xref: /openbmc/linux/fs/ubifs/sb.c (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS superblock. The superblock is stored at the first
25  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26  * change it. The superblock node mostly contains geometry information.
27  */
28 
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/math64.h>
32 #include <linux/uuid.h>
33 
34 /*
35  * Default journal size in logical eraseblocks as a percent of total
36  * flash size.
37  */
38 #define DEFAULT_JNL_PERCENT 5
39 
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42 
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45 
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48 
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB  0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB   2
53 
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56 
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59 
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62 
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
65 
66 static int get_default_compressor(struct ubifs_info *c)
67 {
68 	if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
69 		return UBIFS_COMPR_LZO;
70 
71 	if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
72 		return UBIFS_COMPR_ZLIB;
73 
74 	return UBIFS_COMPR_NONE;
75 }
76 
77 /**
78  * create_default_filesystem - format empty UBI volume.
79  * @c: UBIFS file-system description object
80  *
81  * This function creates default empty file-system. Returns zero in case of
82  * success and a negative error code in case of failure.
83  */
84 static int create_default_filesystem(struct ubifs_info *c)
85 {
86 	struct ubifs_sb_node *sup;
87 	struct ubifs_mst_node *mst;
88 	struct ubifs_idx_node *idx;
89 	struct ubifs_branch *br;
90 	struct ubifs_ino_node *ino;
91 	struct ubifs_cs_node *cs;
92 	union ubifs_key key;
93 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
94 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
95 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
96 	int idx_node_size;
97 	long long tmp64, main_bytes;
98 	__le64 tmp_le64;
99 	__le32 tmp_le32;
100 	struct timespec64 ts;
101 	u8 hash[UBIFS_HASH_ARR_SZ];
102 	u8 hash_lpt[UBIFS_HASH_ARR_SZ];
103 
104 	/* Some functions called from here depend on the @c->key_len filed */
105 	c->key_len = UBIFS_SK_LEN;
106 
107 	/*
108 	 * First of all, we have to calculate default file-system geometry -
109 	 * log size, journal size, etc.
110 	 */
111 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
112 		/* We can first multiply then divide and have no overflow */
113 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
114 	else
115 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
116 
117 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
118 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
119 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
120 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
121 
122 	/*
123 	 * The log should be large enough to fit reference nodes for all bud
124 	 * LEBs. Because buds do not have to start from the beginning of LEBs
125 	 * (half of the LEB may contain committed data), the log should
126 	 * generally be larger, make it twice as large.
127 	 */
128 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
129 	log_lebs = tmp / c->leb_size;
130 	/* Plus one LEB reserved for commit */
131 	log_lebs += 1;
132 	if (c->leb_cnt - min_leb_cnt > 8) {
133 		/* And some extra space to allow writes while committing */
134 		log_lebs += 1;
135 		min_leb_cnt += 1;
136 	}
137 
138 	max_buds = jnl_lebs - log_lebs;
139 	if (max_buds < UBIFS_MIN_BUD_LEBS)
140 		max_buds = UBIFS_MIN_BUD_LEBS;
141 
142 	/*
143 	 * Orphan nodes are stored in a separate area. One node can store a lot
144 	 * of orphan inode numbers, but when new orphan comes we just add a new
145 	 * orphan node. At some point the nodes are consolidated into one
146 	 * orphan node.
147 	 */
148 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
149 	if (c->leb_cnt - min_leb_cnt > 1)
150 		/*
151 		 * For debugging purposes it is better to have at least 2
152 		 * orphan LEBs, because the orphan subsystem would need to do
153 		 * consolidations and would be stressed more.
