xref: /openbmc/linux/fs/ubifs/debug.c (revision e328379a18c5293c123bc56c32f19f9365384686)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37 
38 static DEFINE_SPINLOCK(dbg_lock);
39 
40 static const char *get_key_fmt(int fmt)
41 {
42 	switch (fmt) {
43 	case UBIFS_SIMPLE_KEY_FMT:
44 		return "simple";
45 	default:
46 		return "unknown/invalid format";
47 	}
48 }
49 
50 static const char *get_key_hash(int hash)
51 {
52 	switch (hash) {
53 	case UBIFS_KEY_HASH_R5:
54 		return "R5";
55 	case UBIFS_KEY_HASH_TEST:
56 		return "test";
57 	default:
58 		return "unknown/invalid name hash";
59 	}
60 }
61 
62 static const char *get_key_type(int type)
63 {
64 	switch (type) {
65 	case UBIFS_INO_KEY:
66 		return "inode";
67 	case UBIFS_DENT_KEY:
68 		return "direntry";
69 	case UBIFS_XENT_KEY:
70 		return "xentry";
71 	case UBIFS_DATA_KEY:
72 		return "data";
73 	case UBIFS_TRUN_KEY:
74 		return "truncate";
75 	default:
76 		return "unknown/invalid key";
77 	}
78 }
79 
80 static const char *get_dent_type(int type)
81 {
82 	switch (type) {
83 	case UBIFS_ITYPE_REG:
84 		return "file";
85 	case UBIFS_ITYPE_DIR:
86 		return "dir";
87 	case UBIFS_ITYPE_LNK:
88 		return "symlink";
89 	case UBIFS_ITYPE_BLK:
90 		return "blkdev";
91 	case UBIFS_ITYPE_CHR:
92 		return "char dev";
93 	case UBIFS_ITYPE_FIFO:
94 		return "fifo";
95 	case UBIFS_ITYPE_SOCK:
96 		return "socket";
97 	default:
98 		return "unknown/invalid type";
99 	}
100 }
101 
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103 			     const union ubifs_key *key, char *buffer, int len)
104 {
105 	char *p = buffer;
106 	int type = key_type(c, key);
107 
108 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109 		switch (type) {
110 		case UBIFS_INO_KEY:
111 			len -= snprintf(p, len, "(%lu, %s)",
112 					(unsigned long)key_inum(c, key),
113 					get_key_type(type));
114 			break;
115 		case UBIFS_DENT_KEY:
116 		case UBIFS_XENT_KEY:
117 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
118 					(unsigned long)key_inum(c, key),
119 					get_key_type(type), key_hash(c, key));
120 			break;
121 		case UBIFS_DATA_KEY:
122 			len -= snprintf(p, len, "(%lu, %s, %u)",
123 					(unsigned long)key_inum(c, key),
124 					get_key_type(type), key_block(c, key));
125 			break;
126 		case UBIFS_TRUN_KEY:
127 			len -= snprintf(p, len, "(%lu, %s)",
128 					(unsigned long)key_inum(c, key),
129 					get_key_type(type));
130 			break;
131 		default:
132 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133 					key->u32[0], key->u32[1]);
134 		}
135 	} else
136 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137 	ubifs_assert(len > 0);
138 	return p;
139 }
140 
141 const char *dbg_ntype(int type)
142 {
143 	switch (type) {
144 	case UBIFS_PAD_NODE:
145 		return "padding node";
146 	case UBIFS_SB_NODE:
147 		return "superblock node";
148 	case UBIFS_MST_NODE:
149 		return "master node";
150 	case UBIFS_REF_NODE:
151 		return "reference node";
152 	case UBIFS_INO_NODE:
153 		return "inode node";
154 	case UBIFS_DENT_NODE:
155 		return "direntry node";
156 	case UBIFS_XENT_NODE:
157 		return "xentry node";
158 	case UBIFS_DATA_NODE:
159 		return "data node";
160 	case UBIFS_TRUN_NODE:
161 		return "truncate node";
162 	case UBIFS_IDX_NODE:
163 		return "indexing node";
164 	case UBIFS_CS_NODE:
165 		return "commit start node";
166 	case UBIFS_ORPH_NODE:
167 		return "orphan node";
168 	default:
169 		return "unknown node";
170 	}
171 }
172 
173 static const char *dbg_gtype(int type)
174 {
175 	switch (type) {
176 	case UBIFS_NO_NODE_GROUP:
177 		return "no node group";
178 	case UBIFS_IN_NODE_GROUP:
179 		return "in node group";
180 	case UBIFS_LAST_OF_NODE_GROUP:
181 		return "last of node group";
182 	default:
183 		return "unknown";
184 	}
185 }
186 
187 const char *dbg_cstate(int cmt_state)
188 {
189 	switch (cmt_state) {
190 	case COMMIT_RESTING:
191 		return "commit resting";
192 	case COMMIT_BACKGROUND:
193 		return "background commit requested";
194 	case COMMIT_REQUIRED:
195 		return "commit required";
196 	case COMMIT_RUNNING_BACKGROUND:
197 		return "BACKGROUND commit running";
198 	case COMMIT_RUNNING_REQUIRED:
199 		return "commit running and required";
200 	case COMMIT_BROKEN:
201 		return "broken commit";
202 	default:
203 		return "unknown commit state";
204 	}
205 }
206 
207 const char *dbg_jhead(int jhead)
208 {
209 	switch (jhead) {
210 	case GCHD:
211 		return "0 (GC)";
212 	case BASEHD:
213 		return "1 (base)";
214 	case DATAHD:
215 		return "2 (data)";
216 	default:
217 		return "unknown journal head";
218 	}
219 }
220 
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226 	       dbg_ntype(ch->node_type));
227 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228 	       dbg_gtype(ch->group_type));
229 	pr_err("\tsqnum          %llu\n",
230 	       (unsigned long long)le64_to_cpu(ch->sqnum));
231 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233 
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236 	const struct ubifs_inode *ui = ubifs_inode(inode);
237 	struct fscrypt_name nm = {0};
238 	union ubifs_key key;
239 	struct ubifs_dent_node *dent, *pdent = NULL;
240 	int count = 2;
241 
242 	pr_err("Dump in-memory inode:");
243 	pr_err("\tinode          %lu\n", inode->i_ino);
244 	pr_err("\tsize           %llu\n",
245 	       (unsigned long long)i_size_read(inode));
246 	pr_err("\tnlink          %u\n", inode->i_nlink);
247 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249 	pr_err("\tatime          %u.%u\n",
250 	       (unsigned int)inode->i_atime.tv_sec,
251 	       (unsigned int)inode->i_atime.tv_nsec);
252 	pr_err("\tmtime          %u.%u\n",
253 	       (unsigned int)inode->i_mtime.tv_sec,
254 	       (unsigned int)inode->i_mtime.tv_nsec);
255 	pr_err("\tctime          %u.%u\n",
256 	       (unsigned int)inode->i_ctime.tv_sec,
257 	       (unsigned int)inode->i_ctime.tv_nsec);
258 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259 	pr_err("\txattr_size     %u\n", ui->xattr_size);
260 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261 	pr_err("\txattr_names    %u\n", ui->xattr_names);
262 	pr_err("\tdirty          %u\n", ui->dirty);
263 	pr_err("\txattr          %u\n", ui->xattr);
264 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
265 	pr_err("\tsynced_i_size  %llu\n",
266 	       (unsigned long long)ui->synced_i_size);
267 	pr_err("\tui_size        %llu\n",
268 	       (unsigned long long)ui->ui_size);
269 	pr_err("\tflags          %d\n", ui->flags);
270 	pr_err("\tcompr_type     %d\n", ui->compr_type);
271 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273 	pr_err("\tdata_len       %d\n", ui->data_len);
274 
275 	if (!S_ISDIR(inode->i_mode))
276 		return;
277 
278 	pr_err("List of directory entries:\n");
279 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 
281 	lowest_dent_key(c, &key, inode->i_ino);
282 	while (1) {
283 		dent = ubifs_tnc_next_ent(c, &key, &nm);
284 		if (IS_ERR(dent)) {
285 			if (PTR_ERR(dent) != -ENOENT)
286 				pr_err("error %ld\n", PTR_ERR(dent));
287 			break;
288 		}
289 
290 		pr_err("\t%d: %s (%s)\n",
291 		       count++, dent->name, get_dent_type(dent->type));
292 
293 		fname_name(&nm) = dent->name;
294 		fname_len(&nm) = le16_to_cpu(dent->nlen);
295 		kfree(pdent);
296 		pdent = dent;
297 		key_read(c, &dent->key, &key);
298 	}
299 	kfree(pdent);
300 }
301 
302 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 {
304 	int i, n;
305 	union ubifs_key key;
306 	const struct ubifs_ch *ch = node;
307 	char key_buf[DBG_KEY_BUF_LEN];
308 
309 	/* If the magic is incorrect, just hexdump the first bytes */
310 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
311 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
312 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
313 			       (void *)node, UBIFS_CH_SZ, 1);
314 		return;
315 	}
316 
317 	spin_lock(&dbg_lock);
318 	dump_ch(node);
319 
320 	switch (ch->node_type) {
321 	case UBIFS_PAD_NODE:
322 	{
323 		const struct ubifs_pad_node *pad = node;
324 
325 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
326 		break;
327 	}
328 	case UBIFS_SB_NODE:
329 	{
330 		const struct ubifs_sb_node *sup = node;
331 		unsigned int sup_flags = le32_to_cpu(sup->flags);
332 
333 		pr_err("\tkey_hash       %d (%s)\n",
334 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
335 		pr_err("\tkey_fmt        %d (%s)\n",
336 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
337 		pr_err("\tflags          %#x\n", sup_flags);
338 		pr_err("\tbig_lpt        %u\n",
339 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
340 		pr_err("\tspace_fixup    %u\n",
341 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
342 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
343 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
344 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
345 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
346 		pr_err("\tmax_bud_bytes  %llu\n",
347 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
348 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
349 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
350 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
351 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
352 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
353 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
354 		pr_err("\tdefault_compr  %u\n",
355 		       (int)le16_to_cpu(sup->default_compr));
356 		pr_err("\trp_size        %llu\n",
357 		       (unsigned long long)le64_to_cpu(sup->rp_size));
358 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
359 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
360 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
361 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
362 		pr_err("\tUUID           %pUB\n", sup->uuid);
363 		break;
364 	}
365 	case UBIFS_MST_NODE:
366 	{
367 		const struct ubifs_mst_node *mst = node;
368 
369 		pr_err("\thighest_inum   %llu\n",
370 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
371 		pr_err("\tcommit number  %llu\n",
372 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
373 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
374 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
375 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
376 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
377 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
378 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
379 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
380 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
381 		pr_err("\tindex_size     %llu\n",
382 		       (unsigned long long)le64_to_cpu(mst->index_size));
383 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
384 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
385 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
386 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
387 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
388 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
389 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
390 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
391 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
392 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
393 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
394 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
395 		pr_err("\ttotal_free     %llu\n",
396 		       (unsigned long long)le64_to_cpu(mst->total_free));
397 		pr_err("\ttotal_dirty    %llu\n",
398 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
399 		pr_err("\ttotal_used     %llu\n",
400 		       (unsigned long long)le64_to_cpu(mst->total_used));
401 		pr_err("\ttotal_dead     %llu\n",
402 		       (unsigned long long)le64_to_cpu(mst->total_dead));
403 		pr_err("\ttotal_dark     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->total_dark));
405 		break;
406 	}
407 	case UBIFS_REF_NODE:
408 	{
409 		const struct ubifs_ref_node *ref = node;
410 
411 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
412 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
413 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
414 		break;
415 	}
416 	case UBIFS_INO_NODE:
417 	{
418 		const struct ubifs_ino_node *ino = node;
419 
420 		key_read(c, &ino->key, &key);
421 		pr_err("\tkey            %s\n",
422 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
423 		pr_err("\tcreat_sqnum    %llu\n",
424 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
425 		pr_err("\tsize           %llu\n",
426 		       (unsigned long long)le64_to_cpu(ino->size));
427 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
428 		pr_err("\tatime          %lld.%u\n",
429 		       (long long)le64_to_cpu(ino->atime_sec),
430 		       le32_to_cpu(ino->atime_nsec));
431 		pr_err("\tmtime          %lld.%u\n",
432 		       (long long)le64_to_cpu(ino->mtime_sec),
433 		       le32_to_cpu(ino->mtime_nsec));
434 		pr_err("\tctime          %lld.%u\n",
435 		       (long long)le64_to_cpu(ino->ctime_sec),
436 		       le32_to_cpu(ino->ctime_nsec));
437 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
438 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
439 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
440 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
441 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
442 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
443 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
444 		pr_err("\tcompr_type     %#x\n",
445 		       (int)le16_to_cpu(ino->compr_type));
446 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
447 		break;
448 	}
449 	case UBIFS_DENT_NODE:
450 	case UBIFS_XENT_NODE:
451 	{
452 		const struct ubifs_dent_node *dent = node;
453 		int nlen = le16_to_cpu(dent->nlen);
454 
455 		key_read(c, &dent->key, &key);
456 		pr_err("\tkey            %s\n",
457 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
458 		pr_err("\tinum           %llu\n",
459 		       (unsigned long long)le64_to_cpu(dent->inum));
460 		pr_err("\ttype           %d\n", (int)dent->type);
461 		pr_err("\tnlen           %d\n", nlen);
462 		pr_err("\tname           ");
463 
464 		if (nlen > UBIFS_MAX_NLEN)
465 			pr_err("(bad name length, not printing, bad or corrupted node)");
466 		else {
467 			for (i = 0; i < nlen && dent->name[i]; i++)
468 				pr_cont("%c", isprint(dent->name[i]) ?
