xref: /openbmc/linux/fs/udf/inode.c (revision 32a8f24dd75c2be34606e77414afba7bc6b5b366)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 
41 #include "udf_i.h"
42 #include "udf_sb.h"
43 
44 MODULE_AUTHOR("Ben Fennema");
45 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46 MODULE_LICENSE("GPL");
47 
48 #define EXTENT_MERGE_SIZE 5
49 
50 static mode_t udf_convert_permissions(struct fileEntry *);
51 static int udf_update_inode(struct inode *, int);
52 static void udf_fill_inode(struct inode *, struct buffer_head *);
53 static int udf_alloc_i_data(struct inode *inode, size_t size);
54 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
55 					sector_t *, int *);
56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
57 			      kernel_lb_addr, uint32_t);
58 static void udf_split_extents(struct inode *, int *, int, int,
59 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60 static void udf_prealloc_extents(struct inode *, int, int,
61 				 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_merge_extents(struct inode *,
63 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_update_extents(struct inode *,
65 			       kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66 			       struct extent_position *);
67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68 
69 /*
70  * udf_delete_inode
71  *
72  * PURPOSE
73  *	Clean-up before the specified inode is destroyed.
74  *
75  * DESCRIPTION
76  *	This routine is called when the kernel destroys an inode structure
77  *	ie. when iput() finds i_count == 0.
78  *
79  * HISTORY
80  *	July 1, 1997 - Andrew E. Mileski
81  *	Written, tested, and released.
82  *
83  *  Called at the last iput() if i_nlink is zero.
84  */
85 void udf_delete_inode(struct inode *inode)
86 {
87 	truncate_inode_pages(&inode->i_data, 0);
88 
89 	if (is_bad_inode(inode))
90 		goto no_delete;
91 
92 	inode->i_size = 0;
93 	udf_truncate(inode);
94 	lock_kernel();
95 
96 	udf_update_inode(inode, IS_SYNC(inode));
97 	udf_free_inode(inode);
98 
99 	unlock_kernel();
100 	return;
101 
102 no_delete:
103 	clear_inode(inode);
104 }
105 
106 /*
107  * If we are going to release inode from memory, we discard preallocation and
108  * truncate last inode extent to proper length. We could use drop_inode() but
109  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
110  * use clear_inode() but we have to make sure to write inode as it's not written
111  * automatically.
112  */
113 void udf_clear_inode(struct inode *inode)
114 {
115 	struct udf_inode_info *iinfo;
116 	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
117 		lock_kernel();
118 		/* Discard preallocation for directories, symlinks, etc. */
119 		udf_discard_prealloc(inode);
120 		udf_truncate_tail_extent(inode);
121 		unlock_kernel();
122 		write_inode_now(inode, 0);
123 	}
124 	iinfo = UDF_I(inode);
125 	kfree(iinfo->i_ext.i_data);
126 	iinfo->i_ext.i_data = NULL;
127 }
128 
129 static int udf_writepage(struct page *page, struct writeback_control *wbc)
130 {
131 	return block_write_full_page(page, udf_get_block, wbc);
132 }
133 
134 static int udf_readpage(struct file *file, struct page *page)
135 {
136 	return block_read_full_page(page, udf_get_block);
137 }
138 
139 static int udf_write_begin(struct file *file, struct address_space *mapping,
140 			loff_t pos, unsigned len, unsigned flags,
141 			struct page **pagep, void **fsdata)
142 {
143 	*pagep = NULL;
144 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
145 				udf_get_block);
146 }
147 
148 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
149 {
150 	return generic_block_bmap(mapping, block, udf_get_block);
151 }
152 
153 const struct address_space_operations udf_aops = {
154 	.readpage	= udf_readpage,
155 	.writepage	= udf_writepage,
156 	.sync_page	= block_sync_page,
157 	.write_begin		= udf_write_begin,
158 	.write_end		= generic_write_end,
159 	.bmap		= udf_bmap,
160 };
161 
162 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
163 {
164 	struct page *page;
165 	char *kaddr;
166 	struct udf_inode_info *iinfo = UDF_I(inode);
167 	struct writeback_control udf_wbc = {
168 		.sync_mode = WB_SYNC_NONE,
169 		.nr_to_write = 1,
170 	};
171 
172 	/* from now on we have normal address_space methods */
173 	inode->i_data.a_ops = &udf_aops;
174 
175 	if (!iinfo->i_lenAlloc) {
176 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
177 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
178 		else
179 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
180 		mark_inode_dirty(inode);
181 		return;
182 	}
183 
184 	page = grab_cache_page(inode->i_mapping, 0);
185 	BUG_ON(!PageLocked(page));
186 
187 	if (!PageUptodate(page)) {
188 		kaddr = kmap(page);
189 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
190 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
191 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
192 			iinfo->i_lenAlloc);
193 		flush_dcache_page(page);
194 		SetPageUptodate(page);
195 		kunmap(page);
196 	}
197 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
198 	       iinfo->i_lenAlloc);
199 	iinfo->i_lenAlloc = 0;
200 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
201 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
202 	else
203 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
204 
205 	inode->i_data.a_ops->writepage(page, &udf_wbc);
206 	page_cache_release(page);
207 
208 	mark_inode_dirty(inode);
209 }
210 
211 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
212 					   int *err)
213 {
214 	int newblock;
215 	struct buffer_head *dbh = NULL;
216 	kernel_lb_addr eloc;
217 	uint32_t elen;
218 	uint8_t alloctype;
219 	struct extent_position epos;
220 
221 	struct udf_fileident_bh sfibh, dfibh;
222 	loff_t f_pos = udf_ext0_offset(inode) >> 2;
223 	int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
224 	struct fileIdentDesc cfi, *sfi, *dfi;
225 	struct udf_inode_info *iinfo = UDF_I(inode);
226 
227 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
228 		alloctype = ICBTAG_FLAG_AD_SHORT;
229 	else
230 		alloctype = ICBTAG_FLAG_AD_LONG;
231 
232 	if (!inode->i_size) {
233 		iinfo->i_alloc_type = alloctype;
234 		mark_inode_dirty(inode);
235 		return NULL;
236 	}
237 
238 	/* alloc block, and copy data to it */
239 	*block = udf_new_block(inode->i_sb, inode,
240 			       iinfo->i_location.partitionReferenceNum,
241 			       iinfo->i_location.logicalBlockNum, err);
242 	if (!(*block))
243 		return NULL;
244 	newblock = udf_get_pblock(inode->i_sb, *block,
245 				  iinfo->i_location.partitionReferenceNum,
246 				0);
247 	if (!newblock)
248 		return NULL;
249 	dbh = udf_tgetblk(inode->i_sb, newblock);
250 	if (!dbh)
251 		return NULL;
252 	lock_buffer(dbh);
253 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
254 	set_buffer_uptodate(dbh);
255 	unlock_buffer(dbh);
256 	mark_buffer_dirty_inode(dbh, inode);
257 
258 	sfibh.soffset = sfibh.eoffset =
259 			(f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
260 	sfibh.sbh = sfibh.ebh = NULL;
261 	dfibh.soffset = dfibh.eoffset = 0;
262 	dfibh.sbh = dfibh.ebh = dbh;
263 	while ((f_pos < size)) {
264 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
265 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
266 					 NULL, NULL, NULL);
267 		if (!sfi) {
268 			brelse(dbh);
269 			return NULL;
270 		}
271 		iinfo->i_alloc_type = alloctype;
272 		sfi->descTag.tagLocation = cpu_to_le32(*block);
273 		dfibh.soffset = dfibh.eoffset;
274 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