154 		 */
155 		orph_lebs += 1;
156 
157 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
158 	main_lebs -= orph_lebs;
159 
160 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
161 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
162 	c->max_leb_cnt = c->leb_cnt;
163 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
164 				    &big_lpt, hash_lpt);
165 	if (err)
166 		return err;
167 
168 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
169 		lpt_first + lpt_lebs - 1);
170 
171 	main_first = c->leb_cnt - main_lebs;
172 
173 	sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL);
174 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
175 	idx_node_size = ubifs_idx_node_sz(c, 1);
176 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
177 	ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL);
178 	cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL);
179 
180 	if (!sup || !mst || !idx || !ino || !cs) {
181 		err = -ENOMEM;
182 		goto out;
183 	}
184 
185 	/* Create default superblock */
186 
187 	tmp64 = (long long)max_buds * c->leb_size;
188 	if (big_lpt)
189 		sup_flags |= UBIFS_FLG_BIGLPT;
190 	sup_flags |= UBIFS_FLG_DOUBLE_HASH;
191 
192 	if (ubifs_authenticated(c)) {
193 		sup_flags |= UBIFS_FLG_AUTHENTICATION;
194 		sup->hash_algo = cpu_to_le16(c->auth_hash_algo);
195 		err = ubifs_hmac_wkm(c, sup->hmac_wkm);
196 		if (err)
197 			goto out;
198 	} else {
199 		sup->hash_algo = 0xffff;
200 	}
201 
202 	sup->ch.node_type  = UBIFS_SB_NODE;
203 	sup->key_hash      = UBIFS_KEY_HASH_R5;
204 	sup->flags         = cpu_to_le32(sup_flags);
205 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
206 	sup->leb_size      = cpu_to_le32(c->leb_size);
207 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
208 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
209 	sup->max_bud_bytes = cpu_to_le64(tmp64);
210 	sup->log_lebs      = cpu_to_le32(log_lebs);
211 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
212 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
213 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
214 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
215 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
216 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
217 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
218 	if (c->mount_opts.override_compr)
219 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
220 	else
221 		sup->default_compr = cpu_to_le16(get_default_compressor(c));
222 
223 	generate_random_uuid(sup->uuid);
224 
225 	main_bytes = (long long)main_lebs * c->leb_size;
226 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
227 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
228 		tmp64 = DEFAULT_MAX_RP_SIZE;
229 	sup->rp_size = cpu_to_le64(tmp64);
230 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
231 
232 	dbg_gen("default superblock created at LEB 0:0");
233 
234 	/* Create default master node */
235 
236 	mst->ch.node_type = UBIFS_MST_NODE;
237 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
238 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
239 	mst->cmt_no       = 0;
240 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
241 	mst->root_offs    = 0;
242 	tmp = ubifs_idx_node_sz(c, 1);
243 	mst->root_len     = cpu_to_le32(tmp);
244 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
245 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
246 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
247 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
248 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
249 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
250 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
251 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
252 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
253 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
254 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
255 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
256 	mst->lscan_lnum   = cpu_to_le32(main_first);
257 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
258 	mst->idx_lebs     = cpu_to_le32(1);
259 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
260 	ubifs_copy_hash(c, hash_lpt, mst->hash_lpt);
261 
262 	/* Calculate lprops statistics */
263 	tmp64 = main_bytes;
264 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
265 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
266 	mst->total_free = cpu_to_le64(tmp64);
267 
268 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
269 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
270 			  UBIFS_INO_NODE_SZ;
271 	tmp64 += ino_waste;
272 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
273 	mst->total_dirty = cpu_to_le64(tmp64);
274 
275 	/*  The indexing LEB does not contribute to dark space */
276 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
277 	mst->total_dark = cpu_to_le64(tmp64);
278 
279 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
280 
281 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
282 
283 	/* Create the root indexing node */
284 
285 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
286 	c->key_hash = key_r5_hash;
287 
288 	idx->ch.node_type = UBIFS_IDX_NODE;
289 	idx->child_cnt = cpu_to_le16(1);
290 	ino_key_init(c, &key, UBIFS_ROOT_INO);
291 	br = ubifs_idx_branch(c, idx, 0);
292 	key_write_idx(c, &key, &br->key);
293 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
294 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
295 
296 	dbg_gen("default root indexing node created LEB %d:0",
297 		main_first + DEFAULT_IDX_LEB);
298 
299 	/* Create default root inode */
300 
301 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
302 	ino->ch.node_type = UBIFS_INO_NODE;
303 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
304 	ino->nlink = cpu_to_le32(2);
305 
306 	ktime_get_real_ts64(&ts);
307 	ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
308 	tmp_le64 = cpu_to_le64(ts.tv_sec);
309 	ino->atime_sec   = tmp_le64;
310 	ino->ctime_sec   = tmp_le64;
311 	ino->mtime_sec   = tmp_le64;
312 	tmp_le32 = cpu_to_le32(ts.tv_nsec);
313 	ino->atime_nsec  = tmp_le32;
314 	ino->ctime_nsec  = tmp_le32;
315 	ino->mtime_nsec  = tmp_le32;
316 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
317 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
318 
319 	/* Set compression enabled by default */
320 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
321 
322 	dbg_gen("root inode created at LEB %d:0",
323 		main_first + DEFAULT_DATA_LEB);
324 
325 	/*
326 	 * The first node in the log has to be the commit start node. This is
327 	 * always the case during normal file-system operation. Write a fake
328 	 * commit start node to the log.