469 					dent->name[i] : '?');
470 		}
471 		pr_cont("\n");
472 
473 		break;
474 	}
475 	case UBIFS_DATA_NODE:
476 	{
477 		const struct ubifs_data_node *dn = node;
478 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
479 
480 		key_read(c, &dn->key, &key);
481 		pr_err("\tkey            %s\n",
482 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
483 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
484 		pr_err("\tcompr_typ      %d\n",
485 		       (int)le16_to_cpu(dn->compr_type));
486 		pr_err("\tdata size      %d\n", dlen);
487 		pr_err("\tdata:\n");
488 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
489 			       (void *)&dn->data, dlen, 0);
490 		break;
491 	}
492 	case UBIFS_TRUN_NODE:
493 	{
494 		const struct ubifs_trun_node *trun = node;
495 
496 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
497 		pr_err("\told_size       %llu\n",
498 		       (unsigned long long)le64_to_cpu(trun->old_size));
499 		pr_err("\tnew_size       %llu\n",
500 		       (unsigned long long)le64_to_cpu(trun->new_size));
501 		break;
502 	}
503 	case UBIFS_IDX_NODE:
504 	{
505 		const struct ubifs_idx_node *idx = node;
506 
507 		n = le16_to_cpu(idx->child_cnt);
508 		pr_err("\tchild_cnt      %d\n", n);
509 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
510 		pr_err("\tBranches:\n");
511 
512 		for (i = 0; i < n && i < c->fanout - 1; i++) {
513 			const struct ubifs_branch *br;
514 
515 			br = ubifs_idx_branch(c, idx, i);
516 			key_read(c, &br->key, &key);
517 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
518 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
519 			       le32_to_cpu(br->len),
520 			       dbg_snprintf_key(c, &key, key_buf,
521 						DBG_KEY_BUF_LEN));
522 		}
523 		break;
524 	}
525 	case UBIFS_CS_NODE:
526 		break;
527 	case UBIFS_ORPH_NODE:
528 	{
529 		const struct ubifs_orph_node *orph = node;
530 
531 		pr_err("\tcommit number  %llu\n",
532 		       (unsigned long long)
533 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
534 		pr_err("\tlast node flag %llu\n",
535 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
536 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
537 		pr_err("\t%d orphan inode numbers:\n", n);
538 		for (i = 0; i < n; i++)
539 			pr_err("\t  ino %llu\n",
540 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
541 		break;
542 	}
543 	default:
544 		pr_err("node type %d was not recognized\n",
545 		       (int)ch->node_type);
546 	}
547 	spin_unlock(&dbg_lock);
548 }
549 
550 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
551 {
552 	spin_lock(&dbg_lock);
553 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
554 	       req->new_ino, req->dirtied_ino);
555 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
556 	       req->new_ino_d, req->dirtied_ino_d);
557 	pr_err("\tnew_page    %d, dirtied_page %d\n",
558 	       req->new_page, req->dirtied_page);
559 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
560 	       req->new_dent, req->mod_dent);
561 	pr_err("\tidx_growth  %d\n", req->idx_growth);
562 	pr_err("\tdata_growth %d dd_growth     %d\n",
563 	       req->data_growth, req->dd_growth);
564 	spin_unlock(&dbg_lock);
565 }
566 
567 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
568 {
569 	spin_lock(&dbg_lock);
570 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
571 	       current->pid, lst->empty_lebs, lst->idx_lebs);
572 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
573 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
574 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
575 	       lst->total_used, lst->total_dark, lst->total_dead);
576 	spin_unlock(&dbg_lock);
577 }
578 
579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
580 {
581 	int i;
582 	struct rb_node *rb;
583 	struct ubifs_bud *bud;
584 	struct ubifs_gced_idx_leb *idx_gc;
585 	long long available, outstanding, free;
586 
587 	spin_lock(&c->space_lock);
588 	spin_lock(&dbg_lock);
589 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
590 	       current->pid, bi->data_growth + bi->dd_growth,
591 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
592 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
593 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
594 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
595 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
596 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
597 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
598 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
599 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
600 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
601 
602 	if (bi != &c->bi)
603 		/*
604 		 * If we are dumping saved budgeting data, do not print
605 		 * additional information which is about the current state, not
606 		 * the old one which corresponded to the saved budgeting data.
607 		 */
608 		goto out_unlock;
609 
610 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
611 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
612 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
613 	       atomic_long_read(&c->dirty_pg_cnt),
614 	       atomic_long_read(&c->dirty_zn_cnt),
615 	       atomic_long_read(&c->clean_zn_cnt));
616 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
617 
618 	/* If we are in R/O mode, journal heads do not exist */
619 	if (c->jheads)
620 		for (i = 0; i < c->jhead_cnt; i++)
621 			pr_err("\tjhead %s\t LEB %d\n",
622 			       dbg_jhead(c->jheads[i].wbuf.jhead),
623 			       c->jheads[i].wbuf.lnum);
624 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
625 		bud = rb_entry(rb, struct ubifs_bud, rb);
626 		pr_err("\tbud LEB %d\n", bud->lnum);
627 	}
628 	list_for_each_entry(bud, &c->old_buds, list)
629 		pr_err("\told bud LEB %d\n", bud->lnum);
630 	list_for_each_entry(idx_gc, &c->idx_gc, list)
631 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
632 		       idx_gc->lnum, idx_gc->unmap);
633 	pr_err("\tcommit state %d\n", c->cmt_state);
634 
635 	/* Print budgeting predictions */
636 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
637 	outstanding = c->bi.data_growth + c->bi.dd_growth;
638 	free = ubifs_get_free_space_nolock(c);
639 	pr_err("Budgeting predictions:\n");
640 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
641 	       available, outstanding, free);
642 out_unlock:
643 	spin_unlock(&dbg_lock);
644 	spin_unlock(&c->space_lock);
645 }
646 
647 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
648 {
649 	int i, spc, dark = 0, dead = 0;
650 	struct rb_node *rb;
651 	struct ubifs_bud *bud;
652 
653 	spc = lp->free + lp->dirty;
654 	if (spc < c->dead_wm)
655 		dead = spc;
656 	else
657 		dark = ubifs_calc_dark(c, spc);
658 
659 	if (lp->flags & LPROPS_INDEX)
660 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
661 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662 		       lp->flags);
663 	else
664 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
665 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
667 
668 	if (lp->flags & LPROPS_TAKEN) {
669 		if (lp->flags & LPROPS_INDEX)
670 			pr_cont("index, taken");
671 		else
672 			pr_cont("taken");
673 	} else {
674 		const char *s;
675 
676 		if (lp->flags & LPROPS_INDEX) {
677 			switch (lp->flags & LPROPS_CAT_MASK) {
678 			case LPROPS_DIRTY_IDX:
679 				s = "dirty index";
680 				break;
681 			case LPROPS_FRDI_IDX:
682 				s = "freeable index";
683 				break;
684 			default:
685 				s = "index";
686 			}
687 		} else {
688 			switch (lp->flags & LPROPS_CAT_MASK) {
689 			case LPROPS_UNCAT:
690 				s = "not categorized";
691 				break;
692 			case LPROPS_DIRTY:
693 				s = "dirty";
694 				break;
695 			case LPROPS_FREE:
696 				s = "free";
697 				break;
698 			case LPROPS_EMPTY:
699 				s = "empty";
700 				break;
701 			case LPROPS_FREEABLE:
702 				s = "freeable";
703 				break;
704 			default:
705 				s = NULL;
706 				break;
707 			}
708 		}
709 		pr_cont("%s", s);
710 	}
711 
712 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
713 		bud = rb_entry(rb, struct ubifs_bud, rb);
714 		if (bud->lnum == lp->lnum) {
715 			int head = 0;
716 			for (i = 0; i < c->jhead_cnt; i++) {
717 				/*
718 				 * Note, if we are in R/O mode or in the middle
719 				 * of mounting/re-mounting, the write-buffers do
720 				 * not exist.
