xref: /openbmc/linux/fs/udf/inode.c (revision 378b8e1ad18e7c97832aa3771e295153c4cd2a55)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_evict_inode(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 	int want_delete = 0;
75 
76 	if (!inode->i_nlink && !is_bad_inode(inode)) {
77 		want_delete = 1;
78 		udf_setsize(inode, 0);
79 		udf_update_inode(inode, IS_SYNC(inode));
80 	} else
81 		truncate_inode_pages(&inode->i_data, 0);
82 	invalidate_inode_buffers(inode);
83 	clear_inode(inode);
84 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 	    inode->i_size != iinfo->i_lenExtents) {
86 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 			 inode->i_ino, inode->i_mode,
88 			 (unsigned long long)inode->i_size,
89 			 (unsigned long long)iinfo->i_lenExtents);
90 	}
91 	kfree(iinfo->i_ext.i_data);
92 	iinfo->i_ext.i_data = NULL;
93 	if (want_delete) {
94 		udf_free_inode(inode);
95 	}
96 }
97 
98 static int udf_writepage(struct page *page, struct writeback_control *wbc)
99 {
100 	return block_write_full_page(page, udf_get_block, wbc);
101 }
102 
103 static int udf_writepages(struct address_space *mapping,
104 			struct writeback_control *wbc)
105 {
106 	return mpage_writepages(mapping, wbc, udf_get_block);
107 }
108 
109 static int udf_readpage(struct file *file, struct page *page)
110 {
111 	return mpage_readpage(page, udf_get_block);
112 }
113 
114 static int udf_readpages(struct file *file, struct address_space *mapping,
115 			struct list_head *pages, unsigned nr_pages)
116 {
117 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
118 }
119 
120 static int udf_write_begin(struct file *file, struct address_space *mapping,
121 			loff_t pos, unsigned len, unsigned flags,
122 			struct page **pagep, void **fsdata)
123 {
124 	int ret;
125 
126 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
127 	if (unlikely(ret)) {
128 		struct inode *inode = mapping->host;
129 		struct udf_inode_info *iinfo = UDF_I(inode);
130 		loff_t isize = inode->i_size;
131 
132 		if (pos + len > isize) {
133 			truncate_pagecache(inode, pos + len, isize);
134 			if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
135 				down_write(&iinfo->i_data_sem);
136 				udf_truncate_extents(inode);
137 				up_write(&iinfo->i_data_sem);
138 			}
139 		}
140 	}
141 
142 	return ret;
143 }
144 
145 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
146 {
147 	return generic_block_bmap(mapping, block, udf_get_block);
148 }
149 
150 const struct address_space_operations udf_aops = {
151 	.readpage	= udf_readpage,
152 	.readpages	= udf_readpages,
153 	.writepage	= udf_writepage,
154 	.writepages	= udf_writepages,
155 	.write_begin		= udf_write_begin,
156 	.write_end		= generic_write_end,
157 	.bmap		= udf_bmap,
158 };
159 
160 /*
161  * Expand file stored in ICB to a normal one-block-file
162  *
163  * This function requires i_data_sem for writing and releases it.
164  * This function requires i_mutex held
165  */
166 int udf_expand_file_adinicb(struct inode *inode)
167 {
168 	struct page *page;
169 	char *kaddr;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	int err;
172 	struct writeback_control udf_wbc = {
173 		.sync_mode = WB_SYNC_NONE,
174 		.nr_to_write = 1,
175 	};
176 
177 	if (!iinfo->i_lenAlloc) {
178 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
179 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
180 		else
181 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
182 		/* from now on we have normal address_space methods */
183 		inode->i_data.a_ops = &udf_aops;
184 		up_write(&iinfo->i_data_sem);
185 		mark_inode_dirty(inode);
186 		return 0;
187 	}
188 	/*
189 	 * Release i_data_sem so that we can lock a page - page lock ranks
190 	 * above i_data_sem. i_mutex still protects us against file changes.
191 	 */
192 	up_write(&iinfo->i_data_sem);
193 
194 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
195 	if (!page)
196 		return -ENOMEM;
197 
198 	if (!PageUptodate(page)) {
199 		kaddr = kmap(page);
200 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
201 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
202 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
203 			iinfo->i_lenAlloc);
204 		flush_dcache_page(page);
205 		SetPageUptodate(page);
206 		kunmap(page);
207 	}
208 	down_write(&iinfo->i_data_sem);
209 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
210 	       iinfo->i_lenAlloc);
211 	iinfo->i_lenAlloc = 0;
212 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
213 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
214 	else
215 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
216 	/* from now on we have normal address_space methods */
217 	inode->i_data.a_ops = &udf_aops;
218 	up_write(&iinfo->i_data_sem);
219 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
220 	if (err) {
221 		/* Restore everything back so that we don't lose data... */
222 		lock_page(page);
223 		kaddr = kmap(page);
224 		down_write(&iinfo->i_data_sem);
225 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
226 		       inode->i_size);
227 		kunmap(page);
228 		unlock_page(page);
229 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
230 		inode->i_data.a_ops = &udf_adinicb_aops;
231 		up_write(&iinfo->i_data_sem);
232 	}
233 	page_cache_release(page);
234 	mark_inode_dirty(inode);
235 
236 	return err;
237 }
238 
239 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
240 					   int *err)
241 {
242 	int newblock;
243 	struct buffer_head *dbh = NULL;
244 	struct kernel_lb_addr eloc;
245 	uint8_t alloctype;
246 	struct extent_position epos;
247 
248 	struct udf_fileident_bh sfibh, dfibh;
249 	loff_t f_pos = udf_ext0_offset(inode);
250 	int size = udf_ext0_offset(inode) + inode->i_size;
251 	struct fileIdentDesc cfi, *sfi, *dfi;
252 	struct udf_inode_info *iinfo = UDF_I(inode);
253 
254 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
255 		alloctype = ICBTAG_FLAG_AD_SHORT;
256 	else
257 		alloctype = ICBTAG_FLAG_AD_LONG;
258 
259 	if (!inode->i_size) {
260 		iinfo->i_alloc_type = alloctype;
261 		mark_inode_dirty(inode);
262 		return NULL;
263 	}
264 
265 	/* alloc block, and copy data to it */
266 	*block = udf_new_block(inode->i_sb, inode,
267 			       iinfo->i_location.partitionReferenceNum,
268 			       iinfo->i_location.logicalBlockNum, err);
269 	if (!(*block))
270 		return NULL;
271 	newblock = udf_get_pblock(inode->i_sb, *block,
272 				  iinfo->i_location.partitionReferenceNum,
273 				0);
274 	if (!newblock)
275 		return NULL;
276 	dbh = udf_tgetblk(inode->i_sb, newblock);
277 	if (!dbh)
278 		return NULL;
279 	lock_buffer(dbh);
280 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
281 	set_buffer_uptodate(dbh);
282 	unlock_buffer(dbh);
283 	mark_buffer_dirty_inode(dbh, inode);
284 
285 	sfibh.soffset = sfibh.eoffset =
286 			f_pos & (inode->i_sb->s_blocksize - 1);
287 	sfibh.sbh = sfibh.ebh = NULL;
288 	dfibh.soffset = dfibh.eoffset = 0;
289 	dfibh.sbh = dfibh.ebh = dbh;
290 	while (f_pos < size) {
291 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
292 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
293 					 NULL, NULL, NULL);
294 		if (!sfi) {
295 			brelse(dbh);
296 			return NULL;
297 		}
298 		iinfo->i_alloc_type = alloctype;
299 		sfi->descTag.tagLocation = cpu_to_le32(*block);
300 		dfibh.soffset = dfibh.eoffset;
301 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
302 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
303 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
304 				 sfi->fileIdent +
305 					le16_to_cpu(sfi->lengthOfImpUse))) {
306 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
307 			brelse(dbh);
308 			return NULL;
309 		}
310 	}
311 	mark_buffer_dirty_inode(dbh, inode);
312 
313 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
314 		iinfo->i_lenAlloc);
315 	iinfo->i_lenAlloc = 0;
316 	eloc.logicalBlockNum = *block;
317 	eloc.partitionReferenceNum =
318 				iinfo->i_location.partitionReferenceNum;
319 	iinfo->i_lenExtents = inode->i_size;
320 	epos.bh = NULL;
321 	epos.block = iinfo->i_location;
322 	epos.offset = udf_file_entry_alloc_offset(inode);
323 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
324 	/* UniqueID stuff */
325 
326 	brelse(epos.bh);
327 	mark_inode_dirty(inode);
328 	return dbh;
329 }
330 