329 	 */
330 
331 	cs->ch.node_type = UBIFS_CS_NODE;
332 
333 	err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0,
334 				    offsetof(struct ubifs_sb_node, hmac));
335 	if (err)
336 		goto out;
337 
338 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
339 			       main_first + DEFAULT_DATA_LEB, 0);
340 	if (err)
341 		goto out;
342 
343 	ubifs_node_calc_hash(c, ino, hash);
344 	ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br));
345 
346 	err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0);
347 	if (err)
348 		goto out;
349 
350 	ubifs_node_calc_hash(c, idx, hash);
351 	ubifs_copy_hash(c, hash, mst->hash_root_idx);
352 
353 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
354 		offsetof(struct ubifs_mst_node, hmac));
355 	if (err)
356 		goto out;
357 
358 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
359 			       0, offsetof(struct ubifs_mst_node, hmac));
360 	if (err)
361 		goto out;
362 
363 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
364 	if (err)
365 		goto out;
366 
367 	ubifs_msg(c, "default file-system created");
368 
369 	err = 0;
370 out:
371 	kfree(sup);
372 	kfree(mst);
373 	kfree(idx);
374 	kfree(ino);
375 	kfree(cs);
376 
377 	return err;
378 }
379 
380 /**
381  * validate_sb - validate superblock node.
382  * @c: UBIFS file-system description object
383  * @sup: superblock node
384  *
385  * This function validates superblock node @sup. Since most of data was read
386  * from the superblock and stored in @c, the function validates fields in @c
387  * instead. Returns zero in case of success and %-EINVAL in case of validation
388  * failure.
389  */
390 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
391 {
392 	long long max_bytes;
393 	int err = 1, min_leb_cnt;
394 
395 	if (!c->key_hash) {
396 		err = 2;
397 		goto failed;
398 	}
399 
400 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
401 		err = 3;
402 		goto failed;
403 	}
404 
405 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
406 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
407 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
408 		goto failed;
409 	}
410 
411 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
412 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
413 			  le32_to_cpu(sup->leb_size), c->leb_size);
414 		goto failed;
415 	}
416 
417 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
418 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
419 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
420 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
421 		err = 4;
422 		goto failed;
423 	}
424 
425 	/*
426 	 * Calculate minimum allowed amount of main area LEBs. This is very
427 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
428 	 * have just read from the superblock.
429 	 */
430 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
431 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
432 
433 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
434 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
435 			  c->leb_cnt, c->vi.size, min_leb_cnt);
436 		goto failed;
437 	}
438 
439 	if (c->max_leb_cnt < c->leb_cnt) {
440 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
441 			  c->max_leb_cnt, c->leb_cnt);
442 		goto failed;
443 	}
444 
445 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
446 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
447 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
448 		goto failed;
449 	}
450 
451 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
452 	if (c->max_bud_bytes < max_bytes) {
453 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
454 			  c->max_bud_bytes, max_bytes);
455 		goto failed;
456 	}
457 
458 	max_bytes = (long long)c->leb_size * c->main_lebs;
459 	if (c->max_bud_bytes > max_bytes) {
460 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
461 			  c->max_bud_bytes, max_bytes);
462 		goto failed;
463 	}
464 
465 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
466 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
467 		err = 9;
468 		goto failed;
469 	}
470 
471 	if (c->fanout < UBIFS_MIN_FANOUT ||
472 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
473 		err = 10;
474 		goto failed;
475 	}
476 
477 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
478 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
479 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
480 		err = 11;
481 		goto failed;
482 	}
483 
484 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
485 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
486 		err = 12;
487 		goto failed;
488 	}
489 
490 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
491 		err = 13;
492 		goto failed;
493 	}
494 
495 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
496 		err = 14;
497 		goto failed;
498 	}
499 
500 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
501 	    le32_to_cpu(sup->time_gran) < 1) {
502 		err = 15;
503 		goto failed;
504 	}
505 
506 	if (!c->double_hash && c->fmt_version >= 5) {
507 		err = 16;
508 		goto failed;
509 	}
510 
511 	if (c->encrypted && c->fmt_version < 5) {
512 		err = 17;
513 		goto failed;
514 	}
515 
516 	return 0;
517 
518 failed:
519 	ubifs_err(c, "bad superblock, error %d", err);
520 	ubifs_dump_node(c, sup);
521 	return -EINVAL;
522 }
523 
524 /**
525  * ubifs_read_sb_node - read superblock node.
