xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision 17c2f9f85c896b48a5d74a9155d99ec5b241a0e6)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include "ubifs.h"
30 
31 /**
32  * first_dirty_cnode - find first dirty cnode.
33  * @c: UBIFS file-system description object
34  * @nnode: nnode at which to start
35  *
36  * This function returns the first dirty cnode or %NULL if there is not one.
37  */
38 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39 {
40 	ubifs_assert(nnode);
41 	while (1) {
42 		int i, cont = 0;
43 
44 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 			struct ubifs_cnode *cnode;
46 
47 			cnode = nnode->nbranch[i].cnode;
48 			if (cnode &&
49 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
50 				if (cnode->level == 0)
51 					return cnode;
52 				nnode = (struct ubifs_nnode *)cnode;
53 				cont = 1;
54 				break;
55 			}
56 		}
57 		if (!cont)
58 			return (struct ubifs_cnode *)nnode;
59 	}
60 }
61 
62 /**
63  * next_dirty_cnode - find next dirty cnode.
64  * @cnode: cnode from which to begin searching
65  *
66  * This function returns the next dirty cnode or %NULL if there is not one.
67  */
68 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69 {
70 	struct ubifs_nnode *nnode;
71 	int i;
72 
73 	ubifs_assert(cnode);
74 	nnode = cnode->parent;
75 	if (!nnode)
76 		return NULL;
77 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 		cnode = nnode->nbranch[i].cnode;
79 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 			if (cnode->level == 0)
81 				return cnode; /* cnode is a pnode */
82 			/* cnode is a nnode */
83 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 		}
85 	}
86 	return (struct ubifs_cnode *)nnode;
87 }
88 
89 /**
90  * get_cnodes_to_commit - create list of dirty cnodes to commit.
91  * @c: UBIFS file-system description object
92  *
93  * This function returns the number of cnodes to commit.
94  */
95 static int get_cnodes_to_commit(struct ubifs_info *c)
96 {
97 	struct ubifs_cnode *cnode, *cnext;
98 	int cnt = 0;
99 
100 	if (!c->nroot)
101 		return 0;
102 
103 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 		return 0;
105 
106 	c->lpt_cnext = first_dirty_cnode(c->nroot);
107 	cnode = c->lpt_cnext;
108 	if (!cnode)
109 		return 0;
110 	cnt += 1;
111 	while (1) {
112 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 		__set_bit(COW_ZNODE, &cnode->flags);
114 		cnext = next_dirty_cnode(cnode);
115 		if (!cnext) {
116 			cnode->cnext = c->lpt_cnext;
117 			break;
118 		}
119 		cnode->cnext = cnext;
120 		cnode = cnext;
121 		cnt += 1;
122 	}
123 	dbg_cmt("committing %d cnodes", cnt);
124 	dbg_lp("committing %d cnodes", cnt);
125 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 	return cnt;
127 }
128 
129 /**
130  * upd_ltab - update LPT LEB properties.
131  * @c: UBIFS file-system description object
132  * @lnum: LEB number
133  * @free: amount of free space
134  * @dirty: amount of dirty space to add
135  */
136 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137 {
138 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 	       lnum, c->ltab[lnum - c->lpt_first].free,
140 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 	c->ltab[lnum - c->lpt_first].free = free;
143 	c->ltab[lnum - c->lpt_first].dirty += dirty;
144 }
145 
146 /**
147  * alloc_lpt_leb - allocate an LPT LEB that is empty.
148  * @c: UBIFS file-system description object
149  * @lnum: LEB number is passed and returned here
150  *
151  * This function finds the next empty LEB in the ltab starting from @lnum. If a
152  * an empty LEB is found it is returned in @lnum and the function returns %0.
153  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
154  * never to run out of space.
155  */
156 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157 {
158 	int i, n;
159 
160 	n = *lnum - c->lpt_first + 1;
161 	for (i = n; i < c->lpt_lebs; i++) {
162 		if (c->ltab[i].tgc || c->ltab[i].cmt)
163 			continue;
164 		if (c->ltab[i].free == c->leb_size) {
165 			c->ltab[i].cmt = 1;
166 			*lnum = i + c->lpt_first;
167 			return 0;
168 		}
169 	}
170 
171 	for (i = 0; i < n; i++) {
172 		if (c->ltab[i].tgc || c->ltab[i].cmt)
173 			continue;
174 		if (c->ltab[i].free == c->leb_size) {
175 			c->ltab[i].cmt = 1;
176 			*lnum = i + c->lpt_first;
177 			return 0;
178 		}
179 	}
180 	return -ENOSPC;
181 }
182 
183 /**
184  * layout_cnodes - layout cnodes for commit.
185  * @c: UBIFS file-system description object
186  *
187  * This function returns %0 on success and a negative error code on failure.
188  */
189 static int layout_cnodes(struct ubifs_info *c)
190 {
191 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 	struct ubifs_cnode *cnode;
193 
194 	err = dbg_chk_lpt_sz(c, 0, 0);
195 	if (err)
196 		return err;
197 	cnode = c->lpt_cnext;
198 	if (!cnode)
199 		return 0;
200 	lnum = c->nhead_lnum;
201 	offs = c->nhead_offs;
202 	/* Try to place lsave and ltab nicely */
203 	done_lsave = !c->big_lpt;
204 	done_ltab = 0;
205 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 		done_lsave = 1;
207 		c->lsave_lnum = lnum;
208 		c->lsave_offs = offs;
209 		offs += c->lsave_sz;
210 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
211 	}
212 
213 	if (offs + c->ltab_sz <= c->leb_size) {
214 		done_ltab = 1;
215 		c->ltab_lnum = lnum;
216 		c->ltab_offs = offs;
217 		offs += c->ltab_sz;
218 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
219 	}
220 
221 	do {
222 		if (cnode->level) {
223 			len = c->nnode_sz;
224 			c->dirty_nn_cnt -= 1;
225 		} else {
226 			len = c->pnode_sz;
227 			c->dirty_pn_cnt -= 1;
228 		}
229 		while (offs + len > c->leb_size) {
230 			alen = ALIGN(offs, c->min_io_size);
231 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
232 			dbg_chk_lpt_sz(c, 2, alen - offs);
233 			err = alloc_lpt_leb(c, &lnum);
234 			if (err)
235 				goto no_space;
236 			offs = 0;
237 			ubifs_assert(lnum >= c->lpt_first &&
238 				     lnum <= c->lpt_last);
239 			/* Try to place lsave and ltab nicely */
240 			if (!done_lsave) {
241 				done_lsave = 1;
242 				c->lsave_lnum = lnum;
243 				c->lsave_offs = offs;
244 				offs += c->lsave_sz;
245 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
246 				continue;
247 			}
248 			if (!done_ltab) {