331 static int udf_get_block(struct inode *inode, sector_t block,
332 			 struct buffer_head *bh_result, int create)
333 {
334 	int err, new;
335 	sector_t phys = 0;
336 	struct udf_inode_info *iinfo;
337 
338 	if (!create) {
339 		phys = udf_block_map(inode, block);
340 		if (phys)
341 			map_bh(bh_result, inode->i_sb, phys);
342 		return 0;
343 	}
344 
345 	err = -EIO;
346 	new = 0;
347 	iinfo = UDF_I(inode);
348 
349 	down_write(&iinfo->i_data_sem);
350 	if (block == iinfo->i_next_alloc_block + 1) {
351 		iinfo->i_next_alloc_block++;
352 		iinfo->i_next_alloc_goal++;
353 	}
354 
355 
356 	phys = inode_getblk(inode, block, &err, &new);
357 	if (!phys)
358 		goto abort;
359 
360 	if (new)
361 		set_buffer_new(bh_result);
362 	map_bh(bh_result, inode->i_sb, phys);
363 
364 abort:
365 	up_write(&iinfo->i_data_sem);
366 	return err;
367 }
368 
369 static struct buffer_head *udf_getblk(struct inode *inode, long block,
370 				      int create, int *err)
371 {
372 	struct buffer_head *bh;
373 	struct buffer_head dummy;
374 
375 	dummy.b_state = 0;
376 	dummy.b_blocknr = -1000;
377 	*err = udf_get_block(inode, block, &dummy, create);
378 	if (!*err && buffer_mapped(&dummy)) {
379 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
380 		if (buffer_new(&dummy)) {
381 			lock_buffer(bh);
382 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
383 			set_buffer_uptodate(bh);
384 			unlock_buffer(bh);
385 			mark_buffer_dirty_inode(bh, inode);
386 		}
387 		return bh;
388 	}
389 
390 	return NULL;
391 }
392 
393 /* Extend the file by 'blocks' blocks, return the number of extents added */
394 static int udf_do_extend_file(struct inode *inode,
395 			      struct extent_position *last_pos,
396 			      struct kernel_long_ad *last_ext,
397 			      sector_t blocks)
398 {
399 	sector_t add;
400 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
401 	struct super_block *sb = inode->i_sb;
402 	struct kernel_lb_addr prealloc_loc = {};
403 	int prealloc_len = 0;
404 	struct udf_inode_info *iinfo;
405 	int err;
406 
407 	/* The previous extent is fake and we should not extend by anything
408 	 * - there's nothing to do... */
409 	if (!blocks && fake)
410 		return 0;
411 
412 	iinfo = UDF_I(inode);
413 	/* Round the last extent up to a multiple of block size */
414 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
415 		last_ext->extLength =
416 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
417 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
418 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
419 		iinfo->i_lenExtents =
420 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
421 			~(sb->s_blocksize - 1);
422 	}
423 
424 	/* Last extent are just preallocated blocks? */
425 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
426 						EXT_NOT_RECORDED_ALLOCATED) {
427 		/* Save the extent so that we can reattach it to the end */
428 		prealloc_loc = last_ext->extLocation;
429 		prealloc_len = last_ext->extLength;
430 		/* Mark the extent as a hole */
431 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
432 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
433 		last_ext->extLocation.logicalBlockNum = 0;
434 		last_ext->extLocation.partitionReferenceNum = 0;
435 	}
436 
437 	/* Can we merge with the previous extent? */
438 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
439 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
440 		add = ((1 << 30) - sb->s_blocksize -
441 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
442 			sb->s_blocksize_bits;
443 		if (add > blocks)
444 			add = blocks;
445 		blocks -= add;
446 		last_ext->extLength += add << sb->s_blocksize_bits;
447 	}
448 
449 	if (fake) {
450 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
451 			     last_ext->extLength, 1);
452 		count++;
453 	} else
454 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
455 				last_ext->extLength, 1);
456 
457 	/* Managed to do everything necessary? */
458 	if (!blocks)
459 		goto out;
460 
461 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
462 	last_ext->extLocation.logicalBlockNum = 0;
463 	last_ext->extLocation.partitionReferenceNum = 0;
464 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
465 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
466 				(add << sb->s_blocksize_bits);
467 
468 	/* Create enough extents to cover the whole hole */
469 	while (blocks > add) {
470 		blocks -= add;
471 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
472 				   last_ext->extLength, 1);
473 		if (err)
474 			return err;
475 		count++;
476 	}
477 	if (blocks) {
478 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
479 			(blocks << sb->s_blocksize_bits);
480 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
481 				   last_ext->extLength, 1);
482 		if (err)
483 			return err;
484 		count++;
485 	}
486 
487 out:
488 	/* Do we have some preallocated blocks saved? */
489 	if (prealloc_len) {
490 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
491 				   prealloc_len, 1);
492 		if (err)
493 			return err;
494 		last_ext->extLocation = prealloc_loc;
495 		last_ext->extLength = prealloc_len;
496 		count++;
497 	}
498 
499 	/* last_pos should point to the last written extent... */
500 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
501 		last_pos->offset -= sizeof(struct short_ad);
502 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
503 		last_pos->offset -= sizeof(struct long_ad);
504 	else
505 		return -EIO;
506 
507 	return count;
508 }
509 
510 static int udf_extend_file(struct inode *inode, loff_t newsize)
511 {
512 
513 	struct extent_position epos;
514 	struct kernel_lb_addr eloc;
515 	uint32_t elen;
516 	int8_t etype;
517 	struct super_block *sb = inode->i_sb;
518 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
519 	int adsize;
520 	struct udf_inode_info *iinfo = UDF_I(inode);
521 	struct kernel_long_ad extent;
522 	int err;
523 
524 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
525 		adsize = sizeof(struct short_ad);
526 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
527 		adsize = sizeof(struct long_ad);
528 	else
529 		BUG();
530 
531 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
532 
533 	/* File has extent covering the new size (could happen when extending
534 	 * inside a block)? */
535 	if (etype != -1)
536 		return 0;
537 	if (newsize & (sb->s_blocksize - 1))
538 		offset++;
539 	/* Extended file just to the boundary of the last file block? */
540 	if (offset == 0)
541 		return 0;
542 
543 	/* Truncate is extending the file by 'offset' blocks */
544 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
545 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
546 		/* File has no extents at all or has empty last
547 		 * indirect extent! Create a fake extent... */
548 		extent.extLocation.logicalBlockNum = 0;
549 		extent.extLocation.partitionReferenceNum = 0;
550 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
551 	} else {
552 		epos.offset -= adsize;
553 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
554 				      &extent.extLength, 0);
555 		extent.extLength |= etype << 30;
556 	}
557 	err = udf_do_extend_file(inode, &epos, &extent, offset);
558 	if (err < 0)
559 		goto out;
560 	err = 0;
561 	iinfo->i_lenExtents = newsize;
562 out:
563 	brelse(epos.bh);
564 	return err;
565 }
566 
567 static sector_t inode_getblk(struct inode *inode, sector_t block,
568 			     int *err, int *new)
569 {
570 	static sector_t last_block;
571 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
572 	struct extent_position prev_epos, cur_epos, next_epos;
573 	int count = 0, startnum = 0, endnum = 0;
574 	uint32_t elen = 0, tmpelen;
575 	struct kernel_lb_addr eloc, tmpeloc;
576 	int c = 1;
577 	loff_t lbcount = 0, b_off = 0;
578 	uint32_t newblocknum, newblock;
579 	sector_t offset = 0;
580 	int8_t etype;
581 	struct udf_inode_info *iinfo = UDF_I(inode);
582 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
583 	int lastblock = 0;
584 
585 	*err = 0;
586 	*new = 0;
587 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
588 	prev_epos.block = iinfo->i_location;
589 	prev_epos.bh = NULL;
590 	cur_epos = next_epos = prev_epos;
591 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
592 
593 	/* find the extent which contains the block we are looking for.