275 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
276 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
277 				 sfi->fileIdent +
278 					le16_to_cpu(sfi->lengthOfImpUse))) {
279 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
280 			brelse(dbh);
281 			return NULL;
282 		}
283 	}
284 	mark_buffer_dirty_inode(dbh, inode);
285 
286 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
287 		iinfo->i_lenAlloc);
288 	iinfo->i_lenAlloc = 0;
289 	eloc.logicalBlockNum = *block;
290 	eloc.partitionReferenceNum =
291 				iinfo->i_location.partitionReferenceNum;
292 	elen = inode->i_size;
293 	iinfo->i_lenExtents = elen;
294 	epos.bh = NULL;
295 	epos.block = iinfo->i_location;
296 	epos.offset = udf_file_entry_alloc_offset(inode);
297 	udf_add_aext(inode, &epos, eloc, elen, 0);
298 	/* UniqueID stuff */
299 
300 	brelse(epos.bh);
301 	mark_inode_dirty(inode);
302 	return dbh;
303 }
304 
305 static int udf_get_block(struct inode *inode, sector_t block,
306 			 struct buffer_head *bh_result, int create)
307 {
308 	int err, new;
309 	struct buffer_head *bh;
310 	sector_t phys = 0;
311 	struct udf_inode_info *iinfo;
312 
313 	if (!create) {
314 		phys = udf_block_map(inode, block);
315 		if (phys)
316 			map_bh(bh_result, inode->i_sb, phys);
317 		return 0;
318 	}
319 
320 	err = -EIO;
321 	new = 0;
322 	bh = NULL;
323 
324 	lock_kernel();
325 
326 	if (block < 0)
327 		goto abort_negative;
328 
329 	iinfo = UDF_I(inode);
330 	if (block == iinfo->i_next_alloc_block + 1) {
331 		iinfo->i_next_alloc_block++;
332 		iinfo->i_next_alloc_goal++;
333 	}
334 
335 	err = 0;
336 
337 	bh = inode_getblk(inode, block, &err, &phys, &new);
338 	BUG_ON(bh);
339 	if (err)
340 		goto abort;
341 	BUG_ON(!phys);
342 
343 	if (new)
344 		set_buffer_new(bh_result);
345 	map_bh(bh_result, inode->i_sb, phys);
346 
347 abort:
348 	unlock_kernel();
349 	return err;
350 
351 abort_negative:
352 	udf_warning(inode->i_sb, "udf_get_block", "block < 0");
353 	goto abort;
354 }
355 
356 static struct buffer_head *udf_getblk(struct inode *inode, long block,
357 				      int create, int *err)
358 {
359 	struct buffer_head *bh;
360 	struct buffer_head dummy;
361 
362 	dummy.b_state = 0;
363 	dummy.b_blocknr = -1000;
364 	*err = udf_get_block(inode, block, &dummy, create);
365 	if (!*err && buffer_mapped(&dummy)) {
366 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
367 		if (buffer_new(&dummy)) {
368 			lock_buffer(bh);
369 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
370 			set_buffer_uptodate(bh);
371 			unlock_buffer(bh);
372 			mark_buffer_dirty_inode(bh, inode);
373 		}
374 		return bh;
375 	}
376 
377 	return NULL;
378 }
379 
380 /* Extend the file by 'blocks' blocks, return the number of extents added */
381 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
382 		    kernel_long_ad *last_ext, sector_t blocks)
383 {
384 	sector_t add;
385 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
386 	struct super_block *sb = inode->i_sb;
387 	kernel_lb_addr prealloc_loc = {};
388 	int prealloc_len = 0;
389 	struct udf_inode_info *iinfo;
390 
391 	/* The previous extent is fake and we should not extend by anything
392 	 * - there's nothing to do... */
393 	if (!blocks && fake)
394 		return 0;
395 
396 	iinfo = UDF_I(inode);
397 	/* Round the last extent up to a multiple of block size */
398 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
399 		last_ext->extLength =
400 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
401 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
402 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
403 		iinfo->i_lenExtents =
404 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
405 			~(sb->s_blocksize - 1);
406 	}
407 
408 	/* Last extent are just preallocated blocks? */
409 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
410 						EXT_NOT_RECORDED_ALLOCATED) {
411 		/* Save the extent so that we can reattach it to the end */
412 		prealloc_loc = last_ext->extLocation;
413 		prealloc_len = last_ext->extLength;
414 		/* Mark the extent as a hole */
415 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
416 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
417 		last_ext->extLocation.logicalBlockNum = 0;
418 		last_ext->extLocation.partitionReferenceNum = 0;
419 	}
420 
421 	/* Can we merge with the previous extent? */
422 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
423 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
424 		add = ((1 << 30) - sb->s_blocksize -
425 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
426 			sb->s_blocksize_bits;
427 		if (add > blocks)
428 			add = blocks;
429 		blocks -= add;
430 		last_ext->extLength += add << sb->s_blocksize_bits;
431 	}
432 
433 	if (fake) {
434 		udf_add_aext(inode, last_pos, last_ext->extLocation,
435 			     last_ext->extLength, 1);
436 		count++;
437 	} else
438 		udf_write_aext(inode, last_pos, last_ext->extLocation,
439 				last_ext->extLength, 1);
440 
441 	/* Managed to do everything necessary? */
442 	if (!blocks)
443 		goto out;
444 
445 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
446 	last_ext->extLocation.logicalBlockNum = 0;
447 	last_ext->extLocation.partitionReferenceNum = 0;
448 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
449 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
450 				(add << sb->s_blocksize_bits);
451 
452 	/* Create enough extents to cover the whole hole */
453 	while (blocks > add) {
454 		blocks -= add;
455 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
456 				 last_ext->extLength, 1) == -1)
457 			return -1;
458 		count++;
459 	}
460 	if (blocks) {
461 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
462 			(blocks << sb->s_blocksize_bits);
463 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
464 				 last_ext->extLength, 1) == -1)
465 			return -1;
466 		count++;
467 	}
468 
469 out:
470 	/* Do we have some preallocated blocks saved? */
471 	if (prealloc_len) {
472 		if (udf_add_aext(inode, last_pos, prealloc_loc,
473 				 prealloc_len, 1) == -1)
474 			return -1;
475 		last_ext->extLocation = prealloc_loc;
476 		last_ext->extLength = prealloc_len;
477 		count++;
478 	}
479 
480 	/* last_pos should point to the last written extent... */
481 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
482 		last_pos->offset -= sizeof(short_ad);
483 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
484 		last_pos->offset -= sizeof(long_ad);
485 	else
486 		return -1;
487 
488 	return count;
489 }
490 
491 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
492 					int *err, sector_t *phys, int *new)
493 {
494 	static sector_t last_block;
495 	struct buffer_head *result = NULL;
496 	kernel_long_ad laarr[EXTENT_MERGE_SIZE];
497 	struct extent_position prev_epos, cur_epos, next_epos;
498 	int count = 0, startnum = 0, endnum = 0;
499 	uint32_t elen = 0, tmpelen;
500 	kernel_lb_addr eloc, tmpeloc;
501 	int c = 1;
502 	loff_t lbcount = 0, b_off = 0;
503 	uint32_t newblocknum, newblock;
504 	sector_t offset = 0;
505 	int8_t etype;
506 	struct udf_inode_info *iinfo = UDF_I(inode);
507 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
508 	int lastblock = 0;
509 
510 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
511 	prev_epos.block = iinfo->i_location;
512 	prev_epos.bh = NULL;
513 	cur_epos = next_epos = prev_epos;
514 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
515 
516 	/* find the extent which contains the block we are looking for.