249 				done_ltab = 1;
250 				c->ltab_lnum = lnum;
251 				c->ltab_offs = offs;
252 				offs += c->ltab_sz;
253 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
254 				continue;
255 			}
256 			break;
257 		}
258 		if (cnode->parent) {
259 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 			cnode->parent->nbranch[cnode->iip].offs = offs;
261 		} else {
262 			c->lpt_lnum = lnum;
263 			c->lpt_offs = offs;
264 		}
265 		offs += len;
266 		dbg_chk_lpt_sz(c, 1, len);
267 		cnode = cnode->cnext;
268 	} while (cnode && cnode != c->lpt_cnext);
269 
270 	/* Make sure to place LPT's save table */
271 	if (!done_lsave) {
272 		if (offs + c->lsave_sz > c->leb_size) {
273 			alen = ALIGN(offs, c->min_io_size);
274 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
275 			dbg_chk_lpt_sz(c, 2, alen - offs);
276 			err = alloc_lpt_leb(c, &lnum);
277 			if (err)
278 				goto no_space;
279 			offs = 0;
280 			ubifs_assert(lnum >= c->lpt_first &&
281 				     lnum <= c->lpt_last);
282 		}
283 		done_lsave = 1;
284 		c->lsave_lnum = lnum;
285 		c->lsave_offs = offs;
286 		offs += c->lsave_sz;
287 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
288 	}
289 
290 	/* Make sure to place LPT's own lprops table */
291 	if (!done_ltab) {
292 		if (offs + c->ltab_sz > c->leb_size) {
293 			alen = ALIGN(offs, c->min_io_size);
294 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
295 			dbg_chk_lpt_sz(c, 2, alen - offs);
296 			err = alloc_lpt_leb(c, &lnum);
297 			if (err)
298 				goto no_space;
299 			offs = 0;
300 			ubifs_assert(lnum >= c->lpt_first &&
301 				     lnum <= c->lpt_last);
302 		}
303 		done_ltab = 1;
304 		c->ltab_lnum = lnum;
305 		c->ltab_offs = offs;
306 		offs += c->ltab_sz;
307 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
308 	}
309 
310 	alen = ALIGN(offs, c->min_io_size);
311 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
312 	dbg_chk_lpt_sz(c, 4, alen - offs);
313 	err = dbg_chk_lpt_sz(c, 3, alen);
314 	if (err)
315 		return err;
316 	return 0;
317 
318 no_space:
319 	ubifs_err("LPT out of space");
320 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 	dbg_dump_lpt_info(c);
323 	return err;
324 }
325 
326 /**
327  * realloc_lpt_leb - allocate an LPT LEB that is empty.
328  * @c: UBIFS file-system description object
329  * @lnum: LEB number is passed and returned here
330  *
331  * This function duplicates exactly the results of the function alloc_lpt_leb.
332  * It is used during end commit to reallocate the same LEB numbers that were
333  * allocated by alloc_lpt_leb during start commit.
334  *
335  * This function finds the next LEB that was allocated by the alloc_lpt_leb
336  * function starting from @lnum. If a LEB is found it is returned in @lnum and
337  * the function returns %0. Otherwise the function returns -ENOSPC.
338  * Note however, that LPT is designed never to run out of space.
339  */
340 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
341 {
342 	int i, n;
343 
344 	n = *lnum - c->lpt_first + 1;
345 	for (i = n; i < c->lpt_lebs; i++)
346 		if (c->ltab[i].cmt) {
347 			c->ltab[i].cmt = 0;
348 			*lnum = i + c->lpt_first;
349 			return 0;
350 		}
351 
352 	for (i = 0; i < n; i++)
353 		if (c->ltab[i].cmt) {
354 			c->ltab[i].cmt = 0;
355 			*lnum = i + c->lpt_first;
356 			return 0;
357 		}
358 	return -ENOSPC;
359 }
360 
361 /**
362  * write_cnodes - write cnodes for commit.
363  * @c: UBIFS file-system description object
364  *
365  * This function returns %0 on success and a negative error code on failure.
366  */
367 static int write_cnodes(struct ubifs_info *c)
368 {
369 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
370 	struct ubifs_cnode *cnode;
371 	void *buf = c->lpt_buf;
372 
373 	cnode = c->lpt_cnext;
374 	if (!cnode)
375 		return 0;
376 	lnum = c->nhead_lnum;
377 	offs = c->nhead_offs;
378 	from = offs;
379 	/* Ensure empty LEB is unmapped */
380 	if (offs == 0) {
381 		err = ubifs_leb_unmap(c, lnum);
382 		if (err)
383 			return err;
384 	}
385 	/* Try to place lsave and ltab nicely */
386 	done_lsave = !c->big_lpt;
387 	done_ltab = 0;
388 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
389 		done_lsave = 1;
390 		ubifs_pack_lsave(c, buf + offs, c->lsave);
391 		offs += c->lsave_sz;
392 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
393 	}
394 
395 	if (offs + c->ltab_sz <= c->leb_size) {
396 		done_ltab = 1;
397 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
398 		offs += c->ltab_sz;
399 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
400 	}
401 
402 	/* Loop for each cnode */
403 	do {
404 		if (cnode->level)
405 			len = c->nnode_sz;
406 		else
407 			len = c->pnode_sz;
408 		while (offs + len > c->leb_size) {
409 			wlen = offs - from;
410 			if (wlen) {
411 				alen = ALIGN(wlen, c->min_io_size);
412 				memset(buf + offs, 0xff, alen - wlen);
413 				err = ubifs_leb_write(c, lnum, buf + from, from,
414 						       alen, UBI_SHORTTERM);
415 				if (err)
416 					return err;
417 				dbg_chk_lpt_sz(c, 4, alen - wlen);
418 			}
419 			dbg_chk_lpt_sz(c, 2, 0);
420 			err = realloc_lpt_leb(c, &lnum);
421 			if (err)
422 				goto no_space;
423 			offs = 0;
424 			from = 0;
425 			ubifs_assert(lnum >= c->lpt_first &&
426 				     lnum <= c->lpt_last);
427 			err = ubifs_leb_unmap(c, lnum);
428 			if (err)
429 				return err;
430 			/* Try to place lsave and ltab nicely */
431 			if (!done_lsave) {
432 				done_lsave = 1;
433 				ubifs_pack_lsave(c, buf + offs, c->lsave);
434 				offs += c->lsave_sz;
435 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
436 				continue;
437 			}
438 			if (!done_ltab) {
439 				done_ltab = 1;
440 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
441 				offs += c->ltab_sz;
442 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
443 				continue;
444 			}
445 			break;
446 		}
447 		if (cnode->level)
448 			ubifs_pack_nnode(c, buf + offs,
449 					 (struct ubifs_nnode *)cnode);
450 		else
451 			ubifs_pack_pnode(c, buf + offs,
452 					 (struct ubifs_pnode *)cnode);
453 		/*
454 		 * The reason for the barriers is the same as in case of TNC.
455 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
456 		 * 'dirty_cow_pnode()' are the functions for which this is
457 		 * important.