594 	   alternate between laarr[0] and laarr[1] for locations of the
595 	   current extent, and the previous extent */
596 	do {
597 		if (prev_epos.bh != cur_epos.bh) {
598 			brelse(prev_epos.bh);
599 			get_bh(cur_epos.bh);
600 			prev_epos.bh = cur_epos.bh;
601 		}
602 		if (cur_epos.bh != next_epos.bh) {
603 			brelse(cur_epos.bh);
604 			get_bh(next_epos.bh);
605 			cur_epos.bh = next_epos.bh;
606 		}
607 
608 		lbcount += elen;
609 
610 		prev_epos.block = cur_epos.block;
611 		cur_epos.block = next_epos.block;
612 
613 		prev_epos.offset = cur_epos.offset;
614 		cur_epos.offset = next_epos.offset;
615 
616 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
617 		if (etype == -1)
618 			break;
619 
620 		c = !c;
621 
622 		laarr[c].extLength = (etype << 30) | elen;
623 		laarr[c].extLocation = eloc;
624 
625 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
626 			pgoal = eloc.logicalBlockNum +
627 				((elen + inode->i_sb->s_blocksize - 1) >>
628 				 inode->i_sb->s_blocksize_bits);
629 
630 		count++;
631 	} while (lbcount + elen <= b_off);
632 
633 	b_off -= lbcount;
634 	offset = b_off >> inode->i_sb->s_blocksize_bits;
635 	/*
636 	 * Move prev_epos and cur_epos into indirect extent if we are at
637 	 * the pointer to it
638 	 */
639 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
640 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
641 
642 	/* if the extent is allocated and recorded, return the block
643 	   if the extent is not a multiple of the blocksize, round up */
644 
645 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
646 		if (elen & (inode->i_sb->s_blocksize - 1)) {
647 			elen = EXT_RECORDED_ALLOCATED |
648 				((elen + inode->i_sb->s_blocksize - 1) &
649 				 ~(inode->i_sb->s_blocksize - 1));
650 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
651 		}
652 		brelse(prev_epos.bh);
653 		brelse(cur_epos.bh);
654 		brelse(next_epos.bh);
655 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
656 		return newblock;
657 	}
658 
659 	last_block = block;
660 	/* Are we beyond EOF? */
661 	if (etype == -1) {
662 		int ret;
663 
664 		if (count) {
665 			if (c)
666 				laarr[0] = laarr[1];
667 			startnum = 1;
668 		} else {
669 			/* Create a fake extent when there's not one */
670 			memset(&laarr[0].extLocation, 0x00,
671 				sizeof(struct kernel_lb_addr));
672 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
673 			/* Will udf_do_extend_file() create real extent from
674 			   a fake one? */
675 			startnum = (offset > 0);
676 		}
677 		/* Create extents for the hole between EOF and offset */
678 		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
679 		if (ret < 0) {
680 			brelse(prev_epos.bh);
681 			brelse(cur_epos.bh);
682 			brelse(next_epos.bh);
683 			*err = ret;
684 			return 0;
685 		}
686 		c = 0;
687 		offset = 0;
688 		count += ret;
689 		/* We are not covered by a preallocated extent? */
690 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
691 						EXT_NOT_RECORDED_ALLOCATED) {
692 			/* Is there any real extent? - otherwise we overwrite
693 			 * the fake one... */
694 			if (count)
695 				c = !c;
696 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
697 				inode->i_sb->s_blocksize;
698 			memset(&laarr[c].extLocation, 0x00,
699 				sizeof(struct kernel_lb_addr));
700 			count++;
701 			endnum++;
702 		}
703 		endnum = c + 1;
704 		lastblock = 1;
705 	} else {
706 		endnum = startnum = ((count > 2) ? 2 : count);
707 
708 		/* if the current extent is in position 0,
709 		   swap it with the previous */
710 		if (!c && count != 1) {
711 			laarr[2] = laarr[0];
712 			laarr[0] = laarr[1];
713 			laarr[1] = laarr[2];
714 			c = 1;
715 		}
716 
717 		/* if the current block is located in an extent,
718 		   read the next extent */
719 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
720 		if (etype != -1) {
721 			laarr[c + 1].extLength = (etype << 30) | elen;
722 			laarr[c + 1].extLocation = eloc;
723 			count++;
724 			startnum++;
725 			endnum++;
726 		} else
727 			lastblock = 1;
728 	}
729 
730 	/* if the current extent is not recorded but allocated, get the
731 	 * block in the extent corresponding to the requested block */
732 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
733 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
734 	else { /* otherwise, allocate a new block */
735 		if (iinfo->i_next_alloc_block == block)
736 			goal = iinfo->i_next_alloc_goal;
737 
738 		if (!goal) {
739 			if (!(goal = pgoal)) /* XXX: what was intended here? */
740 				goal = iinfo->i_location.logicalBlockNum + 1;
741 		}
742 
743 		newblocknum = udf_new_block(inode->i_sb, inode,
744 				iinfo->i_location.partitionReferenceNum,
745 				goal, err);
746 		if (!newblocknum) {
747 			brelse(prev_epos.bh);
748 			*err = -ENOSPC;
749 			return 0;
750 		}
751 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
752 	}
753 
754 	/* if the extent the requsted block is located in contains multiple
755 	 * blocks, split the extent into at most three extents. blocks prior
756 	 * to requested block, requested block, and blocks after requested
757 	 * block */
758 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
759 
760 #ifdef UDF_PREALLOCATE
761 	/* We preallocate blocks only for regular files. It also makes sense
762 	 * for directories but there's a problem when to drop the
763 	 * preallocation. We might use some delayed work for that but I feel
764 	 * it's overengineering for a filesystem like UDF. */
765 	if (S_ISREG(inode->i_mode))
766 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
767 #endif
768 
769 	/* merge any continuous blocks in laarr */
770 	udf_merge_extents(inode, laarr, &endnum);
771 
772 	/* write back the new extents, inserting new extents if the new number
773 	 * of extents is greater than the old number, and deleting extents if
774 	 * the new number of extents is less than the old number */
775 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
776 
777 	brelse(prev_epos.bh);
778 
779 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
780 				iinfo->i_location.partitionReferenceNum, 0);
781 	if (!newblock) {
782 		*err = -EIO;
783 		return 0;
784 	}
785 	*new = 1;
786 	iinfo->i_next_alloc_block = block;
787 	iinfo->i_next_alloc_goal = newblocknum;
788 	inode->i_ctime = current_fs_time(inode->i_sb);
789 
790 	if (IS_SYNC(inode))
791 		udf_sync_inode(inode);
792 	else
793 		mark_inode_dirty(inode);
794 
795 	return newblock;
796 }
797 
798 static void udf_split_extents(struct inode *inode, int *c, int offset,
799 			      int newblocknum,
800 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
801 			      int *endnum)
802 {
803 	unsigned long blocksize = inode->i_sb->s_blocksize;
804 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
805 
806 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
807 	    (laarr[*c].extLength >> 30) ==
808 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
809 		int curr = *c;
810 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
811 			    blocksize - 1) >> blocksize_bits;
812 		int8_t etype = (laarr[curr].extLength >> 30);
813 
814 		if (blen == 1)
815 			;
816 		else if (!offset || blen == offset + 1) {
817 			laarr[curr + 2] = laarr[curr + 1];
818 			laarr[curr + 1] = laarr[curr];
819 		} else {
820 			laarr[curr + 3] = laarr[curr + 1];
821 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
822 		}
823 
824 		if (offset) {
825 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
826 				udf_free_blocks(inode->i_sb, inode,
827 						&laarr[curr].extLocation,
828 						0, offset);
829 				laarr[curr].extLength =
830 					EXT_NOT_RECORDED_NOT_ALLOCATED |
831 					(offset << blocksize_bits);
832 				laarr[curr].extLocation.logicalBlockNum = 0;
833 				laarr[curr].extLocation.
