1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 41 #include "udf_i.h" 42 #include "udf_sb.h" 43 44 MODULE_AUTHOR("Ben Fennema"); 45 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 46 MODULE_LICENSE("GPL"); 47 48 #define EXTENT_MERGE_SIZE 5 49 50 static mode_t udf_convert_permissions(struct fileEntry *); 51 static int udf_update_inode(struct inode *, int); 52 static void udf_fill_inode(struct inode *, struct buffer_head *); 53 static int udf_alloc_i_data(struct inode *inode, size_t size); 54 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 55 sector_t *, int *); 56 static int8_t udf_insert_aext(struct inode *, struct extent_position, 57 kernel_lb_addr, uint32_t); 58 static void udf_split_extents(struct inode *, int *, int, int, 59 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 60 static void udf_prealloc_extents(struct inode *, int, int, 61 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_merge_extents(struct inode *, 63 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_update_extents(struct inode *, 65 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 66 struct extent_position *); 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 68 69 /* 70 * udf_delete_inode 71 * 72 * PURPOSE 73 * Clean-up before the specified inode is destroyed. 74 * 75 * DESCRIPTION 76 * This routine is called when the kernel destroys an inode structure 77 * ie. when iput() finds i_count == 0. 78 * 79 * HISTORY 80 * July 1, 1997 - Andrew E. Mileski 81 * Written, tested, and released. 82 * 83 * Called at the last iput() if i_nlink is zero. 84 */ 85 void udf_delete_inode(struct inode *inode) 86 { 87 truncate_inode_pages(&inode->i_data, 0); 88 89 if (is_bad_inode(inode)) 90 goto no_delete; 91 92 inode->i_size = 0; 93 udf_truncate(inode); 94 lock_kernel(); 95 96 udf_update_inode(inode, IS_SYNC(inode)); 97 udf_free_inode(inode); 98 99 unlock_kernel(); 100 return; 101 102 no_delete: 103 clear_inode(inode); 104 } 105 106 /* 107 * If we are going to release inode from memory, we discard preallocation and 108 * truncate last inode extent to proper length. We could use drop_inode() but 109 * it's called under inode_lock and thus we cannot mark inode dirty there. We 110 * use clear_inode() but we have to make sure to write inode as it's not written 111 * automatically. 112 */ 113 void udf_clear_inode(struct inode *inode) 114 { 115 struct udf_inode_info *iinfo; 116 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 117 lock_kernel(); 118 /* Discard preallocation for directories, symlinks, etc. */ 119 udf_discard_prealloc(inode); 120 udf_truncate_tail_extent(inode); 121 unlock_kernel(); 122 write_inode_now(inode, 0); 123 } 124 iinfo = UDF_I(inode); 125 kfree(iinfo->i_ext.i_data); 126 iinfo->i_ext.i_data = NULL; 127 } 128 129 static int udf_writepage(struct page *page, struct writeback_control *wbc) 130 { 131 return block_write_full_page(page, udf_get_block, wbc); 132 } 133 134 static int udf_readpage(struct file *file, struct page *page) 135 { 136 return block_read_full_page(page, udf_get_block); 137 } 138 139 static int udf_write_begin(struct file *file, struct address_space *mapping, 140 loff_t pos, unsigned len, unsigned flags, 141 struct page **pagep, void **fsdata) 142 { 143 *pagep = NULL; 144 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 145 udf_get_block); 146 } 147 148 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 149 { 150 return generic_block_bmap(mapping, block, udf_get_block); 151 } 152 153 const struct address_space_operations udf_aops = { 154 .readpage = udf_readpage, 155 .writepage = udf_writepage, 156 .sync_page = block_sync_page, 157 .write_begin = udf_write_begin, 158 .write_end = generic_write_end, 159 .bmap = udf_bmap, 160 }; 161 162 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 163 { 164 struct page *page; 165 char *kaddr; 166 struct udf_inode_info *iinfo = UDF_I(inode); 167 struct writeback_control udf_wbc = { 168 .sync_mode = WB_SYNC_NONE, 169 .nr_to_write = 1, 170 }; 171 172 /* from now on we have normal address_space methods */ 173 inode->i_data.a_ops = &udf_aops; 174 175 if (!iinfo->i_lenAlloc) { 176 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 177 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 178 else 179 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 180 mark_inode_dirty(inode); 181 return; 182 } 183 184 page = grab_cache_page(inode->i_mapping, 0); 185 BUG_ON(!PageLocked(page)); 186 187 if (!PageUptodate(page)) { 188 kaddr = kmap(page); 189 memset(kaddr + iinfo->i_lenAlloc, 0x00, 190 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 191 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 192 iinfo->i_lenAlloc); 193 flush_dcache_page(page); 194 SetPageUptodate(page); 195 kunmap(page); 196 } 197 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 198 iinfo->i_lenAlloc); 199 iinfo->i_lenAlloc = 0; 200 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 201 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 202 else 203 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 204 205 inode->i_data.a_ops->writepage(page, &udf_wbc); 206 page_cache_release(page); 207 208 mark_inode_dirty(inode); 209 } 210 211 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 212 int *err) 213 { 214 int newblock; 215 struct buffer_head *dbh = NULL; 216 kernel_lb_addr eloc; 217 uint32_t elen; 218 uint8_t alloctype; 219 struct extent_position epos; 220 221 struct udf_fileident_bh sfibh, dfibh; 222 loff_t f_pos = udf_ext0_offset(inode) >> 2; 223 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2; 224 struct fileIdentDesc cfi, *sfi, *dfi; 225 struct udf_inode_info *iinfo = UDF_I(inode); 226 227 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 228 alloctype = ICBTAG_FLAG_AD_SHORT; 229 else 230 alloctype = ICBTAG_FLAG_AD_LONG; 231 232 if (!inode->i_size) { 233 iinfo->i_alloc_type = alloctype; 234 mark_inode_dirty(inode); 235 return NULL; 236 } 237 238 /* alloc block, and copy data to it */ 239 *block = udf_new_block(inode->i_sb, inode, 240 iinfo->i_location.partitionReferenceNum, 241 iinfo->i_location.logicalBlockNum, err); 242 if (!(*block)) 243 return NULL; 244 newblock = udf_get_pblock(inode->i_sb, *block, 245 iinfo->i_location.partitionReferenceNum, 246 0); 247 if (!newblock) 248 return NULL; 249 dbh = udf_tgetblk(inode->i_sb, newblock); 250 if (!dbh) 251 return NULL; 252 lock_buffer(dbh); 253 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 254 set_buffer_uptodate(dbh); 255 unlock_buffer(dbh); 256 mark_buffer_dirty_inode(dbh, inode); 257 258 sfibh.soffset = sfibh.eoffset = 259 (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2; 260 sfibh.sbh = sfibh.ebh = NULL; 261 dfibh.soffset = dfibh.eoffset = 0; 262 dfibh.sbh = dfibh.ebh = dbh; 263 while ((f_pos < size)) { 264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 265 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 266 NULL, NULL, NULL); 267 if (!sfi) { 268 brelse(dbh); 269 return NULL; 270 } 271 iinfo->i_alloc_type = alloctype; 272 sfi->descTag.tagLocation = cpu_to_le32(*block); 273 dfibh.soffset = dfibh.eoffset; 274 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 275 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 276 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 277 sfi->fileIdent + 278 le16_to_cpu(sfi->lengthOfImpUse))) { 279 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 280 brelse(dbh); 281 return NULL; 282 } 283 } 284 mark_buffer_dirty_inode(dbh, inode); 285 286 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 287 iinfo->i_lenAlloc); 288 iinfo->i_lenAlloc = 0; 289 eloc.logicalBlockNum = *block; 290 eloc.partitionReferenceNum = 291 iinfo->i_location.partitionReferenceNum; 292 elen = inode->i_size; 293 iinfo->i_lenExtents = elen; 294 epos.bh = NULL; 295 epos.block = iinfo->i_location; 296 epos.offset = udf_file_entry_alloc_offset(inode); 297 udf_add_aext(inode, &epos, eloc, elen, 0); 298 /* UniqueID stuff */ 299 300 brelse(epos.bh); 301 mark_inode_dirty(inode); 302 return dbh; 303 } 304 