721 				 */
722 				if (c->jheads &&
723 				    lp->lnum == c->jheads[i].wbuf.lnum) {
724 					pr_cont(", jhead %s", dbg_jhead(i));
725 					head = 1;
726 				}
727 			}
728 			if (!head)
729 				pr_cont(", bud of jhead %s",
730 				       dbg_jhead(bud->jhead));
731 		}
732 	}
733 	if (lp->lnum == c->gc_lnum)
734 		pr_cont(", GC LEB");
735 	pr_cont(")\n");
736 }
737 
738 void ubifs_dump_lprops(struct ubifs_info *c)
739 {
740 	int lnum, err;
741 	struct ubifs_lprops lp;
742 	struct ubifs_lp_stats lst;
743 
744 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
745 	ubifs_get_lp_stats(c, &lst);
746 	ubifs_dump_lstats(&lst);
747 
748 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
749 		err = ubifs_read_one_lp(c, lnum, &lp);
750 		if (err) {
751 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
752 			continue;
753 		}
754 
755 		ubifs_dump_lprop(c, &lp);
756 	}
757 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
758 }
759 
760 void ubifs_dump_lpt_info(struct ubifs_info *c)
761 {
762 	int i;
763 
764 	spin_lock(&dbg_lock);
765 	pr_err("(pid %d) dumping LPT information\n", current->pid);
766 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
767 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
768 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
769 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
770 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
771 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
772 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
773 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
774 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
775 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
776 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
777 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
778 	pr_err("\tspace_bits:    %d\n", c->space_bits);
779 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
780 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
781 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
782 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
783 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
784 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
785 	pr_err("\tLPT head is at %d:%d\n",
786 	       c->nhead_lnum, c->nhead_offs);
787 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
788 	if (c->big_lpt)
789 		pr_err("\tLPT lsave is at %d:%d\n",
790 		       c->lsave_lnum, c->lsave_offs);
791 	for (i = 0; i < c->lpt_lebs; i++)
792 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
793 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
794 		       c->ltab[i].tgc, c->ltab[i].cmt);
795 	spin_unlock(&dbg_lock);
796 }
797 
798 void ubifs_dump_sleb(const struct ubifs_info *c,
799 		     const struct ubifs_scan_leb *sleb, int offs)
800 {
801 	struct ubifs_scan_node *snod;
802 
803 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
804 	       current->pid, sleb->lnum, offs);
805 
806 	list_for_each_entry(snod, &sleb->nodes, list) {
807 		cond_resched();
808 		pr_err("Dumping node at LEB %d:%d len %d\n",
809 		       sleb->lnum, snod->offs, snod->len);
810 		ubifs_dump_node(c, snod->node);
811 	}
812 }
813 
814 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
815 {
816 	struct ubifs_scan_leb *sleb;
817 	struct ubifs_scan_node *snod;
818 	void *buf;
819 
820 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
821 
822 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
823 	if (!buf) {
824 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
825 		return;
826 	}
827 
828 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
829 	if (IS_ERR(sleb)) {
830 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
831 		goto out;
832 	}
833 
834 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
835 	       sleb->nodes_cnt, sleb->endpt);
836 
837 	list_for_each_entry(snod, &sleb->nodes, list) {
838 		cond_resched();
839 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
840 		       snod->offs, snod->len);
841 		ubifs_dump_node(c, snod->node);
842 	}
843 
844 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
845 	ubifs_scan_destroy(sleb);
846 
847 out:
848 	vfree(buf);
849 	return;
850 }
851 
852 void ubifs_dump_znode(const struct ubifs_info *c,
853 		      const struct ubifs_znode *znode)
854 {
855 	int n;
856 	const struct ubifs_zbranch *zbr;
857 	char key_buf[DBG_KEY_BUF_LEN];
858 
859 	spin_lock(&dbg_lock);
860 	if (znode->parent)
861 		zbr = &znode->parent->zbranch[znode->iip];
862 	else
863 		zbr = &c->zroot;
864 
865 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
866 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
867 	       znode->level, znode->child_cnt, znode->flags);
868 
869 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
870 		spin_unlock(&dbg_lock);
871 		return;
872 	}
873 
874 	pr_err("zbranches:\n");
875 	for (n = 0; n < znode->child_cnt; n++) {
876 		zbr = &znode->zbranch[n];
877 		if (znode->level > 0)
878 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
879 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
880 			       dbg_snprintf_key(c, &zbr->key, key_buf,
881 						DBG_KEY_BUF_LEN));
882 		else
883 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
884 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
885 			       dbg_snprintf_key(c, &zbr->key, key_buf,
886 						DBG_KEY_BUF_LEN));
887 	}
888 	spin_unlock(&dbg_lock);
889 }
890 
891 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
892 {
893 	int i;
894 
895 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
896 	       current->pid, cat, heap->cnt);
897 	for (i = 0; i < heap->cnt; i++) {
898 		struct ubifs_lprops *lprops = heap->arr[i];
899 
900 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
901 		       i, lprops->lnum, lprops->hpos, lprops->free,
902 		       lprops->dirty, lprops->flags);
903 	}
904 	pr_err("(pid %d) finish dumping heap\n", current->pid);
905 }
906 
907 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
908 		      struct ubifs_nnode *parent, int iip)
909 {
910 	int i;
911 
912 	pr_err("(pid %d) dumping pnode:\n", current->pid);
913 	pr_err("\taddress %zx parent %zx cnext %zx\n",
914 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
915 	pr_err("\tflags %lu iip %d level %d num %d\n",
916 	       pnode->flags, iip, pnode->level, pnode->num);
917 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
918 		struct ubifs_lprops *lp = &pnode->lprops[i];
919 
920 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
921 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
922 	}
923 }
924 
925 void ubifs_dump_tnc(struct ubifs_info *c)
926 {
927 	struct ubifs_znode *znode;
928 	int level;
929 
930 	pr_err("\n");
931 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
932 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
933 	level = znode->level;
934 	pr_err("== Level %d ==\n", level);
935 	while (znode) {
936 		if (level != znode->level) {
937 			level = znode->level;
938 			pr_err("== Level %d ==\n", level);
939 		}
940 		ubifs_dump_znode(c, znode);
941 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
942 	}
943 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
944 }
945 
946 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
947 		      void *priv)
948 {
949 	ubifs_dump_znode(c, znode);
950 	return 0;
951 }
952 
953 /**
954  * ubifs_dump_index - dump the on-flash index.
955  * @c: UBIFS file-system description object
956  *
957  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
958  * which dumps only in-memory znodes and does not read znodes which from flash.
959  */
960 void ubifs_dump_index(struct ubifs_info *c)
961 {
962 	dbg_walk_index(c, NULL, dump_znode, NULL);
963 }
964 
965 /**
966  * dbg_save_space_info - save information about flash space.
967  * @c: UBIFS file-system description object
968  *
969  * This function saves information about UBIFS free space, dirty space, etc, in
970  * order to check it later.
971  */
972 void dbg_save_space_info(struct ubifs_info *c)
973 {
974 	struct ubifs_debug_info *d = c->dbg;
975 	int freeable_cnt;
976 
977 	spin_lock(&c->space_lock);
978 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
979 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
980 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
981 
982 	/*
983 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
984 	 * affects the free space calculations, and UBIFS might not know about
985 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
986 	 * only when we read their lprops, and we do this only lazily, upon the
987 	 * need. So at any given point of time @c->freeable_cnt might be not
988 	 * exactly accurate.
989 	 *
990 	 * Just one example about the issue we hit when we did not zero
991 	 * @c->freeable_cnt.
992 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
993 	 *    amount of free space in @d->saved_free
994 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
995 	 *    information from flash, where we cache LEBs from various
996 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
997 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
998 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
999 	 *    -> 'ubifs_add_to_cat()').
1000 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1001 	 *    becomes %1.
1002 	 * 4. We calculate the amount of free space when the re-mount is
1003 	 *    finished in 'dbg_check_space_info()' and it does not match
1004 	 *    @d->saved_free.
1005 	 */
1006 	freeable_cnt = c->freeable_cnt;
1007 	c->freeable_cnt = 0;
1008 	d->saved_free = ubifs_get_free_space_nolock(c);
1009 	c->freeable_cnt = freeable_cnt;
1010 	spin_unlock(&c->space_lock);
1011 }
1012 
1013 /**
1014  * dbg_check_space_info - check flash space information.
1015  * @c: UBIFS file-system description object
1016  *
1017  * This function compares current flash space information with the information
1018  * which was saved when the 'dbg_save_space_info()' function was called.
1019  * Returns zero if the information has not changed, and %-EINVAL it it has
1020  * changed.
1021  */
1022 int dbg_check_space_info(struct ubifs_info *c)
1023 {
1024 	struct ubifs_debug_info *d = c->dbg;
1025 	struct ubifs_lp_stats lst;
1026 	long long free;
1027 	int freeable_cnt;
1028 
1029 	spin_lock(&c->space_lock);
1030 	freeable_cnt = c->freeable_cnt;
1031 	c->freeable_cnt = 0;
1032 	free = ubifs_get_free_space_nolock(c);
1033 	c->freeable_cnt = freeable_cnt;
1034 	spin_unlock(&c->space_lock);
1035 
1036 	if (free != d->saved_free) {
1037 		ubifs_err(c, "free space changed from %lld to %lld",
1038 			  d->saved_free, free);
1039 		goto out;
1040 	}
1041 
1042 	return 0;
1043 
1044 out:
1045 	ubifs_msg(c, "saved lprops statistics dump");
1046 	ubifs_dump_lstats(&d->saved_lst);
1047 	ubifs_msg(c, "saved budgeting info dump");
1048 	ubifs_dump_budg(c, &d->saved_bi);
1049 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1050 	ubifs_msg(c, "current lprops statistics dump");
1051 	ubifs_get_lp_stats(c, &lst);
1052 	ubifs_dump_lstats(&lst);
1053 	ubifs_msg(c, "current budgeting info dump");
1054 	ubifs_dump_budg(c, &c->bi);
1055 	dump_stack();
1056 	return -EINVAL;
1057 }
1058 
1059 /**
1060  * dbg_check_synced_i_size - check synchronized inode size.
1061  * @c: UBIFS file-system description object
1062  * @inode: inode to check
1063  *
1064  * If inode is clean, synchronized inode size has to be equivalent to current
1065  * inode size. This function has to be called only for locked inodes (@i_mutex
1066  * has to be locked). Returns %0 if synchronized inode size if correct, and
1067  * %-EINVAL if not.
1068  */
1069 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1070 {
1071 	int err = 0;
1072 	struct ubifs_inode *ui = ubifs_inode(inode);
1073 
1074 	if (!dbg_is_chk_gen(c))
1075 		return 0;
1076 	if (!S_ISREG(inode->i_mode))
1077 		return 0;
1078 
1079 	mutex_lock(&ui->ui_mutex);
1080 	spin_lock(&ui->ui_lock);
1081 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1082 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1083 			  ui->ui_size, ui->synced_i_size);
1084 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1085 			  inode->i_mode, i_size_read(inode));
1086 		dump_stack();
1087 		err = -EINVAL;
1088 	}
1089 	spin_unlock(&ui->ui_lock);
1090 	mutex_unlock(&ui->ui_mutex);
1091 	return err;
1092 }
1093 
1094 /*
1095  * dbg_check_dir - check directory inode size and link count.
1096  * @c: UBIFS file-system description object
1097  * @dir: the directory to calculate size for
1098  * @size: the result is returned here
1099  *
1100  * This function makes sure that directory size and link count are correct.
1101  * Returns zero in case of success and a negative error code in case of
1102  * failure.
1103  *
1104  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1105  * calling this function.
1106  */
1107 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1108 {
1109 	unsigned int nlink = 2;
1110 	union ubifs_key key;
1111 	struct ubifs_dent_node *dent, *pdent = NULL;
1112 	struct fscrypt_name nm = {0};
1113 	loff_t size = UBIFS_INO_NODE_SZ;
1114 
1115 	if (!dbg_is_chk_gen(c))
1116 		return 0;
1117 
1118 	if (!S_ISDIR(dir->i_mode))
1119 		return 0;
1120 
1121 	lowest_dent_key(c, &key, dir->i_ino);
1122 	while (1) {
1123 		int err;
1124 
1125 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1126 		if (IS_ERR(dent)) {
1127 			err = PTR_ERR(dent);
1128 			if (err == -ENOENT)
1129 				break;
1130 			return err;
1131 		}
1132 
1133 		fname_name(&nm) = dent->name;
1134 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1135 		size += CALC_DENT_SIZE(fname_len(&nm));
1136 		if (dent->type == UBIFS_ITYPE_DIR)
1137 			nlink += 1;
1138 		kfree(pdent);
1139 		pdent = dent;
1140 		key_read(c, &dent->key, &key);
1141 	}
1142 	kfree(pdent);
1143 
1144 	if (i_size_read(dir) != size) {
1145 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1146 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1147 			  (unsigned long long)size);
1148 		ubifs_dump_inode(c, dir);
1149 		dump_stack();
1150 		return -EINVAL;
1151 	}
1152 	if (dir->i_nlink != nlink) {
1153 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1154 			  dir->i_ino, dir->i_nlink, nlink);
1155 		ubifs_dump_inode(c, dir);
1156 		dump_stack();
1157 		return -EINVAL;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /**
1164  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1165  * @c: UBIFS file-system description object
1166  * @zbr1: first zbranch
1167  * @zbr2: following zbranch
1168  *
1169  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1170  * names of the direntries/xentries which are referred by the keys. This
1171  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1172  * sure the name of direntry/xentry referred by @zbr1 is less than
1173  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1174  * and a negative error code in case of failure.