834 						partitionReferenceNum = 0;
835 			} else
836 				laarr[curr].extLength = (etype << 30) |
837 					(offset << blocksize_bits);
838 			curr++;
839 			(*c)++;
840 			(*endnum)++;
841 		}
842 
843 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
844 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
845 			laarr[curr].extLocation.partitionReferenceNum =
846 				UDF_I(inode)->i_location.partitionReferenceNum;
847 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
848 			blocksize;
849 		curr++;
850 
851 		if (blen != offset + 1) {
852 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853 				laarr[curr].extLocation.logicalBlockNum +=
854 								offset + 1;
855 			laarr[curr].extLength = (etype << 30) |
856 				((blen - (offset + 1)) << blocksize_bits);
857 			curr++;
858 			(*endnum)++;
859 		}
860 	}
861 }
862 
863 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
864 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
865 				 int *endnum)
866 {
867 	int start, length = 0, currlength = 0, i;
868 
869 	if (*endnum >= (c + 1)) {
870 		if (!lastblock)
871 			return;
872 		else
873 			start = c;
874 	} else {
875 		if ((laarr[c + 1].extLength >> 30) ==
876 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
877 			start = c + 1;
878 			length = currlength =
879 				(((laarr[c + 1].extLength &
880 					UDF_EXTENT_LENGTH_MASK) +
881 				inode->i_sb->s_blocksize - 1) >>
882 				inode->i_sb->s_blocksize_bits);
883 		} else
884 			start = c;
885 	}
886 
887 	for (i = start + 1; i <= *endnum; i++) {
888 		if (i == *endnum) {
889 			if (lastblock)
890 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
891 		} else if ((laarr[i].extLength >> 30) ==
892 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
893 			length += (((laarr[i].extLength &
894 						UDF_EXTENT_LENGTH_MASK) +
895 				    inode->i_sb->s_blocksize - 1) >>
896 				    inode->i_sb->s_blocksize_bits);
897 		} else
898 			break;
899 	}
900 
901 	if (length) {
902 		int next = laarr[start].extLocation.logicalBlockNum +
903 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
904 			  inode->i_sb->s_blocksize - 1) >>
905 			  inode->i_sb->s_blocksize_bits);
906 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
907 				laarr[start].extLocation.partitionReferenceNum,
908 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
909 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
910 				currlength);
911 		if (numalloc) 	{
912 			if (start == (c + 1))
913 				laarr[start].extLength +=
914 					(numalloc <<
915 					 inode->i_sb->s_blocksize_bits);
916 			else {
917 				memmove(&laarr[c + 2], &laarr[c + 1],
918 					sizeof(struct long_ad) * (*endnum - (c + 1)));
919 				(*endnum)++;
920 				laarr[c + 1].extLocation.logicalBlockNum = next;
921 				laarr[c + 1].extLocation.partitionReferenceNum =
922 					laarr[c].extLocation.
923 							partitionReferenceNum;
924 				laarr[c + 1].extLength =
925 					EXT_NOT_RECORDED_ALLOCATED |
926 					(numalloc <<
927 					 inode->i_sb->s_blocksize_bits);
928 				start = c + 1;
929 			}
930 
931 			for (i = start + 1; numalloc && i < *endnum; i++) {
932 				int elen = ((laarr[i].extLength &
933 						UDF_EXTENT_LENGTH_MASK) +
934 					    inode->i_sb->s_blocksize - 1) >>
935 					    inode->i_sb->s_blocksize_bits;
936 
937 				if (elen > numalloc) {
938 					laarr[i].extLength -=
939 						(numalloc <<
940 						 inode->i_sb->s_blocksize_bits);
941 					numalloc = 0;
942 				} else {
943 					numalloc -= elen;
944 					if (*endnum > (i + 1))
945 						memmove(&laarr[i],
946 							&laarr[i + 1],
947 							sizeof(struct long_ad) *
948 							(*endnum - (i + 1)));
949 					i--;
950 					(*endnum)--;
951 				}
952 			}
953 			UDF_I(inode)->i_lenExtents +=
954 				numalloc << inode->i_sb->s_blocksize_bits;
955 		}
956 	}
957 }
958 
959 static void udf_merge_extents(struct inode *inode,
960 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
961 			      int *endnum)
962 {
963 	int i;
964 	unsigned long blocksize = inode->i_sb->s_blocksize;
965 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
966 
967 	for (i = 0; i < (*endnum - 1); i++) {
968 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
969 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
970 
971 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
972 			(((li->extLength >> 30) ==
973 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
974 			((lip1->extLocation.logicalBlockNum -
975 			  li->extLocation.logicalBlockNum) ==
976 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
977 			blocksize - 1) >> blocksize_bits)))) {
978 
979 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
980 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
981 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
982 				lip1->extLength = (lip1->extLength -
983 						  (li->extLength &
984 						   UDF_EXTENT_LENGTH_MASK) +
985 						   UDF_EXTENT_LENGTH_MASK) &
986 							~(blocksize - 1);
987 				li->extLength = (li->extLength &
988 						 UDF_EXTENT_FLAG_MASK) +
989 						(UDF_EXTENT_LENGTH_MASK + 1) -
990 						blocksize;
991 				lip1->extLocation.logicalBlockNum =
992 					li->extLocation.logicalBlockNum +
993 					((li->extLength &
994 						UDF_EXTENT_LENGTH_MASK) >>
995 						blocksize_bits);
996 			} else {
997 				li->extLength = lip1->extLength +
998 					(((li->extLength &
999 						UDF_EXTENT_LENGTH_MASK) +
1000 					 blocksize - 1) & ~(blocksize - 1));
1001 				if (*endnum > (i + 2))
1002 					memmove(&laarr[i + 1], &laarr[i + 2],
1003 						sizeof(struct long_ad) *
1004 						(*endnum - (i + 2)));
1005 				i--;
1006 				(*endnum)--;
1007 			}
1008 		} else if (((li->extLength >> 30) ==
1009 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1010 			   ((lip1->extLength >> 30) ==
1011 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1012 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1013 					((li->extLength &
1014 					  UDF_EXTENT_LENGTH_MASK) +
1015 					 blocksize - 1) >> blocksize_bits);
1016 			li->extLocation.logicalBlockNum = 0;
1017 			li->extLocation.partitionReferenceNum = 0;
1018 
1019 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1020 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1021 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1022 				lip1->extLength = (lip1->extLength -
1023 						   (li->extLength &
1024 						   UDF_EXTENT_LENGTH_MASK) +
1025 						   UDF_EXTENT_LENGTH_MASK) &
1026 						   ~(blocksize - 1);
1027 				li->extLength = (li->extLength &
1028 						 UDF_EXTENT_FLAG_MASK) +
1029 						(UDF_EXTENT_LENGTH_MASK + 1) -
1030 						blocksize;
1031 			} else {
1032 				li->extLength = lip1->extLength +
1033 					(((li->extLength &
1034 						UDF_EXTENT_LENGTH_MASK) +
1035 					  blocksize - 1) & ~(blocksize - 1));
1036 				if (*endnum > (i + 2))
1037 					memmove(&laarr[i + 1], &laarr[i + 2],
1038 						sizeof(struct long_ad) *
1039 						(*endnum - (i + 2)));
1040 				i--;
1041 				(*endnum)--;
1042 			}
1043 		} else if ((li->extLength >> 30) ==
1044 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1045 			udf_free_blocks(inode->i_sb, inode,
1046 					&li->extLocation, 0,
1047 					((li->extLength &
1048 						UDF_EXTENT_LENGTH_MASK) +
1049 					 blocksize - 1) >> blocksize_bits);
1050 			li->extLocation.logicalBlockNum = 0;
1051 			li->extLocation.partitionReferenceNum = 0;
1052 			li->extLength = (li->extLength &
1053 						UDF_EXTENT_LENGTH_MASK) |
1054 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1055 		}
1056 	}
1057 }
1058 
1059 static void udf_update_extents(struct inode *inode,
1060 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1061 			       int startnum, int endnum,
1062 			       struct extent_position *epos)
1063 {
1064 	int start = 0, i;
1065 	struct kernel_lb_addr tmploc;
1066 	uint32_t tmplen;
1067 
1068 	if (startnum > endnum) {
1069 		for (i = 0; i < (startnum - endnum); i++)
1070 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1071 					laarr[i].extLength);
1072 	} else if (startnum < endnum) {
1073 		for (i = 0; i < (endnum - startnum); i++) {
1074 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1075 					laarr[i].extLength);
1076 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1077 				      &laarr[i].extLength, 1);
1078 			start++;
1079 		}
1080 	}
1081 
1082 	for (i = start; i < endnum; i++) {
1083 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1084 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1085 			       laarr[i].extLength, 1);
1086 	}
1087 }
1088 
1089 struct buffer_head *udf_bread(struct inode *inode, int block,
1090 			      int create, int *err)
1091 {
1092 	struct buffer_head *bh = NULL;
1093 
1094 	bh = udf_getblk(inode, block, create, err);
1095 	if (!bh)
1096 		return NULL;
1097 
1098 	if (buffer_uptodate(bh))
1099 		return bh;
1100 
1101 	ll_rw_block(READ, 1, &bh);
1102 
1103 	wait_on_buffer(bh);
1104 	if (buffer_uptodate(bh))
1105 		return bh;
1106 
1107 	brelse(bh);