526  * @c: UBIFS file-system description object
527  *
528  * This function returns a pointer to the superblock node or a negative error
529  * code. Note, the user of this function is responsible of kfree()'ing the
530  * returned superblock buffer.
531  */
532 static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
533 {
534 	struct ubifs_sb_node *sup;
535 	int err;
536 
537 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
538 	if (!sup)
539 		return ERR_PTR(-ENOMEM);
540 
541 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
542 			      UBIFS_SB_LNUM, 0);
543 	if (err) {
544 		kfree(sup);
545 		return ERR_PTR(err);
546 	}
547 
548 	return sup;
549 }
550 
551 static int authenticate_sb_node(struct ubifs_info *c,
552 				const struct ubifs_sb_node *sup)
553 {
554 	unsigned int sup_flags = le32_to_cpu(sup->flags);
555 	u8 hmac_wkm[UBIFS_HMAC_ARR_SZ];
556 	int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION);
557 	int hash_algo;
558 	int err;
559 
560 	if (c->authenticated && !authenticated) {
561 		ubifs_err(c, "authenticated FS forced, but found FS without authentication");
562 		return -EINVAL;
563 	}
564 
565 	if (!c->authenticated && authenticated) {
566 		ubifs_err(c, "authenticated FS found, but no key given");
567 		return -EINVAL;
568 	}
569 
570 	ubifs_msg(c, "Mounting in %sauthenticated mode",
571 		  c->authenticated ? "" : "un");
572 
573 	if (!c->authenticated)
574 		return 0;
575 
576 	if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION))
577 		return -EOPNOTSUPP;
578 
579 	hash_algo = le16_to_cpu(sup->hash_algo);
580 	if (hash_algo >= HASH_ALGO__LAST) {
581 		ubifs_err(c, "superblock uses unknown hash algo %d",
582 			  hash_algo);
583 		return -EINVAL;
584 	}
585 
586 	if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) {
587 		ubifs_err(c, "This filesystem uses %s for hashing,"
588 			     " but %s is specified", hash_algo_name[hash_algo],
589 			     c->auth_hash_name);
590 		return -EINVAL;
591 	}
592 
593 	err = ubifs_hmac_wkm(c, hmac_wkm);
594 	if (err)
595 		return err;
596 
597 	if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) {
598 		ubifs_err(c, "provided key does not fit");
599 		return -ENOKEY;
600 	}
601 
602 	err = ubifs_node_verify_hmac(c, sup, sizeof(*sup),
603 				     offsetof(struct ubifs_sb_node, hmac));
604 	if (err)
605 		ubifs_err(c, "Failed to authenticate superblock: %d", err);
606 
607 	return err;
608 }
609 
610 /**
611  * ubifs_write_sb_node - write superblock node.
612  * @c: UBIFS file-system description object
613  * @sup: superblock node read with 'ubifs_read_sb_node()'
614  *
615  * This function returns %0 on success and a negative error code on failure.
616  */
617 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
618 {
619 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
620 	int err;
621 
622 	err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ,
623 				      offsetof(struct ubifs_sb_node, hmac), 1);
624 	if (err)
625 		return err;
626 
627 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
628 }
629 
630 /**
631  * ubifs_read_superblock - read superblock.
632  * @c: UBIFS file-system description object
633  *
634  * This function finds, reads and checks the superblock. If an empty UBI volume
635  * is being mounted, this function creates default superblock. Returns zero in
636  * case of success, and a negative error code in case of failure.
637  */
638 int ubifs_read_superblock(struct ubifs_info *c)
639 {
640 	int err, sup_flags;
641 	struct ubifs_sb_node *sup;
642 
643 	if (c->empty) {
644 		err = create_default_filesystem(c);
645 		if (err)
646 			return err;
647 	}
648 
649 	sup = ubifs_read_sb_node(c);
650 	if (IS_ERR(sup))
651 		return PTR_ERR(sup);
652 
653 	c->sup_node = sup;
654 
655 	c->fmt_version = le32_to_cpu(sup->fmt_version);
656 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
657 
658 	/*
659 	 * The software supports all previous versions but not future versions,
660 	 * due to the unavailability of time-travelling equipment.
