1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 38 /** 39 * struct replay_entry - replay list entry. 40 * @lnum: logical eraseblock number of the node 41 * @offs: node offset 42 * @len: node length 43 * @deletion: non-zero if this entry corresponds to a node deletion 44 * @sqnum: node sequence number 45 * @list: links the replay list 46 * @key: node key 47 * @nm: directory entry name 48 * @old_size: truncation old size 49 * @new_size: truncation new size 50 * 51 * The replay process first scans all buds and builds the replay list, then 52 * sorts the replay list in nodes sequence number order, and then inserts all 53 * the replay entries to the TNC. 54 */ 55 struct replay_entry { 56 int lnum; 57 int offs; 58 int len; 59 u8 hash[UBIFS_HASH_ARR_SZ]; 60 unsigned int deletion:1; 61 unsigned long long sqnum; 62 struct list_head list; 63 union ubifs_key key; 64 union { 65 struct fscrypt_name nm; 66 struct { 67 loff_t old_size; 68 loff_t new_size; 69 }; 70 }; 71 }; 72 73 /** 74 * struct bud_entry - entry in the list of buds to replay. 75 * @list: next bud in the list 76 * @bud: bud description object 77 * @sqnum: reference node sequence number 78 * @free: free bytes in the bud 79 * @dirty: dirty bytes in the bud 80 */ 81 struct bud_entry { 82 struct list_head list; 83 struct ubifs_bud *bud; 84 unsigned long long sqnum; 85 int free; 86 int dirty; 87 }; 88 89 /** 90 * set_bud_lprops - set free and dirty space used by a bud. 91 * @c: UBIFS file-system description object 92 * @b: bud entry which describes the bud 93 * 94 * This function makes sure the LEB properties of bud @b are set correctly 95 * after the replay. Returns zero in case of success and a negative error code 96 * in case of failure. 97 */ 98 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 99 { 100 const struct ubifs_lprops *lp; 101 int err = 0, dirty; 102 103 ubifs_get_lprops(c); 104 105 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 106 if (IS_ERR(lp)) { 107 err = PTR_ERR(lp); 108 goto out; 109 } 110 111 dirty = lp->dirty; 112 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 113 /* 114 * The LEB was added to the journal with a starting offset of 115 * zero which means the LEB must have been empty. The LEB 116 * property values should be @lp->free == @c->leb_size and 117 * @lp->dirty == 0, but that is not the case. The reason is that 118 * the LEB had been garbage collected before it became the bud, 119 * and there was not commit inbetween. The garbage collector 120 * resets the free and dirty space without recording it 121 * anywhere except lprops, so if there was no commit then 122 * lprops does not have that information. 123 * 124 * We do not need to adjust free space because the scan has told 125 * us the exact value which is recorded in the replay entry as 126 * @b->free. 127 * 128 * However we do need to subtract from the dirty space the 129 * amount of space that the garbage collector reclaimed, which 130 * is the whole LEB minus the amount of space that was free. 131 */ 132 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 133 lp->free, lp->dirty); 134 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 135 lp->free, lp->dirty); 136 dirty -= c->leb_size - lp->free; 137 /* 138 * If the replay order was perfect the dirty space would now be 139 * zero. The order is not perfect because the journal heads 140 * race with each other. This is not a problem but is does mean 141 * that the dirty space may temporarily exceed c->leb_size 142 * during the replay. 