517 	   alternate between laarr[0] and laarr[1] for locations of the
518 	   current extent, and the previous extent */
519 	do {
520 		if (prev_epos.bh != cur_epos.bh) {
521 			brelse(prev_epos.bh);
522 			get_bh(cur_epos.bh);
523 			prev_epos.bh = cur_epos.bh;
524 		}
525 		if (cur_epos.bh != next_epos.bh) {
526 			brelse(cur_epos.bh);
527 			get_bh(next_epos.bh);
528 			cur_epos.bh = next_epos.bh;
529 		}
530 
531 		lbcount += elen;
532 
533 		prev_epos.block = cur_epos.block;
534 		cur_epos.block = next_epos.block;
535 
536 		prev_epos.offset = cur_epos.offset;
537 		cur_epos.offset = next_epos.offset;
538 
539 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
540 		if (etype == -1)
541 			break;
542 
543 		c = !c;
544 
545 		laarr[c].extLength = (etype << 30) | elen;
546 		laarr[c].extLocation = eloc;
547 
548 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
549 			pgoal = eloc.logicalBlockNum +
550 				((elen + inode->i_sb->s_blocksize - 1) >>
551 				 inode->i_sb->s_blocksize_bits);
552 
553 		count++;
554 	} while (lbcount + elen <= b_off);
555 
556 	b_off -= lbcount;
557 	offset = b_off >> inode->i_sb->s_blocksize_bits;
558 	/*
559 	 * Move prev_epos and cur_epos into indirect extent if we are at
560 	 * the pointer to it
561 	 */
562 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
563 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
564 
565 	/* if the extent is allocated and recorded, return the block
566 	   if the extent is not a multiple of the blocksize, round up */
567 
568 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
569 		if (elen & (inode->i_sb->s_blocksize - 1)) {
570 			elen = EXT_RECORDED_ALLOCATED |
571 				((elen + inode->i_sb->s_blocksize - 1) &
572 				 ~(inode->i_sb->s_blocksize - 1));
573 			etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
574 		}
575 		brelse(prev_epos.bh);
576 		brelse(cur_epos.bh);
577 		brelse(next_epos.bh);
578 		newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
579 		*phys = newblock;
580 		return NULL;
581 	}
582 
583 	last_block = block;
584 	/* Are we beyond EOF? */
585 	if (etype == -1) {
586 		int ret;
587 
588 		if (count) {
589 			if (c)
590 				laarr[0] = laarr[1];
591 			startnum = 1;
592 		} else {
593 			/* Create a fake extent when there's not one */
594 			memset(&laarr[0].extLocation, 0x00,
595 				sizeof(kernel_lb_addr));
596 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
597 			/* Will udf_extend_file() create real extent from
598 			   a fake one? */
599 			startnum = (offset > 0);
600 		}
601 		/* Create extents for the hole between EOF and offset */
602 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
603 		if (ret == -1) {
604 			brelse(prev_epos.bh);
605 			brelse(cur_epos.bh);
606 			brelse(next_epos.bh);
607 			/* We don't really know the error here so we just make
608 			 * something up */
609 			*err = -ENOSPC;
610 			return NULL;
611 		}
612 		c = 0;
613 		offset = 0;
614 		count += ret;
615 		/* We are not covered by a preallocated extent? */
616 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
617 						EXT_NOT_RECORDED_ALLOCATED) {
618 			/* Is there any real extent? - otherwise we overwrite
619 			 * the fake one... */
620 			if (count)
621 				c = !c;
622 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
623 				inode->i_sb->s_blocksize;
624 			memset(&laarr[c].extLocation, 0x00,
625 				sizeof(kernel_lb_addr));
626 			count++;
627 			endnum++;
628 		}
629 		endnum = c + 1;
630 		lastblock = 1;
631 	} else {
632 		endnum = startnum = ((count > 2) ? 2 : count);
633 
634 		/* if the current extent is in position 0,
635 		   swap it with the previous */
636 		if (!c && count != 1) {
637 			laarr[2] = laarr[0];
638 			laarr[0] = laarr[1];
639 			laarr[1] = laarr[2];
640 			c = 1;
641 		}
642 
643 		/* if the current block is located in an extent,
644 		   read the next extent */
645 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
646 		if (etype != -1) {
647 			laarr[c + 1].extLength = (etype << 30) | elen;
648 			laarr[c + 1].extLocation = eloc;
649 			count++;
650 			startnum++;
651 			endnum++;
652 		} else
653 			lastblock = 1;
654 	}
655 
656 	/* if the current extent is not recorded but allocated, get the
657 	 * block in the extent corresponding to the requested block */
658 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
659 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
660 	else { /* otherwise, allocate a new block */
661 		if (iinfo->i_next_alloc_block == block)
662 			goal = iinfo->i_next_alloc_goal;
663 
664 		if (!goal) {
665 			if (!(goal = pgoal)) /* XXX: what was intended here? */
666 				goal = iinfo->i_location.logicalBlockNum + 1;
667 		}
668 
669 		newblocknum = udf_new_block(inode->i_sb, inode,
670 				iinfo->i_location.partitionReferenceNum,
671 				goal, err);
672 		if (!newblocknum) {
673 			brelse(prev_epos.bh);
674 			*err = -ENOSPC;
675 			return NULL;
676 		}
677 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
678 	}
679 
680 	/* if the extent the requsted block is located in contains multiple
681 	 * blocks, split the extent into at most three extents. blocks prior
682 	 * to requested block, requested block, and blocks after requested
683 	 * block */
684 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
685 
686 #ifdef UDF_PREALLOCATE
687 	/* preallocate blocks */
688 	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
689 #endif
690 
691 	/* merge any continuous blocks in laarr */
692 	udf_merge_extents(inode, laarr, &endnum);
693 
694 	/* write back the new extents, inserting new extents if the new number
695 	 * of extents is greater than the old number, and deleting extents if
696 	 * the new number of extents is less than the old number */
697 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
698 
699 	brelse(prev_epos.bh);
700 
701 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
702 				iinfo->i_location.partitionReferenceNum, 0);
703 	if (!newblock)
704 		return NULL;
705 	*phys = newblock;
706 	*err = 0;
707 	*new = 1;
708 	iinfo->i_next_alloc_block = block;
709 	iinfo->i_next_alloc_goal = newblocknum;
710 	inode->i_ctime = current_fs_time(inode->i_sb);
711 
712 	if (IS_SYNC(inode))
713 		udf_sync_inode(inode);
714 	else
715 		mark_inode_dirty(inode);
716 
717 	return result;
718 }
719 
720 static void udf_split_extents(struct inode *inode, int *c, int offset,
721 			      int newblocknum,
722 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
723 			      int *endnum)
724 {
725 	unsigned long blocksize = inode->i_sb->s_blocksize;
726 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
727 
728 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
729 	    (laarr[*c].extLength >> 30) ==
730 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
731 		int curr = *c;
732 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
733 			    blocksize - 1) >> blocksize_bits;
734 		int8_t etype = (laarr[curr].extLength >> 30);
735 
736 		if (blen == 1)
737 			;
738 		else if (!offset || blen == offset + 1) {
739 			laarr[curr + 2] = laarr[curr + 1];
740 			laarr[curr + 1] = laarr[curr];
741 		} else {
742 			laarr[curr + 3] = laarr[curr + 1];
743 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
744 		}
745 
746 		if (offset) {
747 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
748 				udf_free_blocks(inode->i_sb, inode,
749 						laarr[curr].extLocation,
750 						0, offset);
751 				laarr[curr].extLength =
752 					EXT_NOT_RECORDED_NOT_ALLOCATED |
753 					(offset << blocksize_bits);
754 				laarr[curr].extLocation.logicalBlockNum = 0;
755 				laarr[curr].extLocation.
756 						partitionReferenceNum = 0;
757 			} else
758 				laarr[curr].extLength = (etype << 30) |
759 					(offset << blocksize_bits);
760 			curr++;
761 			(*c)++;
762 			(*endnum)++;
763 		}
764 
765 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
766 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
767 			laarr[curr].extLocation.partitionReferenceNum =
768 				UDF_I(inode)->i_location.partitionReferenceNum;
769 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
770 			blocksize;
771 		curr++;
772 
773 		if (blen != offset + 1) {
774 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
775 				laarr[curr].extLocation.logicalBlockNum +=
776 								offset + 1;
777 			laarr[curr].extLength = (etype << 30) |
778 				((blen - (offset + 1)) << blocksize_bits);
779 			curr++;
780 			(*endnum)++;
781 		}
782 	}
783 }
784 
785 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
786 				 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
787 				 int *endnum)
788 {
789 	int start, length = 0, currlength = 0, i;
790 
791 	if (*endnum >= (c + 1)) {
792 		if (!lastblock)
793 			return;
794 		else
795 			start = c;
796 	} else {
797 		if ((laarr[c + 1].extLength >> 30) ==
798 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
799 			start = c + 1;
800 			length = currlength =
801 				(((laarr[c + 1].extLength &
802 					UDF_EXTENT_LENGTH_MASK) +
803 				inode->i_sb->s_blocksize - 1) >>
804 				inode->i_sb->s_blocksize_bits);
805 		} else
806 			start = c;
807 	}
808 
809 	for (i = start + 1; i <= *endnum; i++) {
810 		if (i == *endnum) {
811 			if (lastblock)
812 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
813 		} else if ((laarr[i].extLength >> 30) ==
814 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
815 			length += (((laarr[i].extLength &
816 						UDF_EXTENT_LENGTH_MASK) +
817 				    inode->i_sb->s_blocksize - 1) >>
818 				    inode->i_sb->s_blocksize_bits);
819 		} else
820 			break;
821 	}
822 
823 	if (length) {
824 		int next = laarr[start].extLocation.logicalBlockNum +
825 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
826 			  inode->i_sb->s_blocksize - 1) >>
827 			  inode->i_sb->s_blocksize_bits);
828 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
829 				laarr[start].extLocation.partitionReferenceNum,
830 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
831 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
832 				currlength);
833 		if (numalloc) 	{
834 			if (start == (c + 1))
835 				laarr[start].extLength +=
836 					(numalloc <<
837 					 inode->i_sb->s_blocksize_bits);
838 			else {
839 				memmove(&laarr[c + 2], &laarr[c + 1],
840 					sizeof(long_ad) * (*endnum - (c + 1)));
841 				(*endnum)++;
842 				laarr[c + 1].extLocation.logicalBlockNum = next;
843 				laarr[c + 1].extLocation.partitionReferenceNum =
844 					laarr[c].extLocation.