1175  */
1176 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1177 			       struct ubifs_zbranch *zbr2)
1178 {
1179 	int err, nlen1, nlen2, cmp;
1180 	struct ubifs_dent_node *dent1, *dent2;
1181 	union ubifs_key key;
1182 	char key_buf[DBG_KEY_BUF_LEN];
1183 
1184 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1185 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1186 	if (!dent1)
1187 		return -ENOMEM;
1188 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189 	if (!dent2) {
1190 		err = -ENOMEM;
1191 		goto out_free;
1192 	}
1193 
1194 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1195 	if (err)
1196 		goto out_free;
1197 	err = ubifs_validate_entry(c, dent1);
1198 	if (err)
1199 		goto out_free;
1200 
1201 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1202 	if (err)
1203 		goto out_free;
1204 	err = ubifs_validate_entry(c, dent2);
1205 	if (err)
1206 		goto out_free;
1207 
1208 	/* Make sure node keys are the same as in zbranch */
1209 	err = 1;
1210 	key_read(c, &dent1->key, &key);
1211 	if (keys_cmp(c, &zbr1->key, &key)) {
1212 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1213 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1214 						       DBG_KEY_BUF_LEN));
1215 		ubifs_err(c, "but it should have key %s according to tnc",
1216 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1217 					   DBG_KEY_BUF_LEN));
1218 		ubifs_dump_node(c, dent1);
1219 		goto out_free;
1220 	}
1221 
1222 	key_read(c, &dent2->key, &key);
1223 	if (keys_cmp(c, &zbr2->key, &key)) {
1224 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1225 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1226 						       DBG_KEY_BUF_LEN));
1227 		ubifs_err(c, "but it should have key %s according to tnc",
1228 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1229 					   DBG_KEY_BUF_LEN));
1230 		ubifs_dump_node(c, dent2);
1231 		goto out_free;
1232 	}
1233 
1234 	nlen1 = le16_to_cpu(dent1->nlen);
1235 	nlen2 = le16_to_cpu(dent2->nlen);
1236 
1237 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1238 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1239 		err = 0;
1240 		goto out_free;
1241 	}
1242 	if (cmp == 0 && nlen1 == nlen2)
1243 		ubifs_err(c, "2 xent/dent nodes with the same name");
1244 	else
1245 		ubifs_err(c, "bad order of colliding key %s",
1246 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1247 
1248 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1249 	ubifs_dump_node(c, dent1);
1250 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1251 	ubifs_dump_node(c, dent2);
1252 
1253 out_free:
1254 	kfree(dent2);
1255 	kfree(dent1);
1256 	return err;
1257 }
1258 
1259 /**
1260  * dbg_check_znode - check if znode is all right.
1261  * @c: UBIFS file-system description object
1262  * @zbr: zbranch which points to this znode
1263  *
1264  * This function makes sure that znode referred to by @zbr is all right.
1265  * Returns zero if it is, and %-EINVAL if it is not.
1266  */
1267 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1268 {
1269 	struct ubifs_znode *znode = zbr->znode;
1270 	struct ubifs_znode *zp = znode->parent;
1271 	int n, err, cmp;
1272 
1273 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1274 		err = 1;
1275 		goto out;
1276 	}
1277 	if (znode->level < 0) {
1278 		err = 2;
1279 		goto out;
1280 	}
1281 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1282 		err = 3;
1283 		goto out;
1284 	}
1285 
1286 	if (zbr->len == 0)
1287 		/* Only dirty zbranch may have no on-flash nodes */
1288 		if (!ubifs_zn_dirty(znode)) {
1289 			err = 4;
1290 			goto out;
1291 		}
1292 
1293 	if (ubifs_zn_dirty(znode)) {
1294 		/*
1295 		 * If znode is dirty, its parent has to be dirty as well. The
1296 		 * order of the operation is important, so we have to have
1297 		 * memory barriers.
1298 		 */
1299 		smp_mb();
1300 		if (zp && !ubifs_zn_dirty(zp)) {
1301 			/*
1302 			 * The dirty flag is atomic and is cleared outside the
1303 			 * TNC mutex, so znode's dirty flag may now have
1304 			 * been cleared. The child is always cleared before the
1305 			 * parent, so we just need to check again.
1306 			 */
1307 			smp_mb();
1308 			if (ubifs_zn_dirty(znode)) {
1309 				err = 5;
1310 				goto out;
1311 			}
1312 		}
1313 	}
1314 
1315 	if (zp) {
1316 		const union ubifs_key *min, *max;
1317 
1318 		if (znode->level != zp->level - 1) {
1319 			err = 6;
1320 			goto out;
1321 		}
1322 
1323 		/* Make sure the 'parent' pointer in our znode is correct */
1324 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1325 		if (!err) {
1326 			/* This zbranch does not exist in the parent */
1327 			err = 7;
1328 			goto out;
1329 		}
1330 
1331 		if (znode->iip >= zp->child_cnt) {
1332 			err = 8;
1333 			goto out;
1334 		}
1335 
1336 		if (znode->iip != n) {
1337 			/* This may happen only in case of collisions */
1338 			if (keys_cmp(c, &zp->zbranch[n].key,
1339 				     &zp->zbranch[znode->iip].key)) {
1340 				err = 9;
1341 				goto out;
1342 			}
1343 			n = znode->iip;
1344 		}
1345 
1346 		/*
1347 		 * Make sure that the first key in our znode is greater than or
1348 		 * equal to the key in the pointing zbranch.
1349 		 */
1350 		min = &zbr->key;
1351 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1352 		if (cmp == 1) {
1353 			err = 10;
1354 			goto out;
1355 		}
1356 
1357 		if (n + 1 < zp->child_cnt) {
1358 			max = &zp->zbranch[n + 1].key;
1359 
1360 			/*
1361 			 * Make sure the last key in our znode is less or
1362 			 * equivalent than the key in the zbranch which goes
1363 			 * after our pointing zbranch.
1364 			 */
1365 			cmp = keys_cmp(c, max,
1366 				&znode->zbranch[znode->child_cnt - 1].key);
1367 			if (cmp == -1) {
1368 				err = 11;
1369 				goto out;
1370 			}
1371 		}
1372 	} else {
1373 		/* This may only be root znode */
1374 		if (zbr != &c->zroot) {
1375 			err = 12;
1376 			goto out;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * Make sure that next key is greater or equivalent then the previous
1382 	 * one.
1383 	 */
1384 	for (n = 1; n < znode->child_cnt; n++) {
1385 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1386 			       &znode->zbranch[n].key);
1387 		if (cmp > 0) {
1388 			err = 13;
1389 			goto out;
1390 		}
1391 		if (cmp == 0) {
1392 			/* This can only be keys with colliding hash */
1393 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1394 				err = 14;
1395 				goto out;
1396 			}
1397 
1398 			if (znode->level != 0 || c->replaying)
1399 				continue;
1400 
1401 			/*
1402 			 * Colliding keys should follow binary order of
1403 			 * corresponding xentry/dentry names.
1404 			 */
1405 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1406 						  &znode->zbranch[n]);
1407 			if (err < 0)
1408 				return err;
1409 			if (err) {
1410 				err = 15;
1411 				goto out;
1412 			}
1413 		}
1414 	}
1415 
1416 	for (n = 0; n < znode->child_cnt; n++) {
1417 		if (!znode->zbranch[n].znode &&
1418 		    (znode->zbranch[n].lnum == 0 ||
1419 		     znode->zbranch[n].len == 0)) {
1420 			err = 16;
1421 			goto out;
1422 		}
1423 
1424 		if (znode->zbranch[n].lnum != 0 &&
1425 		    znode->zbranch[n].len == 0) {
1426 			err = 17;
1427 			goto out;
1428 		}
1429 
1430 		if (znode->zbranch[n].lnum == 0 &&
1431 		    znode->zbranch[n].len != 0) {
1432 			err = 18;
1433 			goto out;
1434 		}
1435 
1436 		if (znode->zbranch[n].lnum == 0 &&
1437 		    znode->zbranch[n].offs != 0) {
1438 			err = 19;
1439 			goto out;
1440 		}
1441 
1442 		if (znode->level != 0 && znode->zbranch[n].znode)
1443 			if (znode->zbranch[n].znode->parent != znode) {
1444 				err = 20;
1445 				goto out;
1446 			}
1447 	}
1448 
1449 	return 0;
1450 
1451 out:
1452 	ubifs_err(c, "failed, error %d", err);
1453 	ubifs_msg(c, "dump of the znode");
1454 	ubifs_dump_znode(c, znode);
1455 	if (zp) {
1456 		ubifs_msg(c, "dump of the parent znode");
1457 		ubifs_dump_znode(c, zp);
1458 	}
1459 	dump_stack();
1460 	return -EINVAL;
1461 }
1462 
1463 /**
1464  * dbg_check_tnc - check TNC tree.
1465  * @c: UBIFS file-system description object
1466  * @extra: do extra checks that are possible at start commit
1467  *
1468  * This function traverses whole TNC tree and checks every znode. Returns zero
1469  * if everything is all right and %-EINVAL if something is wrong with TNC.
1470  */
1471 int dbg_check_tnc(struct ubifs_info *c, int extra)
1472 {
1473 	struct ubifs_znode *znode;
1474 	long clean_cnt = 0, dirty_cnt = 0;
1475 	int err, last;
1476 
1477 	if (!dbg_is_chk_index(c))
1478 		return 0;
1479 
1480 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1481 	if (!c->zroot.znode)
1482 		return 0;
1483 
1484 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1485 	while (1) {
1486 		struct ubifs_znode *prev;
1487 		struct ubifs_zbranch *zbr;
1488 
1489 		if (!znode->parent)
1490 			zbr = &c->zroot;
1491 		else
1492 			zbr = &znode->parent->zbranch[znode->iip];
1493 
1494 		err = dbg_check_znode(c, zbr);
1495 		if (err)
1496 			return err;
1497 
1498 		if (extra) {
1499 			if (ubifs_zn_dirty(znode))
1500 				dirty_cnt += 1;
1501 			else
1502 				clean_cnt += 1;
1503 		}
1504 
1505 		prev = znode;
1506 		znode = ubifs_tnc_postorder_next(znode);
1507 		if (!znode)
1508 			break;
1509 
1510 		/*
1511 		 * If the last key of this znode is equivalent to the first key
1512 		 * of the next znode (collision), then check order of the keys.
1513 		 */
1514 		last = prev->child_cnt - 1;
1515 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1516 		    !keys_cmp(c, &prev->zbranch[last].key,
1517 			      &znode->zbranch[0].key)) {
1518 			err = dbg_check_key_order(c, &prev->zbranch[last],
1519 						  &znode->zbranch[0]);
1520 			if (err < 0)
1521 				return err;
1522 			if (err) {
1523 				ubifs_msg(c, "first znode");
1524 				ubifs_dump_znode(c, prev);
1525 				ubifs_msg(c, "second znode");
1526 				ubifs_dump_znode(c, znode);
1527 				return -EINVAL;
1528 			}
1529 		}
1530 	}
1531 
1532 	if (extra) {
1533 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1534 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1535 				  atomic_long_read(&c->clean_zn_cnt),
1536 				  clean_cnt);
1537 			return -EINVAL;
1538 		}
1539 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1540 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1541 				  atomic_long_read(&c->dirty_zn_cnt),
1542 				  dirty_cnt);
1543 			return -EINVAL;
1544 		}
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /**
1551  * dbg_walk_index - walk the on-flash index.
1552  * @c: UBIFS file-system description object
1553  * @leaf_cb: called for each leaf node
1554  * @znode_cb: called for each indexing node
1555  * @priv: private data which is passed to callbacks
1556  *
1557  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1558  * node and @znode_cb for each indexing node. Returns zero in case of success
1559  * and a negative error code in case of failure.
1560  *
1561  * It would be better if this function removed every znode it pulled to into
1562  * the TNC, so that the behavior more closely matched the non-debugging
1563  * behavior.
1564  */
1565 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1566 		   dbg_znode_callback znode_cb, void *priv)
1567 {
1568 	int err;
1569 	struct ubifs_zbranch *zbr;
1570 	struct ubifs_znode *znode, *child;
1571 
1572 	mutex_lock(&c->tnc_mutex);
1573 	/* If the root indexing node is not in TNC - pull it */
1574 	if (!c->zroot.znode) {
1575 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1576 		if (IS_ERR(c->zroot.znode)) {
1577 			err = PTR_ERR(c->zroot.znode);
1578 			c->zroot.znode = NULL;
1579 			goto out_unlock;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * We are going to traverse the indexing tree in the postorder manner.
1585 	 * Go down and find the leftmost indexing node where we are going to
1586 	 * start from.