143 */ 144 if (dirty != 0) 145 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", 146 b->bud->lnum, lp->free, lp->dirty, b->free, 147 b->dirty); 148 } 149 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 150 lp->flags | LPROPS_TAKEN, 0); 151 if (IS_ERR(lp)) { 152 err = PTR_ERR(lp); 153 goto out; 154 } 155 156 /* Make sure the journal head points to the latest bud */ 157 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 158 b->bud->lnum, c->leb_size - b->free); 159 160 out: 161 ubifs_release_lprops(c); 162 return err; 163 } 164 165 /** 166 * set_buds_lprops - set free and dirty space for all replayed buds. 167 * @c: UBIFS file-system description object 168 * 169 * This function sets LEB properties for all replayed buds. Returns zero in 170 * case of success and a negative error code in case of failure. 171 */ 172 static int set_buds_lprops(struct ubifs_info *c) 173 { 174 struct bud_entry *b; 175 int err; 176 177 list_for_each_entry(b, &c->replay_buds, list) { 178 err = set_bud_lprops(c, b); 179 if (err) 180 return err; 181 } 182 183 return 0; 184 } 185 186 /** 187 * trun_remove_range - apply a replay entry for a truncation to the TNC. 188 * @c: UBIFS file-system description object 189 * @r: replay entry of truncation 190 */ 191 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 192 { 193 unsigned min_blk, max_blk; 194 union ubifs_key min_key, max_key; 195 ino_t ino; 196 197 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 198 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 199 min_blk += 1; 200 201 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 202 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 203 max_blk -= 1; 204 205 ino = key_inum(c, &r->key); 206 207 data_key_init(c, &min_key, ino, min_blk); 208 data_key_init(c, &max_key, ino, max_blk); 209 210 return ubifs_tnc_remove_range(c, &min_key, &max_key); 211 } 212 213 /** 214 * apply_replay_entry - apply a replay entry to the TNC. 215 * @c: UBIFS file-system description object 216 * @r: replay entry to apply 217 * 218 * Apply a replay entry to the TNC. 219 */ 220 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 221 { 222 int err; 223 224 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 225 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 226 227 if (is_hash_key(c, &r->key)) { 228 if (r->deletion) 229 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 230 else 231 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 232 r->len, r->hash, &r->nm); 233 } else { 234 if (r->deletion) 235 switch (key_type(c, &r->key)) { 236 case UBIFS_INO_KEY: 237 { 238 ino_t inum = key_inum(c, &r->key); 239 240 err = ubifs_tnc_remove_ino(c, inum); 241 break; 242 } 243 case UBIFS_TRUN_KEY: 244 err = trun_remove_range(c, r); 245 break; 246 default: 247 err = ubifs_tnc_remove(c, &r->key); 248 break; 249 } 250 else 251 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 252 r->len, r->hash); 253 if (err) 254 return err; 255 256 if (c->need_recovery) 257 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 258 r->new_size); 259 } 260 261 return err; 262 } 263 264 /** 265 * replay_entries_cmp - compare 2 replay entries. 266 * @priv: UBIFS file-system description object 267 * @a: first replay entry 268 * @b: second replay entry 269 * 270 * This is a comparios function for 'list_sort()' which compares 2 replay 271 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 272 * greater sequence number and %-1 otherwise. 273 */ 274 static int replay_entries_cmp(void *priv, struct list_head *a, 275 struct list_head *b) 276 { 277 struct ubifs_info *c = priv; 278 struct replay_entry *ra, *rb; 279 280 cond_resched(); 281 if (a == b) 282 return 0; 283 284 ra = list_entry(a, struct replay_entry, list); 285 rb = list_entry(b, struct replay_entry, list); 286 ubifs_assert(c, ra->sqnum != rb->sqnum); 287 if (ra->sqnum > rb->sqnum) 288 return 1; 289 return -1; 290 } 291 292 /** 293 * apply_replay_list - apply the replay list to the TNC. 294 * @c: UBIFS file-system description object 295 * 296 * Apply all entries in the replay list to the TNC. Returns zero in case of 297 * success and a negative error code in case of failure. 