1108 	*err = -EIO;
1109 	return NULL;
1110 }
1111 
1112 int udf_setsize(struct inode *inode, loff_t newsize)
1113 {
1114 	int err;
1115 	struct udf_inode_info *iinfo;
1116 	int bsize = 1 << inode->i_blkbits;
1117 
1118 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1119 	      S_ISLNK(inode->i_mode)))
1120 		return -EINVAL;
1121 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1122 		return -EPERM;
1123 
1124 	iinfo = UDF_I(inode);
1125 	if (newsize > inode->i_size) {
1126 		down_write(&iinfo->i_data_sem);
1127 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1128 			if (bsize <
1129 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1130 				err = udf_expand_file_adinicb(inode);
1131 				if (err)
1132 					return err;
1133 				down_write(&iinfo->i_data_sem);
1134 			} else {
1135 				iinfo->i_lenAlloc = newsize;
1136 				goto set_size;
1137 			}
1138 		}
1139 		err = udf_extend_file(inode, newsize);
1140 		if (err) {
1141 			up_write(&iinfo->i_data_sem);
1142 			return err;
1143 		}
1144 set_size:
1145 		truncate_setsize(inode, newsize);
1146 		up_write(&iinfo->i_data_sem);
1147 	} else {
1148 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1149 			down_write(&iinfo->i_data_sem);
1150 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1151 			       0x00, bsize - newsize -
1152 			       udf_file_entry_alloc_offset(inode));
1153 			iinfo->i_lenAlloc = newsize;
1154 			truncate_setsize(inode, newsize);
1155 			up_write(&iinfo->i_data_sem);
1156 			goto update_time;
1157 		}
1158 		err = block_truncate_page(inode->i_mapping, newsize,
1159 					  udf_get_block);
1160 		if (err)
1161 			return err;
1162 		down_write(&iinfo->i_data_sem);
1163 		truncate_setsize(inode, newsize);
1164 		udf_truncate_extents(inode);
1165 		up_write(&iinfo->i_data_sem);
1166 	}
1167 update_time:
1168 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1169 	if (IS_SYNC(inode))
1170 		udf_sync_inode(inode);
1171 	else
1172 		mark_inode_dirty(inode);
1173 	return 0;
1174 }
1175 
1176 static void __udf_read_inode(struct inode *inode)
1177 {
1178 	struct buffer_head *bh = NULL;
1179 	struct fileEntry *fe;
1180 	uint16_t ident;
1181 	struct udf_inode_info *iinfo = UDF_I(inode);
1182 
1183 	/*
1184 	 * Set defaults, but the inode is still incomplete!
1185 	 * Note: get_new_inode() sets the following on a new inode:
1186 	 *      i_sb = sb
1187 	 *      i_no = ino
1188 	 *      i_flags = sb->s_flags
1189 	 *      i_state = 0
1190 	 * clean_inode(): zero fills and sets
1191 	 *      i_count = 1
1192 	 *      i_nlink = 1
1193 	 *      i_op = NULL;
1194 	 */
1195 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1196 	if (!bh) {
1197 		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1198 		make_bad_inode(inode);
1199 		return;
1200 	}
1201 
1202 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1203 	    ident != TAG_IDENT_USE) {
1204 		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1205 			inode->i_ino, ident);
1206 		brelse(bh);
1207 		make_bad_inode(inode);
1208 		return;
1209 	}
1210 
1211 	fe = (struct fileEntry *)bh->b_data;
1212 
1213 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1214 		struct buffer_head *ibh;
1215 
1216 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1217 					&ident);
1218 		if (ident == TAG_IDENT_IE && ibh) {
1219 			struct buffer_head *nbh = NULL;
1220 			struct kernel_lb_addr loc;
1221 			struct indirectEntry *ie;
1222 
1223 			ie = (struct indirectEntry *)ibh->b_data;
1224 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1225 
1226 			if (ie->indirectICB.extLength &&
1227 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1228 							&ident))) {
1229 				if (ident == TAG_IDENT_FE ||
1230 					ident == TAG_IDENT_EFE) {
1231 					memcpy(&iinfo->i_location,
1232 						&loc,
1233 						sizeof(struct kernel_lb_addr));
1234 					brelse(bh);
1235 					brelse(ibh);
1236 					brelse(nbh);
1237 					__udf_read_inode(inode);
1238 					return;
1239 				}
1240 				brelse(nbh);
1241 			}
1242 		}
1243 		brelse(ibh);
1244 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1245 		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1246 			le16_to_cpu(fe->icbTag.strategyType));
1247 		brelse(bh);
1248 		make_bad_inode(inode);
1249 		return;
1250 	}
1251 	udf_fill_inode(inode, bh);
1252 
1253 	brelse(bh);
1254 }
1255 
1256 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1257 {
1258 	struct fileEntry *fe;
1259 	struct extendedFileEntry *efe;
1260 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1261 	struct udf_inode_info *iinfo = UDF_I(inode);
1262 	unsigned int link_count;
1263 
1264 	fe = (struct fileEntry *)bh->b_data;
1265 	efe = (struct extendedFileEntry *)bh->b_data;
1266 
1267 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1268 		iinfo->i_strat4096 = 0;
1269 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1270 		iinfo->i_strat4096 = 1;
1271 
1272 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1273 							ICBTAG_FLAG_AD_MASK;
1274 	iinfo->i_unique = 0;
1275 	iinfo->i_lenEAttr = 0;
1276 	iinfo->i_lenExtents = 0;
1277 	iinfo->i_lenAlloc = 0;
1278 	iinfo->i_next_alloc_block = 0;
1279 	iinfo->i_next_alloc_goal = 0;
1280 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1281 		iinfo->i_efe = 1;
1282 		iinfo->i_use = 0;
1283 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1284 					sizeof(struct extendedFileEntry))) {
1285 			make_bad_inode(inode);
1286 			return;
1287 		}
1288 		memcpy(iinfo->i_ext.i_data,
1289 		       bh->b_data + sizeof(struct extendedFileEntry),
1290 		       inode->i_sb->s_blocksize -
1291 					sizeof(struct extendedFileEntry));
1292 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1293 		iinfo->i_efe = 0;
1294 		iinfo->i_use = 0;
1295 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1296 						sizeof(struct fileEntry))) {
1297 			make_bad_inode(inode);
1298 			return;
1299 		}
1300 		memcpy(iinfo->i_ext.i_data,
1301 		       bh->b_data + sizeof(struct fileEntry),
1302 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1303 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1304 		iinfo->i_efe = 0;
1305 		iinfo->i_use = 1;
1306 		iinfo->i_lenAlloc = le32_to_cpu(
1307 				((struct unallocSpaceEntry *)bh->b_data)->
1308 				 lengthAllocDescs);
1309 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1310 					sizeof(struct unallocSpaceEntry))) {
1311 			make_bad_inode(inode);
1312 			return;
1313 		}
1314 		memcpy(iinfo->i_ext.i_data,
1315 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1316 		       inode->i_sb->s_blocksize -
1317 					sizeof(struct unallocSpaceEntry));
1318 		return;
1319 	}
1320 
1321 	read_lock(&sbi->s_cred_lock);
1322 	inode->i_uid = le32_to_cpu(fe->uid);
1323 	if (inode->i_uid == -1 ||
1324 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1325 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1326 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1327 
1328 	inode->i_gid = le32_to_cpu(fe->gid);
1329 	if (inode->i_gid == -1 ||
1330 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1331 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1332 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1333 
1334 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1335 			sbi->s_fmode != UDF_INVALID_MODE)
1336 		inode->i_mode = sbi->s_fmode;
1337 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1338 			sbi->s_dmode != UDF_INVALID_MODE)
1339 		inode->i_mode = sbi->s_dmode;
1340 	else
1341 		inode->i_mode = udf_convert_permissions(fe);
1342 	inode->i_mode &= ~sbi->s_umask;
1343 	read_unlock(&sbi->s_cred_lock);
1344 
1345 	link_count = le16_to_cpu(fe->fileLinkCount);
1346 	if (!link_count)
1347 		link_count = 1;
1348 	set_nlink(inode, link_count);
1349 
1350 	inode->i_size = le64_to_cpu(fe->informationLength);
1351 	iinfo->i_lenExtents = inode->i_size;
1352 
1353 	if (iinfo->i_efe == 0) {
1354 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1355 			(inode->i_sb->s_blocksize_bits - 9);
1356 
1357 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1358 			inode->i_atime = sbi->s_record_time;
1359 
1360 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1361 					    fe->modificationTime))
1362 			inode->i_mtime = sbi->s_record_time;
1363 
1364 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1365 			inode->i_ctime = sbi->s_record_time;
1366 
1367 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1368 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1369 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1370 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1371 	} else {
1372 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1373 		    (inode->i_sb->s_blocksize_bits - 9);
1374 
1375 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1376 			inode->i_atime = sbi->s_record_time;
1377 
1378 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1379 					    efe->modificationTime))
1380 			inode->i_mtime = sbi->s_record_time;
1381 