1587 	 */
1588 	znode = c->zroot.znode;
1589 	while (znode->level > 0) {
1590 		zbr = &znode->zbranch[0];
1591 		child = zbr->znode;
1592 		if (!child) {
1593 			child = ubifs_load_znode(c, zbr, znode, 0);
1594 			if (IS_ERR(child)) {
1595 				err = PTR_ERR(child);
1596 				goto out_unlock;
1597 			}
1598 			zbr->znode = child;
1599 		}
1600 
1601 		znode = child;
1602 	}
1603 
1604 	/* Iterate over all indexing nodes */
1605 	while (1) {
1606 		int idx;
1607 
1608 		cond_resched();
1609 
1610 		if (znode_cb) {
1611 			err = znode_cb(c, znode, priv);
1612 			if (err) {
1613 				ubifs_err(c, "znode checking function returned error %d",
1614 					  err);
1615 				ubifs_dump_znode(c, znode);
1616 				goto out_dump;
1617 			}
1618 		}
1619 		if (leaf_cb && znode->level == 0) {
1620 			for (idx = 0; idx < znode->child_cnt; idx++) {
1621 				zbr = &znode->zbranch[idx];
1622 				err = leaf_cb(c, zbr, priv);
1623 				if (err) {
1624 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1625 						  err, zbr->lnum, zbr->offs);
1626 					goto out_dump;
1627 				}
1628 			}
1629 		}
1630 
1631 		if (!znode->parent)
1632 			break;
1633 
1634 		idx = znode->iip + 1;
1635 		znode = znode->parent;
1636 		if (idx < znode->child_cnt) {
1637 			/* Switch to the next index in the parent */
1638 			zbr = &znode->zbranch[idx];
1639 			child = zbr->znode;
1640 			if (!child) {
1641 				child = ubifs_load_znode(c, zbr, znode, idx);
1642 				if (IS_ERR(child)) {
1643 					err = PTR_ERR(child);
1644 					goto out_unlock;
1645 				}
1646 				zbr->znode = child;
1647 			}
1648 			znode = child;
1649 		} else
1650 			/*
1651 			 * This is the last child, switch to the parent and
1652 			 * continue.
1653 			 */
1654 			continue;
1655 
1656 		/* Go to the lowest leftmost znode in the new sub-tree */
1657 		while (znode->level > 0) {
1658 			zbr = &znode->zbranch[0];
1659 			child = zbr->znode;
1660 			if (!child) {
1661 				child = ubifs_load_znode(c, zbr, znode, 0);
1662 				if (IS_ERR(child)) {
1663 					err = PTR_ERR(child);
1664 					goto out_unlock;
1665 				}
1666 				zbr->znode = child;
1667 			}
1668 			znode = child;
1669 		}
1670 	}
1671 
1672 	mutex_unlock(&c->tnc_mutex);
1673 	return 0;
1674 
1675 out_dump:
1676 	if (znode->parent)
1677 		zbr = &znode->parent->zbranch[znode->iip];
1678 	else
1679 		zbr = &c->zroot;
1680 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1681 	ubifs_dump_znode(c, znode);
1682 out_unlock:
1683 	mutex_unlock(&c->tnc_mutex);
1684 	return err;
1685 }
1686 
1687 /**
1688  * add_size - add znode size to partially calculated index size.
1689  * @c: UBIFS file-system description object
1690  * @znode: znode to add size for
1691  * @priv: partially calculated index size
1692  *
1693  * This is a helper function for 'dbg_check_idx_size()' which is called for
1694  * every indexing node and adds its size to the 'long long' variable pointed to
1695  * by @priv.
1696  */
1697 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1698 {
1699 	long long *idx_size = priv;
1700 	int add;
1701 
1702 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1703 	add = ALIGN(add, 8);
1704 	*idx_size += add;
1705 	return 0;
1706 }
1707 
1708 /**
1709  * dbg_check_idx_size - check index size.
1710  * @c: UBIFS file-system description object
1711  * @idx_size: size to check
1712  *
1713  * This function walks the UBIFS index, calculates its size and checks that the
1714  * size is equivalent to @idx_size. Returns zero in case of success and a
1715  * negative error code in case of failure.
1716  */
1717 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1718 {
1719 	int err;
1720 	long long calc = 0;
1721 
1722 	if (!dbg_is_chk_index(c))
1723 		return 0;
1724 
1725 	err = dbg_walk_index(c, NULL, add_size, &calc);
1726 	if (err) {
1727 		ubifs_err(c, "error %d while walking the index", err);
1728 		return err;
1729 	}
1730 
1731 	if (calc != idx_size) {
1732 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1733 			  calc, idx_size);
1734 		dump_stack();
1735 		return -EINVAL;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /**
1742  * struct fsck_inode - information about an inode used when checking the file-system.
1743  * @rb: link in the RB-tree of inodes
1744  * @inum: inode number
1745  * @mode: inode type, permissions, etc
1746  * @nlink: inode link count
1747  * @xattr_cnt: count of extended attributes
1748  * @references: how many directory/xattr entries refer this inode (calculated
1749  *              while walking the index)
1750  * @calc_cnt: for directory inode count of child directories
1751  * @size: inode size (read from on-flash inode)
1752  * @xattr_sz: summary size of all extended attributes (read from on-flash
1753  *            inode)
1754  * @calc_sz: for directories calculated directory size
1755  * @calc_xcnt: count of extended attributes
1756  * @calc_xsz: calculated summary size of all extended attributes
1757  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1758  *             inode (read from on-flash inode)
1759  * @calc_xnms: calculated sum of lengths of all extended attribute names
1760  */
1761 struct fsck_inode {
1762 	struct rb_node rb;
1763 	ino_t inum;
1764 	umode_t mode;
1765 	unsigned int nlink;
1766 	unsigned int xattr_cnt;
1767 	int references;
1768 	int calc_cnt;
1769 	long long size;
1770 	unsigned int xattr_sz;
1771 	long long calc_sz;
1772 	long long calc_xcnt;
1773 	long long calc_xsz;
1774 	unsigned int xattr_nms;
1775 	long long calc_xnms;
1776 };
1777 
1778 /**
1779  * struct fsck_data - private FS checking information.
1780  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1781  */
1782 struct fsck_data {
1783 	struct rb_root inodes;
1784 };
1785 
1786 /**
1787  * add_inode - add inode information to RB-tree of inodes.
1788  * @c: UBIFS file-system description object
1789  * @fsckd: FS checking information
1790  * @ino: raw UBIFS inode to add
1791  *
1792  * This is a helper function for 'check_leaf()' which adds information about
1793  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1794  * case of success and a negative error code in case of failure.
1795  */
1796 static struct fsck_inode *add_inode(struct ubifs_info *c,
1797 				    struct fsck_data *fsckd,
1798 				    struct ubifs_ino_node *ino)
1799 {
1800 	struct rb_node **p, *parent = NULL;
1801 	struct fsck_inode *fscki;
1802 	ino_t inum = key_inum_flash(c, &ino->key);
1803 	struct inode *inode;
1804 	struct ubifs_inode *ui;
1805 
1806 	p = &fsckd->inodes.rb_node;
1807 	while (*p) {
1808 		parent = *p;
1809 		fscki = rb_entry(parent, struct fsck_inode, rb);
1810 		if (inum < fscki->inum)
1811 			p = &(*p)->rb_left;
1812 		else if (inum > fscki->inum)
1813 			p = &(*p)->rb_right;
1814 		else
1815 			return fscki;
1816 	}
1817 
1818 	if (inum > c->highest_inum) {
1819 		ubifs_err(c, "too high inode number, max. is %lu",
1820 			  (unsigned long)c->highest_inum);
1821 		return ERR_PTR(-EINVAL);
1822 	}
1823 
1824 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1825 	if (!fscki)
1826 		return ERR_PTR(-ENOMEM);
1827 
1828 	inode = ilookup(c->vfs_sb, inum);
1829 
1830 	fscki->inum = inum;
1831 	/*
1832 	 * If the inode is present in the VFS inode cache, use it instead of
1833 	 * the on-flash inode which might be out-of-date. E.g., the size might
1834 	 * be out-of-date. If we do not do this, the following may happen, for
1835 	 * example:
1836 	 *   1. A power cut happens
1837 	 *   2. We mount the file-system R/O, the replay process fixes up the
1838 	 *      inode size in the VFS cache, but on on-flash.
1839 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1840 	 *      size.
1841 	 */
1842 	if (!inode) {
1843 		fscki->nlink = le32_to_cpu(ino->nlink);
1844 		fscki->size = le64_to_cpu(ino->size);
1845 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1846 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1847 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1848 		fscki->mode = le32_to_cpu(ino->mode);
1849 	} else {
1850 		ui = ubifs_inode(inode);
1851 		fscki->nlink = inode->i_nlink;
1852 		fscki->size = inode->i_size;
1853 		fscki->xattr_cnt = ui->xattr_cnt;
1854 		fscki->xattr_sz = ui->xattr_size;
1855 		fscki->xattr_nms = ui->xattr_names;
1856 		fscki->mode = inode->i_mode;
1857 		iput(inode);
1858 	}
1859 
1860 	if (S_ISDIR(fscki->mode)) {
1861 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1862 		fscki->calc_cnt = 2;
1863 	}
1864 
1865 	rb_link_node(&fscki->rb, parent, p);
1866 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1867 
1868 	return fscki;
1869 }
1870 
1871 /**
1872  * search_inode - search inode in the RB-tree of inodes.
1873  * @fsckd: FS checking information
1874  * @inum: inode number to search
1875  *
1876  * This is a helper function for 'check_leaf()' which searches inode @inum in
1877  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1878  * the inode was not found.
1879  */
1880 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1881 {
1882 	struct rb_node *p;
1883 	struct fsck_inode *fscki;
1884 
1885 	p = fsckd->inodes.rb_node;
1886 	while (p) {
1887 		fscki = rb_entry(p, struct fsck_inode, rb);
1888 		if (inum < fscki->inum)
1889 			p = p->rb_left;
1890 		else if (inum > fscki->inum)
1891 			p = p->rb_right;
1892 		else
1893 			return fscki;
1894 	}
1895 	return NULL;
1896 }
1897 
1898 /**
1899  * read_add_inode - read inode node and add it to RB-tree of inodes.
1900  * @c: UBIFS file-system description object
1901  * @fsckd: FS checking information
1902  * @inum: inode number to read
1903  *
1904  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1905  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1906  * information pointer in case of success and a negative error code in case of
1907  * failure.
1908  */
1909 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1910 					 struct fsck_data *fsckd, ino_t inum)
1911 {
1912 	int n, err;
1913 	union ubifs_key key;
1914 	struct ubifs_znode *znode;
1915 	struct ubifs_zbranch *zbr;
1916 	struct ubifs_ino_node *ino;
1917 	struct fsck_inode *fscki;
1918 
1919 	fscki = search_inode(fsckd, inum);
1920 	if (fscki)
1921 		return fscki;
1922 
1923 	ino_key_init(c, &key, inum);
1924 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1925 	if (!err) {
1926 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1927 		return ERR_PTR(-ENOENT);
1928 	} else if (err < 0) {
1929 		ubifs_err(c, "error %d while looking up inode %lu",
1930 			  err, (unsigned long)inum);
1931 		return ERR_PTR(err);
1932 	}
1933 
1934 	zbr = &znode->zbranch[n];
1935 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1936 		ubifs_err(c, "bad node %lu node length %d",
1937 			  (unsigned long)inum, zbr->len);
1938 		return ERR_PTR(-EINVAL);
1939 	}
1940 
1941 	ino = kmalloc(zbr->len, GFP_NOFS);
1942 	if (!ino)
1943 		return ERR_PTR(-ENOMEM);
1944 
1945 	err = ubifs_tnc_read_node(c, zbr, ino);
1946 	if (err) {
1947 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1948 			  zbr->lnum, zbr->offs, err);
1949 		kfree(ino);
1950 		return ERR_PTR(err);
1951 	}
1952 
1953 	fscki = add_inode(c, fsckd, ino);
1954 	kfree(ino);
1955 	if (IS_ERR(fscki)) {
1956 		ubifs_err(c, "error %ld while adding inode %lu node",
1957 			  PTR_ERR(fscki), (unsigned long)inum);
1958 		return fscki;
1959 	}
1960 
1961 	return fscki;
1962 }
1963 
1964 /**
1965  * check_leaf - check leaf node.