298 */ 299 static int apply_replay_list(struct ubifs_info *c) 300 { 301 struct replay_entry *r; 302 int err; 303 304 list_sort(c, &c->replay_list, &replay_entries_cmp); 305 306 list_for_each_entry(r, &c->replay_list, list) { 307 cond_resched(); 308 309 err = apply_replay_entry(c, r); 310 if (err) 311 return err; 312 } 313 314 return 0; 315 } 316 317 /** 318 * destroy_replay_list - destroy the replay. 319 * @c: UBIFS file-system description object 320 * 321 * Destroy the replay list. 322 */ 323 static void destroy_replay_list(struct ubifs_info *c) 324 { 325 struct replay_entry *r, *tmp; 326 327 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 328 if (is_hash_key(c, &r->key)) 329 kfree(fname_name(&r->nm)); 330 list_del(&r->list); 331 kfree(r); 332 } 333 } 334 335 /** 336 * insert_node - insert a node to the replay list 337 * @c: UBIFS file-system description object 338 * @lnum: node logical eraseblock number 339 * @offs: node offset 340 * @len: node length 341 * @key: node key 342 * @sqnum: sequence number 343 * @deletion: non-zero if this is a deletion 344 * @used: number of bytes in use in a LEB 345 * @old_size: truncation old size 346 * @new_size: truncation new size 347 * 348 * This function inserts a scanned non-direntry node to the replay list. The 349 * replay list contains @struct replay_entry elements, and we sort this list in 350 * sequence number order before applying it. The replay list is applied at the 351 * very end of the replay process. Since the list is sorted in sequence number 352 * order, the older modifications are applied first. This function returns zero 353 * in case of success and a negative error code in case of failure. 354 */ 355 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 356 const u8 *hash, union ubifs_key *key, 357 unsigned long long sqnum, int deletion, int *used, 358 loff_t old_size, loff_t new_size) 359 { 360 struct replay_entry *r; 361 362 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 363 364 if (key_inum(c, key) >= c->highest_inum) 365 c->highest_inum = key_inum(c, key); 366 367 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 368 if (!r) 369 return -ENOMEM; 370 371 if (!deletion) 372 *used += ALIGN(len, 8); 373 r->lnum = lnum; 374 r->offs = offs; 375 r->len = len; 376 ubifs_copy_hash(c, hash, r->hash); 377 r->deletion = !!deletion; 378 r->sqnum = sqnum; 379 key_copy(c, key, &r->key); 380 r->old_size = old_size; 381 r->new_size = new_size; 382 383 list_add_tail(&r->list, &c->replay_list); 384 return 0; 385 } 386 387 /** 388 * insert_dent - insert a directory entry node into the replay list. 389 * @c: UBIFS file-system description object 390 * @lnum: node logical eraseblock number 391 * @offs: node offset 392 * @len: node length 393 * @key: node key 394 * @name: directory entry name 395 * @nlen: directory entry name length 396 * @sqnum: sequence number 397 * @deletion: non-zero if this is a deletion 398 * @used: number of bytes in use in a LEB 399 * 400 * This function inserts a scanned directory entry node or an extended 401 * attribute entry to the replay list. Returns zero in case of success and a 402 * negative error code in case of failure. 403 */ 404 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 405 const u8 *hash, union ubifs_key *key, 406 const char *name, int nlen, unsigned long long sqnum, 407 int deletion, int *used) 408 { 409 struct replay_entry *r; 410 char *nbuf; 411 412 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 413 if (key_inum(c, key) >= c->highest_inum) 414 c->highest_inum = key_inum(c, key); 415 416 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 417 if (!r) 418 return -ENOMEM; 419 420 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 421 if (!nbuf) { 422 kfree(r); 423 return -ENOMEM; 424 } 425 426 if (!deletion) 427 *used += ALIGN(len, 8); 428 r->lnum = lnum; 429 r->offs = offs; 430 r->len = len; 431 ubifs_copy_hash(c, hash, r->hash); 432 r->deletion = !!deletion; 433 r->sqnum = sqnum; 434 key_copy(c, key, &r->key); 