458 		 */
459 		clear_bit(DIRTY_CNODE, &cnode->flags);
460 		smp_mb__before_clear_bit();
461 		clear_bit(COW_ZNODE, &cnode->flags);
462 		smp_mb__after_clear_bit();
463 		offs += len;
464 		dbg_chk_lpt_sz(c, 1, len);
465 		cnode = cnode->cnext;
466 	} while (cnode && cnode != c->lpt_cnext);
467 
468 	/* Make sure to place LPT's save table */
469 	if (!done_lsave) {
470 		if (offs + c->lsave_sz > c->leb_size) {
471 			wlen = offs - from;
472 			alen = ALIGN(wlen, c->min_io_size);
473 			memset(buf + offs, 0xff, alen - wlen);
474 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
475 					      UBI_SHORTTERM);
476 			if (err)
477 				return err;
478 			dbg_chk_lpt_sz(c, 2, alen - wlen);
479 			err = realloc_lpt_leb(c, &lnum);
480 			if (err)
481 				goto no_space;
482 			offs = 0;
483 			ubifs_assert(lnum >= c->lpt_first &&
484 				     lnum <= c->lpt_last);
485 			err = ubifs_leb_unmap(c, lnum);
486 			if (err)
487 				return err;
488 		}
489 		done_lsave = 1;
490 		ubifs_pack_lsave(c, buf + offs, c->lsave);
491 		offs += c->lsave_sz;
492 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
493 	}
494 
495 	/* Make sure to place LPT's own lprops table */
496 	if (!done_ltab) {
497 		if (offs + c->ltab_sz > c->leb_size) {
498 			wlen = offs - from;
499 			alen = ALIGN(wlen, c->min_io_size);
500 			memset(buf + offs, 0xff, alen - wlen);
501 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
502 					      UBI_SHORTTERM);
503 			if (err)
504 				return err;
505 			dbg_chk_lpt_sz(c, 2, alen - wlen);
506 			err = realloc_lpt_leb(c, &lnum);
507 			if (err)
508 				goto no_space;
509 			offs = 0;
510 			ubifs_assert(lnum >= c->lpt_first &&
511 				     lnum <= c->lpt_last);
512 			err = ubifs_leb_unmap(c, lnum);
513 			if (err)
514 				return err;
515 		}
516 		done_ltab = 1;
517 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 		offs += c->ltab_sz;
519 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 	}
521 
522 	/* Write remaining data in buffer */
523 	wlen = offs - from;
524 	alen = ALIGN(wlen, c->min_io_size);
525 	memset(buf + offs, 0xff, alen - wlen);
526 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
527 	if (err)
528 		return err;
529 
530 	dbg_chk_lpt_sz(c, 4, alen - wlen);
531 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 	if (err)
533 		return err;
534 
535 	c->nhead_lnum = lnum;
536 	c->nhead_offs = ALIGN(offs, c->min_io_size);
537 
538 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 	if (c->big_lpt)
542 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543 
544 	return 0;
545 
546 no_space:
547 	ubifs_err("LPT out of space mismatch");
548 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 	        "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
550 	dbg_dump_lpt_info(c);
551 	return err;
552 }
553 
554 /**
555  * next_pnode - find next pnode.
556  * @c: UBIFS file-system description object
557  * @pnode: pnode
558  *
559  * This function returns the next pnode or %NULL if there are no more pnodes.
560  */
561 static struct ubifs_pnode *next_pnode(struct ubifs_info *c,
562 				      struct ubifs_pnode *pnode)
563 {
564 	struct ubifs_nnode *nnode;
565 	int iip;
566 
567 	/* Try to go right */
568 	nnode = pnode->parent;
569 	iip = pnode->iip + 1;
570 	if (iip < UBIFS_LPT_FANOUT) {
571 		/* We assume here that LEB zero is never an LPT LEB */
572 		if (nnode->nbranch[iip].lnum)
573 			return ubifs_get_pnode(c, nnode, iip);
574 	}
575 
576 	/* Go up while can't go right */
577 	do {
578 		iip = nnode->iip + 1;
579 		nnode = nnode->parent;
580 		if (!nnode)
581 			return NULL;
582 		/* We assume here that LEB zero is never an LPT LEB */
583 	} while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum);
584 
585 	/* Go right */
586 	nnode = ubifs_get_nnode(c, nnode, iip);
587 	if (IS_ERR(nnode))
588 		return (void *)nnode;
589 
590 	/* Go down to level 1 */
591 	while (nnode->level > 1) {
592 		nnode = ubifs_get_nnode(c, nnode, 0);
593 		if (IS_ERR(nnode))
594 			return (void *)nnode;
595 	}
596 
597 	return ubifs_get_pnode(c, nnode, 0);
598 }
599 
600 /**
601  * pnode_lookup - lookup a pnode in the LPT.
602  * @c: UBIFS file-system description object
603  * @i: pnode number (0 to main_lebs - 1)
604  *
605  * This function returns a pointer to the pnode on success or a negative
606  * error code on failure.
607  */
608 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
609 {
610 	int err, h, iip, shft;
611 	struct ubifs_nnode *nnode;
612 
613 	if (!c->nroot) {
614 		err = ubifs_read_nnode(c, NULL, 0);
615 		if (err)
616 			return ERR_PTR(err);
617 	}
618 	i <<= UBIFS_LPT_FANOUT_SHIFT;
619 	nnode = c->nroot;
620 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
621 	for (h = 1; h < c->lpt_hght; h++) {
622 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
623 		shft -= UBIFS_LPT_FANOUT_SHIFT;
624 		nnode = ubifs_get_nnode(c, nnode, iip);
625 		if (IS_ERR(nnode))
626 			return ERR_PTR(PTR_ERR(nnode));
627 	}
628 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
629 	return ubifs_get_pnode(c, nnode, iip);
630 }
631 
632 /**
633  * add_pnode_dirt - add dirty space to LPT LEB properties.
634  * @c: UBIFS file-system description object
635  * @pnode: pnode for which to add dirt
636  */
637 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
638 {
639 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
640 			   c->pnode_sz);
641 }
642 
643 /**
644  * do_make_pnode_dirty - mark a pnode dirty.
645  * @c: UBIFS file-system description object
646  * @pnode: pnode to mark dirty
647  */
648 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
649 {
650 	/* Assumes cnext list is empty i.e. not called during commit */
651 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
652 		struct ubifs_nnode *nnode;
653 
654 		c->dirty_pn_cnt += 1;
655 		add_pnode_dirt(c, pnode);
656 		/* Mark parent and ancestors dirty too */
657 		nnode = pnode->parent;
658 		while (nnode) {
659 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
660 				c->dirty_nn_cnt += 1;
661 				ubifs_add_nnode_dirt(c, nnode);
662 				nnode = nnode->parent;
663 			} else
664 				break;
665 		}
666 	}
667 }
668 
669 /**
670  * make_tree_dirty - mark the entire LEB properties tree dirty.
671  * @c: UBIFS file-system description object
672  *
673  * This function is used by the "small" LPT model to cause the entire LEB
674  * properties tree to be written.  The "small" LPT model does not use LPT
675  * garbage collection because it is more efficient to write the entire tree
676  * (because it is small).
677  *
678  * This function returns %0 on success and a negative error code on failure.
679  */
680 static int make_tree_dirty(struct ubifs_info *c)
681 {
682 	struct ubifs_pnode *pnode;
683 
684 	pnode = pnode_lookup(c, 0);
685 	while (pnode) {
686 		do_make_pnode_dirty(c, pnode);
687 		pnode = next_pnode(c, pnode);
688 		if (IS_ERR(pnode))
689 			return PTR_ERR(pnode);
690 	}
691 	return 0;
692 }
693 
694 /**
695  * need_write_all - determine if the LPT area is running out of free space.