1966  * @c: UBIFS file-system description object
1967  * @zbr: zbranch of the leaf node to check
1968  * @priv: FS checking information
1969  *
1970  * This is a helper function for 'dbg_check_filesystem()' which is called for
1971  * every single leaf node while walking the indexing tree. It checks that the
1972  * leaf node referred from the indexing tree exists, has correct CRC, and does
1973  * some other basic validation. This function is also responsible for building
1974  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1975  * calculates reference count, size, etc for each inode in order to later
1976  * compare them to the information stored inside the inodes and detect possible
1977  * inconsistencies. Returns zero in case of success and a negative error code
1978  * in case of failure.
1979  */
1980 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1981 		      void *priv)
1982 {
1983 	ino_t inum;
1984 	void *node;
1985 	struct ubifs_ch *ch;
1986 	int err, type = key_type(c, &zbr->key);
1987 	struct fsck_inode *fscki;
1988 
1989 	if (zbr->len < UBIFS_CH_SZ) {
1990 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1991 			  zbr->len, zbr->lnum, zbr->offs);
1992 		return -EINVAL;
1993 	}
1994 
1995 	node = kmalloc(zbr->len, GFP_NOFS);
1996 	if (!node)
1997 		return -ENOMEM;
1998 
1999 	err = ubifs_tnc_read_node(c, zbr, node);
2000 	if (err) {
2001 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2002 			  zbr->lnum, zbr->offs, err);
2003 		goto out_free;
2004 	}
2005 
2006 	/* If this is an inode node, add it to RB-tree of inodes */
2007 	if (type == UBIFS_INO_KEY) {
2008 		fscki = add_inode(c, priv, node);
2009 		if (IS_ERR(fscki)) {
2010 			err = PTR_ERR(fscki);
2011 			ubifs_err(c, "error %d while adding inode node", err);
2012 			goto out_dump;
2013 		}
2014 		goto out;
2015 	}
2016 
2017 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2018 	    type != UBIFS_DATA_KEY) {
2019 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2020 			  type, zbr->lnum, zbr->offs);
2021 		err = -EINVAL;
2022 		goto out_free;
2023 	}
2024 
2025 	ch = node;
2026 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2027 		ubifs_err(c, "too high sequence number, max. is %llu",
2028 			  c->max_sqnum);
2029 		err = -EINVAL;
2030 		goto out_dump;
2031 	}
2032 
2033 	if (type == UBIFS_DATA_KEY) {
2034 		long long blk_offs;
2035 		struct ubifs_data_node *dn = node;
2036 
2037 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2038 
2039 		/*
2040 		 * Search the inode node this data node belongs to and insert
2041 		 * it to the RB-tree of inodes.
2042 		 */
2043 		inum = key_inum_flash(c, &dn->key);
2044 		fscki = read_add_inode(c, priv, inum);
2045 		if (IS_ERR(fscki)) {
2046 			err = PTR_ERR(fscki);
2047 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2048 				  err, (unsigned long)inum);
2049 			goto out_dump;
2050 		}
2051 
2052 		/* Make sure the data node is within inode size */
2053 		blk_offs = key_block_flash(c, &dn->key);
2054 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2055 		blk_offs += le32_to_cpu(dn->size);
2056 		if (blk_offs > fscki->size) {
2057 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2058 				  zbr->lnum, zbr->offs, fscki->size);
2059 			err = -EINVAL;
2060 			goto out_dump;
2061 		}
2062 	} else {
2063 		int nlen;
2064 		struct ubifs_dent_node *dent = node;
2065 		struct fsck_inode *fscki1;
2066 
2067 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2068 
2069 		err = ubifs_validate_entry(c, dent);
2070 		if (err)
2071 			goto out_dump;
2072 
2073 		/*
2074 		 * Search the inode node this entry refers to and the parent
2075 		 * inode node and insert them to the RB-tree of inodes.
2076 		 */
2077 		inum = le64_to_cpu(dent->inum);
2078 		fscki = read_add_inode(c, priv, inum);
2079 		if (IS_ERR(fscki)) {
2080 			err = PTR_ERR(fscki);
2081 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2082 				  err, (unsigned long)inum);
2083 			goto out_dump;
2084 		}
2085 
2086 		/* Count how many direntries or xentries refers this inode */
2087 		fscki->references += 1;
2088 
2089 		inum = key_inum_flash(c, &dent->key);
2090 		fscki1 = read_add_inode(c, priv, inum);
2091 		if (IS_ERR(fscki1)) {
2092 			err = PTR_ERR(fscki1);
2093 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2094 				  err, (unsigned long)inum);
2095 			goto out_dump;
2096 		}
2097 
2098 		nlen = le16_to_cpu(dent->nlen);
2099 		if (type == UBIFS_XENT_KEY) {
2100 			fscki1->calc_xcnt += 1;
2101 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2102 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2103 			fscki1->calc_xnms += nlen;
2104 		} else {
2105 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2106 			if (dent->type == UBIFS_ITYPE_DIR)
2107 				fscki1->calc_cnt += 1;
2108 		}
2109 	}
2110 
2111 out:
2112 	kfree(node);
2113 	return 0;
2114 
2115 out_dump:
2116 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2117 	ubifs_dump_node(c, node);
2118 out_free:
2119 	kfree(node);
2120 	return err;
2121 }
2122 
2123 /**
2124  * free_inodes - free RB-tree of inodes.
2125  * @fsckd: FS checking information
2126  */
2127 static void free_inodes(struct fsck_data *fsckd)
2128 {
2129 	struct fsck_inode *fscki, *n;
2130 
2131 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2132 		kfree(fscki);
2133 }
2134 
2135 /**
2136  * check_inodes - checks all inodes.
2137  * @c: UBIFS file-system description object
2138  * @fsckd: FS checking information
2139  *
2140  * This is a helper function for 'dbg_check_filesystem()' which walks the
2141  * RB-tree of inodes after the index scan has been finished, and checks that
2142  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2143  * %-EINVAL if not, and a negative error code in case of failure.
2144  */
2145 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2146 {
2147 	int n, err;
2148 	union ubifs_key key;
2149 	struct ubifs_znode *znode;
2150 	struct ubifs_zbranch *zbr;
2151 	struct ubifs_ino_node *ino;
2152 	struct fsck_inode *fscki;
2153 	struct rb_node *this = rb_first(&fsckd->inodes);
2154 
2155 	while (this) {
2156 		fscki = rb_entry(this, struct fsck_inode, rb);
2157 		this = rb_next(this);
2158 
2159 		if (S_ISDIR(fscki->mode)) {
2160 			/*
2161 			 * Directories have to have exactly one reference (they
2162 			 * cannot have hardlinks), although root inode is an
2163 			 * exception.
2164 			 */
2165 			if (fscki->inum != UBIFS_ROOT_INO &&
2166 			    fscki->references != 1) {
2167 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2168 					  (unsigned long)fscki->inum,
2169 					  fscki->references);
2170 				goto out_dump;
2171 			}
2172 			if (fscki->inum == UBIFS_ROOT_INO &&
2173 			    fscki->references != 0) {
2174 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2175 					  (unsigned long)fscki->inum,
2176 					  fscki->references);
2177 				goto out_dump;
2178 			}
2179 			if (fscki->calc_sz != fscki->size) {
2180 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2181 					  (unsigned long)fscki->inum,
2182 					  fscki->size, fscki->calc_sz);
2183 				goto out_dump;
2184 			}
2185 			if (fscki->calc_cnt != fscki->nlink) {
2186 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2187 					  (unsigned long)fscki->inum,
2188 					  fscki->nlink, fscki->calc_cnt);
2189 				goto out_dump;
2190 			}
2191 		} else {
2192 			if (fscki->references != fscki->nlink) {
2193 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2194 					  (unsigned long)fscki->inum,
2195 					  fscki->nlink, fscki->references);
2196 				goto out_dump;
2197 			}
2198 		}
2199 		if (fscki->xattr_sz != fscki->calc_xsz) {
2200 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2201 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2202 				  fscki->calc_xsz);
2203 			goto out_dump;
2204 		}
2205 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2206 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2207 				  (unsigned long)fscki->inum,
2208 				  fscki->xattr_cnt, fscki->calc_xcnt);
2209 			goto out_dump;
2210 		}
2211 		if (fscki->xattr_nms != fscki->calc_xnms) {
2212 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2213 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2214 				  fscki->calc_xnms);
2215 			goto out_dump;
2216 		}
2217 	}
2218 
2219 	return 0;
2220 
2221 out_dump:
2222 	/* Read the bad inode and dump it */
2223 	ino_key_init(c, &key, fscki->inum);
2224 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2225 	if (!err) {
2226 		ubifs_err(c, "inode %lu not found in index",
2227 			  (unsigned long)fscki->inum);
2228 		return -ENOENT;
2229 	} else if (err < 0) {
2230 		ubifs_err(c, "error %d while looking up inode %lu",
2231 			  err, (unsigned long)fscki->inum);
2232 		return err;
2233 	}
2234 
2235 	zbr = &znode->zbranch[n];
2236 	ino = kmalloc(zbr->len, GFP_NOFS);
2237 	if (!ino)
2238 		return -ENOMEM;
2239 
2240 	err = ubifs_tnc_read_node(c, zbr, ino);
2241 	if (err) {
2242 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2243 			  zbr->lnum, zbr->offs, err);
2244 		kfree(ino);
2245 		return err;
2246 	}
2247 
2248 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2249 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2250 	ubifs_dump_node(c, ino);
2251 	kfree(ino);
2252 	return -EINVAL;
2253 }
2254 
2255 /**
2256  * dbg_check_filesystem - check the file-system.
2257  * @c: UBIFS file-system description object
2258  *
2259  * This function checks the file system, namely:
2260  * o makes sure that all leaf nodes exist and their CRCs are correct;
2261  * o makes sure inode nlink, size, xattr size/count are correct (for all
2262  *   inodes).
2263  *
2264  * The function reads whole indexing tree and all nodes, so it is pretty
2265  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2266  * not, and a negative error code in case of failure.
2267  */
2268 int dbg_check_filesystem(struct ubifs_info *c)
2269 {
2270 	int err;
2271 	struct fsck_data fsckd;
2272 
2273 	if (!dbg_is_chk_fs(c))
2274 		return 0;
2275 
2276 	fsckd.inodes = RB_ROOT;
2277 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2278 	if (err)
2279 		goto out_free;
2280 
2281 	err = check_inodes(c, &fsckd);
2282 	if (err)
2283 		goto out_free;
2284 
2285 	free_inodes(&fsckd);
2286 	return 0;
2287 
2288 out_free:
2289 	ubifs_err(c, "file-system check failed with error %d", err);
2290 	dump_stack();
2291 	free_inodes(&fsckd);
2292 	return err;
2293 }
2294 
2295 /**
2296  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2297  * @c: UBIFS file-system description object
2298  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2299  *
2300  * This function returns zero if the list of data nodes is sorted correctly,
2301  * and %-EINVAL if not.
2302  */
2303 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2304 {
2305 	struct list_head *cur;
2306 	struct ubifs_scan_node *sa, *sb;
2307 
2308 	if (!dbg_is_chk_gen(c))
2309 		return 0;
2310 
2311 	for (cur = head->next; cur->next != head; cur = cur->next) {
2312 		ino_t inuma, inumb;
2313 		uint32_t blka, blkb;
2314 
2315 		cond_resched();
2316 		sa = container_of(cur, struct ubifs_scan_node, list);
2317 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2318 
2319 		if (sa->type != UBIFS_DATA_NODE) {
2320 			ubifs_err(c, "bad node type %d", sa->type);
2321 			ubifs_dump_node(c, sa->node);
2322 			return -EINVAL;
2323 		}
2324 		if (sb->type != UBIFS_DATA_NODE) {
2325 			ubifs_err(c, "bad node type %d", sb->type);
2326 			ubifs_dump_node(c, sb->node);
2327 			return -EINVAL;
2328 		}
2329 
2330 		inuma = key_inum(c, &sa->key);
2331 		inumb = key_inum(c, &sb->key);
2332 
2333 		if (inuma < inumb)
2334 			continue;
2335 		if (inuma > inumb) {
2336 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2337 				  (unsigned long)inuma, (unsigned long)inumb);
2338 			goto error_dump;
2339 		}
2340 
2341 		blka = key_block(c, &sa->key);
2342 		blkb = key_block(c, &sb->key);
2343 
2344 		if (blka > blkb) {
2345 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2346 			goto error_dump;
2347 		}
2348 		if (blka == blkb) {
2349 			ubifs_err(c, "two data nodes for the same block");
2350 			goto error_dump;
2351 		}
2352 	}
2353 
2354 	return 0;
2355 
2356 error_dump:
2357 	ubifs_dump_node(c, sa->node);
2358 	ubifs_dump_node(c, sb->node);
2359 	return -EINVAL;
2360 }
2361 
2362 /**
2363  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2364  * @c: UBIFS file-system description object
2365  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2366  *
2367  * This function returns zero if the list of non-data nodes is sorted correctly,
2368  * and %-EINVAL if not.