305 static int udf_get_block(struct inode *inode, sector_t block, 306 struct buffer_head *bh_result, int create) 307 { 308 int err, new; 309 struct buffer_head *bh; 310 sector_t phys = 0; 311 struct udf_inode_info *iinfo; 312 313 if (!create) { 314 phys = udf_block_map(inode, block); 315 if (phys) 316 map_bh(bh_result, inode->i_sb, phys); 317 return 0; 318 } 319 320 err = -EIO; 321 new = 0; 322 bh = NULL; 323 324 lock_kernel(); 325 326 if (block < 0) 327 goto abort_negative; 328 329 iinfo = UDF_I(inode); 330 if (block == iinfo->i_next_alloc_block + 1) { 331 iinfo->i_next_alloc_block++; 332 iinfo->i_next_alloc_goal++; 333 } 334 335 err = 0; 336 337 bh = inode_getblk(inode, block, &err, &phys, &new); 338 BUG_ON(bh); 339 if (err) 340 goto abort; 341 BUG_ON(!phys); 342 343 if (new) 344 set_buffer_new(bh_result); 345 map_bh(bh_result, inode->i_sb, phys); 346 347 abort: 348 unlock_kernel(); 349 return err; 350 351 abort_negative: 352 udf_warning(inode->i_sb, "udf_get_block", "block < 0"); 353 goto abort; 354 } 355 356 static struct buffer_head *udf_getblk(struct inode *inode, long block, 357 int create, int *err) 358 { 359 struct buffer_head *bh; 360 struct buffer_head dummy; 361 362 dummy.b_state = 0; 363 dummy.b_blocknr = -1000; 364 *err = udf_get_block(inode, block, &dummy, create); 365 if (!*err && buffer_mapped(&dummy)) { 366 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 367 if (buffer_new(&dummy)) { 368 lock_buffer(bh); 369 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 370 set_buffer_uptodate(bh); 371 unlock_buffer(bh); 372 mark_buffer_dirty_inode(bh, inode); 373 } 374 return bh; 375 } 376 377 return NULL; 378 } 379 380 /* Extend the file by 'blocks' blocks, return the number of extents added */ 381 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 382 kernel_long_ad *last_ext, sector_t blocks) 383 { 384 sector_t add; 385 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 386 struct super_block *sb = inode->i_sb; 387 kernel_lb_addr prealloc_loc = {}; 388 int prealloc_len = 0; 389 struct udf_inode_info *iinfo; 390 391 /* The previous extent is fake and we should not extend by anything 392 * - there's nothing to do... */ 393 if (!blocks && fake) 394 return 0; 395 396 iinfo = UDF_I(inode); 397 /* Round the last extent up to a multiple of block size */ 398 if (last_ext->extLength & (sb->s_blocksize - 1)) { 399 last_ext->extLength = 400 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 401 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 402 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 403 iinfo->i_lenExtents = 404 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 405 ~(sb->s_blocksize - 1); 406 } 407 408 /* Last extent are just preallocated blocks? */ 409 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 410 EXT_NOT_RECORDED_ALLOCATED) { 411 /* Save the extent so that we can reattach it to the end */ 412 prealloc_loc = last_ext->extLocation; 413 prealloc_len = last_ext->extLength; 414 /* Mark the extent as a hole */ 415 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 416 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 417 last_ext->extLocation.logicalBlockNum = 0; 418 last_ext->extLocation.partitionReferenceNum = 0; 419 } 420 421 /* Can we merge with the previous extent? */ 422 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 423 EXT_NOT_RECORDED_NOT_ALLOCATED) { 424 add = ((1 << 30) - sb->s_blocksize - 425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 426 sb->s_blocksize_bits; 427 if (add > blocks) 428 add = blocks; 429 blocks -= add; 430 last_ext->extLength += add << sb->s_blocksize_bits; 431 } 432 433 if (fake) { 434 udf_add_aext(inode, last_pos, last_ext->extLocation, 435 last_ext->extLength, 1); 436 count++; 437 } else 438 udf_write_aext(inode, last_pos, last_ext->extLocation, 439 last_ext->extLength, 1); 440 441 /* Managed to do everything necessary? */ 442 if (!blocks) 443 goto out; 444 445 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 446 last_ext->extLocation.logicalBlockNum = 0; 447 last_ext->extLocation.partitionReferenceNum = 0; 448 add = (1 << (30-sb->s_blocksize_bits)) - 1; 449 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 450 (add << sb->s_blocksize_bits); 451 452 /* Create enough extents to cover the whole hole */ 453 while (blocks > add) { 454 blocks -= add; 455 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 456 last_ext->extLength, 1) == -1) 457 return -1; 458 count++; 459 } 460 if (blocks) { 461 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 462 (blocks << sb->s_blocksize_bits); 463 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 464 last_ext->extLength, 1) == -1) 465 return -1; 466 count++; 467 } 468 469 out: 470 /* Do we have some preallocated blocks saved? */ 471 if (prealloc_len) { 472 if (udf_add_aext(inode, last_pos, prealloc_loc, 473 prealloc_len, 1) == -1) 474 return -1; 475 last_ext->extLocation = prealloc_loc; 476 last_ext->extLength = prealloc_len; 477 count++; 478 } 479 480 /* last_pos should point to the last written extent... */ 481 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 482 last_pos->offset -= sizeof(short_ad); 483 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 484 last_pos->offset -= sizeof(long_ad); 485 else 486 return -1; 487 488 return count; 489 } 490 491 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 492 int *err, sector_t *phys, int *new) 493 { 494 static sector_t last_block; 495 struct buffer_head *result = NULL; 496 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 497 struct extent_position prev_epos, cur_epos, next_epos; 498 int count = 0, startnum = 0, endnum = 0; 499 uint32_t elen = 0, tmpelen; 500 kernel_lb_addr eloc, tmpeloc; 501 int c = 1; 502 loff_t lbcount = 0, b_off = 0; 503 uint32_t newblocknum, newblock; 504 sector_t offset = 0; 505 int8_t etype; 506 struct udf_inode_info *iinfo = UDF_I(inode); 507 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 508 int lastblock = 0; 509 510 prev_epos.offset = udf_file_entry_alloc_offset(inode); 511 prev_epos.block = iinfo->i_location; 512 prev_epos.bh = NULL; 513 cur_epos = next_epos = prev_epos; 514 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 515 516 /* find the extent which contains the block we are looking for. 517 alternate between laarr[0] and laarr[1] for locations of the 518 current extent, and the previous extent */ 519 do { 520 if (prev_epos.bh != cur_epos.bh) { 521 brelse(prev_epos.bh); 522 get_bh(cur_epos.bh); 523 prev_epos.bh = cur_epos.bh; 524 } 525 if (cur_epos.bh != next_epos.bh) { 526 brelse(cur_epos.bh); 527 get_bh(next_epos.bh); 528 cur_epos.bh = next_epos.bh; 529 } 530 531 lbcount += elen; 532 533 prev_epos.block = cur_epos.block; 534 cur_epos.block = next_epos.block; 535 536 prev_epos.offset = cur_epos.offset; 537 cur_epos.offset = next_epos.offset; 538 539 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 540 if (etype == -1) 541 break; 542 543 c = !c; 544 545 laarr[c].extLength = (etype << 30) | elen; 546 laarr[c].extLocation = eloc; 547 548 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 549 pgoal = eloc.logicalBlockNum + 550 ((elen + inode->i_sb->s_blocksize - 1) >> 551 inode->i_sb->s_blocksize_bits); 552 553 count++; 554 } while (lbcount + elen <= b_off); 555 556 b_off -= lbcount; 557 offset = b_off >> inode->i_sb->s_blocksize_bits; 558 /* 559 * Move prev_epos and cur_epos into indirect extent if we are at 560 * the pointer to it 561 */ 562 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 563 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 564 565 /* if the extent is allocated and recorded, return the block 566 if the extent is not a multiple of the blocksize, round up */ 567 568 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 569 if (elen & (inode->i_sb->s_blocksize - 1)) { 570 elen = EXT_RECORDED_ALLOCATED | 571 ((elen + inode->i_sb->s_blocksize - 1) & 572 ~(inode->i_sb->s_blocksize - 1)); 573 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 574 } 575 brelse(prev_epos.bh); 