696  * @c: UBIFS file-system description object
697  *
698  * This function returns %1 if the LPT area is running out of free space and %0
699  * if it is not.
700  */
701 static int need_write_all(struct ubifs_info *c)
702 {
703 	long long free = 0;
704 	int i;
705 
706 	for (i = 0; i < c->lpt_lebs; i++) {
707 		if (i + c->lpt_first == c->nhead_lnum)
708 			free += c->leb_size - c->nhead_offs;
709 		else if (c->ltab[i].free == c->leb_size)
710 			free += c->leb_size;
711 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
712 			free += c->leb_size;
713 	}
714 	/* Less than twice the size left */
715 	if (free <= c->lpt_sz * 2)
716 		return 1;
717 	return 0;
718 }
719 
720 /**
721  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
722  * @c: UBIFS file-system description object
723  *
724  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
725  * free space and so may be reused as soon as the next commit is completed.
726  * This function is called during start commit to mark LPT LEBs for trivial GC.
727  */
728 static void lpt_tgc_start(struct ubifs_info *c)
729 {
730 	int i;
731 
732 	for (i = 0; i < c->lpt_lebs; i++) {
733 		if (i + c->lpt_first == c->nhead_lnum)
734 			continue;
735 		if (c->ltab[i].dirty > 0 &&
736 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
737 			c->ltab[i].tgc = 1;
738 			c->ltab[i].free = c->leb_size;
739 			c->ltab[i].dirty = 0;
740 			dbg_lp("LEB %d", i + c->lpt_first);
741 		}
742 	}
743 }
744 
745 /**
746  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
747  * @c: UBIFS file-system description object
748  *
749  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
750  * free space and so may be reused as soon as the next commit is completed.
751  * This function is called after the commit is completed (master node has been
752  * written) and unmaps LPT LEBs that were marked for trivial GC.
753  */
754 static int lpt_tgc_end(struct ubifs_info *c)
755 {
756 	int i, err;
757 
758 	for (i = 0; i < c->lpt_lebs; i++)
759 		if (c->ltab[i].tgc) {
760 			err = ubifs_leb_unmap(c, i + c->lpt_first);
761 			if (err)
762 				return err;
763 			c->ltab[i].tgc = 0;
764 			dbg_lp("LEB %d", i + c->lpt_first);
765 		}
766 	return 0;
767 }
768 
769 /**
770  * populate_lsave - fill the lsave array with important LEB numbers.
771  * @c: the UBIFS file-system description object
772  *
773  * This function is only called for the "big" model. It records a small number
774  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
775  * most important to least important): empty, freeable, freeable index, dirty
776  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
777  * their pnodes into memory.  That will stop us from having to scan the LPT
778  * straight away. For the "small" model we assume that scanning the LPT is no
779  * big deal.
780  */
781 static void populate_lsave(struct ubifs_info *c)
782 {
783 	struct ubifs_lprops *lprops;
784 	struct ubifs_lpt_heap *heap;
785 	int i, cnt = 0;
786 
787 	ubifs_assert(c->big_lpt);
788 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
789 		c->lpt_drty_flgs |= LSAVE_DIRTY;
790 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
791 	}
792 	list_for_each_entry(lprops, &c->empty_list, list) {
793 		c->lsave[cnt++] = lprops->lnum;
794 		if (cnt >= c->lsave_cnt)
795 			return;
796 	}
797 	list_for_each_entry(lprops, &c->freeable_list, list) {
798 		c->lsave[cnt++] = lprops->lnum;
799 		if (cnt >= c->lsave_cnt)
800 			return;
801 	}
802 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
803 		c->lsave[cnt++] = lprops->lnum;
804 		if (cnt >= c->lsave_cnt)
805 			return;
806 	}
807 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
808 	for (i = 0; i < heap->cnt; i++) {
809 		c->lsave[cnt++] = heap->arr[i]->lnum;
810 		if (cnt >= c->lsave_cnt)
811 			return;
812 	}
813 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
814 	for (i = 0; i < heap->cnt; i++) {
815 		c->lsave[cnt++] = heap->arr[i]->lnum;
816 		if (cnt >= c->lsave_cnt)
817 			return;
818 	}
819 	heap = &c->lpt_heap[LPROPS_FREE - 1];
820 	for (i = 0; i < heap->cnt; i++) {
821 		c->lsave[cnt++] = heap->arr[i]->lnum;
822 		if (cnt >= c->lsave_cnt)
823 			return;
824 	}
825 	/* Fill it up completely */
826 	while (cnt < c->lsave_cnt)
827 		c->lsave[cnt++] = c->main_first;
828 }
829 
830 /**
831  * nnode_lookup - lookup a nnode in the LPT.
832  * @c: UBIFS file-system description object
833  * @i: nnode number
834  *
835  * This function returns a pointer to the nnode on success or a negative
836  * error code on failure.
837  */
838 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
839 {
840 	int err, iip;
841 	struct ubifs_nnode *nnode;
842 
843 	if (!c->nroot) {
844 		err = ubifs_read_nnode(c, NULL, 0);
845 		if (err)
846 			return ERR_PTR(err);
847 	}
848 	nnode = c->nroot;
849 	while (1) {
850 		iip = i & (UBIFS_LPT_FANOUT - 1);
851 		i >>= UBIFS_LPT_FANOUT_SHIFT;
852 		if (!i)
853 			break;
854 		nnode = ubifs_get_nnode(c, nnode, iip);
855 		if (IS_ERR(nnode))
856 			return nnode;
857 	}
858 	return nnode;
859 }
860 
861 /**
862  * make_nnode_dirty - find a nnode and, if found, make it dirty.
863  * @c: UBIFS file-system description object
864  * @node_num: nnode number of nnode to make dirty
865  * @lnum: LEB number where nnode was written
866  * @offs: offset where nnode was written
867  *
868  * This function is used by LPT garbage collection.  LPT garbage collection is
869  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
870  * simply involves marking all the nodes in the LEB being garbage-collected as
871  * dirty.  The dirty nodes are written next commit, after which the LEB is free
872  * to be reused.
873  *
874  * This function returns %0 on success and a negative error code on failure.
875  */
876 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
877 			    int offs)
878 {
879 	struct ubifs_nnode *nnode;
880 
881 	nnode = nnode_lookup(c, node_num);
882 	if (IS_ERR(nnode))
883 		return PTR_ERR(nnode);
884 	if (nnode->parent) {
885 		struct ubifs_nbranch *branch;
886 
887 		branch = &nnode->parent->nbranch[nnode->iip];
888 		if (branch->lnum != lnum || branch->offs != offs)
889 			return 0; /* nnode is obsolete */
890 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
891 			return 0; /* nnode is obsolete */
892 	/* Assumes cnext list is empty i.e. not called during commit */
893 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
894 		c->dirty_nn_cnt += 1;
895 		ubifs_add_nnode_dirt(c, nnode);
896 		/* Mark parent and ancestors dirty too */
897 		nnode = nnode->parent;
898 		while (nnode) {
899 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
900 				c->dirty_nn_cnt += 1;
901 				ubifs_add_nnode_dirt(c, nnode);
902 				nnode = nnode->parent;
903 			} else
904 				break;
905 		}
906 	}
907 	return 0;
908 }
909 
910 /**
911  * make_pnode_dirty - find a pnode and, if found, make it dirty.