845 							partitionReferenceNum;
846 				laarr[c + 1].extLength =
847 					EXT_NOT_RECORDED_ALLOCATED |
848 					(numalloc <<
849 					 inode->i_sb->s_blocksize_bits);
850 				start = c + 1;
851 			}
852 
853 			for (i = start + 1; numalloc && i < *endnum; i++) {
854 				int elen = ((laarr[i].extLength &
855 						UDF_EXTENT_LENGTH_MASK) +
856 					    inode->i_sb->s_blocksize - 1) >>
857 					    inode->i_sb->s_blocksize_bits;
858 
859 				if (elen > numalloc) {
860 					laarr[i].extLength -=
861 						(numalloc <<
862 						 inode->i_sb->s_blocksize_bits);
863 					numalloc = 0;
864 				} else {
865 					numalloc -= elen;
866 					if (*endnum > (i + 1))
867 						memmove(&laarr[i],
868 							&laarr[i + 1],
869 							sizeof(long_ad) *
870 							(*endnum - (i + 1)));
871 					i--;
872 					(*endnum)--;
873 				}
874 			}
875 			UDF_I(inode)->i_lenExtents +=
876 				numalloc << inode->i_sb->s_blocksize_bits;
877 		}
878 	}
879 }
880 
881 static void udf_merge_extents(struct inode *inode,
882 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
883 			      int *endnum)
884 {
885 	int i;
886 	unsigned long blocksize = inode->i_sb->s_blocksize;
887 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
888 
889 	for (i = 0; i < (*endnum - 1); i++) {
890 		kernel_long_ad *li /*l[i]*/ = &laarr[i];
891 		kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
892 
893 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
894 			(((li->extLength >> 30) ==
895 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
896 			((lip1->extLocation.logicalBlockNum -
897 			  li->extLocation.logicalBlockNum) ==
898 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
899 			blocksize - 1) >> blocksize_bits)))) {
900 
901 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
902 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
903 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
904 				lip1->extLength = (lip1->extLength -
905 						  (li->extLength &
906 						   UDF_EXTENT_LENGTH_MASK) +
907 						   UDF_EXTENT_LENGTH_MASK) &
908 							~(blocksize - 1);
909 				li->extLength = (li->extLength &
910 						 UDF_EXTENT_FLAG_MASK) +
911 						(UDF_EXTENT_LENGTH_MASK + 1) -
912 						blocksize;
913 				lip1->extLocation.logicalBlockNum =
914 					li->extLocation.logicalBlockNum +
915 					((li->extLength &
916 						UDF_EXTENT_LENGTH_MASK) >>
917 						blocksize_bits);
918 			} else {
919 				li->extLength = lip1->extLength +
920 					(((li->extLength &
921 						UDF_EXTENT_LENGTH_MASK) +
922 					 blocksize - 1) & ~(blocksize - 1));
923 				if (*endnum > (i + 2))
924 					memmove(&laarr[i + 1], &laarr[i + 2],
925 						sizeof(long_ad) *
926 						(*endnum - (i + 2)));
927 				i--;
928 				(*endnum)--;
929 			}
930 		} else if (((li->extLength >> 30) ==
931 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
932 			   ((lip1->extLength >> 30) ==
933 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
934 			udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
935 					((li->extLength &
936 					  UDF_EXTENT_LENGTH_MASK) +
937 					 blocksize - 1) >> blocksize_bits);
938 			li->extLocation.logicalBlockNum = 0;
939 			li->extLocation.partitionReferenceNum = 0;
940 
941 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
942 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
943 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
944 				lip1->extLength = (lip1->extLength -
945 						   (li->extLength &
946 						   UDF_EXTENT_LENGTH_MASK) +
947 						   UDF_EXTENT_LENGTH_MASK) &
948 						   ~(blocksize - 1);
949 				li->extLength = (li->extLength &
950 						 UDF_EXTENT_FLAG_MASK) +
951 						(UDF_EXTENT_LENGTH_MASK + 1) -
952 						blocksize;
953 			} else {
954 				li->extLength = lip1->extLength +
955 					(((li->extLength &
956 						UDF_EXTENT_LENGTH_MASK) +
957 					  blocksize - 1) & ~(blocksize - 1));
958 				if (*endnum > (i + 2))
959 					memmove(&laarr[i + 1], &laarr[i + 2],
960 						sizeof(long_ad) *
961 						(*endnum - (i + 2)));
962 				i--;
963 				(*endnum)--;
964 			}
965 		} else if ((li->extLength >> 30) ==
966 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
967 			udf_free_blocks(inode->i_sb, inode,
968 					li->extLocation, 0,
969 					((li->extLength &
970 						UDF_EXTENT_LENGTH_MASK) +
971 					 blocksize - 1) >> blocksize_bits);
972 			li->extLocation.logicalBlockNum = 0;
973 			li->extLocation.partitionReferenceNum = 0;
974 			li->extLength = (li->extLength &
975 						UDF_EXTENT_LENGTH_MASK) |
976 						EXT_NOT_RECORDED_NOT_ALLOCATED;
977 		}
978 	}
979 }
980 
981 static void udf_update_extents(struct inode *inode,
982 			       kernel_long_ad laarr[EXTENT_MERGE_SIZE],
983 			       int startnum, int endnum,
984 			       struct extent_position *epos)
985 {
986 	int start = 0, i;
987 	kernel_lb_addr tmploc;
988 	uint32_t tmplen;
989 
990 	if (startnum > endnum) {
991 		for (i = 0; i < (startnum - endnum); i++)
992 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
993 					laarr[i].extLength);
994 	} else if (startnum < endnum) {
995 		for (i = 0; i < (endnum - startnum); i++) {
996 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
997 					laarr[i].extLength);
998 			udf_next_aext(inode, epos, &laarr[i].extLocation,
999 				      &laarr[i].extLength, 1);
1000 			start++;
1001 		}
1002 	}
1003 
1004 	for (i = start; i < endnum; i++) {
1005 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1006 		udf_write_aext(inode, epos, laarr[i].extLocation,
1007 			       laarr[i].extLength, 1);
1008 	}
1009 }
1010 
1011 struct buffer_head *udf_bread(struct inode *inode, int block,
1012 			      int create, int *err)
1013 {
1014 	struct buffer_head *bh = NULL;
1015 
1016 	bh = udf_getblk(inode, block, create, err);
1017 	if (!bh)
1018 		return NULL;
1019 
1020 	if (buffer_uptodate(bh))
1021 		return bh;
1022 
1023 	ll_rw_block(READ, 1, &bh);
1024 
1025 	wait_on_buffer(bh);
1026 	if (buffer_uptodate(bh))
1027 		return bh;
1028 
1029 	brelse(bh);
1030 	*err = -EIO;
1031 	return NULL;
1032 }
1033 
1034 void udf_truncate(struct inode *inode)
1035 {
1036 	int offset;
1037 	int err;
1038 	struct udf_inode_info *iinfo;
1039 
1040 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1041 	      S_ISLNK(inode->i_mode)))
1042 		return;
1043 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1044 		return;
1045 
1046 	lock_kernel();
1047 	iinfo = UDF_I(inode);
1048 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1049 		if (inode->i_sb->s_blocksize <
1050 				(udf_file_entry_alloc_offset(inode) +
1051 				 inode->i_size)) {
1052 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1053 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1054 				inode->i_size = iinfo->i_lenAlloc;
1055 				unlock_kernel();
1056 				return;
1057 			} else
1058 				udf_truncate_extents(inode);
1059 		} else {
1060 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1061 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1062 				0x00, inode->i_sb->s_blocksize -
1063 				offset - udf_file_entry_alloc_offset(inode));
1064 			iinfo->i_lenAlloc = inode->i_size;
1065 		}
1066 	} else {
1067 		block_truncate_page(inode->i_mapping, inode->i_size,
1068 				    udf_get_block);
1069 		udf_truncate_extents(inode);
1070 	}
1071 
1072 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1073 	if (IS_SYNC(inode))
1074 		udf_sync_inode(inode);
1075 	else
1076 		mark_inode_dirty(inode);
1077 	unlock_kernel();
1078 }
1079 
1080 static void __udf_read_inode(struct inode *inode)
1081 {
1082 	struct buffer_head *bh = NULL;
1083 	struct fileEntry *fe;
1084 	uint16_t ident;
1085 	struct udf_inode_info *iinfo = UDF_I(inode);
1086 
1087 	/*
1088 	 * Set defaults, but the inode is still incomplete!