576 brelse(cur_epos.bh); 577 brelse(next_epos.bh); 578 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 579 *phys = newblock; 580 return NULL; 581 } 582 583 last_block = block; 584 /* Are we beyond EOF? */ 585 if (etype == -1) { 586 int ret; 587 588 if (count) { 589 if (c) 590 laarr[0] = laarr[1]; 591 startnum = 1; 592 } else { 593 /* Create a fake extent when there's not one */ 594 memset(&laarr[0].extLocation, 0x00, 595 sizeof(kernel_lb_addr)); 596 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 597 /* Will udf_extend_file() create real extent from 598 a fake one? */ 599 startnum = (offset > 0); 600 } 601 /* Create extents for the hole between EOF and offset */ 602 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 603 if (ret == -1) { 604 brelse(prev_epos.bh); 605 brelse(cur_epos.bh); 606 brelse(next_epos.bh); 607 /* We don't really know the error here so we just make 608 * something up */ 609 *err = -ENOSPC; 610 return NULL; 611 } 612 c = 0; 613 offset = 0; 614 count += ret; 615 /* We are not covered by a preallocated extent? */ 616 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 617 EXT_NOT_RECORDED_ALLOCATED) { 618 /* Is there any real extent? - otherwise we overwrite 619 * the fake one... */ 620 if (count) 621 c = !c; 622 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 623 inode->i_sb->s_blocksize; 624 memset(&laarr[c].extLocation, 0x00, 625 sizeof(kernel_lb_addr)); 626 count++; 627 endnum++; 628 } 629 endnum = c + 1; 630 lastblock = 1; 631 } else { 632 endnum = startnum = ((count > 2) ? 2 : count); 633 634 /* if the current extent is in position 0, 635 swap it with the previous */ 636 if (!c && count != 1) { 637 laarr[2] = laarr[0]; 638 laarr[0] = laarr[1]; 639 laarr[1] = laarr[2]; 640 c = 1; 641 } 642 643 /* if the current block is located in an extent, 644 read the next extent */ 645 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 646 if (etype != -1) { 647 laarr[c + 1].extLength = (etype << 30) | elen; 648 laarr[c + 1].extLocation = eloc; 649 count++; 650 startnum++; 651 endnum++; 652 } else 653 lastblock = 1; 654 } 655 656 /* if the current extent is not recorded but allocated, get the 657 * block in the extent corresponding to the requested block */ 658 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 659 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 660 else { /* otherwise, allocate a new block */ 661 if (iinfo->i_next_alloc_block == block) 662 goal = iinfo->i_next_alloc_goal; 663 664 if (!goal) { 665 if (!(goal = pgoal)) /* XXX: what was intended here? */ 666 goal = iinfo->i_location.logicalBlockNum + 1; 667 } 668 669 newblocknum = udf_new_block(inode->i_sb, inode, 670 iinfo->i_location.partitionReferenceNum, 671 goal, err); 672 if (!newblocknum) { 673 brelse(prev_epos.bh); 674 *err = -ENOSPC; 675 return NULL; 676 } 677 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 678 } 679 680 /* if the extent the requsted block is located in contains multiple 681 * blocks, split the extent into at most three extents. blocks prior 682 * to requested block, requested block, and blocks after requested 683 * block */ 684 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 685 686 #ifdef UDF_PREALLOCATE 687 /* preallocate blocks */ 688 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 689 #endif 690 691 /* merge any continuous blocks in laarr */ 692 udf_merge_extents(inode, laarr, &endnum); 693 694 /* write back the new extents, inserting new extents if the new number 695 * of extents is greater than the old number, and deleting extents if 696 * the new number of extents is less than the old number */ 697 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 698 699 brelse(prev_epos.bh); 700 701 newblock = udf_get_pblock(inode->i_sb, newblocknum, 702 iinfo->i_location.partitionReferenceNum, 0); 703 if (!newblock) 704 return NULL; 705 *phys = newblock; 706 *err = 0; 707 *new = 1; 708 iinfo->i_next_alloc_block = block; 709 iinfo->i_next_alloc_goal = newblocknum; 710 inode->i_ctime = current_fs_time(inode->i_sb); 711 712 if (IS_SYNC(inode)) 713 udf_sync_inode(inode); 714 else 715 mark_inode_dirty(inode); 716 717 return result; 718 } 719 720 static void udf_split_extents(struct inode *inode, int *c, int offset, 721 int newblocknum, 722 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 723 int *endnum) 724 { 725 unsigned long blocksize = inode->i_sb->s_blocksize; 726 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 727 728 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 729 (laarr[*c].extLength >> 30) == 730 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 731 int curr = *c; 732 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 733 blocksize - 1) >> blocksize_bits; 734 int8_t etype = (laarr[curr].extLength >> 30); 735 736 if (blen == 1) 737 ; 738 else if (!offset || blen == offset + 1) { 739 laarr[curr + 2] = laarr[curr + 1]; 740 laarr[curr + 1] = laarr[curr]; 741 } else { 742 laarr[curr + 3] = laarr[curr + 1]; 743 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 744 } 745 746 if (offset) { 747 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 748 udf_free_blocks(inode->i_sb, inode, 749 laarr[curr].extLocation, 750 0, offset); 751 laarr[curr].extLength = 752 EXT_NOT_RECORDED_NOT_ALLOCATED | 753 (offset << blocksize_bits); 754 laarr[curr].extLocation.logicalBlockNum = 0; 755 laarr[curr].extLocation. 756 partitionReferenceNum = 0; 757 } else 758 laarr[curr].extLength = (etype << 30) | 759 (offset << blocksize_bits); 760 curr++; 761 (*c)++; 762 (*endnum)++; 763 } 764 765 laarr[curr].extLocation.logicalBlockNum = newblocknum; 766 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 767 laarr[curr].extLocation.partitionReferenceNum = 768 UDF_I(inode)->i_location.partitionReferenceNum; 769 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 770 blocksize; 771 curr++; 772 773 if (blen != offset + 1) { 774 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 775 laarr[curr].extLocation.logicalBlockNum += 776 offset + 1; 777 laarr[curr].extLength = (etype << 30) | 778 ((blen - (offset + 1)) << blocksize_bits); 779 curr++; 780 (*endnum)++; 781 } 782 } 783 } 784 785 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 786 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 787 int *endnum) 788 { 789 int start, length = 0, currlength = 0, i; 790 791 if (*endnum >= (c + 1)) { 792 if (!lastblock) 793 return; 794 else 795 start = c; 796 } else { 797 if ((laarr[c + 1].extLength >> 30) == 798 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 799 start = c + 1; 800 length = currlength = 801 (((laarr[c + 1].extLength & 802 UDF_EXTENT_LENGTH_MASK) + 803 inode->i_sb->s_blocksize - 1) >> 804 inode->i_sb->s_blocksize_bits); 805 } else 806 start = c; 807 } 808 809 for (i = start + 1; i <= *endnum; i++) { 810 if (i == *endnum) { 811 if (lastblock) 812 length += UDF_DEFAULT_PREALLOC_BLOCKS; 813 } else if ((laarr[i].extLength >> 30) == 814 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 815 length += (((laarr[i].extLength & 816 UDF_EXTENT_LENGTH_MASK) + 817 inode->i_sb->s_blocksize - 1) >> 818 inode->i_sb->s_blocksize_bits); 819 } else 820 break; 821 } 822 823 if (length) { 824 int next = laarr[start].extLocation.logicalBlockNum + 825 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 826 inode->i_sb->s_blocksize - 1) >> 827 inode->i_sb->s_blocksize_bits); 828 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 829 laarr[start].extLocation.partitionReferenceNum, 830 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 831 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 832 currlength); 833 if (numalloc) { 834 if (start == (c + 1)) 835 laarr[start].extLength += 836 (numalloc << 837 inode->i_sb->s_blocksize_bits); 838 else { 839 memmove(&laarr[c + 2], &laarr[c + 1], 840 sizeof(long_ad) * (*endnum - (c + 1))); 841 (*endnum)++; 842 laarr[c + 1].extLocation.logicalBlockNum = next; 843 laarr[c + 1].extLocation.partitionReferenceNum = 844 laarr[c].extLocation. 