661 	 */
662 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
663 		ubifs_assert(c, !c->ro_media || c->ro_mount);
664 		if (!c->ro_mount ||
665 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
666 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
667 				  c->fmt_version, c->ro_compat_version,
668 				  UBIFS_FORMAT_VERSION,
669 				  UBIFS_RO_COMPAT_VERSION);
670 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
671 				ubifs_msg(c, "only R/O mounting is possible");
672 				err = -EROFS;
673 			} else
674 				err = -EINVAL;
675 			goto out;
676 		}
677 
678 		/*
679 		 * The FS is mounted R/O, and the media format is
680 		 * R/O-compatible with the UBIFS implementation, so we can
681 		 * mount.
682 		 */
683 		c->rw_incompat = 1;
684 	}
685 
686 	if (c->fmt_version < 3) {
687 		ubifs_err(c, "on-flash format version %d is not supported",
688 			  c->fmt_version);
689 		err = -EINVAL;
690 		goto out;
691 	}
692 
693 	switch (sup->key_hash) {
694 	case UBIFS_KEY_HASH_R5:
695 		c->key_hash = key_r5_hash;
696 		c->key_hash_type = UBIFS_KEY_HASH_R5;
697 		break;
698 
699 	case UBIFS_KEY_HASH_TEST:
700 		c->key_hash = key_test_hash;
701 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
702 		break;
703 	}
704 
705 	c->key_fmt = sup->key_fmt;
706 
707 	switch (c->key_fmt) {
708 	case UBIFS_SIMPLE_KEY_FMT:
709 		c->key_len = UBIFS_SK_LEN;
710 		break;
711 	default:
712 		ubifs_err(c, "unsupported key format");
713 		err = -EINVAL;
714 		goto out;
715 	}
716 
717 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
718 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
719 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
720 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
721 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
722 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
723 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
724 	c->fanout        = le32_to_cpu(sup->fanout);
725 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
726 	c->rp_size       = le64_to_cpu(sup->rp_size);
727 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
728 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
729 	sup_flags        = le32_to_cpu(sup->flags);
730 	if (!c->mount_opts.override_compr)
731 		c->default_compr = le16_to_cpu(sup->default_compr);
732 
733 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
734 	memcpy(&c->uuid, &sup->uuid, 16);
735 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
736 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
737 	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
738 	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
739 
740 	err = authenticate_sb_node(c, sup);
741 	if (err)
742 		goto out;
743 
744 	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
745 		ubifs_err(c, "Unknown feature flags found: %#x",
746 			  sup_flags & ~UBIFS_FLG_MASK);
747 		err = -EINVAL;
748 		goto out;
749 	}
750 
751 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION) && c->encrypted) {
752 		ubifs_err(c, "file system contains encrypted files but UBIFS"
753 			     " was built without crypto support.");
754 		err = -EINVAL;
755 		goto out;
756 	}
757 
758 	/* Automatically increase file system size to the maximum size */
759 	c->old_leb_cnt = c->leb_cnt;
760 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
761 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
762 		if (c->ro_mount)
763 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
764 				c->old_leb_cnt,	c->leb_cnt);
765 		else {
766 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
767 				c->old_leb_cnt, c->leb_cnt);
768 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
769 			err = ubifs_write_sb_node(c, sup);
770 			if (err)
771 				goto out;
772 			c->old_leb_cnt = c->leb_cnt;
773 		}
774 	}
775 
776 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
777 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
778 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
779 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
780 	c->orph_first = c->lpt_last + 1;
781 	c->orph_last = c->orph_first + c->orph_lebs - 1;
782 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
783 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
784 	c->main_first = c->leb_cnt - c->main_lebs;
785 
786 	err = validate_sb(c, sup);
787 out:
788 	return err;
789 }
790 
791 /**
792  * fixup_leb - fixup/unmap an LEB containing free space.
793  * @c: UBIFS file-system description object
794  * @lnum: the LEB number to fix up
795  * @len: number of used bytes in LEB (starting at offset 0)
796  *
797  * This function reads the contents of the given LEB number @lnum, then fixes
798  * it up, so that empty min. I/O units in the end of LEB are actually erased on
799  * flash (rather than being just all-0xff real data). If the LEB is completely
800  * empty, it is simply unmapped.