1089 	 * Note: get_new_inode() sets the following on a new inode:
1090 	 *      i_sb = sb
1091 	 *      i_no = ino
1092 	 *      i_flags = sb->s_flags
1093 	 *      i_state = 0
1094 	 * clean_inode(): zero fills and sets
1095 	 *      i_count = 1
1096 	 *      i_nlink = 1
1097 	 *      i_op = NULL;
1098 	 */
1099 	bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident);
1100 	if (!bh) {
1101 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1102 		       inode->i_ino);
1103 		make_bad_inode(inode);
1104 		return;
1105 	}
1106 
1107 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1108 	    ident != TAG_IDENT_USE) {
1109 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1110 				"failed ident=%d\n", inode->i_ino, ident);
1111 		brelse(bh);
1112 		make_bad_inode(inode);
1113 		return;
1114 	}
1115 
1116 	fe = (struct fileEntry *)bh->b_data;
1117 
1118 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1119 		struct buffer_head *ibh = NULL, *nbh = NULL;
1120 		struct indirectEntry *ie;
1121 
1122 		ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1,
1123 					&ident);
1124 		if (ident == TAG_IDENT_IE) {
1125 			if (ibh) {
1126 				kernel_lb_addr loc;
1127 				ie = (struct indirectEntry *)ibh->b_data;
1128 
1129 				loc = lelb_to_cpu(ie->indirectICB.extLocation);
1130 
1131 				if (ie->indirectICB.extLength &&
1132 				    (nbh = udf_read_ptagged(inode->i_sb, loc, 0,
1133 							    &ident))) {
1134 					if (ident == TAG_IDENT_FE ||
1135 					    ident == TAG_IDENT_EFE) {
1136 						memcpy(&iinfo->i_location,
1137 						       &loc,
1138 						       sizeof(kernel_lb_addr));
1139 						brelse(bh);
1140 						brelse(ibh);
1141 						brelse(nbh);
1142 						__udf_read_inode(inode);
1143 						return;
1144 					} else {
1145 						brelse(nbh);
1146 						brelse(ibh);
1147 					}
1148 				} else {
1149 					brelse(ibh);
1150 				}
1151 			}
1152 		} else {
1153 			brelse(ibh);
1154 		}
1155 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1156 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1157 		       le16_to_cpu(fe->icbTag.strategyType));
1158 		brelse(bh);
1159 		make_bad_inode(inode);
1160 		return;
1161 	}
1162 	udf_fill_inode(inode, bh);
1163 
1164 	brelse(bh);
1165 }
1166 
1167 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1168 {
1169 	struct fileEntry *fe;
1170 	struct extendedFileEntry *efe;
1171 	time_t convtime;
1172 	long convtime_usec;
1173 	int offset;
1174 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1175 	struct udf_inode_info *iinfo = UDF_I(inode);
1176 
1177 	fe = (struct fileEntry *)bh->b_data;
1178 	efe = (struct extendedFileEntry *)bh->b_data;
1179 
1180 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1181 		iinfo->i_strat4096 = 0;
1182 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1183 		iinfo->i_strat4096 = 1;
1184 
1185 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1186 							ICBTAG_FLAG_AD_MASK;
1187 	iinfo->i_unique = 0;
1188 	iinfo->i_lenEAttr = 0;
1189 	iinfo->i_lenExtents = 0;
1190 	iinfo->i_lenAlloc = 0;
1191 	iinfo->i_next_alloc_block = 0;
1192 	iinfo->i_next_alloc_goal = 0;
1193 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1194 		iinfo->i_efe = 1;
1195 		iinfo->i_use = 0;
1196 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1197 					sizeof(struct extendedFileEntry))) {
1198 			make_bad_inode(inode);
1199 			return;
1200 		}
1201 		memcpy(iinfo->i_ext.i_data,
1202 		       bh->b_data + sizeof(struct extendedFileEntry),
1203 		       inode->i_sb->s_blocksize -
1204 					sizeof(struct extendedFileEntry));
1205 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1206 		iinfo->i_efe = 0;
1207 		iinfo->i_use = 0;
1208 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1209 						sizeof(struct fileEntry))) {
1210 			make_bad_inode(inode);
1211 			return;
1212 		}
1213 		memcpy(iinfo->i_ext.i_data,
1214 		       bh->b_data + sizeof(struct fileEntry),
1215 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1216 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1217 		iinfo->i_efe = 0;
1218 		iinfo->i_use = 1;
1219 		iinfo->i_lenAlloc = le32_to_cpu(
1220 				((struct unallocSpaceEntry *)bh->b_data)->
1221 				 lengthAllocDescs);
1222 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1223 					sizeof(struct unallocSpaceEntry))) {
1224 			make_bad_inode(inode);
1225 			return;
1226 		}
1227 		memcpy(iinfo->i_ext.i_data,
1228 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1229 		       inode->i_sb->s_blocksize -
1230 					sizeof(struct unallocSpaceEntry));
1231 		return;
1232 	}
1233 
1234 	inode->i_uid = le32_to_cpu(fe->uid);
1235 	if (inode->i_uid == -1 ||
1236 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1237 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1238 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1239 
1240 	inode->i_gid = le32_to_cpu(fe->gid);
1241 	if (inode->i_gid == -1 ||
1242 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1243 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1244 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1245 
1246 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1247 	if (!inode->i_nlink)
1248 		inode->i_nlink = 1;
1249 
1250 	inode->i_size = le64_to_cpu(fe->informationLength);
1251 	iinfo->i_lenExtents = inode->i_size;
1252 
1253 	inode->i_mode = udf_convert_permissions(fe);
1254 	inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1255 
1256 	if (iinfo->i_efe == 0) {
1257 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1258 			(inode->i_sb->s_blocksize_bits - 9);
1259 
1260 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1261 				      lets_to_cpu(fe->accessTime))) {
1262 			inode->i_atime.tv_sec = convtime;
1263 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1264 		} else {
1265 			inode->i_atime = sbi->s_record_time;
1266 		}
1267 
1268 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1269 				      lets_to_cpu(fe->modificationTime))) {
1270 			inode->i_mtime.tv_sec = convtime;
1271 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1272 		} else {
1273 			inode->i_mtime = sbi->s_record_time;
1274 		}
1275 
1276 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1277 				      lets_to_cpu(fe->attrTime))) {
1278 			inode->i_ctime.tv_sec = convtime;
1279 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1280 		} else {
1281 			inode->i_ctime = sbi->s_record_time;
1282 		}
1283 
1284 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1285 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1286 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1287 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1288 	} else {
1289 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1290 		    (inode->i_sb->s_blocksize_bits - 9);
1291 
1292 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1293 				      lets_to_cpu(efe->accessTime))) {
1294 			inode->i_atime.tv_sec = convtime;
1295 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1296 		} else {
1297 			inode->i_atime = sbi->s_record_time;
1298 		}
1299 
1300 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1301 				      lets_to_cpu(efe->modificationTime))) {
1302 			inode->i_mtime.tv_sec = convtime;
1303 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1304 		} else {
1305 			inode->i_mtime = sbi->s_record_time;
1306 		}
1307 
1308 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1309 				      lets_to_cpu(efe->createTime))) {
1310 			iinfo->i_crtime.tv_sec = convtime;
1311 			iinfo->i_crtime.tv_nsec = convtime_usec * 1000;
1312 		} else {
1313 			iinfo->i_crtime = sbi->s_record_time;
1314 		}
1315 
1316 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1317 				      lets_to_cpu(efe->attrTime))) {
1318 			inode->i_ctime.tv_sec = convtime;
1319 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1320 		} else {
1321 			inode->i_ctime = sbi->s_record_time;
1322 		}
1323 
1324 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1325 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1326 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1327 		offset = sizeof(struct extendedFileEntry) +
1328 							iinfo->i_lenEAttr;
1329 	}
1330 
1331 	switch (fe->icbTag.fileType) {
1332 	case ICBTAG_FILE_TYPE_DIRECTORY:
1333 		inode->i_op = &udf_dir_inode_operations;
1334 		inode->i_fop = &udf_dir_operations;
1335 		inode->i_mode |= S_IFDIR;
1336 		inc_nlink(inode);
1337 		break;
1338 	case ICBTAG_FILE_TYPE_REALTIME:
1339 	case ICBTAG_FILE_TYPE_REGULAR:
1340 	case ICBTAG_FILE_TYPE_UNDEF:
1341 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1342 			inode->i_data.a_ops = &udf_adinicb_aops;
1343 		else
1344 			inode->i_data.a_ops = &udf_aops;
1345 		inode->i_op = &udf_file_inode_operations;
1346 		inode->i_fop = &udf_file_operations;
1347 		inode->i_mode |= S_IFREG;
1348 		break;
1349 	case ICBTAG_FILE_TYPE_BLOCK:
1350 		inode->i_mode |= S_IFBLK;
1351 		break;
1352 	case ICBTAG_FILE_TYPE_CHAR:
1353 		inode->i_mode |= S_IFCHR;
1354 		break;
1355 	case ICBTAG_FILE_TYPE_FIFO:
1356 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1357 		break;
1358 	case ICBTAG_FILE_TYPE_SOCKET:
1359 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1360 		break;
1361 	case ICBTAG_FILE_TYPE_SYMLINK:
1362 		inode->i_data.a_ops = &udf_symlink_aops;
1363 		inode->i_op = &page_symlink_inode_operations;
1364 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1365 		break;
1366 	default:
1367 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1368 				"file type=%d\n", inode->i_ino,
1369 				fe->icbTag.fileType);
1370 		make_bad_inode(inode);
1371 		return;
1372 	}
1373 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1374 		struct deviceSpec *dsea =
1375 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1376 		if (dsea) {
1377 			init_special_inode(inode, inode->i_mode,
1378 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1379 				      le32_to_cpu(dsea->minorDeviceIdent)));
1380 			/* Developer ID ??? */
1381 		} else
1382 			make_bad_inode(inode);
1383 	}
1384 }
1385 
1386 static int udf_alloc_i_data(struct inode *inode, size_t size)
1387 {
1388 	struct udf_inode_info *iinfo = UDF_I(inode);
1389 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1390 
1391 	if (!iinfo->i_ext.i_data) {
1392 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1393 				"no free memory\n", inode->i_ino);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static mode_t udf_convert_permissions(struct fileEntry *fe)
1401 {
1402 	mode_t mode;
1403 	uint32_t permissions;
1404 	uint32_t flags;
1405 
1406 	permissions = le32_to_cpu(fe->permissions);
1407 	flags = le16_to_cpu(fe->icbTag.flags);
1408 
1409 	mode =	((permissions) & S_IRWXO) |
1410 		((permissions >> 2) & S_IRWXG) |
1411 		((permissions >> 4) & S_IRWXU) |
1412 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1413 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1414 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1415 
1416 	return mode;
1417 }
1418 
1419 /*
1420  * udf_write_inode
1421  *
1422  * PURPOSE
1423  *	Write out the specified inode.