435 fname_len(&r->nm) = nlen; 436 memcpy(nbuf, name, nlen); 437 nbuf[nlen] = '\0'; 438 fname_name(&r->nm) = nbuf; 439 440 list_add_tail(&r->list, &c->replay_list); 441 return 0; 442 } 443 444 /** 445 * ubifs_validate_entry - validate directory or extended attribute entry node. 446 * @c: UBIFS file-system description object 447 * @dent: the node to validate 448 * 449 * This function validates directory or extended attribute entry node @dent. 450 * Returns zero if the node is all right and a %-EINVAL if not. 451 */ 452 int ubifs_validate_entry(struct ubifs_info *c, 453 const struct ubifs_dent_node *dent) 454 { 455 int key_type = key_type_flash(c, dent->key); 456 int nlen = le16_to_cpu(dent->nlen); 457 458 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 459 dent->type >= UBIFS_ITYPES_CNT || 460 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 461 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || 462 le64_to_cpu(dent->inum) > MAX_INUM) { 463 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? 464 "directory entry" : "extended attribute entry"); 465 return -EINVAL; 466 } 467 468 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 469 ubifs_err(c, "bad key type %d", key_type); 470 return -EINVAL; 471 } 472 473 return 0; 474 } 475 476 /** 477 * is_last_bud - check if the bud is the last in the journal head. 478 * @c: UBIFS file-system description object 479 * @bud: bud description object 480 * 481 * This function checks if bud @bud is the last bud in its journal head. This 482 * information is then used by 'replay_bud()' to decide whether the bud can 483 * have corruptions or not. Indeed, only last buds can be corrupted by power 484 * cuts. Returns %1 if this is the last bud, and %0 if not. 485 */ 486 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 487 { 488 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 489 struct ubifs_bud *next; 490 uint32_t data; 491 int err; 492 493 if (list_is_last(&bud->list, &jh->buds_list)) 494 return 1; 495 496 /* 497 * The following is a quirk to make sure we work correctly with UBIFS 498 * images used with older UBIFS. 499 * 500 * Normally, the last bud will be the last in the journal head's list 501 * of bud. However, there is one exception if the UBIFS image belongs 502 * to older UBIFS. This is fairly unlikely: one would need to use old 503 * UBIFS, then have a power cut exactly at the right point, and then 504 * try to mount this image with new UBIFS. 505 * 506 * The exception is: it is possible to have 2 buds A and B, A goes 507 * before B, and B is the last, bud B is contains no data, and bud A is 508 * corrupted at the end. The reason is that in older versions when the 509 * journal code switched the next bud (from A to B), it first added a 510 * log reference node for the new bud (B), and only after this it 511 * synchronized the write-buffer of current bud (A). But later this was 512 * changed and UBIFS started to always synchronize the write-buffer of 513 * the bud (A) before writing the log reference for the new bud (B). 514 * 515 * But because older UBIFS always synchronized A's write-buffer before 516 * writing to B, we can recognize this exceptional situation but 517 * checking the contents of bud B - if it is empty, then A can be 518 * treated as the last and we can recover it. 519 * 520 * TODO: remove this piece of code in a couple of years (today it is 521 * 16.05.2011). 522 */ 523 next = list_entry(bud->list.next, struct ubifs_bud, list); 524 if (!list_is_last(&next->list, &jh->buds_list)) 525 return 0; 526 527 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 528 if (err) 529 return 0; 530 531 return data == 0xFFFFFFFF; 532 } 533 534 /** 535 * replay_bud - replay a bud logical eraseblock. 