912  * @c: UBIFS file-system description object
913  * @node_num: pnode number of pnode to make dirty
914  * @lnum: LEB number where pnode was written
915  * @offs: offset where pnode was written
916  *
917  * This function is used by LPT garbage collection.  LPT garbage collection is
918  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
919  * simply involves marking all the nodes in the LEB being garbage-collected as
920  * dirty.  The dirty nodes are written next commit, after which the LEB is free
921  * to be reused.
922  *
923  * This function returns %0 on success and a negative error code on failure.
924  */
925 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
926 			    int offs)
927 {
928 	struct ubifs_pnode *pnode;
929 	struct ubifs_nbranch *branch;
930 
931 	pnode = pnode_lookup(c, node_num);
932 	if (IS_ERR(pnode))
933 		return PTR_ERR(pnode);
934 	branch = &pnode->parent->nbranch[pnode->iip];
935 	if (branch->lnum != lnum || branch->offs != offs)
936 		return 0;
937 	do_make_pnode_dirty(c, pnode);
938 	return 0;
939 }
940 
941 /**
942  * make_ltab_dirty - make ltab node dirty.
943  * @c: UBIFS file-system description object
944  * @lnum: LEB number where ltab was written
945  * @offs: offset where ltab was written
946  *
947  * This function is used by LPT garbage collection.  LPT garbage collection is
948  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
949  * simply involves marking all the nodes in the LEB being garbage-collected as
950  * dirty.  The dirty nodes are written next commit, after which the LEB is free
951  * to be reused.
952  *
953  * This function returns %0 on success and a negative error code on failure.
954  */
955 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
956 {
957 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
958 		return 0; /* This ltab node is obsolete */
959 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
960 		c->lpt_drty_flgs |= LTAB_DIRTY;
961 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
962 	}
963 	return 0;
964 }
965 
966 /**
967  * make_lsave_dirty - make lsave node dirty.
968  * @c: UBIFS file-system description object
969  * @lnum: LEB number where lsave was written
970  * @offs: offset where lsave was written
971  *
972  * This function is used by LPT garbage collection.  LPT garbage collection is
973  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
974  * simply involves marking all the nodes in the LEB being garbage-collected as
975  * dirty.  The dirty nodes are written next commit, after which the LEB is free
976  * to be reused.
977  *
978  * This function returns %0 on success and a negative error code on failure.
979  */
980 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
981 {
982 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
983 		return 0; /* This lsave node is obsolete */
984 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
985 		c->lpt_drty_flgs |= LSAVE_DIRTY;
986 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
987 	}
988 	return 0;
989 }
990 
991 /**
992  * make_node_dirty - make node dirty.
993  * @c: UBIFS file-system description object
994  * @node_type: LPT node type
995  * @node_num: node number
996  * @lnum: LEB number where node was written
997  * @offs: offset where node was written
998  *
999  * This function is used by LPT garbage collection.  LPT garbage collection is
1000  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1001  * simply involves marking all the nodes in the LEB being garbage-collected as
1002  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1003  * to be reused.
1004  *
1005  * This function returns %0 on success and a negative error code on failure.
1006  */
1007 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1008 			   int lnum, int offs)
1009 {
1010 	switch (node_type) {
1011 	case UBIFS_LPT_NNODE:
1012 		return make_nnode_dirty(c, node_num, lnum, offs);
1013 	case UBIFS_LPT_PNODE:
1014 		return make_pnode_dirty(c, node_num, lnum, offs);
1015 	case UBIFS_LPT_LTAB:
1016 		return make_ltab_dirty(c, lnum, offs);
1017 	case UBIFS_LPT_LSAVE:
1018 		return make_lsave_dirty(c, lnum, offs);
1019 	}
1020 	return -EINVAL;
1021 }
1022 
1023 /**
1024  * get_lpt_node_len - return the length of a node based on its type.
1025  * @c: UBIFS file-system description object
1026  * @node_type: LPT node type
1027  */
1028 static int get_lpt_node_len(struct ubifs_info *c, int node_type)
1029 {
1030 	switch (node_type) {
1031 	case UBIFS_LPT_NNODE:
1032 		return c->nnode_sz;
1033 	case UBIFS_LPT_PNODE:
1034 		return c->pnode_sz;
1035 	case UBIFS_LPT_LTAB:
1036 		return c->ltab_sz;
1037 	case UBIFS_LPT_LSAVE:
1038 		return c->lsave_sz;
1039 	}
1040 	return 0;
1041 }
1042 
1043 /**
1044  * get_pad_len - return the length of padding in a buffer.
1045  * @c: UBIFS file-system description object
1046  * @buf: buffer
1047  * @len: length of buffer
1048  */
1049 static int get_pad_len(struct ubifs_info *c, uint8_t *buf, int len)
1050 {
1051 	int offs, pad_len;
1052 
1053 	if (c->min_io_size == 1)
1054 		return 0;
1055 	offs = c->leb_size - len;
1056 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1057 	return pad_len;
1058 }
1059 
1060 /**
1061  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1062  * @c: UBIFS file-system description object
1063  * @buf: buffer
1064  * @node_num: node number is returned here
1065  */
1066 static int get_lpt_node_type(struct ubifs_info *c, uint8_t *buf, int *node_num)
1067 {
1068 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1069 	int pos = 0, node_type;
1070 
1071 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1072 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1073 	return node_type;
1074 }
1075 
1076 /**
1077  * is_a_node - determine if a buffer contains a node.
1078  * @c: UBIFS file-system description object
1079  * @buf: buffer
1080  * @len: length of buffer
1081  *
1082  * This function returns %1 if the buffer contains a node or %0 if it does not.
1083  */
1084 static int is_a_node(struct ubifs_info *c, uint8_t *buf, int len)
1085 {
1086 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1087 	int pos = 0, node_type, node_len;
1088 	uint16_t crc, calc_crc;
1089 
1090 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1091 		return 0;
1092 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1093 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1094 		return 0;
1095 	node_len = get_lpt_node_len(c, node_type);
1096 	if (!node_len || node_len > len)
1097 		return 0;
1098 	pos = 0;
1099 	addr = buf;
1100 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1101 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1102 			 node_len - UBIFS_LPT_CRC_BYTES);
1103 	if (crc != calc_crc)
1104 		return 0;
1105 	return 1;
1106 }
1107 
1108 
1109 /**
1110  * lpt_gc_lnum - garbage collect a LPT LEB.
1111  * @c: UBIFS file-system description object
1112  * @lnum: LEB number to garbage collect
1113  *
1114  * LPT garbage collection is used only for the "big" LPT model
1115  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1116  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1117  * next commit, after which the LEB is free to be reused.
1118  *
1119  * This function returns %0 on success and a negative error code on failure.
