); 1855 1856 if (!epos->bh) { 1857 if (!epos->offset) 1858 epos->offset = udf_file_entry_alloc_offset(inode); 1859 ptr = iinfo->i_ext.i_data + epos->offset - 1860 udf_file_entry_alloc_offset(inode) + 1861 iinfo->i_lenEAttr; 1862 alen = udf_file_entry_alloc_offset(inode) + 1863 iinfo->i_lenAlloc; 1864 } else { 1865 if (!epos->offset) 1866 epos->offset = sizeof(struct allocExtDesc); 1867 ptr = epos->bh->b_data + epos->offset; 1868 alen = sizeof(struct allocExtDesc) + 1869 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1870 lengthAllocDescs); 1871 } 1872 1873 switch (iinfo->i_alloc_type) { 1874 case ICBTAG_FLAG_AD_SHORT: 1875 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1876 if (!sad) 1877 return -1; 1878 etype = le32_to_cpu(sad->extLength) >> 30; 1879 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1880 eloc->partitionReferenceNum = 1881 iinfo->i_location.partitionReferenceNum; 1882 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1883 break; 1884 case ICBTAG_FLAG_AD_LONG: 1885 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1886 if (!lad) 1887 return -1; 1888 etype = le32_to_cpu(lad->extLength) >> 30; 1889 *eloc = lelb_to_cpu(lad->extLocation); 1890 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1891 break; 1892 default: 1893 udf_debug("alloc_type = %d unsupported\n", 1894 iinfo->i_alloc_type); 1895 return -1; 1896 } 1897 1898 return etype; 1899 } 1900 1901 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1902 struct kernel_lb_addr neloc, uint32_t nelen) 1903 { 1904 struct kernel_lb_addr oeloc; 1905 uint32_t oelen; 1906 int8_t etype; 1907 1908 if (epos.bh) 1909 get_bh(epos.bh); 1910 1911 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1912 udf_write_aext(inode, &epos, &neloc, nelen, 1); 1913 neloc = oeloc; 1914 nelen = (etype << 30) | oelen; 1915 } 1916 udf_add_aext(inode, &epos, &neloc, nelen, 1); 1917 brelse(epos.bh); 1918 1919 return (nelen >> 30); 1920 } 1921 1922 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1923 struct kernel_lb_addr eloc, uint32_t elen) 1924 { 1925 struct extent_position oepos; 1926 int adsize; 1927 int8_t etype; 1928 struct allocExtDesc *aed; 1929 struct udf_inode_info *iinfo; 1930 1931 if (epos.bh) { 1932 get_bh(epos.bh); 1933 get_bh(epos.bh); 1934 } 1935 1936 iinfo = UDF_I(inode); 1937 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1938 adsize = sizeof(struct short_ad); 1939 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1940 adsize = sizeof(struct long_ad); 1941 else 1942 adsize = 0; 1943 1944 oepos = epos; 1945 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1946 return -1; 1947 1948 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1949 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 1950 if (oepos.bh != epos.bh) { 1951 oepos.block = epos.block; 1952 brelse(oepos.bh); 1953 get_bh(epos.bh); 1954 oepos.bh = epos.bh; 1955 oepos.offset = epos.offset - adsize; 1956 } 1957 } 1958 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 1959 elen = 0; 1960 1961 if (epos.bh != oepos.bh) { 1962 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 1963 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1964 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1965 if (!oepos.bh) { 1966 iinfo->i_lenAlloc -= (adsize * 2); 1967 mark_inode_dirty(inode); 1968 } else { 1969 aed = (struct allocExtDesc *)oepos.bh->b_data; 1970 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1971 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1972 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1973 udf_update_tag(oepos.bh->b_data, 1974 oepos.offset - (2 * adsize)); 1975 else 1976 udf_update_tag(oepos.bh->b_data, 1977 sizeof(struct allocExtDesc)); 1978 mark_buffer_dirty_inode(oepos.bh, inode); 1979 } 1980 } else { 1981 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1982 if (!oepos.bh) { 1983 iinfo->i_lenAlloc -= adsize; 1984 mark_inode_dirty(inode); 1985 } else { 1986 aed = (struct allocExtDesc *)oepos.bh->b_data; 1987 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1988 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1989 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1990 udf_update_tag(oepos.bh->b_data, 1991 epos.offset - adsize); 1992 else 1993 udf_update_tag(oepos.bh->b_data, 1994 sizeof(struct allocExtDesc)); 1995 mark_buffer_dirty_inode(oepos.bh, inode); 1996 } 1997 } 1998 1999 brelse(epos.bh); 2000 brelse(oepos.bh); 2001 2002 return (elen >> 30); 2003 } 2004 2005 int8_t inode_bmap(struct inode *inode, sector_t block, 2006 struct extent_position *pos, struct kernel_lb_addr *eloc, 2007 uint32_t *elen, sector_t *offset) 2008 { 2009 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2010 loff_t lbcount = 0, bcount = 2011 (loff_t) block << blocksize_bits; 2012 int8_t etype; 2013 struct udf_inode_info *iinfo; 2014 2015 iinfo = UDF_I(inode); 2016 pos->offset = 0; 2017 pos->block = iinfo->i_location; 2018 pos->bh = NULL; 2019 *elen = 0; 2020 2021 do { 2022 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2023 if (etype == -1) { 2024 *offset = (bcount - lbcount) >> blocksize_bits; 2025 iinfo->i_lenExtents = lbcount; 2026 return -1; 2027 } 2028 lbcount += *elen; 2029 } while (lbcount <= bcount); 2030 2031 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2032 2033 return etype; 2034 } 2035 2036 long udf_block_map(struct inode *inode, sector_t block) 2037 { 2038 struct kernel_lb_addr eloc; 2039 uint32_t elen; 2040 sector_t offset; 2041 struct extent_position epos = {}; 2042 int ret; 2043 2044 lock_kernel(); 2045 2046 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2047 (EXT_RECORDED_ALLOCATED >> 30)) 2048 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2049 else 2050 ret = 0; 2051 2052 unlock_kernel(); 2053 brelse(epos.bh); 2054 2055 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2056 return udf_fixed_to_variable(ret); 2057 else 2058 return ret; 2059 } 2060