1382 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1383 			iinfo->i_crtime = sbi->s_record_time;
1384 
1385 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1386 			inode->i_ctime = sbi->s_record_time;
1387 
1388 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1389 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1390 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1391 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1392 	}
1393 
1394 	switch (fe->icbTag.fileType) {
1395 	case ICBTAG_FILE_TYPE_DIRECTORY:
1396 		inode->i_op = &udf_dir_inode_operations;
1397 		inode->i_fop = &udf_dir_operations;
1398 		inode->i_mode |= S_IFDIR;
1399 		inc_nlink(inode);
1400 		break;
1401 	case ICBTAG_FILE_TYPE_REALTIME:
1402 	case ICBTAG_FILE_TYPE_REGULAR:
1403 	case ICBTAG_FILE_TYPE_UNDEF:
1404 	case ICBTAG_FILE_TYPE_VAT20:
1405 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1406 			inode->i_data.a_ops = &udf_adinicb_aops;
1407 		else
1408 			inode->i_data.a_ops = &udf_aops;
1409 		inode->i_op = &udf_file_inode_operations;
1410 		inode->i_fop = &udf_file_operations;
1411 		inode->i_mode |= S_IFREG;
1412 		break;
1413 	case ICBTAG_FILE_TYPE_BLOCK:
1414 		inode->i_mode |= S_IFBLK;
1415 		break;
1416 	case ICBTAG_FILE_TYPE_CHAR:
1417 		inode->i_mode |= S_IFCHR;
1418 		break;
1419 	case ICBTAG_FILE_TYPE_FIFO:
1420 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1421 		break;
1422 	case ICBTAG_FILE_TYPE_SOCKET:
1423 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1424 		break;
1425 	case ICBTAG_FILE_TYPE_SYMLINK:
1426 		inode->i_data.a_ops = &udf_symlink_aops;
1427 		inode->i_op = &udf_symlink_inode_operations;
1428 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1429 		break;
1430 	case ICBTAG_FILE_TYPE_MAIN:
1431 		udf_debug("METADATA FILE-----\n");
1432 		break;
1433 	case ICBTAG_FILE_TYPE_MIRROR:
1434 		udf_debug("METADATA MIRROR FILE-----\n");
1435 		break;
1436 	case ICBTAG_FILE_TYPE_BITMAP:
1437 		udf_debug("METADATA BITMAP FILE-----\n");
1438 		break;
1439 	default:
1440 		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1441 			inode->i_ino, fe->icbTag.fileType);
1442 		make_bad_inode(inode);
1443 		return;
1444 	}
1445 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1446 		struct deviceSpec *dsea =
1447 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1448 		if (dsea) {
1449 			init_special_inode(inode, inode->i_mode,
1450 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1451 				      le32_to_cpu(dsea->minorDeviceIdent)));
1452 			/* Developer ID ??? */
1453 		} else
1454 			make_bad_inode(inode);
1455 	}
1456 }
1457 
1458 static int udf_alloc_i_data(struct inode *inode, size_t size)
1459 {
1460 	struct udf_inode_info *iinfo = UDF_I(inode);
1461 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1462 
1463 	if (!iinfo->i_ext.i_data) {
1464 		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1465 			inode->i_ino);
1466 		return -ENOMEM;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static umode_t udf_convert_permissions(struct fileEntry *fe)
1473 {
1474 	umode_t mode;
1475 	uint32_t permissions;
1476 	uint32_t flags;
1477 
1478 	permissions = le32_to_cpu(fe->permissions);
1479 	flags = le16_to_cpu(fe->icbTag.flags);
1480 
1481 	mode =	((permissions) & S_IRWXO) |
1482 		((permissions >> 2) & S_IRWXG) |
1483 		((permissions >> 4) & S_IRWXU) |
1484 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1485 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1486 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1487 
1488 	return mode;
1489 }
1490 
1491 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1492 {
1493 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1494 }
1495 
1496 static int udf_sync_inode(struct inode *inode)
1497 {
1498 	return udf_update_inode(inode, 1);
1499 }
1500 
1501 static int udf_update_inode(struct inode *inode, int do_sync)
1502 {
1503 	struct buffer_head *bh = NULL;
1504 	struct fileEntry *fe;
1505 	struct extendedFileEntry *efe;
1506 	uint64_t lb_recorded;
1507 	uint32_t udfperms;
1508 	uint16_t icbflags;
1509 	uint16_t crclen;
1510 	int err = 0;
1511 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1512 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1513 	struct udf_inode_info *iinfo = UDF_I(inode);
1514 
1515 	bh = udf_tgetblk(inode->i_sb,
1516 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1517 	if (!bh) {
1518 		udf_debug("getblk failure\n");
1519 		return -ENOMEM;
1520 	}
1521 
1522 	lock_buffer(bh);
1523 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1524 	fe = (struct fileEntry *)bh->b_data;
1525 	efe = (struct extendedFileEntry *)bh->b_data;
1526 
1527 	if (iinfo->i_use) {
1528 		struct unallocSpaceEntry *use =
1529 			(struct unallocSpaceEntry *)bh->b_data;
1530 
1531 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1532 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1533 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1534 					sizeof(struct unallocSpaceEntry));
1535 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1536 		use->descTag.tagLocation =
1537 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1538 		crclen = sizeof(struct unallocSpaceEntry) +
1539 				iinfo->i_lenAlloc - sizeof(struct tag);
1540 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1541 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1542 							   sizeof(struct tag),
1543 							   crclen));
1544 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1545 
1546 		goto out;
1547 	}
1548 
1549 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1550 		fe->uid = cpu_to_le32(-1);
1551 	else
1552 		fe->uid = cpu_to_le32(inode->i_uid);
1553 
1554 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1555 		fe->gid = cpu_to_le32(-1);
1556 	else
1557 		fe->gid = cpu_to_le32(inode->i_gid);
1558 
1559 	udfperms = ((inode->i_mode & S_IRWXO)) |
1560 		   ((inode->i_mode & S_IRWXG) << 2) |
1561 		   ((inode->i_mode & S_IRWXU) << 4);
1562 
1563 	udfperms |= (le32_to_cpu(fe->permissions) &
1564 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1565 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1566 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1567 	fe->permissions = cpu_to_le32(udfperms);
1568 
1569 	if (S_ISDIR(inode->i_mode))
1570 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1571 	else
1572 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1573 
1574 	fe->informationLength = cpu_to_le64(inode->i_size);
1575 
1576 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1577 		struct regid *eid;
1578 		struct deviceSpec *dsea =
1579 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1580 		if (!dsea) {
1581 			dsea = (struct deviceSpec *)
1582 				udf_add_extendedattr(inode,
1583 						     sizeof(struct deviceSpec) +
1584 						     sizeof(struct regid), 12, 0x3);
1585 			dsea->attrType = cpu_to_le32(12);
1586 			dsea->attrSubtype = 1;
1587 			dsea->attrLength = cpu_to_le32(
1588 						sizeof(struct deviceSpec) +
1589 						sizeof(struct regid));
1590 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1591 		}
1592 		eid = (struct regid *)dsea->impUse;
1593 		memset(eid, 0, sizeof(struct regid));
1594 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1595 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1596 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1597 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1598 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1599 	}
1600 
1601 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1602 		lb_recorded = 0; /* No extents => no blocks! */
1603 	else
1604 		lb_recorded =
1605 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1606 			(blocksize_bits - 9);
1607 
1608 	if (iinfo->i_efe == 0) {
1609 		memcpy(bh->b_data + sizeof(struct fileEntry),
1610 		       iinfo->i_ext.i_data,
1611 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1612 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1613 
1614 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1615 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1616 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1617 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1618 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1619 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1620 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1621 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1622 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1623 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1624 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1625 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1626 		crclen = sizeof(struct fileEntry);
1627 	} else {
1628 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1629 		       iinfo->i_ext.i_data,
1630 		       inode->i_sb->s_blocksize -
1631 					sizeof(struct extendedFileEntry));
1632 		efe->objectSize = cpu_to_le64(inode->i_size);
1633 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1634 