536 * @c: UBIFS file-system description object 537 * @b: bud entry which describes the bud 538 * 539 * This function replays bud @bud, recovers it if needed, and adds all nodes 540 * from this bud to the replay list. Returns zero in case of success and a 541 * negative error code in case of failure. 542 */ 543 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 544 { 545 int is_last = is_last_bud(c, b->bud); 546 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 547 struct ubifs_scan_leb *sleb; 548 struct ubifs_scan_node *snod; 549 550 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 551 lnum, b->bud->jhead, offs, is_last); 552 553 if (c->need_recovery && is_last) 554 /* 555 * Recover only last LEBs in the journal heads, because power 556 * cuts may cause corruptions only in these LEBs, because only 557 * these LEBs could possibly be written to at the power cut 558 * time. 559 */ 560 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 561 else 562 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 563 if (IS_ERR(sleb)) 564 return PTR_ERR(sleb); 565 566 /* 567 * The bud does not have to start from offset zero - the beginning of 568 * the 'lnum' LEB may contain previously committed data. One of the 569 * things we have to do in replay is to correctly update lprops with 570 * newer information about this LEB. 571 * 572 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 573 * bytes of free space because it only contain information about 574 * committed data. 575 * 576 * But we know that real amount of free space is 'c->leb_size - 577 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 578 * 'sleb->endpt' is used by bud data. We have to correctly calculate 579 * how much of these data are dirty and update lprops with this 580 * information. 581 * 582 * The dirt in that LEB region is comprised of padding nodes, deletion 583 * nodes, truncation nodes and nodes which are obsoleted by subsequent 584 * nodes in this LEB. So instead of calculating clean space, we 585 * calculate used space ('used' variable). 586 */ 587 588 list_for_each_entry(snod, &sleb->nodes, list) { 589 u8 hash[UBIFS_HASH_ARR_SZ]; 590 int deletion = 0; 591 592 cond_resched(); 593 594 if (snod->sqnum >= SQNUM_WATERMARK) { 595 ubifs_err(c, "file system's life ended"); 596 goto out_dump; 597 } 598 599 ubifs_node_calc_hash(c, snod->node, hash); 600 601 if (snod->sqnum > c->max_sqnum) 602 c->max_sqnum = snod->sqnum; 603 604 switch (snod->type) { 605 case UBIFS_INO_NODE: 606 { 607 struct ubifs_ino_node *ino = snod->node; 608 loff_t new_size = le64_to_cpu(ino->size); 609 610 if (le32_to_cpu(ino->nlink) == 0) 611 deletion = 1; 612 err = insert_node(c, lnum, snod->offs, snod->len, hash, 613 &snod->key, snod->sqnum, deletion, 614 &used, 0, new_size); 615 break; 616 } 617 case UBIFS_DATA_NODE: 618 { 619 struct ubifs_data_node *dn = snod->node; 620 loff_t new_size = le32_to_cpu(dn->size) + 621 key_block(c, &snod->key) * 622 UBIFS_BLOCK_SIZE; 623 624 err = insert_node(c, lnum, snod->offs, snod->len, hash, 625 &snod->key, snod->sqnum, deletion, 626 &used, 0, new_size); 627 break; 628 } 629 case UBIFS_DENT_NODE: 630 case UBIFS_XENT_NODE: 631 { 632 struct ubifs_dent_node *dent = snod->node; 633 634 err = ubifs_validate_entry(c, dent); 635 if (err) 636 goto out_dump; 637 638 err = insert_dent(c, lnum, snod->offs, snod->len, hash, 639 &snod->key, dent->name, 640 le16_to_cpu(dent->nlen), snod->sqnum, 641 !le64_to_cpu(dent->inum), &used); 642 break; 643 } 644 case UBIFS_TRUN_NODE: 645 { 646 struct ubifs_trun_node *trun = snod->node; 647 loff_t old_size = le64_to_cpu(trun->old_size); 648 loff_t new_size = le64_to_cpu(trun->new_size); 649 union ubifs_key key; 650 651 /* Validate truncation node */ 652 if (old_size < 0 || old_size > c->max_inode_sz || 653 new_size < 0 || new_size > c->max_inode_sz || 654 old_size <= new_size) { 655 ubifs_err(c, "bad truncation node"); 656 goto out_dump; 657 } 658 659 /* 660 * Create a fake truncation key just to use the same 661 * functions which expect nodes to have