845 partitionReferenceNum; 846 laarr[c + 1].extLength = 847 EXT_NOT_RECORDED_ALLOCATED | 848 (numalloc << 849 inode->i_sb->s_blocksize_bits); 850 start = c + 1; 851 } 852 853 for (i = start + 1; numalloc && i < *endnum; i++) { 854 int elen = ((laarr[i].extLength & 855 UDF_EXTENT_LENGTH_MASK) + 856 inode->i_sb->s_blocksize - 1) >> 857 inode->i_sb->s_blocksize_bits; 858 859 if (elen > numalloc) { 860 laarr[i].extLength -= 861 (numalloc << 862 inode->i_sb->s_blocksize_bits); 863 numalloc = 0; 864 } else { 865 numalloc -= elen; 866 if (*endnum > (i + 1)) 867 memmove(&laarr[i], 868 &laarr[i + 1], 869 sizeof(long_ad) * 870 (*endnum - (i + 1))); 871 i--; 872 (*endnum)--; 873 } 874 } 875 UDF_I(inode)->i_lenExtents += 876 numalloc << inode->i_sb->s_blocksize_bits; 877 } 878 } 879 } 880 881 static void udf_merge_extents(struct inode *inode, 882 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 883 int *endnum) 884 { 885 int i; 886 unsigned long blocksize = inode->i_sb->s_blocksize; 887 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 888 889 for (i = 0; i < (*endnum - 1); i++) { 890 kernel_long_ad *li /*l[i]*/ = &laarr[i]; 891 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 892 893 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 894 (((li->extLength >> 30) == 895 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 896 ((lip1->extLocation.logicalBlockNum - 897 li->extLocation.logicalBlockNum) == 898 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 899 blocksize - 1) >> blocksize_bits)))) { 900 901 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 902 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 903 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 904 lip1->extLength = (lip1->extLength - 905 (li->extLength & 906 UDF_EXTENT_LENGTH_MASK) + 907 UDF_EXTENT_LENGTH_MASK) & 908 ~(blocksize - 1); 909 li->extLength = (li->extLength & 910 UDF_EXTENT_FLAG_MASK) + 911 (UDF_EXTENT_LENGTH_MASK + 1) - 912 blocksize; 913 lip1->extLocation.logicalBlockNum = 914 li->extLocation.logicalBlockNum + 915 ((li->extLength & 916 UDF_EXTENT_LENGTH_MASK) >> 917 blocksize_bits); 918 } else { 919 li->extLength = lip1->extLength + 920 (((li->extLength & 921 UDF_EXTENT_LENGTH_MASK) + 922 blocksize - 1) & ~(blocksize - 1)); 923 if (*endnum > (i + 2)) 924 memmove(&laarr[i + 1], &laarr[i + 2], 925 sizeof(long_ad) * 926 (*endnum - (i + 2))); 927 i--; 928 (*endnum)--; 929 } 930 } else if (((li->extLength >> 30) == 931 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 932 ((lip1->extLength >> 30) == 933 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 934 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0, 935 ((li->extLength & 936 UDF_EXTENT_LENGTH_MASK) + 937 blocksize - 1) >> blocksize_bits); 938 li->extLocation.logicalBlockNum = 0; 939 li->extLocation.partitionReferenceNum = 0; 940 941 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 942 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 943 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 944 lip1->extLength = (lip1->extLength - 945 (li->extLength & 946 UDF_EXTENT_LENGTH_MASK) + 947 UDF_EXTENT_LENGTH_MASK) & 948 ~(blocksize - 1); 949 li->extLength = (li->extLength & 950 UDF_EXTENT_FLAG_MASK) + 951 (UDF_EXTENT_LENGTH_MASK + 1) - 952 blocksize; 953 } else { 954 li->extLength = lip1->extLength + 955 (((li->extLength & 956 UDF_EXTENT_LENGTH_MASK) + 957 blocksize - 1) & ~(blocksize - 1)); 958 if (*endnum > (i + 2)) 959 memmove(&laarr[i + 1], &laarr[i + 2], 960 sizeof(long_ad) * 961 (*endnum - (i + 2))); 962 i--; 963 (*endnum)--; 964 } 965 } else if ((li->extLength >> 30) == 966 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 967 udf_free_blocks(inode->i_sb, inode, 968 li->extLocation, 0, 969 ((li->extLength & 970 UDF_EXTENT_LENGTH_MASK) + 971 blocksize - 1) >> blocksize_bits); 972 li->extLocation.logicalBlockNum = 0; 973 li->extLocation.partitionReferenceNum = 0; 974 li->extLength = (li->extLength & 975 UDF_EXTENT_LENGTH_MASK) | 976 EXT_NOT_RECORDED_NOT_ALLOCATED; 977 } 978 } 979 } 980 981 static void udf_update_extents(struct inode *inode, 982 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 983 int startnum, int endnum, 984 struct extent_position *epos) 985 { 986 int start = 0, i; 987 kernel_lb_addr tmploc; 988 uint32_t tmplen; 989 990 if (startnum > endnum) { 991 for (i = 0; i < (startnum - endnum); i++) 992 udf_delete_aext(inode, *epos, laarr[i].extLocation, 993 laarr[i].extLength); 994 } else if (startnum < endnum) { 995 for (i = 0; i < (endnum - startnum); i++) { 996 udf_insert_aext(inode, *epos, laarr[i].extLocation, 997 laarr[i].extLength); 998 udf_next_aext(inode, epos, &laarr[i].extLocation, 999 &laarr[i].extLength, 1); 1000 start++; 1001 } 1002 } 1003 1004 for (i = start; i < endnum; i++) { 1005 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1006 udf_write_aext(inode, epos, laarr[i].extLocation, 1007 laarr[i].extLength, 1); 1008 } 1009 } 1010 1011 struct buffer_head *udf_bread(struct inode *inode, int block, 1012 int create, int *err) 1013 { 1014 struct buffer_head *bh = NULL; 1015 1016 bh = udf_getblk(inode, block, create, err); 1017 if (!bh) 1018 return NULL; 1019 1020 if (buffer_uptodate(bh)) 1021 return bh; 1022 1023 ll_rw_block(READ, 1, &bh); 1024 1025 wait_on_buffer(bh); 1026 if (buffer_uptodate(bh)) 1027 return bh; 1028 1029 brelse(bh); 1030 *err = -EIO; 1031 return NULL; 1032 } 1033 1034 void udf_truncate(struct inode *inode) 1035 { 1036 int offset; 1037 int err; 1038 struct udf_inode_info *iinfo; 1039 1040 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1041 S_ISLNK(inode->i_mode))) 1042 return; 1043 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1044 return; 1045 1046 lock_kernel(); 1047 iinfo = UDF_I(inode); 1048 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1049 if (inode->i_sb->s_blocksize < 1050 (udf_file_entry_alloc_offset(inode) + 1051 inode->i_size)) { 1052 udf_expand_file_adinicb(inode, inode->i_size, &err); 1053 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1054 inode->i_size = iinfo->i_lenAlloc; 1055 unlock_kernel(); 1056 return; 1057 } else 1058 udf_truncate_extents(inode); 1059 } else { 1060 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1061 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1062 0x00, inode->i_sb->s_blocksize - 1063 offset - udf_file_entry_alloc_offset(inode)); 1064 iinfo->i_lenAlloc = inode->i_size; 1065 } 1066 } else { 1067 block_truncate_page(inode->i_mapping, inode->i_size, 1068 udf_get_block); 1069 udf_truncate_extents(inode); 1070 } 1071 1072 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1073 if (IS_SYNC(inode)) 1074 udf_sync_inode(inode); 1075 else 1076 mark_inode_dirty(inode); 1077 unlock_kernel(); 1078 } 1079 1080 static void __udf_read_inode(struct inode *inode) 1081 { 1082 struct buffer_head *bh = NULL; 1083 struct fileEntry *fe; 1084 uint16_t ident; 1085 struct udf_inode_info *iinfo = UDF_I(inode); 1086 1087 /* 1088 * Set defaults, but the inode is still incomplete! 