1120  */
1121 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1122 {
1123 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1124 	void *buf = c->lpt_buf;
1125 
1126 	dbg_lp("LEB %d", lnum);
1127 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1128 	if (err) {
1129 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1130 		return err;
1131 	}
1132 	while (1) {
1133 		if (!is_a_node(c, buf, len)) {
1134 			int pad_len;
1135 
1136 			pad_len = get_pad_len(c, buf, len);
1137 			if (pad_len) {
1138 				buf += pad_len;
1139 				len -= pad_len;
1140 				continue;
1141 			}
1142 			return 0;
1143 		}
1144 		node_type = get_lpt_node_type(c, buf, &node_num);
1145 		node_len = get_lpt_node_len(c, node_type);
1146 		offs = c->leb_size - len;
1147 		ubifs_assert(node_len != 0);
1148 		mutex_lock(&c->lp_mutex);
1149 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1150 		mutex_unlock(&c->lp_mutex);
1151 		if (err)
1152 			return err;
1153 		buf += node_len;
1154 		len -= node_len;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /**
1160  * lpt_gc - LPT garbage collection.
1161  * @c: UBIFS file-system description object
1162  *
1163  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1164  * Returns %0 on success and a negative error code on failure.
1165  */
1166 static int lpt_gc(struct ubifs_info *c)
1167 {
1168 	int i, lnum = -1, dirty = 0;
1169 
1170 	mutex_lock(&c->lp_mutex);
1171 	for (i = 0; i < c->lpt_lebs; i++) {
1172 		ubifs_assert(!c->ltab[i].tgc);
1173 		if (i + c->lpt_first == c->nhead_lnum ||
1174 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1175 			continue;
1176 		if (c->ltab[i].dirty > dirty) {
1177 			dirty = c->ltab[i].dirty;
1178 			lnum = i + c->lpt_first;
1179 		}
1180 	}
1181 	mutex_unlock(&c->lp_mutex);
1182 	if (lnum == -1)
1183 		return -ENOSPC;
1184 	return lpt_gc_lnum(c, lnum);
1185 }
1186 
1187 /**
1188  * ubifs_lpt_start_commit - UBIFS commit starts.
1189  * @c: the UBIFS file-system description object
1190  *
1191  * This function has to be called when UBIFS starts the commit operation.
1192  * This function "freezes" all currently dirty LEB properties and does not
1193  * change them anymore. Further changes are saved and tracked separately
1194  * because they are not part of this commit. This function returns zero in case
1195  * of success and a negative error code in case of failure.
1196  */
1197 int ubifs_lpt_start_commit(struct ubifs_info *c)
1198 {
1199 	int err, cnt;
1200 
1201 	dbg_lp("");
1202 
1203 	mutex_lock(&c->lp_mutex);
1204 	err = dbg_chk_lpt_free_spc(c);
1205 	if (err)
1206 		goto out;
1207 	err = dbg_check_ltab(c);
1208 	if (err)
1209 		goto out;
1210 
1211 	if (c->check_lpt_free) {
1212 		/*
1213 		 * We ensure there is enough free space in
1214 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1215 		 * information is lost when we unmount, so we also need
1216 		 * to check free space once after mounting also.
1217 		 */
1218 		c->check_lpt_free = 0;
1219 		while (need_write_all(c)) {
1220 			mutex_unlock(&c->lp_mutex);
1221 			err = lpt_gc(c);
1222 			if (err)
1223 				return err;
1224 			mutex_lock(&c->lp_mutex);
1225 		}
1226 	}
1227 
1228 	lpt_tgc_start(c);
1229 
1230 	if (!c->dirty_pn_cnt) {
1231 		dbg_cmt("no cnodes to commit");
1232 		err = 0;
1233 		goto out;
1234 	}
1235 
1236 	if (!c->big_lpt && need_write_all(c)) {
1237 		/* If needed, write everything */
1238 		err = make_tree_dirty(c);
1239 		if (err)
1240 			goto out;
1241 		lpt_tgc_start(c);
1242 	}
1243 
1244 	if (c->big_lpt)
1245 		populate_lsave(c);
1246 
1247 	cnt = get_cnodes_to_commit(c);
1248 	ubifs_assert(cnt != 0);
1249 
1250 	err = layout_cnodes(c);
1251 	if (err)
1252 		goto out;
1253 
1254 	/* Copy the LPT's own lprops for end commit to write */
1255 	memcpy(c->ltab_cmt, c->ltab,
1256 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1257 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1258 
1259 out:
1260 	mutex_unlock(&c->lp_mutex);
1261 	return err;
1262 }
1263 
1264 /**
1265  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1266  * @c: UBIFS file-system description object
1267  */
1268 static void free_obsolete_cnodes(struct ubifs_info *c)
1269 {
1270 	struct ubifs_cnode *cnode, *cnext;
1271 
1272 	cnext = c->lpt_cnext;
1273 	if (!cnext)
1274 		return;
1275 	do {
1276 		cnode = cnext;
1277 		cnext = cnode->cnext;
1278 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1279 			kfree(cnode);
1280 		else
1281 			cnode->cnext = NULL;
1282 	} while (cnext != c->lpt_cnext);
1283 	c->lpt_cnext = NULL;
1284 }
1285 
1286 /**
1287  * ubifs_lpt_end_commit - finish the commit operation.
1288  * @c: the UBIFS file-system description object
1289  *
1290  * This function has to be called when the commit operation finishes. It
1291  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1292  * the media. Returns zero in case of success and a negative error code in case
1293  * of failure.
1294  */
1295 int ubifs_lpt_end_commit(struct ubifs_info *c)
1296 {
1297 	int err;
1298 
1299 	dbg_lp("");
1300 
1301 	if (!c->lpt_cnext)
1302 		return 0;
1303 
1304 	err = write_cnodes(c);
1305 	if (err)
1306 		return err;
1307 
1308 	mutex_lock(&c->lp_mutex);
1309 	free_obsolete_cnodes(c);
1310 	mutex_unlock(&c->lp_mutex);
1311 
1312 	return 0;
1313 }
1314 
1315 /**
1316  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1317  * @c: UBIFS file-system description object
1318  *
1319  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1320  * commit for the "big" LPT model.
1321  */
1322 int ubifs_lpt_post_commit(struct ubifs_info *c)
1323 {
1324 	int err;
1325 
1326 	mutex_lock(&c->lp_mutex);
1327 	err = lpt_tgc_end(c);
1328 	if (err)
1329 		goto out;
1330 	if (c->big_lpt)
1331 		while (need_write_all(c)) {
1332 			mutex_unlock(&c->lp_mutex);
1333 			err = lpt_gc(c);
1334 			if (err)
1335 				return err;
1336 			mutex_lock(&c->lp_mutex);
1337 		}
1338 out:
1339 	mutex_unlock(&c->lp_mutex);
1340 	return err;
1341 }
1342 
1343 /**
1344  * first_nnode - find the first nnode in memory.
1345  * @c: UBIFS file-system description object
1346  * @hght: height of tree where nnode found is returned here
1347  *
1348  * This function returns a pointer to the nnode found or %NULL if no nnode is
1349  * found. This function is a helper to 'ubifs_lpt_free()'.