1635 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1636 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1637 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1638 			iinfo->i_crtime = inode->i_atime;
1639 
1640 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1641 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1642 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1643 			iinfo->i_crtime = inode->i_mtime;
1644 
1645 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1646 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1647 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1648 			iinfo->i_crtime = inode->i_ctime;
1649 
1650 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1651 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1652 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1653 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1654 
1655 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1656 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1657 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1658 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1659 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1660 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1661 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1662 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1663 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1664 		crclen = sizeof(struct extendedFileEntry);
1665 	}
1666 	if (iinfo->i_strat4096) {
1667 		fe->icbTag.strategyType = cpu_to_le16(4096);
1668 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1669 		fe->icbTag.numEntries = cpu_to_le16(2);
1670 	} else {
1671 		fe->icbTag.strategyType = cpu_to_le16(4);
1672 		fe->icbTag.numEntries = cpu_to_le16(1);
1673 	}
1674 
1675 	if (S_ISDIR(inode->i_mode))
1676 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1677 	else if (S_ISREG(inode->i_mode))
1678 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1679 	else if (S_ISLNK(inode->i_mode))
1680 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1681 	else if (S_ISBLK(inode->i_mode))
1682 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1683 	else if (S_ISCHR(inode->i_mode))
1684 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1685 	else if (S_ISFIFO(inode->i_mode))
1686 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1687 	else if (S_ISSOCK(inode->i_mode))
1688 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1689 
1690 	icbflags =	iinfo->i_alloc_type |
1691 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1692 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1693 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1694 			(le16_to_cpu(fe->icbTag.flags) &
1695 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1696 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1697 
1698 	fe->icbTag.flags = cpu_to_le16(icbflags);
1699 	if (sbi->s_udfrev >= 0x0200)
1700 		fe->descTag.descVersion = cpu_to_le16(3);
1701 	else
1702 		fe->descTag.descVersion = cpu_to_le16(2);
1703 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1704 	fe->descTag.tagLocation = cpu_to_le32(
1705 					iinfo->i_location.logicalBlockNum);
1706 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1707 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1708 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1709 						  crclen));
1710 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1711 
1712 out:
1713 	set_buffer_uptodate(bh);
1714 	unlock_buffer(bh);
1715 
1716 	/* write the data blocks */
1717 	mark_buffer_dirty(bh);
1718 	if (do_sync) {
1719 		sync_dirty_buffer(bh);
1720 		if (buffer_write_io_error(bh)) {
1721 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1722 				 inode->i_ino);
1723 			err = -EIO;
1724 		}
1725 	}
1726 	brelse(bh);
1727 
1728 	return err;
1729 }
1730 
1731 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1732 {
1733 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1734 	struct inode *inode = iget_locked(sb, block);
1735 
1736 	if (!inode)
1737 		return NULL;
1738 
1739 	if (inode->i_state & I_NEW) {
1740 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1741 		__udf_read_inode(inode);
1742 		unlock_new_inode(inode);
1743 	}
1744 
1745 	if (is_bad_inode(inode))
1746 		goto out_iput;
1747 
1748 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1749 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1750 		udf_debug("block=%d, partition=%d out of range\n",
1751 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1752 		make_bad_inode(inode);
1753 		goto out_iput;
1754 	}
1755 
1756 	return inode;
1757 
1758  out_iput:
1759 	iput(inode);
1760 	return NULL;
1761 }
1762 
1763 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1764 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1765 {
1766 	int adsize;
1767 	struct short_ad *sad = NULL;
1768 	struct long_ad *lad = NULL;
1769 	struct allocExtDesc *aed;
1770 	uint8_t *ptr;
1771 	struct udf_inode_info *iinfo = UDF_I(inode);
1772 
1773 	if (!epos->bh)
1774 		ptr = iinfo->i_ext.i_data + epos->offset -
1775 			udf_file_entry_alloc_offset(inode) +
1776 			iinfo->i_lenEAttr;
1777 	else
1778 		ptr = epos->bh->b_data + epos->offset;
1779 
1780 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1781 		adsize = sizeof(struct short_ad);
1782 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1783 		adsize = sizeof(struct long_ad);
1784 	else
1785 		return -EIO;
1786 
1787 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1788 		unsigned char *sptr, *dptr;
1789 		struct buffer_head *nbh;
1790 		int err, loffset;
1791 		struct kernel_lb_addr obloc = epos->block;
1792 
1793 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1794 						obloc.partitionReferenceNum,
1795 						obloc.logicalBlockNum, &err);
1796 		if (!epos->block.logicalBlockNum)
1797 			return -ENOSPC;
1798 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1799 								 &epos->block,
1800 								 0));
1801 		if (!nbh)
1802 			return -EIO;
1803 		lock_buffer(nbh);
1804 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1805 		set_buffer_uptodate(nbh);
1806 		unlock_buffer(nbh);
1807 		mark_buffer_dirty_inode(nbh, inode);
1808 
1809 		aed = (struct allocExtDesc *)(nbh->b_data);
1810 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1811 			aed->previousAllocExtLocation =
1812 					cpu_to_le32(obloc.logicalBlockNum);
1813 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1814 			loffset = epos->offset;
1815 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1816 			sptr = ptr - adsize;
1817 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1818 			memcpy(dptr, sptr, adsize);
1819 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1820 		} else {
1821 			loffset = epos->offset + adsize;
1822 			aed->lengthAllocDescs = cpu_to_le32(0);
1823 			sptr = ptr;
1824 			epos->offset = sizeof(struct allocExtDesc);
1825 
1826 			if (epos->bh) {
1827 				aed = (struct allocExtDesc *)epos->bh->b_data;
1828 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1829 			} else {
1830 				iinfo->i_lenAlloc += adsize;
1831 				mark_inode_dirty(inode);
1832 			}
1833 		}
1834 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1835 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1836 				    epos->block.logicalBlockNum, sizeof(struct tag));
1837 		else
1838 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1839 				    epos->block.logicalBlockNum, sizeof(struct tag));
1840 		switch (iinfo->i_alloc_type) {
1841 		case ICBTAG_FLAG_AD_SHORT:
1842 			sad = (struct short_ad *)sptr;
1843 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1844 						     inode->i_sb->s_blocksize);
1845 			sad->extPosition =
1846 				cpu_to_le32(epos->block.logicalBlockNum);
1847 			break;
1848 		case ICBTAG_FLAG_AD_LONG:
1849 			lad = (struct long_ad *)sptr;
1850 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1851 						     inode->i_sb->s_blocksize);
1852 			lad->extLocation = cpu_to_lelb(epos->block);
1853 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1854 			break;
1855 		}
1856 		if (epos->bh) {
1857 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1858 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1859 				udf_update_tag(epos->bh->b_data, loffset);
1860 			else
1861 				udf_update_tag(epos->bh->b_data,
1862 						sizeof(struct allocExtDesc));
1863 			mark_buffer_dirty_inode(epos->bh, inode);
1864 			brelse(epos->bh);
1865 		} else {
1866 			mark_inode_dirty(inode);
1867 		}
1868 		epos->bh = nbh;
1869 	}
1870 
1871 	udf_write_aext(inode, epos, eloc, elen, inc);
1872 
1873 	if (!epos->bh) {
1874 		iinfo->i_lenAlloc += adsize;
1875 		mark_inode_dirty(inode);
1876 	} else {
1877 		aed = (struct allocExtDesc *)epos->bh->b_data;
1878 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1879 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1880 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1881 			udf_update_tag(epos->bh->b_data,