1424  *
1425  * DESCRIPTION
1426  *	This routine is called whenever an inode is synced.
1427  *	Currently this routine is just a placeholder.
1428  *
1429  * HISTORY
1430  *	July 1, 1997 - Andrew E. Mileski
1431  *	Written, tested, and released.
1432  */
1433 
1434 int udf_write_inode(struct inode *inode, int sync)
1435 {
1436 	int ret;
1437 
1438 	lock_kernel();
1439 	ret = udf_update_inode(inode, sync);
1440 	unlock_kernel();
1441 
1442 	return ret;
1443 }
1444 
1445 int udf_sync_inode(struct inode *inode)
1446 {
1447 	return udf_update_inode(inode, 1);
1448 }
1449 
1450 static int udf_update_inode(struct inode *inode, int do_sync)
1451 {
1452 	struct buffer_head *bh = NULL;
1453 	struct fileEntry *fe;
1454 	struct extendedFileEntry *efe;
1455 	uint32_t udfperms;
1456 	uint16_t icbflags;
1457 	uint16_t crclen;
1458 	kernel_timestamp cpu_time;
1459 	int err = 0;
1460 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1461 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1462 	struct udf_inode_info *iinfo = UDF_I(inode);
1463 
1464 	bh = udf_tread(inode->i_sb,
1465 			udf_get_lb_pblock(inode->i_sb,
1466 					  iinfo->i_location, 0));
1467 	if (!bh) {
1468 		udf_debug("bread failure\n");
1469 		return -EIO;
1470 	}
1471 
1472 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1473 
1474 	fe = (struct fileEntry *)bh->b_data;
1475 	efe = (struct extendedFileEntry *)bh->b_data;
1476 
1477 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1478 		struct unallocSpaceEntry *use =
1479 			(struct unallocSpaceEntry *)bh->b_data;
1480 
1481 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1482 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1483 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1484 					sizeof(struct unallocSpaceEntry));
1485 		crclen = sizeof(struct unallocSpaceEntry) +
1486 				iinfo->i_lenAlloc - sizeof(tag);
1487 		use->descTag.tagLocation = cpu_to_le32(
1488 						iinfo->i_location.
1489 							logicalBlockNum);
1490 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1491 		use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use +
1492 							   sizeof(tag), crclen,
1493 							   0));
1494 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1495 
1496 		mark_buffer_dirty(bh);
1497 		brelse(bh);
1498 		return err;
1499 	}
1500 
1501 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1502 		fe->uid = cpu_to_le32(-1);
1503 	else
1504 		fe->uid = cpu_to_le32(inode->i_uid);
1505 
1506 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1507 		fe->gid = cpu_to_le32(-1);
1508 	else
1509 		fe->gid = cpu_to_le32(inode->i_gid);
1510 
1511 	udfperms = ((inode->i_mode & S_IRWXO)) |
1512 		   ((inode->i_mode & S_IRWXG) << 2) |
1513 		   ((inode->i_mode & S_IRWXU) << 4);
1514 
1515 	udfperms |= (le32_to_cpu(fe->permissions) &
1516 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1517 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1518 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1519 	fe->permissions = cpu_to_le32(udfperms);
1520 
1521 	if (S_ISDIR(inode->i_mode))
1522 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1523 	else
1524 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1525 
1526 	fe->informationLength = cpu_to_le64(inode->i_size);
1527 
1528 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1529 		regid *eid;
1530 		struct deviceSpec *dsea =
1531 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1532 		if (!dsea) {
1533 			dsea = (struct deviceSpec *)
1534 				udf_add_extendedattr(inode,
1535 						     sizeof(struct deviceSpec) +
1536 						     sizeof(regid), 12, 0x3);
1537 			dsea->attrType = cpu_to_le32(12);
1538 			dsea->attrSubtype = 1;
1539 			dsea->attrLength = cpu_to_le32(
1540 						sizeof(struct deviceSpec) +
1541 						sizeof(regid));
1542 			dsea->impUseLength = cpu_to_le32(sizeof(regid));
1543 		}
1544 		eid = (regid *)dsea->impUse;
1545 		memset(eid, 0, sizeof(regid));
1546 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1547 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1548 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1549 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1550 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1551 	}
1552 
1553 	if (iinfo->i_efe == 0) {
1554 		memcpy(bh->b_data + sizeof(struct fileEntry),
1555 		       iinfo->i_ext.i_data,
1556 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1557 		fe->logicalBlocksRecorded = cpu_to_le64(
1558 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1559 			(blocksize_bits - 9));
1560 
1561 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1562 			fe->accessTime = cpu_to_lets(cpu_time);
1563 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1564 			fe->modificationTime = cpu_to_lets(cpu_time);
1565 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1566 			fe->attrTime = cpu_to_lets(cpu_time);
1567 		memset(&(fe->impIdent), 0, sizeof(regid));
1568 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1569 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1570 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1571 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1572 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1573 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1574 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1575 		crclen = sizeof(struct fileEntry);
1576 	} else {
1577 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1578 		       iinfo->i_ext.i_data,
1579 		       inode->i_sb->s_blocksize -
1580 					sizeof(struct extendedFileEntry));
1581 		efe->objectSize = cpu_to_le64(inode->i_size);
1582 		efe->logicalBlocksRecorded = cpu_to_le64(
1583 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1584 			(blocksize_bits - 9));
1585 
1586 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1587 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1588 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1589 			iinfo->i_crtime = inode->i_atime;
1590 
1591 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1592 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1593 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1594 			iinfo->i_crtime = inode->i_mtime;
1595 
1596 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1597 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1598 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1599 			iinfo->i_crtime = inode->i_ctime;
1600 
1601 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1602 			efe->accessTime = cpu_to_lets(cpu_time);
1603 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1604 			efe->modificationTime = cpu_to_lets(cpu_time);
1605 		if (udf_time_to_stamp(&cpu_time, iinfo->i_crtime))
1606 			efe->createTime = cpu_to_lets(cpu_time);
1607 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1608 			efe->attrTime = cpu_to_lets(cpu_time);
1609 
1610 		memset(&(efe->impIdent), 0, sizeof(regid));
1611 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1612 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1613 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1614 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1615 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1616 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1617 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1618 		crclen = sizeof(struct extendedFileEntry);
1619 	}
1620 	if (iinfo->i_strat4096) {
1621 		fe->icbTag.strategyType = cpu_to_le16(4096);
1622 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1623 		fe->icbTag.numEntries = cpu_to_le16(2);
1624 	} else {
1625 		fe->icbTag.strategyType = cpu_to_le16(4);
1626 		fe->icbTag.numEntries = cpu_to_le16(1);
1627 	}
1628 
1629 	if (S_ISDIR(inode->i_mode))
1630 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1631 	else if (S_ISREG(inode->i_mode))
1632 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1633 	else if (S_ISLNK(inode->i_mode))
1634 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1635 	else if (S_ISBLK(inode->i_mode))