keys. 662 */ 663 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 664 err = insert_node(c, lnum, snod->offs, snod->len, hash, 665 &key, snod->sqnum, 1, &used, 666 old_size, new_size); 667 break; 668 } 669 case UBIFS_AUTH_NODE: 670 break; 671 default: 672 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", 673 snod->type, lnum, snod->offs); 674 err = -EINVAL; 675 goto out_dump; 676 } 677 if (err) 678 goto out; 679 } 680 681 ubifs_assert(c, ubifs_search_bud(c, lnum)); 682 ubifs_assert(c, sleb->endpt - offs >= used); 683 ubifs_assert(c, sleb->endpt % c->min_io_size == 0); 684 685 b->dirty = sleb->endpt - offs - used; 686 b->free = c->leb_size - sleb->endpt; 687 dbg_mnt("bud LEB %d replied: dirty %d, free %d", 688 lnum, b->dirty, b->free); 689 690 out: 691 ubifs_scan_destroy(sleb); 692 return err; 693 694 out_dump: 695 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); 696 ubifs_dump_node(c, snod->node); 697 ubifs_scan_destroy(sleb); 698 return -EINVAL; 699 } 700 701 /** 702 * replay_buds - replay all buds. 703 * @c: UBIFS file-system description object 704 * 705 * This function returns zero in case of success and a negative error code in 706 * case of failure. 707 */ 708 static int replay_buds(struct ubifs_info *c) 709 { 710 struct bud_entry *b; 711 int err; 712 unsigned long long prev_sqnum = 0; 713 714 list_for_each_entry(b, &c->replay_buds, list) { 715 err = replay_bud(c, b); 716 if (err) 717 return err; 718 719 ubifs_assert(c, b->sqnum > prev_sqnum); 720 prev_sqnum = b->sqnum; 721 } 722 723 return 0; 724 } 725 726 /** 727 * destroy_bud_list - destroy the list of buds to replay. 728 * @c: UBIFS file-system description object 729 */ 730 static void destroy_bud_list(struct ubifs_info *c) 731 { 732 struct bud_entry *b; 733 734 while (!list_empty(&c->replay_buds)) { 735 b = list_entry(c->replay_buds.next, struct bud_entry, list); 736 list_del(&b->list); 737 kfree(b); 738 } 739 } 740 741 /** 742 * add_replay_bud - add a bud to the list of buds to replay. 743 * @c: UBIFS file-system description object 744 * @lnum: bud logical eraseblock number to replay 745 * @offs: bud start offset 746 * @jhead: journal head to which this bud belongs 747 * @sqnum: reference node sequence number 748 * 749 * This function returns zero in case of success and a negative error code in 750 * case of failure. 751 */ 752 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 753 unsigned long long sqnum) 754 { 755 struct ubifs_bud *bud; 756 struct bud_entry *b; 757 758 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 759 760 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 761 if (!bud) 762 return -ENOMEM; 763 764 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 765 if (!b) { 766 kfree(bud); 767 return -ENOMEM; 768 } 769 770 bud->lnum = lnum; 771 bud->start = offs; 772 bud->jhead = jhead; 773 ubifs_add_bud(c, bud); 774 775 b->bud = bud; 776 b->sqnum = sqnum; 777 list_add_tail(&b->list, &c->replay_buds); 778 779 return 0; 780 } 781 782 /** 783 * validate_ref - validate a reference node. 784 * @c: UBIFS file-system description object 785 * @ref: the reference node to validate 786 * @ref_lnum: LEB number of the reference node 787 * @ref_offs: reference node offset 788 * 789 * This function returns %1 if a bud reference already exists for the LEB. %0 is 790 * returned if the reference node is new, otherwise %-EINVAL is returned if 791 * validation failed. 792 */ 793 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 794 { 795 struct ubifs_bud *bud; 796 int lnum = le32_to_cpu(ref->lnum); 797 unsigned int offs = le32_to_cpu(ref->offs); 798 unsigned int jhead = le32_to_cpu(ref->jhead); 799 800 /* 801 * ref->offs may point to the end of LEB when the journal head points 802 * to the end of LEB and we write reference node for it during commit. 803 * So this is why we require 'offs > c->leb_size'. 