1089 * Note: get_new_inode() sets the following on a new inode: 1090 * i_sb = sb 1091 * i_no = ino 1092 * i_flags = sb->s_flags 1093 * i_state = 0 1094 * clean_inode(): zero fills and sets 1095 * i_count = 1 1096 * i_nlink = 1 1097 * i_op = NULL; 1098 */ 1099 bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident); 1100 if (!bh) { 1101 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1102 inode->i_ino); 1103 make_bad_inode(inode); 1104 return; 1105 } 1106 1107 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1108 ident != TAG_IDENT_USE) { 1109 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1110 "failed ident=%d\n", inode->i_ino, ident); 1111 brelse(bh); 1112 make_bad_inode(inode); 1113 return; 1114 } 1115 1116 fe = (struct fileEntry *)bh->b_data; 1117 1118 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1119 struct buffer_head *ibh = NULL, *nbh = NULL; 1120 struct indirectEntry *ie; 1121 1122 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1, 1123 &ident); 1124 if (ident == TAG_IDENT_IE) { 1125 if (ibh) { 1126 kernel_lb_addr loc; 1127 ie = (struct indirectEntry *)ibh->b_data; 1128 1129 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1130 1131 if (ie->indirectICB.extLength && 1132 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, 1133 &ident))) { 1134 if (ident == TAG_IDENT_FE || 1135 ident == TAG_IDENT_EFE) { 1136 memcpy(&iinfo->i_location, 1137 &loc, 1138 sizeof(kernel_lb_addr)); 1139 brelse(bh); 1140 brelse(ibh); 1141 brelse(nbh); 1142 __udf_read_inode(inode); 1143 return; 1144 } else { 1145 brelse(nbh); 1146 brelse(ibh); 1147 } 1148 } else { 1149 brelse(ibh); 1150 } 1151 } 1152 } else { 1153 brelse(ibh); 1154 } 1155 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1156 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1157 le16_to_cpu(fe->icbTag.strategyType)); 1158 brelse(bh); 1159 make_bad_inode(inode); 1160 return; 1161 } 1162 udf_fill_inode(inode, bh); 1163 1164 brelse(bh); 1165 } 1166 1167 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1168 { 1169 struct fileEntry *fe; 1170 struct extendedFileEntry *efe; 1171 time_t convtime; 1172 long convtime_usec; 1173 int offset; 1174 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1175 struct udf_inode_info *iinfo = UDF_I(inode); 1176 1177 fe = (struct fileEntry *)bh->b_data; 1178 efe = (struct extendedFileEntry *)bh->b_data; 1179 1180 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1181 iinfo->i_strat4096 = 0; 1182 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1183 iinfo->i_strat4096 = 1; 1184 1185 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1186 ICBTAG_FLAG_AD_MASK; 1187 iinfo->i_unique = 0; 1188 iinfo->i_lenEAttr = 0; 1189 iinfo->i_lenExtents = 0; 1190 iinfo->i_lenAlloc = 0; 1191 iinfo->i_next_alloc_block = 0; 1192 iinfo->i_next_alloc_goal = 0; 1193 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1194 iinfo->i_efe = 1; 1195 iinfo->i_use = 0; 1196 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1197 sizeof(struct extendedFileEntry))) { 1198 make_bad_inode(inode); 1199 return; 1200 } 1201 memcpy(iinfo->i_ext.i_data, 1202 bh->b_data + sizeof(struct extendedFileEntry), 1203 inode->i_sb->s_blocksize - 1204 sizeof(struct extendedFileEntry)); 1205 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1206 iinfo->i_efe = 0; 1207 iinfo->i_use = 0; 1208 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1209 sizeof(struct fileEntry))) { 1210 make_bad_inode(inode); 1211 return; 1212 } 1213 memcpy(iinfo->i_ext.i_data, 1214 bh->b_data + sizeof(struct fileEntry), 1215 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1216 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1217 iinfo->i_efe = 0; 1218 iinfo->i_use = 1; 1219 iinfo->i_lenAlloc = le32_to_cpu( 1220 ((struct unallocSpaceEntry *)bh->b_data)-> 1221 lengthAllocDescs); 1222 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1223 sizeof(struct unallocSpaceEntry))) { 1224 make_bad_inode(inode); 1225 return; 1226 } 1227 memcpy(iinfo->i_ext.i_data, 1228 bh->b_data + sizeof(struct unallocSpaceEntry), 1229 inode->i_sb->s_blocksize - 1230 sizeof(struct unallocSpaceEntry)); 1231 return; 1232 } 1233 1234 inode->i_uid = le32_to_cpu(fe->uid); 1235 if (inode->i_uid == -1 || 1236 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1237 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1238 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1239 1240 inode->i_gid = le32_to_cpu(fe->gid); 1241 if (inode->i_gid == -1 || 1242 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1243 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1244 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1245 1246 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1247 if (!inode->i_nlink) 1248 inode->i_nlink = 1; 1249 1250 inode->i_size = le64_to_cpu(fe->informationLength); 1251 iinfo->i_lenExtents = inode->i_size; 1252 1253 inode->i_mode = udf_convert_permissions(fe); 1254 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1255 1256 if (iinfo->i_efe == 0) { 1257 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1258 (inode->i_sb->s_blocksize_bits - 9); 1259 1260 if (udf_stamp_to_time(&convtime, &convtime_usec, 1261 lets_to_cpu(fe->accessTime))) { 1262 inode->i_atime.tv_sec = convtime; 1263 inode->i_atime.tv_nsec = convtime_usec * 1000; 1264 } else { 1265 inode->i_atime = sbi->s_record_time; 1266 } 1267 1268 if (udf_stamp_to_time(&convtime, &convtime_usec, 1269 lets_to_cpu(fe->modificationTime))) { 1270 inode->i_mtime.tv_sec = convtime; 1271 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1272 } else { 1273 inode->i_mtime = sbi->s_record_time; 1274 } 1275 1276 if (udf_stamp_to_time(&convtime, &convtime_usec, 1277 lets_to_cpu(fe->attrTime))) { 1278 inode->i_ctime.tv_sec = convtime; 1279 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1280 } else { 1281 inode->i_ctime = sbi->s_record_time; 1282 } 1283 1284 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1285 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1286 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1287 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1288 } else { 1289 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1290 (inode->i_sb->s_blocksize_bits - 9); 1291 1292 if (udf_stamp_to_time(&convtime, &convtime_usec, 1293 lets_to_cpu(efe->accessTime))) { 1294 inode->i_atime.tv_sec = convtime; 1295 inode->i_atime.tv_nsec = convtime_usec * 1000; 1296 } else { 1297 inode->i_atime = sbi->s_record_time; 1298 } 1299 1300 if (udf_stamp_to_time(&convtime, &convtime_usec, 1301 lets_to_cpu(efe->modificationTime))) { 1302 inode->i_mtime.tv_sec = convtime; 1303 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1304 } else { 1305 inode->i_mtime = sbi->s_record_time; 1306 } 1307 1308 if (udf_stamp_to_time(&convtime, &convtime_usec, 1309 lets_to_cpu(efe->createTime))) { 1310 iinfo->i_crtime.tv_sec = convtime; 1311 iinfo->i_crtime.tv_nsec = convtime_usec * 1000; 1312 } else { 1313 iinfo->i_crtime = sbi->s_record_time; 1314 } 1315 1316 if (udf_stamp_to_time(&convtime, &convtime_usec, 1317 lets_to_cpu(efe->attrTime))) { 1318 inode->i_ctime.tv_sec = convtime; 1319 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1320 } else { 1321 inode->i_ctime = sbi->s_record_time; 1322 } 1323 1324 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1325 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1326 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1327 offset = sizeof(struct extendedFileEntry) + 1328 iinfo->i_lenEAttr; 1329 } 1330 1331 switch (fe->icbTag.fileType) { 1332 case ICBTAG_FILE_TYPE_DIRECTORY: 1333 inode->i_op = &udf_dir_inode_operations; 1334 inode->i_fop = &udf_dir_operations; 1335 inode->i_mode |= S_IFDIR; 1336 inc_nlink(inode); 1337 break; 1338 case ICBTAG_FILE_TYPE_REALTIME: 1339 case ICBTAG_FILE_TYPE_REGULAR: 1340 case ICBTAG_FILE_TYPE_UNDEF: 1341 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1342 inode->i_data.a_ops = &udf_adinicb_aops; 1343 else 1344 inode->i_data.a_ops = &udf_aops; 1345 inode->i_op = &udf_file_inode_operations; 1346 inode->i_fop = &udf_file_operations; 1347 inode->i_mode |= S_IFREG; 1348 break; 1349 case ICBTAG_FILE_TYPE_BLOCK: 1350 inode->i_mode |= S_IFBLK; 1351 break; 1352 case ICBTAG_FILE_TYPE_CHAR: 1353 inode->i_mode |= S_IFCHR; 1354 break; 1355 case ICBTAG_FILE_TYPE_FIFO: 1356 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1357 break; 1358 case ICBTAG_FILE_TYPE_SOCKET: 1359 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1360 break; 1361 case ICBTAG_FILE_TYPE_SYMLINK: 1362 inode->i_data.a_ops = &udf_symlink_aops; 1363 inode->i_op = &page_symlink_inode_operations; 1364 inode->i_mode = S_IFLNK | S_IRWXUGO; 1365 break; 1366 default: 1367 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1368 "file type=%d\n", inode->i_ino, 1369 fe->icbTag.fileType); 1370 make_bad_inode(inode); 1371 return; 1372 } 1373 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1374 struct deviceSpec *dsea = 1375 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1376 if (dsea) { 1377 init_special_inode(inode, inode->i_mode, 