801  */
802 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
803 {
804 	int err;
805 
806 	ubifs_assert(c, len >= 0);
807 	ubifs_assert(c, len % c->min_io_size == 0);
808 	ubifs_assert(c, len < c->leb_size);
809 
810 	if (len == 0) {
811 		dbg_mnt("unmap empty LEB %d", lnum);
812 		return ubifs_leb_unmap(c, lnum);
813 	}
814 
815 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
816 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
817 	if (err)
818 		return err;
819 
820 	return ubifs_leb_change(c, lnum, c->sbuf, len);
821 }
822 
823 /**
824  * fixup_free_space - find & remap all LEBs containing free space.
825  * @c: UBIFS file-system description object
826  *
827  * This function walks through all LEBs in the filesystem and fiexes up those
828  * containing free/empty space.
829  */
830 static int fixup_free_space(struct ubifs_info *c)
831 {
832 	int lnum, err = 0;
833 	struct ubifs_lprops *lprops;
834 
835 	ubifs_get_lprops(c);
836 
837 	/* Fixup LEBs in the master area */
838 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
839 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
840 		if (err)
841 			goto out;
842 	}
843 
844 	/* Unmap unused log LEBs */
845 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
846 	while (lnum != c->ltail_lnum) {
847 		err = fixup_leb(c, lnum, 0);
848 		if (err)
849 			goto out;
850 		lnum = ubifs_next_log_lnum(c, lnum);
851 	}
852 
853 	/*
854 	 * Fixup the log head which contains the only a CS node at the
855 	 * beginning.
856 	 */
857 	err = fixup_leb(c, c->lhead_lnum,
858 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
859 	if (err)
860 		goto out;
861 
862 	/* Fixup LEBs in the LPT area */
863 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
864 		int free = c->ltab[lnum - c->lpt_first].free;
865 
866 		if (free > 0) {
867 			err = fixup_leb(c, lnum, c->leb_size - free);
868 			if (err)
869 				goto out;
870 		}
871 	}
872 
873 	/* Unmap LEBs in the orphans area */
874 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
875 		err = fixup_leb(c, lnum, 0);
876 		if (err)
877 			goto out;
878 	}
879 
880 	/* Fixup LEBs in the main area */
881 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
882 		lprops = ubifs_lpt_lookup(c, lnum);
883 		if (IS_ERR(lprops)) {
884 			err = PTR_ERR(lprops);
885 			goto out;
886 		}
887 
888 		if (lprops->free > 0) {
889 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
890 			if (err)
891 				goto out;
892 		}
893 	}
894 
895 out:
896 	ubifs_release_lprops(c);
897 	return err;
898 }
899 
900 /**
901  * ubifs_fixup_free_space - find & fix all LEBs with free space.
902  * @c: UBIFS file-system description object
903  *
904  * This function fixes up LEBs containing free space on first mount, if the
905  * appropriate flag was set when the FS was created. Each LEB with one or more
906  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
907  * the free space is actually erased. E.g., this is necessary for some NAND
908  * chips, since the free space may have been programmed like real "0xff" data
909  * (generating a non-0xff ECC), causing future writes to the not-really-erased
910  * NAND pages to behave badly. After the space is fixed up, the superblock flag
911  * is cleared, so that this is skipped for all future mounts.
912  */
913 int ubifs_fixup_free_space(struct ubifs_info *c)
914 {
915 	int err;
916 	struct ubifs_sb_node *sup = c->sup_node;
917 
918 	ubifs_assert(c, c->space_fixup);
919 	ubifs_assert(c, !c->ro_mount);
920 
921 	ubifs_msg(c, "start fixing up free space");
922 
923 	err = fixup_free_space(c);
924 	if (err)
925 		return err;
926 
927 	/* Free-space fixup is no longer required */
928 	c->space_fixup = 0;
929 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
930 
931 	err = ubifs_write_sb_node(c, sup);
932 	if (err)
933 		return err;
934 
935 	ubifs_msg(c, "free space fixup complete");
936 	return err;
937 }
938 
939 int ubifs_enable_encryption(struct ubifs_info *c)
940 {
941 	int err;
942 	struct ubifs_sb_node *sup = c->sup_node;
943 
944 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION))
945 		return -EOPNOTSUPP;
946 
947 	if (c->encrypted)
948 		return 0;
949 
950 	if (c->ro_mount || c->ro_media)
951 		return -EROFS;
952 
953 	if (c->fmt_version < 5) {
954 		ubifs_err(c, "on-flash format version 5 is needed for encryption");
955 		return -EINVAL;
956 	}
957 
958 	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
959 
960 	err = ubifs_write_sb_node(c, sup);
961 	if (!err)
962 		c->encrypted = 1;
963 
964 	return err;
965 }
966