1350  */
1351 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1352 {
1353 	struct ubifs_nnode *nnode;
1354 	int h, i, found;
1355 
1356 	nnode = c->nroot;
1357 	*hght = 0;
1358 	if (!nnode)
1359 		return NULL;
1360 	for (h = 1; h < c->lpt_hght; h++) {
1361 		found = 0;
1362 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1363 			if (nnode->nbranch[i].nnode) {
1364 				found = 1;
1365 				nnode = nnode->nbranch[i].nnode;
1366 				*hght = h;
1367 				break;
1368 			}
1369 		}
1370 		if (!found)
1371 			break;
1372 	}
1373 	return nnode;
1374 }
1375 
1376 /**
1377  * next_nnode - find the next nnode in memory.
1378  * @c: UBIFS file-system description object
1379  * @nnode: nnode from which to start.
1380  * @hght: height of tree where nnode is, is passed and returned here
1381  *
1382  * This function returns a pointer to the nnode found or %NULL if no nnode is
1383  * found. This function is a helper to 'ubifs_lpt_free()'.
1384  */
1385 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1386 				      struct ubifs_nnode *nnode, int *hght)
1387 {
1388 	struct ubifs_nnode *parent;
1389 	int iip, h, i, found;
1390 
1391 	parent = nnode->parent;
1392 	if (!parent)
1393 		return NULL;
1394 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1395 		*hght -= 1;
1396 		return parent;
1397 	}
1398 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1399 		nnode = parent->nbranch[iip].nnode;
1400 		if (nnode)
1401 			break;
1402 	}
1403 	if (!nnode) {
1404 		*hght -= 1;
1405 		return parent;
1406 	}
1407 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1408 		found = 0;
1409 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1410 			if (nnode->nbranch[i].nnode) {
1411 				found = 1;
1412 				nnode = nnode->nbranch[i].nnode;
1413 				*hght = h;
1414 				break;
1415 			}
1416 		}
1417 		if (!found)
1418 			break;
1419 	}
1420 	return nnode;
1421 }
1422 
1423 /**
1424  * ubifs_lpt_free - free resources owned by the LPT.
1425  * @c: UBIFS file-system description object
1426  * @wr_only: free only resources used for writing
1427  */
1428 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1429 {
1430 	struct ubifs_nnode *nnode;
1431 	int i, hght;
1432 
1433 	/* Free write-only things first */
1434 
1435 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1436 
1437 	vfree(c->ltab_cmt);
1438 	c->ltab_cmt = NULL;
1439 	vfree(c->lpt_buf);
1440 	c->lpt_buf = NULL;
1441 	kfree(c->lsave);
1442 	c->lsave = NULL;
1443 
1444 	if (wr_only)
1445 		return;
1446 
1447 	/* Now free the rest */
1448 
1449 	nnode = first_nnode(c, &hght);
1450 	while (nnode) {
1451 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1452 			kfree(nnode->nbranch[i].nnode);
1453 		nnode = next_nnode(c, nnode, &hght);
1454 	}
1455 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1456 		kfree(c->lpt_heap[i].arr);
1457 	kfree(c->dirty_idx.arr);
1458 	kfree(c->nroot);
1459 	vfree(c->ltab);
1460 	kfree(c->lpt_nod_buf);
1461 }
1462 
1463 #ifdef CONFIG_UBIFS_FS_DEBUG
1464 
1465 /**
1466  * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1467  * @buf: buffer
1468  * @len: buffer length
1469  */
1470 static int dbg_is_all_ff(uint8_t *buf, int len)
1471 {
1472 	int i;
1473 
1474 	for (i = 0; i < len; i++)
1475 		if (buf[i] != 0xff)
1476 			return 0;
1477 	return 1;
1478 }
1479 
1480 /**
1481  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1482  * @c: the UBIFS file-system description object
1483  * @lnum: LEB number where nnode was written
1484  * @offs: offset where nnode was written
1485  */
1486 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1487 {
1488 	struct ubifs_nnode *nnode;
1489 	int hght;
1490 
1491 	/* Entire tree is in memory so first_nnode / next_nnode are ok */
1492 	nnode = first_nnode(c, &hght);
1493 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1494 		struct ubifs_nbranch *branch;
1495 
1496 		cond_resched();
1497 		if (nnode->parent) {
1498 			branch = &nnode->parent->nbranch[nnode->iip];
1499 			if (branch->lnum != lnum || branch->offs != offs)
1500 				continue;
1501 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1502 				return 1;
1503 			return 0;
1504 		} else {
1505 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1506 				continue;
1507 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1508 				return 1;
1509 			return 0;
1510 		}
1511 	}
1512 	return 1;
1513 }
1514 
1515 /**
1516  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1517  * @c: the UBIFS file-system description object
1518  * @lnum: LEB number where pnode was written
1519  * @offs: offset where pnode was written
1520  */
1521 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1522 {
1523 	int i, cnt;
1524 
1525 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1526 	for (i = 0; i < cnt; i++) {
1527 		struct ubifs_pnode *pnode;
1528 		struct ubifs_nbranch *branch;
1529 
1530 		cond_resched();
1531 		pnode = pnode_lookup(c, i);
1532 		if (IS_ERR(pnode))
1533 			return PTR_ERR(pnode);
1534 		branch = &pnode->parent->nbranch[pnode->iip];
1535 		if (branch->lnum != lnum || branch->offs != offs)
1536 			continue;
1537 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1538 			return 1;
1539 		return 0;
1540 	}
1541 	return 1;
1542 }
1543 
1544 /**
1545  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1546  * @c: the UBIFS file-system description object
1547  * @lnum: LEB number where ltab node was written
1548  * @offs: offset where ltab node was written
1549  */
1550 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1551 {
1552 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1553 		return 1;
1554 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1555 }
1556 
1557 /**
1558  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1559  * @c: the UBIFS file-system description object
1560  * @lnum: LEB number where lsave node was written
1561  * @offs: offset where lsave node was written
1562  */
1563 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1564 {
1565 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1566 		return 1;
1567 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1568 }
1569 
1570 /**
1571  * dbg_is_node_dirty - determine if a node is dirty.
1572  * @c: the UBIFS file-system description object
1573  * @node_type: node type
1574  * @lnum: LEB number where node was written
1575  * @offs: offset where node was written
1576  */
1577 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1578 			     int offs)
1579 {
1580 	switch (node_type) {
1581 	case UBIFS_LPT_NNODE:
1582 		return dbg_is_nnode_dirty(c, lnum, offs);
1583 	case UBIFS_LPT_PNODE:
1584 		return dbg_is_pnode_dirty(c, lnum, offs);
1585 	case UBIFS_LPT_LTAB:
1586 		return dbg_is_ltab_dirty(c, lnum, offs);
1587 	case UBIFS_LPT_LSAVE:
1588 		return dbg_is_lsave_dirty(c, lnum, offs);
1589 	}
1590 	return 1;
1591 }
1592 
1593 /**
1594  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1595  * @c: the UBIFS file-system description object
1596  * @lnum: LEB number where node was written
1597  * @offs: offset where node was written
1598  *
1599  * This function returns %0 on success and a negative error code on failure.