1378 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1379 le32_to_cpu(dsea->minorDeviceIdent))); 1380 /* Developer ID ??? */ 1381 } else 1382 make_bad_inode(inode); 1383 } 1384 } 1385 1386 static int udf_alloc_i_data(struct inode *inode, size_t size) 1387 { 1388 struct udf_inode_info *iinfo = UDF_I(inode); 1389 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1390 1391 if (!iinfo->i_ext.i_data) { 1392 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1393 "no free memory\n", inode->i_ino); 1394 return -ENOMEM; 1395 } 1396 1397 return 0; 1398 } 1399 1400 static mode_t udf_convert_permissions(struct fileEntry *fe) 1401 { 1402 mode_t mode; 1403 uint32_t permissions; 1404 uint32_t flags; 1405 1406 permissions = le32_to_cpu(fe->permissions); 1407 flags = le16_to_cpu(fe->icbTag.flags); 1408 1409 mode = ((permissions) & S_IRWXO) | 1410 ((permissions >> 2) & S_IRWXG) | 1411 ((permissions >> 4) & S_IRWXU) | 1412 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1413 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1414 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1415 1416 return mode; 1417 } 1418 1419 /* 1420 * udf_write_inode 1421 * 1422 * PURPOSE 1423 * Write out the specified inode. 1424 * 1425 * DESCRIPTION 1426 * This routine is called whenever an inode is synced. 1427 * Currently this routine is just a placeholder. 1428 * 1429 * HISTORY 1430 * July 1, 1997 - Andrew E. Mileski 1431 * Written, tested, and released. 1432 */ 1433 1434 int udf_write_inode(struct inode *inode, int sync) 1435 { 1436 int ret; 1437 1438 lock_kernel(); 1439 ret = udf_update_inode(inode, sync); 1440 unlock_kernel(); 1441 1442 return ret; 1443 } 1444 1445 int udf_sync_inode(struct inode *inode) 1446 { 1447 return udf_update_inode(inode, 1); 1448 } 1449 1450 static int udf_update_inode(struct inode *inode, int do_sync) 1451 { 1452 struct buffer_head *bh = NULL; 1453 struct fileEntry *fe; 1454 struct extendedFileEntry *efe; 1455 uint32_t udfperms; 1456 uint16_t icbflags; 1457 uint16_t crclen; 1458 kernel_timestamp cpu_time; 1459 int err = 0; 1460 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1461 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1462 struct udf_inode_info *iinfo = UDF_I(inode); 1463 1464 bh = udf_tread(inode->i_sb, 1465 udf_get_lb_pblock(inode->i_sb, 1466 iinfo->i_location, 0)); 1467 if (!bh) { 1468 udf_debug("bread failure\n"); 1469 return -EIO; 1470 } 1471 1472 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1473 1474 fe = (struct fileEntry *)bh->b_data; 1475 efe = (struct extendedFileEntry *)bh->b_data; 1476 1477 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1478 struct unallocSpaceEntry *use = 1479 (struct unallocSpaceEntry *)bh->b_data; 1480 1481 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1482 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1483 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1484 sizeof(struct unallocSpaceEntry)); 1485 crclen = sizeof(struct unallocSpaceEntry) + 1486 iinfo->i_lenAlloc - sizeof(tag); 1487 use->descTag.tagLocation = cpu_to_le32( 1488 iinfo->i_location. 1489 logicalBlockNum); 1490 use->descTag.descCRCLength = cpu_to_le16(crclen); 1491 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + 1492 sizeof(tag), crclen, 1493 0)); 1494 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1495 1496 mark_buffer_dirty(bh); 1497 brelse(bh); 1498 return err; 1499 } 1500 1501 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1502 fe->uid = cpu_to_le32(-1); 1503 else 1504 fe->uid = cpu_to_le32(inode->i_uid); 1505 1506 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1507 fe->gid = cpu_to_le32(-1); 1508 else 1509 fe->gid = cpu_to_le32(inode->i_gid); 1510 1511 udfperms = ((inode->i_mode & S_IRWXO)) | 1512 ((inode->i_mode & S_IRWXG) << 2) | 1513 ((inode->i_mode & S_IRWXU) << 4); 1514 1515 udfperms |= (le32_to_cpu(fe->permissions) & 1516 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1517 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1518 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1519 fe->permissions = cpu_to_le32(udfperms); 1520 1521 if (S_ISDIR(inode->i_mode)) 1522 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1523 else 1524 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1525 1526 fe->informationLength = cpu_to_le64(inode->i_size); 1527 1528 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1529 regid *eid; 1530 struct deviceSpec *dsea = 1531 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1532 if (!dsea) { 1533 dsea = (struct deviceSpec *) 1534 udf_add_extendedattr(inode, 1535 sizeof(struct deviceSpec) + 1536 sizeof(regid), 12, 0x3); 1537 dsea->attrType = cpu_to_le32(12); 1538 dsea->attrSubtype = 1; 1539 dsea->attrLength = cpu_to_le32( 1540 sizeof(struct deviceSpec) + 1541 sizeof(regid)); 1542 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1543 } 1544 eid = (regid *)dsea->impUse; 1545 memset(eid, 0, sizeof(regid)); 1546 strcpy(eid->ident, UDF_ID_DEVELOPER); 1547 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1548 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1549 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1550 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1551 } 1552 1553 if (iinfo->i_efe == 0) { 1554 memcpy(bh->b_data + sizeof(struct fileEntry), 1555 iinfo->i_ext.i_data, 1556 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1557 fe->logicalBlocksRecorded = cpu_to_le64( 1558 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1559 (blocksize_bits - 9)); 1560 1561 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1562 fe->accessTime = cpu_to_lets(cpu_time); 1563 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1564 fe->modificationTime = cpu_to_lets(cpu_time); 1565 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1566 fe->attrTime = cpu_to_lets(cpu_time); 1567 memset(&(fe->impIdent), 0, sizeof(regid)); 1568 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1569 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1570 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1571 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1572 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1573 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1574 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1575 crclen = sizeof(struct fileEntry); 1576 } else { 1577 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1578 iinfo->i_ext.i_data, 1579 inode->i_sb->s_blocksize - 1580 sizeof(struct extendedFileEntry)); 1581 efe->objectSize = cpu_to_le64(inode->i_size); 1582 efe->logicalBlocksRecorded = cpu_to_le64( 1583 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1584 (blocksize_bits - 9)); 1585 1586 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1587 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1588 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1589 iinfo->i_crtime = inode->i_atime; 1590 1591 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1592 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1593 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1594 iinfo->i_crtime = inode->i_mtime; 1595 1596 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1597 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1598 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1599 iinfo->i_crtime = inode->i_ctime; 1600 1601 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1602 efe->accessTime = cpu_to_lets(cpu_time); 1603 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1604 efe->modificationTime = cpu_to_lets(cpu_time); 1605 if (udf_time_to_stamp(&cpu_time, iinfo->i_crtime)) 1606 efe->createTime = cpu_to_lets(cpu_time); 1607 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1608 efe->attrTime = cpu_to_lets(cpu_time); 1609 1610 memset(&(efe->impIdent), 0, sizeof(regid)); 1611 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1612 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1613 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1614 