1882 					epos->offset + (inc ? 0 : adsize));
1883 		else
1884 			udf_update_tag(epos->bh->b_data,
1885 					sizeof(struct allocExtDesc));
1886 		mark_buffer_dirty_inode(epos->bh, inode);
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1893 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1894 {
1895 	int adsize;
1896 	uint8_t *ptr;
1897 	struct short_ad *sad;
1898 	struct long_ad *lad;
1899 	struct udf_inode_info *iinfo = UDF_I(inode);
1900 
1901 	if (!epos->bh)
1902 		ptr = iinfo->i_ext.i_data + epos->offset -
1903 			udf_file_entry_alloc_offset(inode) +
1904 			iinfo->i_lenEAttr;
1905 	else
1906 		ptr = epos->bh->b_data + epos->offset;
1907 
1908 	switch (iinfo->i_alloc_type) {
1909 	case ICBTAG_FLAG_AD_SHORT:
1910 		sad = (struct short_ad *)ptr;
1911 		sad->extLength = cpu_to_le32(elen);
1912 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1913 		adsize = sizeof(struct short_ad);
1914 		break;
1915 	case ICBTAG_FLAG_AD_LONG:
1916 		lad = (struct long_ad *)ptr;
1917 		lad->extLength = cpu_to_le32(elen);
1918 		lad->extLocation = cpu_to_lelb(*eloc);
1919 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1920 		adsize = sizeof(struct long_ad);
1921 		break;
1922 	default:
1923 		return;
1924 	}
1925 
1926 	if (epos->bh) {
1927 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1928 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1929 			struct allocExtDesc *aed =
1930 				(struct allocExtDesc *)epos->bh->b_data;
1931 			udf_update_tag(epos->bh->b_data,
1932 				       le32_to_cpu(aed->lengthAllocDescs) +
1933 				       sizeof(struct allocExtDesc));
1934 		}
1935 		mark_buffer_dirty_inode(epos->bh, inode);
1936 	} else {
1937 		mark_inode_dirty(inode);
1938 	}
1939 
1940 	if (inc)
1941 		epos->offset += adsize;
1942 }
1943 
1944 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1945 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1946 {
1947 	int8_t etype;
1948 
1949 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1950 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1951 		int block;
1952 		epos->block = *eloc;
1953 		epos->offset = sizeof(struct allocExtDesc);
1954 		brelse(epos->bh);
1955 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1956 		epos->bh = udf_tread(inode->i_sb, block);
1957 		if (!epos->bh) {
1958 			udf_debug("reading block %d failed!\n", block);
1959 			return -1;
1960 		}
1961 	}
1962 
1963 	return etype;
1964 }
1965 
1966 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1967 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1968 {
1969 	int alen;
1970 	int8_t etype;
1971 	uint8_t *ptr;
1972 	struct short_ad *sad;
1973 	struct long_ad *lad;
1974 	struct udf_inode_info *iinfo = UDF_I(inode);
1975 
1976 	if (!epos->bh) {
1977 		if (!epos->offset)
1978 			epos->offset = udf_file_entry_alloc_offset(inode);
1979 		ptr = iinfo->i_ext.i_data + epos->offset -
1980 			udf_file_entry_alloc_offset(inode) +
1981 			iinfo->i_lenEAttr;
1982 		alen = udf_file_entry_alloc_offset(inode) +
1983 							iinfo->i_lenAlloc;
1984 	} else {
1985 		if (!epos->offset)
1986 			epos->offset = sizeof(struct allocExtDesc);
1987 		ptr = epos->bh->b_data + epos->offset;
1988 		alen = sizeof(struct allocExtDesc) +
1989 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1990 							lengthAllocDescs);
1991 	}
1992 
1993 	switch (iinfo->i_alloc_type) {
1994 	case ICBTAG_FLAG_AD_SHORT:
1995 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1996 		if (!sad)
1997 			return -1;
1998 		etype = le32_to_cpu(sad->extLength) >> 30;
1999 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2000 		eloc->partitionReferenceNum =
2001 				iinfo->i_location.partitionReferenceNum;
2002 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2003 		break;
2004 	case ICBTAG_FLAG_AD_LONG:
2005 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2006 		if (!lad)
2007 			return -1;
2008 		etype = le32_to_cpu(lad->extLength) >> 30;
2009 		*eloc = lelb_to_cpu(lad->extLocation);
2010 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2011 		break;
2012 	default:
2013 		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2014 		return -1;
2015 	}
2016 
2017 	return etype;
2018 }
2019 
2020 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2021 			      struct kernel_lb_addr neloc, uint32_t nelen)
2022 {
2023 	struct kernel_lb_addr oeloc;
2024 	uint32_t oelen;
2025 	int8_t etype;
2026 
2027 	if (epos.bh)
2028 		get_bh(epos.bh);
2029 
2030 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2031 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2032 		neloc = oeloc;
2033 		nelen = (etype << 30) | oelen;
2034 	}
2035 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2036 	brelse(epos.bh);
2037 
2038 	return (nelen >> 30);
2039 }
2040 
2041 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2042 		       struct kernel_lb_addr eloc, uint32_t elen)
2043 {
2044 	struct extent_position oepos;
2045 	int adsize;
2046 	int8_t etype;
2047 	struct allocExtDesc *aed;
2048 	struct udf_inode_info *iinfo;
2049 
2050 	if (epos.bh) {
2051 		get_bh(epos.bh);
2052 		get_bh(epos.bh);
2053 	}
2054 
2055 	iinfo = UDF_I(inode);
2056 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057 		adsize = sizeof(struct short_ad);
2058 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059 		adsize = sizeof(struct long_ad);
2060 	else
2061 		adsize = 0;
2062 
2063 	oepos = epos;
2064 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2065 		return -1;
2066 
2067 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2068 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2069 		if (oepos.bh != epos.bh) {
2070 			oepos.block = epos.block;
2071 			brelse(oepos.bh);
2072 			get_bh(epos.bh);
2073 			oepos.bh = epos.bh;
2074 			oepos.offset = epos.offset - adsize;
2075 		}
2076 	}
2077 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2078 	elen = 0;
2079 
2080 	if (epos.bh != oepos.bh) {
2081 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2082 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2083 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2084 		if (!oepos.bh) {
2085 			iinfo->i_lenAlloc -= (adsize * 2);
2086 			mark_inode_dirty(inode);
2087 		} else {
2088 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2089 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2090 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2091 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2092 				udf_update_tag(oepos.bh->b_data,
2093 						oepos.offset - (2 * adsize));
2094 			else
2095 				udf_update_tag(oepos.bh->b_data,
2096 						sizeof(struct allocExtDesc));
2097 			mark_buffer_dirty_inode(oepos.bh, inode);
2098 		}
2099 	} else {
2100 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2101 		if (!oepos.bh) {
2102 			iinfo->i_lenAlloc -= adsize;
2103 			mark_inode_dirty(inode);
2104 		} else {
2105 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2106 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2107 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2108 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2109 				udf_update_tag(oepos.bh->b_data,
2110 						epos.offset - adsize);
2111 			else
2112 				udf_update_tag(oepos.bh->b_data,
2113 						sizeof(struct allocExtDesc));
2114 			mark_buffer_dirty_inode(oepos.bh, inode);
2115 		}
2116 	}
2117 
2118 	brelse(epos.bh);
2119 	brelse(oepos.bh);
2120 
2121 	return (elen >> 30);
2122 }
2123 
2124 int8_t inode_bmap(struct inode *inode, sector_t block,
2125 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2126 		  uint32_t *elen, sector_t *offset)
2127 {
2128 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2129 	loff_t lbcount = 0, bcount =
2130 	    (loff_t) block << blocksize_bits;
2131 	int8_t etype;
2132 	struct udf_inode_info *iinfo;
2133 
2134 	iinfo = UDF_I(inode);
2135 	pos->offset = 0;
2136 	pos->block = iinfo->i_location;
2137 	pos->bh = NULL;
2138 	*elen = 0;
2139 
2140 	do {
2141 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2142 		if (etype == -1) {
2143 			*offset = (bcount - lbcount) >> blocksize_bits;
2144 			iinfo->i_lenExtents = lbcount;
2145 			return -1;
2146 		}
2147 		lbcount += *elen;
2148 	} while (lbcount <= bcount);
2149 
2150 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2151 
2152 	return etype;
2153 }
2154 
2155 long udf_block_map(struct inode *inode, sector_t block)
2156 {
2157 	struct kernel_lb_addr eloc;
2158 	uint32_t elen;
2159 	sector_t offset;
2160 	struct extent_position epos = {};
2161 	int ret;
2162 
2163 	down_read(&UDF_I(inode)->i_data_sem);
2164 
2165 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2166 						(EXT_RECORDED_ALLOCATED >> 30))
2167 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2168 	else
2169 		ret = 0;
2170 
2171 	up_read(&UDF_I(inode)->i_data_sem);
2172 	brelse(epos.bh);
2173 
2174 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2175 		return udf_fixed_to_variable(ret);
2176 	else
2177 		return ret;
2178 }
2179