2369  */
2370 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2371 {
2372 	struct list_head *cur;
2373 	struct ubifs_scan_node *sa, *sb;
2374 
2375 	if (!dbg_is_chk_gen(c))
2376 		return 0;
2377 
2378 	for (cur = head->next; cur->next != head; cur = cur->next) {
2379 		ino_t inuma, inumb;
2380 		uint32_t hasha, hashb;
2381 
2382 		cond_resched();
2383 		sa = container_of(cur, struct ubifs_scan_node, list);
2384 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2385 
2386 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2387 		    sa->type != UBIFS_XENT_NODE) {
2388 			ubifs_err(c, "bad node type %d", sa->type);
2389 			ubifs_dump_node(c, sa->node);
2390 			return -EINVAL;
2391 		}
2392 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2393 		    sa->type != UBIFS_XENT_NODE) {
2394 			ubifs_err(c, "bad node type %d", sb->type);
2395 			ubifs_dump_node(c, sb->node);
2396 			return -EINVAL;
2397 		}
2398 
2399 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2400 			ubifs_err(c, "non-inode node goes before inode node");
2401 			goto error_dump;
2402 		}
2403 
2404 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2405 			continue;
2406 
2407 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408 			/* Inode nodes are sorted in descending size order */
2409 			if (sa->len < sb->len) {
2410 				ubifs_err(c, "smaller inode node goes first");
2411 				goto error_dump;
2412 			}
2413 			continue;
2414 		}
2415 
2416 		/*
2417 		 * This is either a dentry or xentry, which should be sorted in
2418 		 * ascending (parent ino, hash) order.
2419 		 */
2420 		inuma = key_inum(c, &sa->key);
2421 		inumb = key_inum(c, &sb->key);
2422 
2423 		if (inuma < inumb)
2424 			continue;
2425 		if (inuma > inumb) {
2426 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2427 				  (unsigned long)inuma, (unsigned long)inumb);
2428 			goto error_dump;
2429 		}
2430 
2431 		hasha = key_block(c, &sa->key);
2432 		hashb = key_block(c, &sb->key);
2433 
2434 		if (hasha > hashb) {
2435 			ubifs_err(c, "larger hash %u goes before %u",
2436 				  hasha, hashb);
2437 			goto error_dump;
2438 		}
2439 	}
2440 
2441 	return 0;
2442 
2443 error_dump:
2444 	ubifs_msg(c, "dumping first node");
2445 	ubifs_dump_node(c, sa->node);
2446 	ubifs_msg(c, "dumping second node");
2447 	ubifs_dump_node(c, sb->node);
2448 	return -EINVAL;
2449 	return 0;
2450 }
2451 
2452 static inline int chance(unsigned int n, unsigned int out_of)
2453 {
2454 	return !!((prandom_u32() % out_of) + 1 <= n);
2455 
2456 }
2457 
2458 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2459 {
2460 	struct ubifs_debug_info *d = c->dbg;
2461 
2462 	ubifs_assert(dbg_is_tst_rcvry(c));
2463 
2464 	if (!d->pc_cnt) {
2465 		/* First call - decide delay to the power cut */
2466 		if (chance(1, 2)) {
2467 			unsigned long delay;
2468 
2469 			if (chance(1, 2)) {
2470 				d->pc_delay = 1;
2471 				/* Fail within 1 minute */
2472 				delay = prandom_u32() % 60000;
2473 				d->pc_timeout = jiffies;
2474 				d->pc_timeout += msecs_to_jiffies(delay);
2475 				ubifs_warn(c, "failing after %lums", delay);
2476 			} else {
2477 				d->pc_delay = 2;
2478 				delay = prandom_u32() % 10000;
2479 				/* Fail within 10000 operations */
2480 				d->pc_cnt_max = delay;
2481 				ubifs_warn(c, "failing after %lu calls", delay);
2482 			}
2483 		}
2484 
2485 		d->pc_cnt += 1;
2486 	}
2487 
2488 	/* Determine if failure delay has expired */
2489 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2490 			return 0;
2491 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2492 			return 0;
2493 
2494 	if (lnum == UBIFS_SB_LNUM) {
2495 		if (write && chance(1, 2))
2496 			return 0;
2497 		if (chance(19, 20))
2498 			return 0;
2499 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2500 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2501 		if (chance(19, 20))
2502 			return 0;
2503 		ubifs_warn(c, "failing in master LEB %d", lnum);
2504 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2505 		if (write && chance(99, 100))
2506 			return 0;
2507 		if (chance(399, 400))
2508 			return 0;
2509 		ubifs_warn(c, "failing in log LEB %d", lnum);
2510 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2511 		if (write && chance(7, 8))
2512 			return 0;
2513 		if (chance(19, 20))
2514 			return 0;
2515 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2516 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2517 		if (write && chance(1, 2))
2518 			return 0;
2519 		if (chance(9, 10))
2520 			return 0;
2521 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2522 	} else if (lnum == c->ihead_lnum) {
2523 		if (chance(99, 100))
2524 			return 0;
2525 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2526 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2527 		if (chance(9, 10))
2528 			return 0;
2529 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2530 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2531 		   !ubifs_search_bud(c, lnum)) {
2532 		if (chance(19, 20))
2533 			return 0;
2534 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2535 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2536 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2537 		if (chance(999, 1000))
2538 			return 0;
2539 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2540 	} else {
2541 		if (chance(9999, 10000))
2542 			return 0;
2543 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2544 	}
2545 
2546 	d->pc_happened = 1;
2547 	ubifs_warn(c, "========== Power cut emulated ==========");
2548 	dump_stack();
2549 	return 1;
2550 }
2551 
2552 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2553 			unsigned int len)
2554 {
2555 	unsigned int from, to, ffs = chance(1, 2);
2556 	unsigned char *p = (void *)buf;
2557 
2558 	from = prandom_u32() % len;
2559 	/* Corruption span max to end of write unit */
2560 	to = min(len, ALIGN(from + 1, c->max_write_size));
2561 
2562 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2563 		   ffs ? "0xFFs" : "random data");
2564 
2565 	if (ffs)
2566 		memset(p + from, 0xFF, to - from);
2567 	else
2568 		prandom_bytes(p + from, to - from);
2569 
2570 	return to;
2571 }
2572 
2573 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2574 		  int offs, int len)
2575 {
2576 	int err, failing;
2577 
2578 	if (dbg_is_power_cut(c))
2579 		return -EROFS;
2580 
2581 	failing = power_cut_emulated(c, lnum, 1);
2582 	if (failing) {
2583 		len = corrupt_data(c, buf, len);
2584 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2585 			   len, lnum, offs);
2586 	}
2587 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2588 	if (err)
2589 		return err;
2590 	if (failing)
2591 		return -EROFS;
2592 	return 0;
2593 }
2594 
2595 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2596 		   int len)
2597 {
2598 	int err;
2599 
2600 	if (dbg_is_power_cut(c))
2601 		return -EROFS;
2602 	if (power_cut_emulated(c, lnum, 1))
2603 		return -EROFS;
2604 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2605 	if (err)
2606 		return err;
2607 	if (power_cut_emulated(c, lnum, 1))
2608 		return -EROFS;
2609 	return 0;
2610 }
2611 
2612 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2613 {
2614 	int err;
2615 
2616 	if (dbg_is_power_cut(c))
2617 		return -EROFS;
2618 	if (power_cut_emulated(c, lnum, 0))
2619 		return -EROFS;
2620 	err = ubi_leb_unmap(c->ubi, lnum);
2621 	if (err)
2622 		return err;
2623 	if (power_cut_emulated(c, lnum, 0))
2624 		return -EROFS;
2625 	return 0;
2626 }
2627 
2628 int dbg_leb_map(struct ubifs_info *c, int lnum)
2629 {
2630 	int err;
2631 
2632 	if (dbg_is_power_cut(c))
2633 		return -EROFS;
2634 	if (power_cut_emulated(c, lnum, 0))
2635 		return -EROFS;
2636 	err = ubi_leb_map(c->ubi, lnum);
2637 	if (err)
2638 		return err;
2639 	if (power_cut_emulated(c, lnum, 0))
2640 		return -EROFS;
2641 	return 0;
2642 }
2643 
2644 /*
2645  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2646  * contain the stuff specific to particular file-system mounts.
2647  */
2648 static struct dentry *dfs_rootdir;
2649 
2650 static int dfs_file_open(struct inode *inode, struct file *file)
2651 {
2652 	file->private_data = inode->i_private;
2653 	return nonseekable_open(inode, file);
2654 }
2655 
2656 /**
2657  * provide_user_output - provide output to the user reading a debugfs file.
2658  * @val: boolean value for the answer
2659  * @u: the buffer to store the answer at
2660  * @count: size of the buffer
2661  * @ppos: position in the @u output buffer
2662  *
2663  * This is a simple helper function which stores @val boolean value in the user
2664  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2665  * bytes written to @u in case of success and a negative error code in case of
2666  * failure.
2667  */
2668 static int provide_user_output(int val, char __user *u, size_t count,
2669 			       loff_t *ppos)
2670 {
2671 	char buf[3];
2672 
2673 	if (val)
2674 		buf[0] = '1';
2675 	else
2676 		buf[0] = '0';
2677 	buf[1] = '\n';
2678 	buf[2] = 0x00;
2679 
2680 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2681 }
2682 
2683 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2684 			     loff_t *ppos)
2685 {
2686 	struct dentry *dent = file->f_path.dentry;
2687 	struct ubifs_info *c = file->private_data;
2688 	struct ubifs_debug_info *d = c->dbg;
2689 	int val;
2690 
2691 	if (dent == d->dfs_chk_gen)
2692 		val = d->chk_gen;
2693 	else if (dent == d->dfs_chk_index)
2694 		val = d->chk_index;
2695 	else if (dent == d->dfs_chk_orph)
2696 		val = d->chk_orph;
2697 	else if (dent == d->dfs_chk_lprops)
2698 		val = d->chk_lprops;
2699 	else if (dent == d->dfs_chk_fs)
2700 		val = d->chk_fs;
2701 	else if (dent == d->dfs_tst_rcvry)
2702 		val = d->tst_rcvry;
2703 	else if (dent == d->dfs_ro_error)
2704 		val = c->ro_error;
2705 	else
2706 		return -EINVAL;
2707 
2708 	return provide_user_output(val, u, count, ppos);
2709 }
2710 
2711 /**
2712  * interpret_user_input - interpret user debugfs file input.
2713  * @u: user-provided buffer with the input
2714  * @count: buffer size
2715  *
2716  * This is a helper function which interpret user input to a boolean UBIFS
2717  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2718  * in case of failure.
2719  */
2720 static int interpret_user_input(const char __user *u, size_t count)
2721 {
2722 	size_t buf_size;
2723 	char buf[8];
2724 
2725 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2726 	if (copy_from_user(buf, u, buf_size))
2727 		return -EFAULT;
2728 
2729 	if (buf[0] == '1')
2730 		return 1;
2731 	else if (buf[0] == '0')
2732 		return 0;
2733 
2734 	return -EINVAL;
2735 }
2736 
2737 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2738 			      size_t count, loff_t *ppos)
2739 {
2740 	struct ubifs_info *c = file->private_data;
2741 	struct ubifs_debug_info *d = c->dbg;
2742 	struct dentry *dent = file->f_path.dentry;
2743 	int val;
2744 
2745 	/*
2746 	 * TODO: this is racy - the file-system might have already been
2747 	 * unmounted and we'd oops in this case. The plan is to fix it with
2748 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2749 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2750 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2751 	 * superblocks and fine the one with the same UUID, and take the
2752 	 * locking right.