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1615 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1616 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1617 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1618 crclen = sizeof(struct extendedFileEntry); 1619 } 1620 if (iinfo->i_strat4096) { 1621 fe->icbTag.strategyType = cpu_to_le16(4096); 1622 fe->icbTag.strategyParameter = cpu_to_le16(1); 1623 fe->icbTag.numEntries = cpu_to_le16(2); 1624 } else { 1625 fe->icbTag.strategyType = cpu_to_le16(4); 1626 fe->icbTag.numEntries = cpu_to_le16(1); 1627 } 1628 1629 if (S_ISDIR(inode->i_mode)) 1630 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1631 else if (S_ISREG(inode->i_mode)) 1632 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1633 else if (S_ISLNK(inode->i_mode)) 1634 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1635 else if (S_ISBLK(inode->i_mode)) 1636 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1637 else if (S_ISCHR(inode->i_mode)) 1638 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1639 else if (S_ISFIFO(inode->i_mode)) 1640 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1641 else if (S_ISSOCK(inode->i_mode)) 1642 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1643 1644 icbflags = iinfo->i_alloc_type | 1645 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1646 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1647 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1648 (le16_to_cpu(fe->icbTag.flags) & 1649 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1650 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1651 1652 fe->icbTag.flags = cpu_to_le16(icbflags); 1653 if (sbi->s_udfrev >= 0x0200) 1654 fe->descTag.descVersion = cpu_to_le16(3); 1655 else 1656 fe->descTag.descVersion = cpu_to_le16(2); 1657 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1658 fe->descTag.tagLocation = cpu_to_le32( 1659 iinfo->i_location.logicalBlockNum); 1660 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - 1661 sizeof(tag); 1662 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1663 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), 1664 crclen, 0)); 1665 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1666 1667 /* write the data blocks */ 1668 mark_buffer_dirty(bh); 1669 if (do_sync) { 1670 sync_dirty_buffer(bh); 1671 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1672 printk(KERN_WARNING "IO error syncing udf inode " 1673 "[%s:%08lx]\n", inode->i_sb->s_id, 1674 inode->i_ino); 1675 err = -EIO; 1676 } 1677 } 1678 brelse(bh); 1679 1680 return err; 1681 } 1682 1683 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1684 { 1685 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1686 struct inode *inode = iget_locked(sb, block); 1687 1688 if (!inode) 1689 return NULL; 1690 1691 if (inode->i_state & I_NEW) { 1692 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr)); 1693 __udf_read_inode(inode); 1694 unlock_new_inode(inode); 1695 } 1696 1697 if (is_bad_inode(inode)) 1698 goto out_iput; 1699 1700 if (ino.logicalBlockNum >= UDF_SB(sb)-> 1701 s_partmaps[ino.partitionReferenceNum].s_partition_len) { 1702 udf_debug("block=%d, partition=%d out of range\n", 1703 ino.logicalBlockNum, ino.partitionReferenceNum); 1704 make_bad_inode(inode); 1705 goto out_iput; 1706 } 1707 1708 return inode; 1709 1710 out_iput: 1711 iput(inode); 1712 return NULL; 1713 } 1714 1715 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1716 kernel_lb_addr eloc, uint32_t elen, int inc) 1717 { 1718 int adsize; 1719 short_ad *sad = NULL; 1720 long_ad *lad = NULL; 1721 struct allocExtDesc *aed; 1722 int8_t etype; 1723 uint8_t *ptr; 1724 struct udf_inode_info *iinfo = UDF_I(inode); 1725 1726 if (!epos->bh) 1727 ptr = iinfo->i_ext.i_data + epos->offset - 1728 udf_file_entry_alloc_offset(inode) + 1729 iinfo->i_lenEAttr; 1730 else 1731 ptr = epos->bh->b_data + epos->offset; 1732 1733 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1734 adsize = sizeof(short_ad); 1735 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1736 adsize = sizeof(long_ad); 1737 else 1738 return -1; 1739 1740 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1741 char *sptr, *dptr; 1742 struct buffer_head *nbh; 1743 int err, loffset; 1744 kernel_lb_addr obloc = epos->block; 1745 1746 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1747 obloc.partitionReferenceNum, 1748 obloc.logicalBlockNum, &err); 1749 if (!epos->block.logicalBlockNum) 1750 return -1; 1751 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1752 epos->block, 1753 0)); 1754 if (!nbh) 1755 return -1; 1756 lock_buffer(nbh); 1757 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1758 set_buffer_uptodate(nbh); 1759 unlock_buffer(nbh); 1760 mark_buffer_dirty_inode(nbh, inode); 1761 1762 aed = (struct allocExtDesc *)(nbh->b_data); 1763 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1764 aed->previousAllocExtLocation = 1765 cpu_to_le32(obloc.logicalBlockNum); 1766 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1767 loffset = epos->offset; 1768 aed->lengthAllocDescs = cpu_to_le32(adsize); 1769 sptr = ptr - adsize; 1770 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1771 memcpy(dptr, sptr, adsize); 1772 epos->offset = sizeof(struct allocExtDesc) + adsize; 1773 } else { 1774 loffset = epos->offset + adsize; 1775 aed->lengthAllocDescs = cpu_to_le32(0); 1776 sptr = ptr; 1777 epos->offset = sizeof(struct allocExtDesc); 1778 1779 if (epos->bh) { 1780 aed = (struct allocExtDesc *)epos->bh->b_data; 1781 aed->lengthAllocDescs = 1782 cpu_to_le32(le32_to_cpu( 1783 aed->lengthAllocDescs) + adsize); 1784 } else { 1785 iinfo->i_lenAlloc += adsize; 1786 mark_inode_dirty(inode); 1787 } 1788 } 1789 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1790 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1791 epos->block.logicalBlockNum, sizeof(tag)); 1792 else 1793 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1794 epos->block.logicalBlockNum, sizeof(tag)); 1795 switch (iinfo->i_alloc_type) { 1796 case ICBTAG_FLAG_AD_SHORT: 1797 sad = (short_ad *)sptr; 1798 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1799 inode->i_sb->s_blocksize); 1800 sad->extPosition = 1801 cpu_to_le32(epos->block.logicalBlockNum); 1802 break; 1803 case ICBTAG_FLAG_AD_LONG: 1804 lad = (long_ad *)sptr; 1805 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1806 inode->i_sb->s_blocksize); 1807 lad->extLocation = cpu_to_lelb(epos->block); 1808 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1809 break; 1810 } 1811 if (epos->bh) { 1812 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1813 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1814 udf_update_tag(epos->bh->b_data, loffset); 1815 else 1816 udf_update_tag(epos->bh->b_data, 1817 sizeof(struct allocExtDesc)); 1818 mark_buffer_dirty_inode(epos->bh, inode); 1819 brelse(epos->bh); 1820 } else { 1821 mark_inode_dirty(inode); 1822 } 1823 epos->bh = nbh; 1824 } 1825 1826 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1827 1828 if (!epos->bh) { 1829 iinfo->i_lenAlloc += adsize; 1830 mark_inode_dirty(inode); 1831 } else { 1832 aed = (struct allocExtDesc *)epos->bh->b_data; 1833 aed->lengthAllocDescs = 1834 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + 1835 adsize); 1836 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1837 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1838 udf_update_tag(epos->bh->b_data, 1839 epos->offset + (inc ? 