1636 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1637 	else if (S_ISCHR(inode->i_mode))
1638 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1639 	else if (S_ISFIFO(inode->i_mode))
1640 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1641 	else if (S_ISSOCK(inode->i_mode))
1642 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1643 
1644 	icbflags =	iinfo->i_alloc_type |
1645 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1646 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1647 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1648 			(le16_to_cpu(fe->icbTag.flags) &
1649 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1650 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1651 
1652 	fe->icbTag.flags = cpu_to_le16(icbflags);
1653 	if (sbi->s_udfrev >= 0x0200)
1654 		fe->descTag.descVersion = cpu_to_le16(3);
1655 	else
1656 		fe->descTag.descVersion = cpu_to_le16(2);
1657 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1658 	fe->descTag.tagLocation = cpu_to_le32(
1659 					iinfo->i_location.logicalBlockNum);
1660 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1661 								sizeof(tag);
1662 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1663 	fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag),
1664 						  crclen, 0));
1665 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1666 
1667 	/* write the data blocks */
1668 	mark_buffer_dirty(bh);
1669 	if (do_sync) {
1670 		sync_dirty_buffer(bh);
1671 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1672 			printk(KERN_WARNING "IO error syncing udf inode "
1673 				"[%s:%08lx]\n", inode->i_sb->s_id,
1674 				inode->i_ino);
1675 			err = -EIO;
1676 		}
1677 	}
1678 	brelse(bh);
1679 
1680 	return err;
1681 }
1682 
1683 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1684 {
1685 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1686 	struct inode *inode = iget_locked(sb, block);
1687 
1688 	if (!inode)
1689 		return NULL;
1690 
1691 	if (inode->i_state & I_NEW) {
1692 		memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr));
1693 		__udf_read_inode(inode);
1694 		unlock_new_inode(inode);
1695 	}
1696 
1697 	if (is_bad_inode(inode))
1698 		goto out_iput;
1699 
1700 	if (ino.logicalBlockNum >= UDF_SB(sb)->
1701 			s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1702 		udf_debug("block=%d, partition=%d out of range\n",
1703 			  ino.logicalBlockNum, ino.partitionReferenceNum);
1704 		make_bad_inode(inode);
1705 		goto out_iput;
1706 	}
1707 
1708 	return inode;
1709 
1710  out_iput:
1711 	iput(inode);
1712 	return NULL;
1713 }
1714 
1715 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1716 		    kernel_lb_addr eloc, uint32_t elen, int inc)
1717 {
1718 	int adsize;
1719 	short_ad *sad = NULL;
1720 	long_ad *lad = NULL;
1721 	struct allocExtDesc *aed;
1722 	int8_t etype;
1723 	uint8_t *ptr;
1724 	struct udf_inode_info *iinfo = UDF_I(inode);
1725 
1726 	if (!epos->bh)
1727 		ptr = iinfo->i_ext.i_data + epos->offset -
1728 			udf_file_entry_alloc_offset(inode) +
1729 			iinfo->i_lenEAttr;
1730 	else
1731 		ptr = epos->bh->b_data + epos->offset;
1732 
1733 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1734 		adsize = sizeof(short_ad);
1735 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1736 		adsize = sizeof(long_ad);
1737 	else
1738 		return -1;
1739 
1740 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1741 		char *sptr, *dptr;
1742 		struct buffer_head *nbh;
1743 		int err, loffset;
1744 		kernel_lb_addr obloc = epos->block;
1745 
1746 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1747 						obloc.partitionReferenceNum,
1748 						obloc.logicalBlockNum, &err);
1749 		if (!epos->block.logicalBlockNum)
1750 			return -1;
1751 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1752 								 epos->block,
1753 								 0));
1754 		if (!nbh)
1755 			return -1;
1756 		lock_buffer(nbh);
1757 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1758 		set_buffer_uptodate(nbh);
1759 		unlock_buffer(nbh);
1760 		mark_buffer_dirty_inode(nbh, inode);
1761 
1762 		aed = (struct allocExtDesc *)(nbh->b_data);
1763 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1764 			aed->previousAllocExtLocation =
1765 					cpu_to_le32(obloc.logicalBlockNum);
1766 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1767 			loffset = epos->offset;
1768 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1769 			sptr = ptr - adsize;
1770 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1771 			memcpy(dptr, sptr, adsize);
1772 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1773 		} else {
1774 			loffset = epos->offset + adsize;
1775 			aed->lengthAllocDescs = cpu_to_le32(0);
1776 			sptr = ptr;
1777 			epos->offset = sizeof(struct allocExtDesc);
1778 
1779 			if (epos->bh) {
1780 				aed = (struct allocExtDesc *)epos->bh->b_data;
1781 				aed->lengthAllocDescs =
1782 					cpu_to_le32(le32_to_cpu(
1783 					aed->lengthAllocDescs) + adsize);
1784 			} else {
1785 				iinfo->i_lenAlloc += adsize;
1786 				mark_inode_dirty(inode);
1787 			}
1788 		}
1789 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1790 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1791 				    epos->block.logicalBlockNum, sizeof(tag));
1792 		else
1793 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1794 				    epos->block.logicalBlockNum, sizeof(tag));
1795 		switch (iinfo->i_alloc_type) {
1796 		case ICBTAG_FLAG_AD_SHORT:
1797 			sad = (short_ad *)sptr;
1798 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1799 						     inode->i_sb->s_blocksize);
1800 			sad->extPosition =
1801 				cpu_to_le32(epos->block.logicalBlockNum);
1802 			break;
1803 		case ICBTAG_FLAG_AD_LONG:
1804 			lad = (long_ad *)sptr;
1805 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1806 						     inode->i_sb->s_blocksize);
1807 			lad->extLocation = cpu_to_lelb(epos->block);
1808 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1809 			break;
1810 		}
1811 		if (epos->bh) {
1812 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1813 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1814 				udf_update_tag(epos->bh->b_data, loffset);
1815 			else
1816 				udf_update_tag(epos->bh->b_data,
1817 						sizeof(struct allocExtDesc));
1818 			mark_buffer_dirty_inode(epos->bh, inode);
1819 			brelse(epos->bh);
1820 		} else {
1821 			mark_inode_dirty(inode);
1822 		}
1823 		epos->bh = nbh;
1824 	}
1825 
1826 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1827 
1828 	if (!epos->bh) {
1829 		iinfo->i_lenAlloc += adsize;
1830 		mark_inode_dirty(inode);
1831 	} else {
1832 		aed = (struct allocExtDesc *)epos->bh->b_data;
1833 		aed->lengthAllocDescs =
1834 			cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) +
1835 				    adsize);
1836 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1837 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1838 			udf_update_tag(epos->bh->b_data,
1839 					epos->offset + (inc ? 0 : adsize));
1840 		else
1841 			udf_update_tag(epos->bh->b_data,
1842 					sizeof(struct allocExtDesc));
1843 		mark_buffer_dirty_inode(epos->bh, inode);
1844 	}
1845 
1846 	return etype;
1847 }
1848 
1849 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1850 		      kernel_lb_addr eloc, uint32_t elen, int inc)
1851 {
1852 	int adsize;
1853 	uint8_t *ptr;
1854 	short_ad *sad;
1855 	long_ad *lad;
1856 	struct udf_inode_info *iinfo = UDF_I(inode);
1857 
1858 	if (!epos->bh)
1859 		ptr = iinfo->i_ext.i_data + epos->offset -
1860 			udf_file_entry_alloc_offset(inode) +
1861 			iinfo->i_lenEAttr;
1862 	else
1863 		ptr = epos->bh->b_data + epos->offset;
1864 
1865 	switch (iinfo->i_alloc_type) {
1866 	case ICBTAG_FLAG_AD_SHORT:
1867 		sad = (short_ad *)ptr;
1868 		sad->extLength = cpu_to_le32(elen);
1869 		sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1870 		adsize = sizeof(short_ad);
1871 		break;
1872 	case ICBTAG_FLAG_AD_LONG:
1873 		lad = (long_ad *)ptr;
1874 		lad->extLength = cpu_to_le32(elen);
1875 		lad->extLocation = cpu_to_lelb(eloc);