804 */ 805 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 806 lnum < c->main_first || offs > c->leb_size || 807 offs & (c->min_io_size - 1)) 808 return -EINVAL; 809 810 /* Make sure we have not already looked at this bud */ 811 bud = ubifs_search_bud(c, lnum); 812 if (bud) { 813 if (bud->jhead == jhead && bud->start <= offs) 814 return 1; 815 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); 816 return -EINVAL; 817 } 818 819 return 0; 820 } 821 822 /** 823 * replay_log_leb - replay a log logical eraseblock. 824 * @c: UBIFS file-system description object 825 * @lnum: log logical eraseblock to replay 826 * @offs: offset to start replaying from 827 * @sbuf: scan buffer 828 * 829 * This function replays a log LEB and returns zero in case of success, %1 if 830 * this is the last LEB in the log, and a negative error code in case of 831 * failure. 832 */ 833 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 834 { 835 int err; 836 struct ubifs_scan_leb *sleb; 837 struct ubifs_scan_node *snod; 838 const struct ubifs_cs_node *node; 839 840 dbg_mnt("replay log LEB %d:%d", lnum, offs); 841 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 842 if (IS_ERR(sleb)) { 843 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 844 return PTR_ERR(sleb); 845 /* 846 * Note, the below function will recover this log LEB only if 847 * it is the last, because unclean reboots can possibly corrupt 848 * only the tail of the log. 849 */ 850 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 851 if (IS_ERR(sleb)) 852 return PTR_ERR(sleb); 853 } 854 855 if (sleb->nodes_cnt == 0) { 856 err = 1; 857 goto out; 858 } 859 860 node = sleb->buf; 861 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 862 if (c->cs_sqnum == 0) { 863 /* 864 * This is the first log LEB we are looking at, make sure that 865 * the first node is a commit start node. Also record its 866 * sequence number so that UBIFS can determine where the log 867 * ends, because all nodes which were have higher sequence 868 * numbers. 869 */ 870 if (snod->type != UBIFS_CS_NODE) { 871 ubifs_err(c, "first log node at LEB %d:%d is not CS node", 872 lnum, offs); 873 goto out_dump; 874 } 875 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 876 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", 877 lnum, offs, 878 (unsigned long long)le64_to_cpu(node->cmt_no), 879 c->cmt_no); 880 goto out_dump; 881 } 882 883 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 884 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 885 } 886 887 if (snod->sqnum < c->cs_sqnum) { 888 /* 889 * This means that we reached end of log and now 890 * look to the older log data, which was already 891 * committed but the eraseblock was not erased (UBIFS 892 * only un-maps it). So this basically means we have to 893 * exit with "end of log" code. 894 */ 895 err = 1; 896 goto out; 897 } 898 899 /* Make sure the first node sits at offset zero of the LEB */ 900 if (snod->offs != 0) { 901 ubifs_err(c, "first node is not at zero offset"); 902 goto out_dump; 903 } 904 905 list_for_each_entry(snod, &sleb->nodes, list) { 906 cond_resched(); 907 908 if (snod->sqnum >= SQNUM_WATERMARK) { 909 ubifs_err(c, "file system's life ended"); 910 goto out_dump; 911 } 912 913 if (snod->sqnum < c->cs_sqnum) { 914 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", 915 snod->sqnum, c->cs_sqnum); 916 goto out_dump; 917 } 918 919 if (snod->sqnum > c->max_sqnum) 920 c->max_sqnum = snod->sqnum; 921 922 switch (snod->type) { 923 case UBIFS_REF_NODE: { 924 const struct ubifs_ref_node *ref = snod->node; 925 926 err = validate_ref(c, ref); 927 if (err == 1) 928 break; /* Already have this bud */ 929 if (err) 930 goto out_dump; 931 932 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 933 le32_to_cpu(ref->offs), 934 le32_to_cpu(ref->jhead), 935 snod->sqnum); 936 if (err) 937 goto out; 938 939 break; 940 } 941 case UBIFS_CS_NODE: 942 /* Make