2753 	 *
2754 	 * The other way to go suggested by Al Viro is to create a separate
2755 	 * 'ubifs-debug' file-system instead.
2756 	 */
2757 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2758 		ubifs_dump_lprops(c);
2759 		return count;
2760 	}
2761 	if (file->f_path.dentry == d->dfs_dump_budg) {
2762 		ubifs_dump_budg(c, &c->bi);
2763 		return count;
2764 	}
2765 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2766 		mutex_lock(&c->tnc_mutex);
2767 		ubifs_dump_tnc(c);
2768 		mutex_unlock(&c->tnc_mutex);
2769 		return count;
2770 	}
2771 
2772 	val = interpret_user_input(u, count);
2773 	if (val < 0)
2774 		return val;
2775 
2776 	if (dent == d->dfs_chk_gen)
2777 		d->chk_gen = val;
2778 	else if (dent == d->dfs_chk_index)
2779 		d->chk_index = val;
2780 	else if (dent == d->dfs_chk_orph)
2781 		d->chk_orph = val;
2782 	else if (dent == d->dfs_chk_lprops)
2783 		d->chk_lprops = val;
2784 	else if (dent == d->dfs_chk_fs)
2785 		d->chk_fs = val;
2786 	else if (dent == d->dfs_tst_rcvry)
2787 		d->tst_rcvry = val;
2788 	else if (dent == d->dfs_ro_error)
2789 		c->ro_error = !!val;
2790 	else
2791 		return -EINVAL;
2792 
2793 	return count;
2794 }
2795 
2796 static const struct file_operations dfs_fops = {
2797 	.open = dfs_file_open,
2798 	.read = dfs_file_read,
2799 	.write = dfs_file_write,
2800 	.owner = THIS_MODULE,
2801 	.llseek = no_llseek,
2802 };
2803 
2804 /**
2805  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2806  * @c: UBIFS file-system description object
2807  *
2808  * This function creates all debugfs files for this instance of UBIFS. Returns
2809  * zero in case of success and a negative error code in case of failure.
2810  *
2811  * Note, the only reason we have not merged this function with the
2812  * 'ubifs_debugging_init()' function is because it is better to initialize
2813  * debugfs interfaces at the very end of the mount process, and remove them at
2814  * the very beginning of the mount process.
2815  */
2816 int dbg_debugfs_init_fs(struct ubifs_info *c)
2817 {
2818 	int err, n;
2819 	const char *fname;
2820 	struct dentry *dent;
2821 	struct ubifs_debug_info *d = c->dbg;
2822 
2823 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2824 		return 0;
2825 
2826 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2827 		     c->vi.ubi_num, c->vi.vol_id);
2828 	if (n == UBIFS_DFS_DIR_LEN) {
2829 		/* The array size is too small */
2830 		fname = UBIFS_DFS_DIR_NAME;
2831 		dent = ERR_PTR(-EINVAL);
2832 		goto out;
2833 	}
2834 
2835 	fname = d->dfs_dir_name;
2836 	dent = debugfs_create_dir(fname, dfs_rootdir);
2837 	if (IS_ERR_OR_NULL(dent))
2838 		goto out;
2839 	d->dfs_dir = dent;
2840 
2841 	fname = "dump_lprops";
2842 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2843 	if (IS_ERR_OR_NULL(dent))
2844 		goto out_remove;
2845 	d->dfs_dump_lprops = dent;
2846 
2847 	fname = "dump_budg";
2848 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2849 	if (IS_ERR_OR_NULL(dent))
2850 		goto out_remove;
2851 	d->dfs_dump_budg = dent;
2852 
2853 	fname = "dump_tnc";
2854 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2855 	if (IS_ERR_OR_NULL(dent))
2856 		goto out_remove;
2857 	d->dfs_dump_tnc = dent;
2858 
2859 	fname = "chk_general";
2860 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2861 				   &dfs_fops);
2862 	if (IS_ERR_OR_NULL(dent))
2863 		goto out_remove;
2864 	d->dfs_chk_gen = dent;
2865 
2866 	fname = "chk_index";
2867 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2868 				   &dfs_fops);
2869 	if (IS_ERR_OR_NULL(dent))
2870 		goto out_remove;
2871 	d->dfs_chk_index = dent;
2872 
2873 	fname = "chk_orphans";
2874 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2875 				   &dfs_fops);
2876 	if (IS_ERR_OR_NULL(dent))
2877 		goto out_remove;
2878 	d->dfs_chk_orph = dent;
2879 
2880 	fname = "chk_lprops";
2881 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2882 				   &dfs_fops);
2883 	if (IS_ERR_OR_NULL(dent))
2884 		goto out_remove;
2885 	d->dfs_chk_lprops = dent;
2886 
2887 	fname = "chk_fs";
2888 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2889 				   &dfs_fops);
2890 	if (IS_ERR_OR_NULL(dent))
2891 		goto out_remove;
2892 	d->dfs_chk_fs = dent;
2893 
2894 	fname = "tst_recovery";
2895 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896 				   &dfs_fops);
2897 	if (IS_ERR_OR_NULL(dent))
2898 		goto out_remove;
2899 	d->dfs_tst_rcvry = dent;
2900 
2901 	fname = "ro_error";
2902 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903 				   &dfs_fops);
2904 	if (IS_ERR_OR_NULL(dent))
2905 		goto out_remove;
2906 	d->dfs_ro_error = dent;
2907 
2908 	return 0;
2909 
2910 out_remove:
2911 	debugfs_remove_recursive(d->dfs_dir);
2912 out:
2913 	err = dent ? PTR_ERR(dent) : -ENODEV;
2914 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2915 		  fname, err);
2916 	return err;
2917 }
2918 
2919 /**
2920  * dbg_debugfs_exit_fs - remove all debugfs files.
2921  * @c: UBIFS file-system description object
2922  */
2923 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2924 {
2925 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2926 		debugfs_remove_recursive(c->dbg->dfs_dir);
2927 }
2928 
2929 struct ubifs_global_debug_info ubifs_dbg;
2930 
2931 static struct dentry *dfs_chk_gen;
2932 static struct dentry *dfs_chk_index;
2933 static struct dentry *dfs_chk_orph;
2934 static struct dentry *dfs_chk_lprops;
2935 static struct dentry *dfs_chk_fs;
2936 static struct dentry *dfs_tst_rcvry;
2937 
2938 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2939 				    size_t count, loff_t *ppos)
2940 {
2941 	struct dentry *dent = file->f_path.dentry;
2942 	int val;
2943 
2944 	if (dent == dfs_chk_gen)
2945 		val = ubifs_dbg.chk_gen;
2946 	else if (dent == dfs_chk_index)
2947 		val = ubifs_dbg.chk_index;
2948 	else if (dent == dfs_chk_orph)
2949 		val = ubifs_dbg.chk_orph;
2950 	else if (dent == dfs_chk_lprops)
2951 		val = ubifs_dbg.chk_lprops;
2952 	else if (dent == dfs_chk_fs)
2953 		val = ubifs_dbg.chk_fs;
2954 	else if (dent == dfs_tst_rcvry)
2955 		val = ubifs_dbg.tst_rcvry;
2956 	else
2957 		return -EINVAL;
2958 
2959 	return provide_user_output(val, u, count, ppos);
2960 }
2961 
2962 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2963 				     size_t count, loff_t *ppos)
2964 {
2965 	struct dentry *dent = file->f_path.dentry;
2966 	int val;
2967 
2968 	val = interpret_user_input(u, count);
2969 	if (val < 0)
2970 		return val;
2971 
2972 	if (dent == dfs_chk_gen)
2973 		ubifs_dbg.chk_gen = val;
2974 	else if (dent == dfs_chk_index)
2975 		ubifs_dbg.chk_index = val;
2976 	else if (dent == dfs_chk_orph)
2977 		ubifs_dbg.chk_orph = val;
2978 	else if (dent == dfs_chk_lprops)
2979 		ubifs_dbg.chk_lprops = val;
2980 	else if (dent == dfs_chk_fs)
2981 		ubifs_dbg.chk_fs = val;
2982 	else if (dent == dfs_tst_rcvry)
2983 		ubifs_dbg.tst_rcvry = val;
2984 	else
2985 		return -EINVAL;
2986 
2987 	return count;
2988 }
2989 
2990 static const struct file_operations dfs_global_fops = {
2991 	.read = dfs_global_file_read,
2992 	.write = dfs_global_file_write,
2993 	.owner = THIS_MODULE,
2994 	.llseek = no_llseek,
2995 };
2996 
2997 /**
2998  * dbg_debugfs_init - initialize debugfs file-system.
2999  *
3000  * UBIFS uses debugfs file-system to expose various debugging knobs to
3001  * user-space. This function creates "ubifs" directory in the debugfs
3002  * file-system. Returns zero in case of success and a negative error code in
3003  * case of failure.
3004  */
3005 int dbg_debugfs_init(void)
3006 {
3007 	int err;
3008 	const char *fname;
3009 	struct dentry *dent;
3010 
3011 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3012 		return 0;
3013 
3014 	fname = "ubifs";
3015 	dent = debugfs_create_dir(fname, NULL);
3016 	if (IS_ERR_OR_NULL(dent))
3017 		goto out;
3018 	dfs_rootdir = dent;
3019 
3020 	fname = "chk_general";
3021 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3022 				   &dfs_global_fops);
3023 	if (IS_ERR_OR_NULL(dent))
3024 		goto out_remove;
3025 	dfs_chk_gen = dent;
3026 
3027 	fname = "chk_index";
3028 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3029 				   &dfs_global_fops);
3030 	if (IS_ERR_OR_NULL(dent))
3031 		goto out_remove;
3032 	dfs_chk_index = dent;
3033 
3034 	fname = "chk_orphans";
3035 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3036 				   &dfs_global_fops);
3037 	if (IS_ERR_OR_NULL(dent))
3038 		goto out_remove;
3039 	dfs_chk_orph = dent;
3040 
3041 	fname = "chk_lprops";
3042 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3043 				   &dfs_global_fops);
3044 	if (IS_ERR_OR_NULL(dent))
3045 		goto out_remove;
3046 	dfs_chk_lprops = dent;
3047 
3048 	fname = "chk_fs";
3049 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3050 				   &dfs_global_fops);
3051 	if (IS_ERR_OR_NULL(dent))
3052 		goto out_remove;
3053 	dfs_chk_fs = dent;
3054 
3055 	fname = "tst_recovery";
3056 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057 				   &dfs_global_fops);
3058 	if (IS_ERR_OR_NULL(dent))
3059 		goto out_remove;
3060 	dfs_tst_rcvry = dent;
3061 
3062 	return 0;
3063 
3064 out_remove:
3065 	debugfs_remove_recursive(dfs_rootdir);
3066 out:
3067 	err = dent ? PTR_ERR(dent) : -ENODEV;
3068 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3069 	       current->pid, fname, err);
3070 	return err;
3071 }
3072 
3073 /**
3074  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3075  */
3076 void dbg_debugfs_exit(void)
3077 {
3078 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3079 		debugfs_remove_recursive(dfs_rootdir);
3080 }
3081 
3082 /**
3083  * ubifs_debugging_init - initialize UBIFS debugging.
3084  * @c: UBIFS file-system description object
3085  *
3086  * This function initializes debugging-related data for the file system.
3087  * Returns zero in case of success and a negative error code in case of
3088  * failure.
3089  */
3090 int ubifs_debugging_init(struct ubifs_info *c)
3091 {
3092 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3093 	if (!c->dbg)
3094 		return -ENOMEM;
3095 
3096 	return 0;
3097 }
3098 
3099 /**
3100  * ubifs_debugging_exit - free debugging data.
3101  * @c: UBIFS file-system description object
3102  */
3103 void ubifs_debugging_exit(struct ubifs_info *c)
3104 {
3105 	kfree(c->dbg);
3106 }
3107