1876 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1877 		adsize = sizeof(long_ad);
1878 		break;
1879 	default:
1880 		return -1;
1881 	}
1882 
1883 	if (epos->bh) {
1884 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1885 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1886 			struct allocExtDesc *aed =
1887 				(struct allocExtDesc *)epos->bh->b_data;
1888 			udf_update_tag(epos->bh->b_data,
1889 				       le32_to_cpu(aed->lengthAllocDescs) +
1890 				       sizeof(struct allocExtDesc));
1891 		}
1892 		mark_buffer_dirty_inode(epos->bh, inode);
1893 	} else {
1894 		mark_inode_dirty(inode);
1895 	}
1896 
1897 	if (inc)
1898 		epos->offset += adsize;
1899 
1900 	return (elen >> 30);
1901 }
1902 
1903 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1904 		     kernel_lb_addr *eloc, uint32_t *elen, int inc)
1905 {
1906 	int8_t etype;
1907 
1908 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1909 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1910 		int block;
1911 		epos->block = *eloc;
1912 		epos->offset = sizeof(struct allocExtDesc);
1913 		brelse(epos->bh);
1914 		block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
1915 		epos->bh = udf_tread(inode->i_sb, block);
1916 		if (!epos->bh) {
1917 			udf_debug("reading block %d failed!\n", block);
1918 			return -1;
1919 		}
1920 	}
1921 
1922 	return etype;
1923 }
1924 
1925 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1926 			kernel_lb_addr *eloc, uint32_t *elen, int inc)
1927 {
1928 	int alen;
1929 	int8_t etype;
1930 	uint8_t *ptr;
1931 	short_ad *sad;
1932 	long_ad *lad;
1933 	struct udf_inode_info *iinfo = UDF_I(inode);
1934 
1935 	if (!epos->bh) {
1936 		if (!epos->offset)
1937 			epos->offset = udf_file_entry_alloc_offset(inode);
1938 		ptr = iinfo->i_ext.i_data + epos->offset -
1939 			udf_file_entry_alloc_offset(inode) +
1940 			iinfo->i_lenEAttr;
1941 		alen = udf_file_entry_alloc_offset(inode) +
1942 							iinfo->i_lenAlloc;
1943 	} else {
1944 		if (!epos->offset)
1945 			epos->offset = sizeof(struct allocExtDesc);
1946 		ptr = epos->bh->b_data + epos->offset;
1947 		alen = sizeof(struct allocExtDesc) +
1948 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1949 							lengthAllocDescs);
1950 	}
1951 
1952 	switch (iinfo->i_alloc_type) {
1953 	case ICBTAG_FLAG_AD_SHORT:
1954 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1955 		if (!sad)
1956 			return -1;
1957 		etype = le32_to_cpu(sad->extLength) >> 30;
1958 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1959 		eloc->partitionReferenceNum =
1960 				iinfo->i_location.partitionReferenceNum;
1961 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1962 		break;
1963 	case ICBTAG_FLAG_AD_LONG:
1964 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1965 		if (!lad)
1966 			return -1;
1967 		etype = le32_to_cpu(lad->extLength) >> 30;
1968 		*eloc = lelb_to_cpu(lad->extLocation);
1969 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1970 		break;
1971 	default:
1972 		udf_debug("alloc_type = %d unsupported\n",
1973 				iinfo->i_alloc_type);
1974 		return -1;
1975 	}
1976 
1977 	return etype;
1978 }
1979 
1980 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1981 			      kernel_lb_addr neloc, uint32_t nelen)
1982 {
1983 	kernel_lb_addr oeloc;
1984 	uint32_t oelen;
1985 	int8_t etype;
1986 
1987 	if (epos.bh)
1988 		get_bh(epos.bh);
1989 
1990 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1991 		udf_write_aext(inode, &epos, neloc, nelen, 1);
1992 		neloc = oeloc;
1993 		nelen = (etype << 30) | oelen;
1994 	}
1995 	udf_add_aext(inode, &epos, neloc, nelen, 1);
1996 	brelse(epos.bh);
1997 
1998 	return (nelen >> 30);
1999 }
2000 
2001 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2002 		       kernel_lb_addr eloc, uint32_t elen)
2003 {
2004 	struct extent_position oepos;
2005 	int adsize;
2006 	int8_t etype;
2007 	struct allocExtDesc *aed;
2008 	struct udf_inode_info *iinfo;
2009 
2010 	if (epos.bh) {
2011 		get_bh(epos.bh);
2012 		get_bh(epos.bh);
2013 	}
2014 
2015 	iinfo = UDF_I(inode);
2016 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2017 		adsize = sizeof(short_ad);
2018 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2019 		adsize = sizeof(long_ad);
2020 	else
2021 		adsize = 0;
2022 
2023 	oepos = epos;
2024 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2025 		return -1;
2026 
2027 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2028 		udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
2029 		if (oepos.bh != epos.bh) {
2030 			oepos.block = epos.block;
2031 			brelse(oepos.bh);
2032 			get_bh(epos.bh);
2033 			oepos.bh = epos.bh;
2034 			oepos.offset = epos.offset - adsize;
2035 		}
2036 	}
2037 	memset(&eloc, 0x00, sizeof(kernel_lb_addr));
2038 	elen = 0;
2039 
2040 	if (epos.bh != oepos.bh) {
2041 		udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
2042 		udf_write_aext(inode, &oepos, eloc, elen, 1);
2043 		udf_write_aext(inode, &oepos, eloc, elen, 1);
2044 		if (!oepos.bh) {
2045 			iinfo->i_lenAlloc -= (adsize * 2);
2046 			mark_inode_dirty(inode);
2047 		} else {
2048 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2049 			aed->lengthAllocDescs =
2050 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2051 					    (2 * adsize));
2052 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2053 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2054 				udf_update_tag(oepos.bh->b_data,
2055 						oepos.offset - (2 * adsize));
2056 			else
2057 				udf_update_tag(oepos.bh->b_data,
2058 						sizeof(struct allocExtDesc));
2059 			mark_buffer_dirty_inode(oepos.bh, inode);
2060 		}
2061 	} else {
2062 		udf_write_aext(inode, &oepos, eloc, elen, 1);
2063 		if (!oepos.bh) {
2064 			iinfo->i_lenAlloc -= adsize;
2065 			mark_inode_dirty(inode);
2066 		} else {
2067 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2068 			aed->lengthAllocDescs =
2069 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2070 					    adsize);
2071 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2072 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2073 				udf_update_tag(oepos.bh->b_data,
2074 						epos.offset - adsize);
2075 			else
2076 				udf_update_tag(oepos.bh->b_data,
2077 						sizeof(struct allocExtDesc));
2078 			mark_buffer_dirty_inode(oepos.bh, inode);
2079 		}
2080 	}
2081 
2082 	brelse(epos.bh);
2083 	brelse(oepos.bh);
2084 
2085 	return (elen >> 30);
2086 }
2087 
2088 int8_t inode_bmap(struct inode *inode, sector_t block,
2089 		  struct extent_position *pos, kernel_lb_addr *eloc,
2090 		  uint32_t *elen, sector_t *offset)
2091 {
2092 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2093 	loff_t lbcount = 0, bcount =
2094 	    (loff_t) block << blocksize_bits;
2095 	int8_t etype;
2096 	struct udf_inode_info *iinfo;
2097 
2098 	if (block < 0) {
2099 		printk(KERN_ERR "udf: inode_bmap: block < 0\n");
2100 		return -1;
2101 	}
2102 
2103 	iinfo = UDF_I(inode);
2104 	pos->offset = 0;
2105 	pos->block = iinfo->i_location;
2106 	pos->bh = NULL;
2107 	*elen = 0;
2108 
2109 	do {
2110 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2111 		if (etype == -1) {
2112 			*offset = (bcount - lbcount) >> blocksize_bits;
2113 			iinfo->i_lenExtents = lbcount;
2114 			return -1;
2115 		}
2116 		lbcount += *elen;
2117 	} while (lbcount <= bcount);
2118 
2119 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2120 
2121 	return etype;
2122 }
2123 
2124 long udf_block_map(struct inode *inode, sector_t block)
2125 {
2126 	kernel_lb_addr eloc;
2127 	uint32_t elen;
2128 	sector_t offset;
2129 	struct extent_position epos = {};
2130 	int ret;
2131 
2132 	lock_kernel();
2133 
2134 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2135 						(EXT_RECORDED_ALLOCATED >> 30))
2136 		ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
2137 	else
2138 		ret = 0;
2139 
2140 	unlock_kernel();
2141 	brelse(epos.bh);
2142 
2143 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2144 		return udf_fixed_to_variable(ret);
2145 	else
2146 		return ret;
2147 }
2148