sure it sits at the beginning of LEB */ 943 if (snod->offs != 0) { 944 ubifs_err(c, "unexpected node in log"); 945 goto out_dump; 946 } 947 break; 948 default: 949 ubifs_err(c, "unexpected node in log"); 950 goto out_dump; 951 } 952 } 953 954 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 955 c->lhead_lnum = lnum; 956 c->lhead_offs = sleb->endpt; 957 } 958 959 err = !sleb->endpt; 960 out: 961 ubifs_scan_destroy(sleb); 962 return err; 963 964 out_dump: 965 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", 966 lnum, offs + snod->offs); 967 ubifs_dump_node(c, snod->node); 968 ubifs_scan_destroy(sleb); 969 return -EINVAL; 970 } 971 972 /** 973 * take_ihead - update the status of the index head in lprops to 'taken'. 974 * @c: UBIFS file-system description object 975 * 976 * This function returns the amount of free space in the index head LEB or a 977 * negative error code. 978 */ 979 static int take_ihead(struct ubifs_info *c) 980 { 981 const struct ubifs_lprops *lp; 982 int err, free; 983 984 ubifs_get_lprops(c); 985 986 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 987 if (IS_ERR(lp)) { 988 err = PTR_ERR(lp); 989 goto out; 990 } 991 992 free = lp->free; 993 994 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 995 lp->flags | LPROPS_TAKEN, 0); 996 if (IS_ERR(lp)) { 997 err = PTR_ERR(lp); 998 goto out; 999 } 1000 1001 err = free; 1002 out: 1003 ubifs_release_lprops(c); 1004 return err; 1005 } 1006 1007 /** 1008 * ubifs_replay_journal - replay journal. 1009 * @c: UBIFS file-system description object 1010 * 1011 * This function scans the journal, replays and cleans it up. It makes sure all 1012 * memory data structures related to uncommitted journal are built (dirty TNC 1013 * tree, tree of buds, modified lprops, etc). 1014 */ 1015 int ubifs_replay_journal(struct ubifs_info *c) 1016 { 1017 int err, lnum, free; 1018 1019 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1020 1021 /* Update the status of the index head in lprops to 'taken' */ 1022 free = take_ihead(c); 1023 if (free < 0) 1024 return free; /* Error code */ 1025 1026 if (c->ihead_offs != c->leb_size - free) { 1027 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, 1028 c->ihead_offs); 1029 return -EINVAL; 1030 } 1031 1032 dbg_mnt("start replaying the journal"); 1033 c->replaying = 1; 1034 lnum = c->ltail_lnum = c->lhead_lnum; 1035 1036 do { 1037 err = replay_log_leb(c, lnum, 0, c->sbuf); 1038 if (err == 1) { 1039 if (lnum != c->lhead_lnum) 1040 /* We hit the end of the log */ 1041 break; 1042 1043 /* 1044 * The head of the log must always start with the 1045 * "commit start" node on a properly formatted UBIFS. 1046 * But we found no nodes at all, which means that 1047 * something went wrong and we cannot proceed mounting 1048 * the file-system. 1049 */ 1050 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", 1051 lnum, 0); 1052 err = -EINVAL; 1053 } 1054 if (err) 1055 goto out; 1056 lnum = ubifs_next_log_lnum(c, lnum); 1057 } while (lnum != c->ltail_lnum); 1058 1059 err = replay_buds(c); 1060 if (err) 1061 goto out; 1062 1063 err = apply_replay_list(c); 1064 if (err) 1065 goto out; 1066 1067 err = set_buds_lprops(c); 1068 if (err) 1069 goto out; 1070 1071 /* 1072 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1073 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1074 * depend on it. This means we have to initialize it to make sure 1075 * budgeting works properly. 1076 */ 1077 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1078 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1079 1080 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1081 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", 1082 c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1083 (unsigned long)c->highest_inum); 1084 out: 1085 destroy_replay_list(c); 1086 destroy_bud_list(c); 1087 c->replaying = 0; 1088 return err; 1089 } 1090