1600  */
1601 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1602 {
1603 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1604 	int ret;
1605 	void *buf = c->dbg->buf;
1606 
1607 	dbg_lp("LEB %d", lnum);
1608 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1609 	if (err) {
1610 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1611 		return err;
1612 	}
1613 	while (1) {
1614 		if (!is_a_node(c, buf, len)) {
1615 			int i, pad_len;
1616 
1617 			pad_len = get_pad_len(c, buf, len);
1618 			if (pad_len) {
1619 				buf += pad_len;
1620 				len -= pad_len;
1621 				dirty += pad_len;
1622 				continue;
1623 			}
1624 			if (!dbg_is_all_ff(buf, len)) {
1625 				dbg_msg("invalid empty space in LEB %d at %d",
1626 					lnum, c->leb_size - len);
1627 				err = -EINVAL;
1628 			}
1629 			i = lnum - c->lpt_first;
1630 			if (len != c->ltab[i].free) {
1631 				dbg_msg("invalid free space in LEB %d "
1632 					"(free %d, expected %d)",
1633 					lnum, len, c->ltab[i].free);
1634 				err = -EINVAL;
1635 			}
1636 			if (dirty != c->ltab[i].dirty) {
1637 				dbg_msg("invalid dirty space in LEB %d "
1638 					"(dirty %d, expected %d)",
1639 					lnum, dirty, c->ltab[i].dirty);
1640 				err = -EINVAL;
1641 			}
1642 			return err;
1643 		}
1644 		node_type = get_lpt_node_type(c, buf, &node_num);
1645 		node_len = get_lpt_node_len(c, node_type);
1646 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1647 		if (ret == 1)
1648 			dirty += node_len;
1649 		buf += node_len;
1650 		len -= node_len;
1651 	}
1652 }
1653 
1654 /**
1655  * dbg_check_ltab - check the free and dirty space in the ltab.
1656  * @c: the UBIFS file-system description object
1657  *
1658  * This function returns %0 on success and a negative error code on failure.
1659  */
1660 int dbg_check_ltab(struct ubifs_info *c)
1661 {
1662 	int lnum, err, i, cnt;
1663 
1664 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1665 		return 0;
1666 
1667 	/* Bring the entire tree into memory */
1668 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1669 	for (i = 0; i < cnt; i++) {
1670 		struct ubifs_pnode *pnode;
1671 
1672 		pnode = pnode_lookup(c, i);
1673 		if (IS_ERR(pnode))
1674 			return PTR_ERR(pnode);
1675 		cond_resched();
1676 	}
1677 
1678 	/* Check nodes */
1679 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1680 	if (err)
1681 		return err;
1682 
1683 	/* Check each LEB */
1684 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1685 		err = dbg_check_ltab_lnum(c, lnum);
1686 		if (err) {
1687 			dbg_err("failed at LEB %d", lnum);
1688 			return err;
1689 		}
1690 	}
1691 
1692 	dbg_lp("succeeded");
1693 	return 0;
1694 }
1695 
1696 /**
1697  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1698  * @c: the UBIFS file-system description object
1699  *
1700  * This function returns %0 on success and a negative error code on failure.
1701  */
1702 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1703 {
1704 	long long free = 0;
1705 	int i;
1706 
1707 	for (i = 0; i < c->lpt_lebs; i++) {
1708 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1709 			continue;
1710 		if (i + c->lpt_first == c->nhead_lnum)
1711 			free += c->leb_size - c->nhead_offs;
1712 		else if (c->ltab[i].free == c->leb_size)
1713 			free += c->leb_size;
1714 	}
1715 	if (free < c->lpt_sz) {
1716 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1717 			free, c->lpt_sz);
1718 		dbg_dump_lpt_info(c);
1719 		return -EINVAL;
1720 	}
1721 	return 0;
1722 }
1723 
1724 /**
1725  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1726  * @c: the UBIFS file-system description object
1727  * @action: action
1728  * @len: length written
1729  *
1730  * This function returns %0 on success and a negative error code on failure.
1731  */
1732 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1733 {
1734 	struct ubifs_debug_info *d = c->dbg;
1735 	long long chk_lpt_sz, lpt_sz;
1736 	int err = 0;
1737 
1738 	switch (action) {
1739 	case 0:
1740 		d->chk_lpt_sz = 0;
1741 		d->chk_lpt_sz2 = 0;
1742 		d->chk_lpt_lebs = 0;
1743 		d->chk_lpt_wastage = 0;
1744 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1745 			dbg_err("dirty pnodes %d exceed max %d",
1746 				c->dirty_pn_cnt, c->pnode_cnt);
1747 			err = -EINVAL;
1748 		}
1749 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1750 			dbg_err("dirty nnodes %d exceed max %d",
1751 				c->dirty_nn_cnt, c->nnode_cnt);
1752 			err = -EINVAL;
1753 		}
1754 		return err;
1755 	case 1:
1756 		d->chk_lpt_sz += len;
1757 		return 0;
1758 	case 2:
1759 		d->chk_lpt_sz += len;
1760 		d->chk_lpt_wastage += len;
1761 		d->chk_lpt_lebs += 1;
1762 		return 0;
1763 	case 3:
1764 		chk_lpt_sz = c->leb_size;
1765 		chk_lpt_sz *= d->chk_lpt_lebs;
1766 		chk_lpt_sz += len - c->nhead_offs;
1767 		if (d->chk_lpt_sz != chk_lpt_sz) {
1768 			dbg_err("LPT wrote %lld but space used was %lld",
1769 				d->chk_lpt_sz, chk_lpt_sz);
1770 			err = -EINVAL;
1771 		}
1772 		if (d->chk_lpt_sz > c->lpt_sz) {
1773 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1774 				d->chk_lpt_sz, c->lpt_sz);
1775 			err = -EINVAL;
1776 		}
1777 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1778 			dbg_err("LPT layout size %lld but wrote %lld",
1779 				d->chk_lpt_sz, d->chk_lpt_sz2);
1780 			err = -EINVAL;
1781 		}
1782 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1783 			dbg_err("LPT new nhead offs: expected %d was %d",
1784 				d->new_nhead_offs, len);
1785 			err = -EINVAL;
1786 		}
1787 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1788 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1789 		lpt_sz += c->ltab_sz;
1790 		if (c->big_lpt)
1791 			lpt_sz += c->lsave_sz;
1792 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1793 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1794 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1795 			err = -EINVAL;
1796 		}
1797 		if (err)
1798 			dbg_dump_lpt_info(c);
1799 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1800 		d->chk_lpt_sz = 0;
1801 		d->chk_lpt_wastage = 0;
1802 		d->chk_lpt_lebs = 0;
1803 		d->new_nhead_offs = len;
1804 		return err;
1805 	case 4:
1806 		d->chk_lpt_sz += len;
1807 		d->chk_lpt_wastage += len;
1808 		return 0;
1809 	default:
1810 		return -EINVAL;
1811 	}
1812 }
1813 
1814 #endif /* CONFIG_UBIFS_FS_DEBUG */
1815