0 : adsize)); 1840 else 1841 udf_update_tag(epos->bh->b_data, 1842 sizeof(struct allocExtDesc)); 1843 mark_buffer_dirty_inode(epos->bh, inode); 1844 } 1845 1846 return etype; 1847 } 1848 1849 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1850 kernel_lb_addr eloc, uint32_t elen, int inc) 1851 { 1852 int adsize; 1853 uint8_t *ptr; 1854 short_ad *sad; 1855 long_ad *lad; 1856 struct udf_inode_info *iinfo = UDF_I(inode); 1857 1858 if (!epos->bh) 1859 ptr = iinfo->i_ext.i_data + epos->offset - 1860 udf_file_entry_alloc_offset(inode) + 1861 iinfo->i_lenEAttr; 1862 else 1863 ptr = epos->bh->b_data + epos->offset; 1864 1865 switch (iinfo->i_alloc_type) { 1866 case ICBTAG_FLAG_AD_SHORT: 1867 sad = (short_ad *)ptr; 1868 sad->extLength = cpu_to_le32(elen); 1869 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1870 adsize = sizeof(short_ad); 1871 break; 1872 case ICBTAG_FLAG_AD_LONG: 1873 lad = (long_ad *)ptr; 1874 lad->extLength = cpu_to_le32(elen); 1875 lad->extLocation = cpu_to_lelb(eloc); 1876 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1877 adsize = sizeof(long_ad); 1878 break; 1879 default: 1880 return -1; 1881 } 1882 1883 if (epos->bh) { 1884 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1885 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1886 struct allocExtDesc *aed = 1887 (struct allocExtDesc *)epos->bh->b_data; 1888 udf_update_tag(epos->bh->b_data, 1889 le32_to_cpu(aed->lengthAllocDescs) + 1890 sizeof(struct allocExtDesc)); 1891 } 1892 mark_buffer_dirty_inode(epos->bh, inode); 1893 } else { 1894 mark_inode_dirty(inode); 1895 } 1896 1897 if (inc) 1898 epos->offset += adsize; 1899 1900 return (elen >> 30); 1901 } 1902 1903 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1904 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1905 { 1906 int8_t etype; 1907 1908 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1909 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1910 int block; 1911 epos->block = *eloc; 1912 epos->offset = sizeof(struct allocExtDesc); 1913 brelse(epos->bh); 1914 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0); 1915 epos->bh = udf_tread(inode->i_sb, block); 1916 if (!epos->bh) { 1917 udf_debug("reading block %d failed!\n", block); 1918 return -1; 1919 } 1920 } 1921 1922 return etype; 1923 } 1924 1925 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1926 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1927 { 1928 int alen; 1929 int8_t etype; 1930 uint8_t *ptr; 1931 short_ad *sad; 1932 long_ad *lad; 1933 struct udf_inode_info *iinfo = UDF_I(inode); 1934 1935 if (!epos->bh) { 1936 if (!epos->offset) 1937 epos->offset = udf_file_entry_alloc_offset(inode); 1938 ptr = iinfo->i_ext.i_data + epos->offset - 1939 udf_file_entry_alloc_offset(inode) + 1940 iinfo->i_lenEAttr; 1941 alen = udf_file_entry_alloc_offset(inode) + 1942 iinfo->i_lenAlloc; 1943 } else { 1944 if (!epos->offset) 1945 epos->offset = sizeof(struct allocExtDesc); 1946 ptr = epos->bh->b_data + epos->offset; 1947 alen = sizeof(struct allocExtDesc) + 1948 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1949 lengthAllocDescs); 1950 } 1951 1952 switch (iinfo->i_alloc_type) { 1953 case ICBTAG_FLAG_AD_SHORT: 1954 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1955 if (!sad) 1956 return -1; 1957 etype = le32_to_cpu(sad->extLength) >> 30; 1958 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1959 eloc->partitionReferenceNum = 1960 iinfo->i_location.partitionReferenceNum; 1961 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1962 break; 1963 case ICBTAG_FLAG_AD_LONG: 1964 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1965 if (!lad) 1966 return -1; 1967 etype = le32_to_cpu(lad->extLength) >> 30; 1968 *eloc = lelb_to_cpu(lad->extLocation); 1969 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1970 break; 1971 default: 1972 udf_debug("alloc_type = %d unsupported\n", 1973 iinfo->i_alloc_type); 1974 return -1; 1975 } 1976 1977 return etype; 1978 } 1979 1980 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1981 kernel_lb_addr neloc, uint32_t nelen) 1982 { 1983 kernel_lb_addr oeloc; 1984 uint32_t oelen; 1985 int8_t etype; 1986 1987 if (epos.bh) 1988 get_bh(epos.bh); 1989 1990 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1991 udf_write_aext(inode, &epos, neloc, nelen, 1); 1992 neloc = oeloc; 1993 nelen = (etype << 30) | oelen; 1994 } 1995 udf_add_aext(inode, &epos, neloc, nelen, 1); 1996 brelse(epos.bh); 1997 1998 return (nelen >> 30); 1999 } 2000 2001 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2002 kernel_lb_addr eloc, uint32_t elen) 2003 { 2004 struct extent_position oepos; 2005 int adsize; 2006 int8_t etype; 2007 struct allocExtDesc *aed; 2008 struct udf_inode_info *iinfo; 2009 2010 if (epos.bh) { 2011 get_bh(epos.bh); 2012 get_bh(epos.bh); 2013 } 2014 2015 iinfo = UDF_I(inode); 2016 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2017 adsize = sizeof(short_ad); 2018 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2019 adsize = sizeof(long_ad); 2020 else 2021 adsize = 0; 2022 2023 oepos = epos; 2024 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2025 return -1; 2026 2027 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2028 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 2029 if (oepos.bh != epos.bh) { 2030 oepos.block = epos.block; 2031 brelse(oepos.bh); 2032 get_bh(epos.bh); 2033 oepos.bh = epos.bh; 2034 oepos.offset = epos.offset - adsize; 2035 } 2036 } 2037 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 2038 elen = 0; 2039 2040 if (epos.bh != oepos.bh) { 2041 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 2042 udf_write_aext(inode, &oepos, eloc, elen, 1); 2043 udf_write_aext(inode, &oepos, eloc, elen, 1); 2044 if (!oepos.bh) { 2045 iinfo->i_lenAlloc -= (adsize * 2); 2046 mark_inode_dirty(inode); 2047 } else { 2048 aed = (struct allocExtDesc *)oepos.bh->b_data; 2049 aed->lengthAllocDescs = 2050 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - 2051 (2 * adsize)); 2052 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2053 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2054 udf_update_tag(oepos.bh->b_data, 2055 oepos.offset - (2 * adsize)); 2056 else 2057 udf_update_tag(oepos.bh->b_data, 2058 sizeof(struct allocExtDesc)); 2059 mark_buffer_dirty_inode(oepos.bh, inode); 2060 } 2061 } else { 2062 udf_write_aext(inode, &oepos, eloc, elen, 1); 2063 if (!oepos.bh) { 2064 iinfo->i_lenAlloc -= adsize; 2065 mark_inode_dirty(inode); 2066 } else { 2067 aed = (struct allocExtDesc *)oepos.bh->b_data; 2068 aed->lengthAllocDescs = 2069 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - 2070 adsize); 2071 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2072 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2073 udf_update_tag(oepos.bh->b_data, 2074 epos.offset - adsize); 2075 else 2076 udf_update_tag(oepos.bh->b_data, 2077 sizeof(struct allocExtDesc)); 2078 mark_buffer_dirty_inode(oepos.bh, inode); 2079 } 2080 } 2081 2082 brelse(epos.bh); 2083 brelse(oepos.bh); 2084 2085 return (elen >> 30); 2086 } 2087 2088 int8_t inode_bmap(struct inode *inode, sector_t block, 2089 struct extent_position *pos, kernel_lb_addr *eloc, 2090 uint32_t *elen, sector_t *offset) 2091 { 2092 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2093 loff_t lbcount = 0, bcount = 2094 (loff_t) block << blocksize_bits; 2095 int8_t etype; 2096 struct udf_inode_info *iinfo; 2097 2098 if (block < 0) { 2099 printk(KERN_ERR "udf: inode_bmap: block < 0\n"); 2100 return -1; 2101 } 2102 2103 iinfo = UDF_I(inode); 2104 pos->offset = 0; 2105 pos->block = iinfo->i_location; 2106 pos->bh = NULL; 2107 *elen = 0; 2108 2109 do { 2110 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2111 if (etype == -1) { 2112 *offset = (bcount - lbcount) >> blocksize_bits; 2113 iinfo->i_lenExtents = lbcount; 2114 return -1; 2115 } 2116 lbcount += *elen; 2117 } while (lbcount <= bcount); 2118 2119 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2120 2121 return etype; 2122 } 2123 2124 long udf_block_map(struct inode *inode, sector_t block) 2125 { 2126 kernel_lb_addr eloc; 2127 uint32_t elen; 2128 sector_t offset; 2129 struct extent_position epos = {}; 2130 int ret; 2131 2132 lock_kernel(); 2133 2134 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2135 (EXT_RECORDED_ALLOCATED >> 30)) 2136 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 2137 else 2138 ret = 0; 2139 2140 unlock_kernel(); 2141 brelse(epos.bh); 2142 2143 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2144 return udf_fixed_to_variable(ret); 2145 else 2146 return ret; 2147 } 2148